
An Efficient GPU Approach for Designing 3D Cultural Heritage Information
Systems

Luis Lópeza,∗, Juan Carlos Torresa, Germán Arroyoa, Pedro Canoa, Domingo Mart́ına

aVirtual Reality Laboratory. University of Granada. C/ Zamora, parcela 127-128. 18151 Oǵıjares, Granada. Spain

Abstract

We propose a new architecture for 3D information systems that takes advantage of the inherent parallelism of the GPUs.
This new solution structures information as thematic layers, allowing a level of detail independent of the resolution of
the meshes. Previous proposals of layer based systems present issues, both in terms of performance and storage, due
to the use of octrees to index information. In contrast, our approach employs two-dimensional textures, highly efficient
in GPU, to store and index information. In this article we describe this architecture and detail the GPU algorithms
required to edit these layers. Finally, we present a performance comparison of our approach against an octree based
system.

Keywords: 3D information systems, Information layers, 3D models, 3D digitisation, GPU programming

1. Introduction

Documentation of cultural heritage artefacts is one of
the most important tasks in terms of understanding and
preserving tangible heritage. This process usually involves
handling huge sets of heterogeneous data: photographs, il-
lustrations, recordings, logbooks, plans, diaries, databases,
digitized 3D models, etc. In traditional information sys-
tems, these data are usually stored in the absence of any
kind of cross-referencing between the 3D model and the
database.

The development of 3D scanning technologies over the
last decade has allowed us to capture highly accurate rep-
resentations of cultural heritage artefacts. Following the
application of the proper processing techniques, the re-
sulting 3D models possess sufficient geometric detail for
them to be useful in terms of taking measurements and
performing geometric operations.

The geometric information offered by these digitized 3D
models is connected with every other type of meaningful
data used to document artefacts. After all, pictures are
taken to accurately document specific areas, illustrations
are drawn to emphasize finer details, logbooks are used
to register the work done in different sections at specific
times, etc. It thus seems natural, therefore, to organize
and store this information on the surface of the 3D models.

2. Research Aim

This article presents a new architecture for cultural her-
itage information systems that borrows from the founda-

∗Corresponding author
Email address: luislopez@ugr.es (Luis López)

tions and functionality of Geographic Information Systems
(GISs) and applies them to 3D models. Our solution orga-
nizes the information in thematic layers that are mapped
onto the surface of the 3D model (Figure 1). The data of
these layers is stored on 2D textures and texture coordi-
nates are used to properly index that information. This
new approach takes advantage of the parallelism and effi-
ciency of the Graphics Processing Units (GPUs) to handle
and operate these structures. Our approach also allows
to associate information independently of the geometry of
the 3D model.

3. Previous works

In this section, we classify previous works related to in-
formation systems into four categories according to the
dimension of the space employed in the analysis and visu-
alization of data.

3.1. 2D space

These methods represent the information by means of
2D structures and employ existing GISs with minor mod-
ifications to document tangible heritage. This choice pro-
vides a vast range of solid tools with powerful analytic and
information retrieval capabilities. However, these methods
lack a bidirectional connection between the stored infor-
mation in a 2D plane and the digitized 3D source model.
It is, therefore, necessary to process this 3D model before
using it as a valid input in these systems.

Naglič[1] and Ioannidis et al.[2] are good examples of this
approach. They both use GISs for their work on large-scale
archaeological sites, as these systems allow them to index

Preprint submitted to Journal of Cultural Heritage February 29, 2018

Figure 1: Prototype of the proposed architecture. The user has associated two information layers to the 3D model of a vessel. The first layer
cracks identifies the area of the cracks using a green color. The second layer pieces identifies the different pieces of the shattered vessel using
the selected palette.

large areas by geographical coordinates. Likewise, Parkin-
son et al.[3] employ GISs to study tooth marking patterns
created by large contemporary canids on the bones of their
preys and compare them with earlier fossils. They photo-
graph the bones and manually create vector layers of the
markings. In each of these cases they have to compromise
the 3D nature of the source material in order to use GISs
to analyse the data, limiting their entire work-flow to just
one point-of-view at a time.

3.2. 2.5D space

These methods work with images and GISs to analyse
and process the data. In contrast to the 2D approaches,
the images are rasterized elevation models that contain
height information. Therefore, they work in the restricted
3D space that this type of images provide. It is a more
flexible and powerful method but, at the same time, it
shares the issues of the 2D approaches. They need to con-
vert the digitized 3D models into the appropriate image
format and they are restricted to only one point of view.

Benito et al.[4] use this approach to classify stone tools
employed by wild chimpanzees. They divide this classifica-
tion in several stages: first they scan the tools, then they
transform the resulting 3d models into digital elevation
models and finally, they use morphometric GIS classifica-
tion functions to discriminate between active and passive
pounders in lithic assemblages.

