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A B S T R A C T

Finding the distance of linear codes is a key aspect to build error correcting codes, and also to design
attacks in code-based post-quantum cryptography; however, it is a NP-hard problem difficult to be addressed.
Metaheuristics, and more specifically genetic algorithms, have proven to be a promising tool to improve the
search of an upper bound for the distance of a given linear code. In a previous work, it was demonstrated that
the there exists a column permutation of a code matrix whose Reduced Row Echelon Form (RREF) contains a
row of minimum weight, i.e. the code distance, although calculating RREF during fitness evaluation increases
the time complexity of the algorithm substantially. In this work, we propose parallelization of multiple
calculations of Reduced Row Echelon Forms simultaneously, and its integration into a fully parallelized
design of a CHC evolutionary algorithm to overcome this limitation. Moreover, we demonstrate empirically a
substantial improvement in time complexity for the approach in practical case studies to find the distance of
linear codes over different finite fields.
1. Introduction

Error correcting codes (Huffmann & Pless, 2003) are used to encode
data sent from a source to a destination over a noisy channel, so that the
receiver can recover the original message even if it was altered during
the transfer due to the noise. Assuming that the original message is
composed