3.3. Hybrid space

The methods under this category work in a 2D space
during the stages of analysis and data processing and then
visualize the resulting information in a 3D space. Two dif-
ferent transformation steps are required for this process.
First, they need to project the initial 3D model, used as
geometric reference, onto different 2D planes. The result-
ing images or digital elevation models are later processed
in a GIS. Once this process has finished, the output needs

to be projected onto the 3D model again as a texture. Al-
though these methods lack the point-of-view restrictions
of those described above, their work-flow is more complex
and it suited only to tangible heritage easily divisible in
2D planes.

Campanaro et al.[5] used this approach to tackle the
preservation of architectonic structures. They project the
façade of buildings into multiple images, process them in
different GISs and finally, they project the results onto a
simplified version of the original 3D models of the buildings
for their visualization.

3.4. 3D space

Unlike the previous approaches, these methods work di-
rectly with the digitized 3D models. There are no point-of-
view restrictions and no transformations between different
work spaces.

3.4.1. Annotation systems

The main goal of these systems is to associate informa-
tion on specific sections of 3D model surface and offer ro-
bust information retrieval tools. There is a wide spectrum
of indexation mechanisms under this paradigm, ranging
from submeshes of the original 3D model to lines or points
in 3D space.

Durand et al.[6], Meyer et al.[7] and Mateos et al.[8] pro-
pose several online information systems to document ar-
chaeological sites. These systems require that the original
3D model is segmented into smaller and distinct entities.
The analysis, processing and dissemination of information
are done for each entity instead of the complete model.

Giunta et al.[9] use AutoCAD models to structure the
architectural information and diagnostic investigation re-
sults of Milan’s Cathedral Façade. Additionally, the sys-
tem allows the user to insert pictures, texts and documents
in a geo-referenced way.

Serna et al.[10] describe a distributed information sys-
tem to annotate multimedia objects (3D models, images,

2

text) using the concept of areas. Apollonio et al.[11] de-
velop a web information system to document the restora-
tion project of Neptune’s Fountain in Bologne, Italy. The
system allows the user to annotate the 3D model using
three different primitives (points, polylines and areas) and
to gather the stored data by means of robust information
retrieval tools.

3.4.2. Layer based systems

These systems structure information attached to 3D
models as a set of layers, where each layer stores the
value of one attribute. Data layers can be considered as
functions that associate a property value to points on the
surface of the object. These type of systems can include
the same functionality as the annotation systems and they
can also perform complex operations between data layers.
However, the main problem that these systems need to
solve is how to design efficient structures and methods to
represent those data layers.

Torres et al.[12] divide the surface of the original 3D
model into cells by means of an octree. Specifically, sur-
faces are recursively subdivided by eight cubic cells or vox-
els of the same size up to a predefined resolution level.
Hence, each cell stores the triangles of the mesh that in-
tersects. The level of detail depends on the size of these
voxels and therefore, the number of subdivisions (levels)
applied. The octree structure allows the user to work in-
dependently of the geometric irregularities and resolution.
This way, fairly simple meshes are able to store informa-
tion with better accuracy than the geometric mesh is able
to offer. However, this spatial indexation becomes expen-
sive in terms of memory and performance when dealing
with the highest resolution levels.

The information layers are stored as sequences of prop-
erties assigned to the leaf nodes crossed by the surface[13,
14]. This system not only is able to annotate or look
up information, but it also allows the user to make com-
plex computations with heterogeneous layers. Some of
these computations include arithmetic, logic, geometric
and topological operations or database queries, which can
be used to analyze already existing data or to produce
new information. Soler et al.[15] improve this system in
order to solve specific topological problems at the expense
of using a more complex data structure.

In this article we propose a new solution for these layer
based systems that works in the 3D space and uses infor-
mation layers to organize the information annotated on the
3D model. Unlike the Torres et al.[12] approach that re-
quires an octree, our solution takes advantage of the mod-
ern GPU hardware by means of using textures and texture
coordinates for data storage and indexation of the infor-
mation. Next section describes in detail all the aspects of
the data structures and algorithms required to create the
proposed architecture.

Disk

Database
File

Layer File

Geometry
File

CPU

Database
Manager

Geometry
Manager

Texture
Manager

Layer
Manager

GPU

3D Model

Data Texture

Mask Texture

Palette Texture

Layer Editing

Load

Save

Load
Create

Save

Figure 2: General overview of the proposed architecture.

4. Proposed approach

This section offers a comprehensive look at our proposed
architecture. Section 4.1 introduces the concept of using
textures to store data other than colours. Section 4.2 de-
scribes the layers and the rest of the structures. Finally,
Section 4.3 details the algorithms required to edit the lay-
ers.

We can organize our architecture around three computer
components:

• Disk drive stores information permanently. It is the
slowest component.

• CPU is a general purpose processor that solves com-
puter tasks with the help of the primary memory. It
is orders of magnitude faster than disk drives.

• GPU is a specialized parallel processor that solves
specific tasks. It is the fastest of these three types of
components.

Ideally, whenever possible, structures and algorithms
should be written with the strengths of the GPUs in mind
to minimize the involvement of the CPU.

Our architecture (Figure 2) follows this principle and
it defines all the structures directly in the memory of the
GPU. Moreover, all the algorithms are solved in the GPU
as well, so the CPU only has a management role. Layer
Manager handles the loading, storage and creation of lay-
ers. Texture Manager is part of Layer Manager and issues
commands to the GPU to create or destroy these struc-
tures but it does not store any of their information. Ge-
ometry Manager handles the loading and storage of geom-
etry files and uploads the geometry data efficiently to the
GPU. Database Manager resolves the creation and update
of tables, tuples and queries. The disk drive is only used
to load and store layers, databases and geometry perma-
nently. Finally, the editing process requires a graphical
user interface, therefore we have implemented a prototype
(Figure 1) based in our architecture.

4.1. Texture as a heterogeneous data structure

Textures are usually defined as containers of one or mul-
tiple images in computer graphics. These images are ar-
rays of texels of a certain dimensionality (1D, 2D or 3D)

3

and they store the information following a specific format.
Traditionally, textures have been widely used to add color
information to the surface of 3D models. However, the
birth of the programmable graphics and GPU computing
pipelines have dramatically changed their purpose during
the last two decades.

Therefore, textures are multi-purpose structures nowa-
days. In fields like General Purpose GPU (GPGPU) com-
puting, textures are usually treated as simple arrays or
computation matrices. However, in Computer Graphics,
it is a de facto standard to work with 3D models and tex-
tures coordinates, which are necessary to access and store
the information. These coordinates are the result of pro-
jecting every primitive of the mesh, such as triangles, onto
the texture space, which is usually a 2D space.

Since our information system works with 3D models,
we use texture coordinates to index the data stored in 2D
textures. This data is represented as integers or floating
numbers of a certain size based on the type of information
layers.

4.2. Information layer

Our system handles two types of information layers:

• Numeric layers store numeric properties such as
curvature, rugosity, age and so on. The properties can
be integer or real values. These layers are normally
employed for annotating and operating with quanti-
tative information.

• Database layers have a relational database table as-
sociated. Regardless of how the user defines the table
schema, the primary keys are always unsigned integers
and they are also the values stored in the layer. There-
fore, these layers establish a bidirectional relationship
between the table of a database and the geometry of
the 3D model. The use of tables is an elegant solu-
tion that allows the storage of complex heterogeneous
data (text, dates, documents, pictures) and greatly
enhances the semantic information of the 3D models.
These layers are used for annotating and operating
with qualitative information.

Figure 2 depicts how layers are implemented in our sys-
tem. Specifically, information layers consist of two differ-
ent 2D textures and one 1D texture:

• Data texture (2D) stores a number per texel. These
numbers are integers (8, 16 or 32 bits) or float (16 or
32 bits) values. This texture holds the actual infor-
mation of the layer, meaning property values in case
of numeric layers, or primary keys in case of database
layers.

• Mask texture (2D) stores a boolean value per texel
to determinate whether the texel of the data texture
contains valid information or not.

• Palette texture (1D) stores the necessary color in-
formation per texel to visualize the contents of the
data texture. Each texel holds a four component vec-
tor with the following color format: red, green, blue
and alpha.

In order to manage the multiple data types and texture
sizes, it is necessary to organize the textures efficiently be-
cause GPUs can only use simultaneously as many textures
as the number of texture units they have. For instance, in
modern NVIDIA graphics cards, this number is usually 32.
Texture arrays are structures that can hold multiple tex-
tures and, at the same time, only occupy one texture unit.
Therefore, they are extremely useful in cases like this. Our
Texture Manager classifies the textures using a hash func-
tion and organizes them in texture arrays. The hash key
is constructed by joining their width, height and data type
in a unique field. Each new key creates a new texture ar-
ray, whereas each texture that shares this key occupies a
new layer of that texture array, avoiding any collision. A
hash function is efficient due to the access operations are
realised in constant order if there is no collisions. The tex-
tures always reside in GPU with the exception of storage
and memory management operations. Texture Manager
only stores the texture identifiers. Moreover, the process
of editing the texture data is completely solved in GPU.

The commitment of these texture resources also hap-
pen dynamically in the GPU thanks to the use of sparse
textures[16]. This feature allows the separation of the
GPU address space (reservation) from the requirement
that all textures must be physically backed (commitment),
exposing a limited form of virtualization for textures.
Therefore, new resources can be reserved in the form of
texture arrays with a huge number of layers without com-
mitting any GPU memory until it is required. The sys-
tem does not require to reserve a specific number of each
type of texture in advance, hence the flexibility of sparse
textures allows more instances of different layer types si-
multaneously. Additionally, this technique alleviates the
memory management and improves the performance due
to there is no data-transfer between CPU and GPU until
the physical memory of the GPU is almost fully occupied.

Our solution results in an efficient approach due to
GPUs excel at working with textures and textures co-
ordinates. Another advantage of this approach it is the
independence between data and geometry in our model.
Therefore, high resolution textures can be used to store
information with a high level of detail on simple models.

Since these 2D textures do not store colour information
but rather heterogeneous data, our system uses palettes
that transform values into colours in order to render the
layers. Our solution consists of a 1D texture that stores
the colour information of the palette defined as a sequence
of control points. Using the numeric value of the informa-
tion layer per texel, another structure that contains the
lower and upper limits of the palette and a single linear
transformation, we can properly index the 1D texture and

4

retrieve the correct colour to display.

4.3. Editing layers on the 3D model

Regarding to the user interface, once the editing mode
is activated, an editing tool in the shape of a circle ap-
pears under the mouse cursor. The user can interactively
add information to the selected layer by pressing the left
button of the mouse and moving the tool over the desired
area. This is a complex process that involves two distinct
algorithms:

• Texture Editing Algorithm (TEA), detailed in Sec-
tion 4.3.1, translates the user inputs into valid tex-
ture coordinates and it stores the new values in the
appropriate texels of the layer textures.

• Texture Padding Algorithm (TPA), described in Sec-
tion 4.3.2, eliminates the visual artefacts that could
appear when the application renders the layer on the
surface of the 3D model.

4.3.1. Texture Editing Algorithm

TEA is a multi-step algorithm that projects the area
of the editing tool, expressed in window coordinates, onto
the space of the texture coordinates and stores the selected
value on the appropriate textures permanently. Figure 3
depicts a diagram of the whole process, which progres-
sively discards regions of the texture until the edited area
matches the orange shape of the editing tool.

This algorithm requires two input textures in addition
to other 3d model attributes, such as vertices, normals
and texture coordinates and the information relative to
the camera:

• Depth texture is created as a part of the system
pipeline. This texture stores the depth values of the
scene from the current point of view. The user trig-
gers an update when she modifies the viewpoint of
the active camera or loads a new 3D model into the
system.

• Editing tool shape texture is created as a part of
the system pipeline. This texture stores the shape of
the current editing tool. The user triggers an update
when she selects another shape for the editing tool.

In order to project the editing tool onto the 3D model
surface at the position selected by the user, the algorithm
makes use of projective texture mapping[17][18]. This
technique assumes that textures are projected onto the
scene by slide projectors. In this case, the projector and
the scene camera share the same world position, hence its
viewing transformation is also identical. Additionally, its
projection transformation need to be adjusted to the tex-
ture frustum. If the projection transformation were the
same, the texture would be projected onto the whole screen
but that is not the goal of our algorithm. The projection
has to be limited to the 2D area occupied by the editing

Shape

Masking

Projective

Texturing

Depth Test

Depth Texture

Editing Tool

Shape Texture

Texture of the layer
3D View

Editing Tool

Position

a

b

c

Figure 3: Our algorithm filters areas of the texture progressively.
(a) Depth Test discards the occluded parts of the 3D model. (b)
Projective Texturing projects a squared area of the appropriated
size onto the remaining area. Finally, (c) Shape Masking discards
the texels that fall outside of the editing tool shape.

5

tool. The basic equation for 2D coordinate transformation
accomplishes that:

Tc = Tf + Sf · Sc

where Tc is the target coordinate, Tf is the translate fac-
tor, Sf is the scale factor and Sc is the source coordinate.
The scaling and translate factors are computed with the
following equations:

Sf =

(
Ww

2Tw
,
Wh

2Th

)
Tf =

(
Tpx − 0.5 ·Ww

Tw
,
Tpy − 0.5 ·Wh

Th

)
where Sf and Tf are the scale and translate factor respec-
tively, Ww andWh are the window size (width and height),
Tw and Th are the texture size (width and height), Tpx and
Tpy are the horizontal and vertical coordinates of the edit-
ing tool.

Once the viewing and projection of the slide projector
have been defined, the vertices of the 3D model are trans-
formed to obtain the coordinates employed in the projec-
tive texture mapping. Unlike standard texture mapping
that uses real texture coordinates (s, t), projective texture
mapping uses homogeneous coordinates or coordinates in
the projective space (s, t, w). These homogeneous coor-
dinates are interpolated over the primitive and then pro-
jected onto the 2D texture space (s/w, t/w) at each frag-
ment before indexing the texture image. The domain for
texture mapping is usually [0, 1] so those coordinates that
fall outside of that range are discarded (Figure 3.b).

At this point the accepted coordinates project a squared
area onto the 3D model independently of the shape of the
editing tool. Therefore, the coordinates need to be tested
against the texture that stores the shape of the tool (Fig-
ure 3.c). This is a simple masking operation where the
coordinates that fall outside the shape are also discarded.
The final coordinates project the right shape onto the 3D
model and the selected value is written on them.

The steps b) and c) project values onto the 3D model
and visualize them using the active palette. However, the
persistence of each editing operation is required and there-
fore the projected values need to be written on a texture
and not rendered on the screen. In order to accomplish
that, the default framebuffer is completely discarded. In-
stead, an off-screen framebuffer is set up and the 2D tex-
tures of the layer are attached to it. The scene is then ren-
dered from the viewpoint of an orthogonal camera using
the texture coordinates of the 3D model as vertex posi-
tions. That way, the texture coordinates are translated to
the appropriate 2D texels in the texture space by means of
perspective projection and the rasterisation process. Fi-
nally, only the texels that are validated by the different
steps of the algorithm are updated: the selected value is
stored on the data texture and the value true is stored on
the mask texture of the current layer.

Edited
Area
Mask

Outline
Mask

Edited texture

Padding

Figure 4: In the zoomed area, the algorithm has verified that the
current texel is part of the Outline Mask (black line) and the kernel
(red matrix) is checking whether there are texels of the Edited Area
Mask nearby (orange shape).

It is undesirable that the system allows the user to
edit the occluded areas of the 3D models. This problem
could appear because projective texture mapping does not
carry out a depth test. To solve this issue, our algorithm
makes use of the depth texture provided by the system
pipeline. The texture stores the depth values of the scene
viewed from the camera point-of-view. Before comput-
ing the projective texture mapping, each valid fragment is
tested against the depth texture. A small bias is applied in
this computation to fight possible precision issues. If the
fragment falls behind the value of the pertinent texel, the
fragment is discarded. Otherwise, the rest of the algorithm
proceeds normally (Figure 3.a).

4.3.2. Texture Padding Algorithm

While our TEA solves the editing of the data textures,
the usage of textures also entails some visualization arte-
facts. When GPUs display textured 3D models, the tex-
ture coordinates define how the texels are sampled and
they are usually organized as sets of isles of different size
and shape along a 2D plane. The space of texture coor-
dinates is continuous while the textures or images are dis-
crete. This disparity makes the conversion between both
spaces prone to small inaccuracies around the edge of the
isles. If there is no redundant information beyond the
borders of the texture isles, visual discontinuities or arte-
facts can appear when these borders are sampled. In order
to prevent this rendering issue, our dilation algorithm ex-
pands the border data on some additional texels. The
general idea of the process is shown in Figure 4.

The algorithm requires two input textures:

• Outline mask. This texture contains the outlines
of the texture islands. It is created as a part of the
system pipeline by a two-pass algorithm. The first
pass use the texture coordinates to render the texture
parametrization of 3D model into a 2D texture. The
second pass is a 2D image filter that use the output
of the first pass and checks whether each texel is at
a distance of the islands less than or equal to the
intended thickness. It is updated every time a new

6

(a) Vessel
312,094 triangles

105.18 × 98.53 × 91.41 mm

(b) Excavation
999,942 triangles

36.91 × 67.37 × 4.52 m

(c) Amazon
5,711,204 triangles

76.38 × 200.36 × 58.06 mm

(d) Thai
10,000,000 triangles

235.22 × 396.04 × 203.16 mm

Figure 5: 3D models used in the tests. Models (a) and (c) have colors per vertex while (b) and (d) use a generic gray color. They are
organized in order of geometric complexity from left to right. The dimensions are also detailed for each model.

3D model is loaded into the system.

• Edited area mask. This texture contains the shape
of the edited area. It is attached to the same off-screen
framebuffer used in TEA and therefore updated every
time the user edits the layer.

This algorithm modifies the 2D textures of the layer
edited in the previous subsection. The process is a quite
straightforward image processing algorithm. It requires a
kernel and the radius of the kernel is the width, in pixels,
of the desired padding. Each texel of the texture is tested
as follows: the algorithm checks whether the texel is part
of the outline of a texture island. If that is the case, the
algorithm checks then whether its distance to the edited
area is less than or equal to the kernel radius. The texels
that satisfy both conditions are part of the padding area
and they are updated with the same value that the user
selected to edit the layer.

This padding adds redundant information to the texture
and guarantees the right colour when the GPU samples
these conflicting areas. While this reduces the usable space
in the texture, the issue is not significant enough to be too
costly because our padding is only one texel wide.

5. Results and discussion

In this section we compare the performance of the pro-
totype based on our architecture against another system
based on an octree. Specifically, we selected the system
designed by Torres et al.[12], noted as OCT-TR, because
both systems work directly with 3D models, implement
structures to associate information independently of the
geometric complexity of the 3D models, use information
layers to organize the data and therefore, they are very
similar in terms of functionality.

The hardware specifications of the computer used to
conduct these tests are as follows: CPU Intel i7 4790k
at 4.00 GHz, 16 GB DDR3 RAM memory at 1866 MHz

and NVIDIA GTX 970 at 1.114 GHz with 4 GB GDDR5
RAM memory at 7 GHz.

All the tests measured the performance of the layer edit-
ing process in equivalent scenarios. For our solution, this
involves the two algorithms explained in the last section:
Texture Editing and Texture Padding. For OCT-TR, it in-
volves the CPU casting multiples rays to find which voxels
of the octree they collide with, updating the layer values
accordingly and transferring the new version of the layer
to the GPU.

We chose three levels of detail for the information layers
to analyse the performance when the precision increases:
three different texture resolutions for our solution and
three different depths for OCT-TR. Moreover, for each
one of those three cases, we selected five different editing
tool sizes to analyse the performance when the edited area
growths. All these tests used the same four 3D models
(depicted in Figure 5).

In terms of level of detail, we performed multiple tests
to establish the correspondence between texture resolu-
tions and octree depths and empirically we reached to the
following results: the 2048x2048 texture is equivalent to
an octree depth of 11, the 4096x4096 texture to an octree
depth of 12 and the 8192x8192 texture to the an octree
depth of 13. Table 1 shows the precision, in square cen-
timetres, guaranteed by both systems for the excavation
model. The results for the other three models follow a
similar pattern where our solution usually offers more pre-
cision than OCT-TR.

Method
2048 4096 8192

depth 11 depth 12 depth 13
Our approach 24.71 5.95 1.54
OCT-TR 81.15 23.45 4.86

Table 1: This table shows the precision guaranteed by both algo-
rithms for the excavation model. The measurements are in square
centimetres. The header of the columns shows the texture size (gray)
and depth of octree (white) that are tested against each other.

7

0 50 100 150 200

100

101

102

103

Tool radius (pixels)

T
im

e
(m

il
li
se
co
n
d
s)

Vessel

Our approach : 2048 4096 8192

OCT-TR : depth 11 depth 12 depth 13

0 50 100 150 200

101

102

Tool radius (pixels)
T
im

e
(m

il
li
se
co
n
d
s)

Amazon

Our approach : 2048 4096 8192

OCT-TR : depth 11 depth 12 depth 13

Figure 6: These graphs show the tests results, under logarithmic scale, for the editing of layers of two models: a) Vessel, b) Amazon. Tool
radius corresponds to the radius of the editing tool in pixels. The solid lines correspond to our approach and the dashed lines to OCT-TR.

vessel excavation amazon thai

100

101

102

T
im

e
(m

il
li
se
co
n
d
s)

Tool size : 70 pixels

Our approach : 2048 4096 8192

OCT-TR : depth 11 depth 12 depth 13

vessel excavation amazon thai

100

101

102

103

T
im

e
(m

il
li
se
co
n
d
s)

Tool size : 200 pixels

Our approach : 2048 4096 8192

OCT-TR : depth 11 depth 12 depth 13

Figure 7: These graphs show the tests results, under logarithmic scale, for the editing of layers using the the same tool size on each model.
70 pixel radius was used on the left graph and 200 pixel radius on the right graph. The 3D models are organized in order of geometric
complexity. The solid colour bars correspond to our approach and the hatched bars to OCT-TR.

It is important to note that the tests of OCT-TR with
the depths of 12 and 13 for the Thai statue could not be
completed. This method required a high amount of mem-
ory to create the octree itself and the rest of its structures.
The memory manager of the operative system showed that

the system was using over 30 GB of virtual memory before
the application crashed.

Figure 6 shows how the performance evolves when the
edited area changes under a logarithmic scale. After a de-
tailed examination, we can conclude that our approach ex-

8

vessel excavation amazon thai

101

103

105

107

109

D
a
ta

(b
y
te
s)

Data transfered between CPU and GPU

Our approach : 2048 4096 8192

OCT-TR : depth 11 depth 12 depth 13

Figure 8: This graph show the amount of data, under logarithmic
scale, that needs to be transferred between CPU and GPU during
each editing operation. The solid colour bars correspond to our ap-
proach and the hatched bars to OCT-TR.

hibits a significantly better behaviour: the results growth
linearly in contrast with those of OCT-TR. Though the
theoretical behaviour of our algorithm seems to be lin-
ear, this turn to be constant in practice due to the almost
zero slope of the line, no matter the size of the editing
tool. The reasons behind this excellent performance are
explained by the good use of the GPU resources. Our al-
gorithm allocates the workloads between GPU cores evenly
and minimises the stalls in the GPU execution pipeline be-
cause there is no interdependencies in the calculations. All
the operations are independent and inexpensive in terms
of cost; they also use structures (textures) that are com-
pletely optimised by the architecture of GPUs. In contrast,
the poor results obtained by OCT-TR are due to the own
nature of the octree. Unlike our solution, this structure
resides in the primary memory and the CPU computes all
the operations. Concretely, the editing process involves
the casting of multiple rays over the different voxels of the
structure. The bigger is the editing area, the higher is
the number of rays and collisions to check. The depth of
the octree is also critical in terms of complexity because
the voxels are halved by two in each dimension between
consecutive depths and therefore, the number of collision
tests growths exponentially.

Figure 7 shows, under a logarithmic scale, how the per-
formance evolves when each 3D model is edited with an
editing tool of the same size. After analysing the results,
we conclude that our solution exhibits a better perfor-
mance and a completely consistent behaviour across the
four models. The time required to complete the edit-

ing operation increases when the 3D model becomes more
complex or when the texture grows bigger. These results
are reasonable because even though our solution takes ad-
vantage of the parallelism of GPUs, GPU resources are
limited. At the same time, our algorithm performs better
than expected: the difference between the results of the
vessel and the Thai statue is always less than one order of
magnitude even though there is a difference of almost two
orders of magnitude in terms of geometry. In contrast,
OCT-TR shows inconsistencies between models because
the performance is highly dependent on how well balanced
the octree is and which area is edited. When objects are
projected onto octrees, one of their main features is the
ability to discard complete octants in order to reduce the
number of collisions to check. The shape of 3D models and
changes in their orientation can make the central region of
the octree heavily populated. Projecting the editing tool
onto that region can make impossible to discard any oc-
tant in advance due to all of them contain sections of the
model, affecting negatively to the performance. Therefore,
the shape and orientation of 3D models are critical for spa-
tial structures such as octress. The vessel and its sloped
orientation is a perfect example of this disadvantage. It
is the more demanding model even though it is the less
complex in terms of geometry. Moreover, the performance
is two orders of magnitude higher than our solution in the
worse case tested, taking over a second to complete one
single editing operation.

Figure 8 shows, under a logarithmic scale, the amount of
data that our approach and OCT-TR transfer to the GPU
for each editing operation. After analysing the results, it
is evident that our approach performs significantly better.
Since our layers always reside in GPU, our solution only
transfer the 64 bytes of the matrix that represents the
position of the editing tool. In contrast, OCT-TR uses
two different representations for its layers: the primary
memory stores the data and the GPU memory stores the
colours. Therefore, OCT-TR have to send the updated
version of the layer colours to the GPU in order to visualize
the changes. These transfers require almost 200 Megabytes
(MB) for the more detailed layers (depth 13) of the vessel
every time an editing operation is performed.

Finally, our solution is usually more space efficient too.
While our layers are bigger in size, our 3D model represen-
tation is more compact because it is constant in terms of
space independently of the resolution of the layers. There-
fore, our approach is better when the number of layers
used simultaneously is below a threshold. Using the vessel
as example, our system is more efficient in terms of space
with less than eleven layers. Specifically, the size of our
3D model is 12 MB while OCT-TR requires 1.268 GB to
store its model at depth of 13. However, for the highest
resolution, the size of our layers is 327 MB while the size
of OCT-TR layers is 199 MB.

9

6. Conclusions

In this article we have proposed an efficient architec-
ture for cultural heritage information systems. We also
have carried out empirical tests comparing our approach
to OCT-TR, clearly demonstrating that our representa-
tion is more efficient and can handle larger models. The
strongest advantages of our approach are summarized in
the following list:

• The size of our meshes is constant while OCT-TR
subdivide its meshes when layer resolution is in-
creased. This more compact format is valuable when
researchers need to share information during field
works.

• The required time for the creation of our structures is
insignificant in comparison with the creation time of
the octree.

• Our structures always reside in GPU.

• All the operations are computed in GPU.

• The data-transfers between CPU and GPU are closed
to zero.

• During the editing of the layers, the size of the editing
tool does not affect the performance of the algorithm.

In conclusion, our architecture structures the informa-
tion in thematic layers, uses 2D textures to store them
and texture coordinates to index their information. Fur-
thermore, it takes advantage of the inherent parallelism of
GPUs to manage and operate these layers.

Acknowledgements

This research was funded by the Spanish Ministry of
Economy and Competitiveness (grants TIN2014-60965-R
and TIN2017-85259-R) including FEDER funds from the
European Union.

Thanks to Stanford Computer Graphics Laboratory,
Museo de Puebla de Don Fadrique, Museo Histórico
Municipal de Écija and Centro Andaluz de Arqueoloǵıa
Ibérica for the 3D models used in this article.

References

[1] K. K. Naglič, Cultural heritage information system in the re-
public of slovenia, in: ARIADNE 5 Workshop on Documenta-
tion, Interpretation, Presentation and Publication of Cultural
Heritage, Prague, 2003.

[2] C. Ioannidis, C. Potsiou, S. Soile, An integrated spatial infor-
mation system for the development of the archaeological site of
mycenae, International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences 34 (5).

[3] J. A. Parkinson, T. W. Plummer, R. Bose, A gis-based ap-
proach to documenting large canid damage to bones, Palaeo-
geography, Palaeoclimatology, Palaeoecology 409 (2014) 57 –
71. doi:http://dx.doi.org/10.1016/j.palaeo.2014.04.019.

[4] A. Benito-Calvo, S. Carvalho, A. Arroyo, T. Matsuzawa, I. de la
Torre, First gis analysis of modern stone tools used by wild
chimpanzees (pan troglodytes verus) in bossou, guinea, west
africa, Plos One 10 (3) (2015) e0121613.

[5] D. M. Campanaro, G. Landeschi, N. Dell’Unto, A.-M. L.
Touati, 3d gis for cultural heritage restoration: A ‘white box’
workflow, Journal of Cultural Heritage 18 (2016) 321 – 332.
doi:http://dx.doi.org/10.1016/j.culher.2015.09.006.

[6] A. Durand, P. Drap, E. Meyer, P. Grussenmeyer, J. Perrin,
Intra-site level cultural heritage documentation: Combination
of survey, modeling and imagery data in a web information sys-
tem, CoRR abs/cs/0611036.

[7] É. Meyer, P. Grussenmeyer, J.-P. Perrin, A. Durand, P. Drap,
A web information system for the management and the dissem-
ination of cultural heritage data, Journal of Cultural Heritage
8 (4) (2007) 396–411.

[8] F. J. Mateos Redondo, L. Valdeón Menéndez, A. Rojo Álvarez,
A. Armisén Fernández, B. Garćıa Fernández-Jardón,
Plataforma virtual para el diseño, planificación, control,
intervención y mantenimiento en el ámbito de la conservación
del patrimonio histórico “petrobim”, in: Construction Pathol-
ogy, Rehabilitation Technology and Heritage Management
REHABEND, 2016.

[9] G. Giunta, E. Di Paola, B. M. V. Castiglione, L. Menci, In-
tegrated 3d-database for diagnostics and documentation of mi-
lan’s cathedral façade, in: CIPA 2005 XX International Sym-
posium (Torino, Italy), Vol. 3, 2005.

[10] S. P. Serna, R. Scopigno, M. Doerr, M. Theodoridou, C. Geor-
gis, F. Ponchio, A. Stork, 3d-centered media linking and seman-
tic enrichment through integrated searching, browsing, viewing
and annotating., in: The 12th International Symposium on Vir-
tual Reality, Archaeology and Cultural Heritage. VAST, 2011,
pp. 89–96.

[11] F. I. Apollonio, V. Basilissi, M. Callieri, M. Dellepi-
ane, M. Gaiani, F. Ponchio, F. Rizzo, A. R. Rubino,
R. Scopigno, G. Sobra’, A 3d-centered information sys-
tem for the documentation of a complex restoration inter-
vention, Journal of Cultural Heritage 29 (2018) 89 – 99.
doi:https://doi.org/10.1016/j.culher.2017.07.010.

[12] J. Torres, P. Cano, J. Melero, M. España, J. Moreno, Aplica-
ciones de la digitalización 3d del patrimonio, Virtual Archaeol-
ogy Review 1 (1) (2010) 51–54. doi:10.4995/var.2010.4768.

[13] J. C. Torres, L. López, C. Romo, G. Arroyo, P. Cano, F. Lam-
olda, M. Villafranca, Using a cultural heritage information sys-
tem for the documentation of the restoration process, in: Digital
Heritage International Congress (DigitalHeritage), 2013, Vol. 2,
IEEE, 2013, pp. 249–256.

[14] F. Soler, J. C. Torres, A. J. León, M. V. Luzón, Design of cul-
tural heritage information systems based on information layers,
Journal on Computing and Cultural Heritage 6 (4) (2013) 15:1–
15:17. doi:10.1145/2532630.2532631.

[15] F. Soler, F. J. Melero, M. V. Luzón, A complete
3d information system for cultural heritage documenta-
tion, Journal of Cultural Heritage 23 (2017) 49 – 57.
doi:http://dx.doi.org/10.1016/j.culher.2016.09.008.

[16] C. Everitt, T. Foley, J. McDonald, G. Sellers, Approaching zero
driver overhead in opengl, in: 2014 Game Developers Confer-
ence, San Francisco, CA, USA, 2014.

[17] M. Segal, C. Korobkin, R. Van Widenfelt, J. Foran, P. Haeberli,
Fast shadows and lighting effects using texture mapping, in:
ACM Siggraph Computer Graphics, Vol. 26, ACM, 1992, pp.
249–252.

[18] C. Everitt, Projective texture mapping, White paper, NVidia
Corporation 4.

10

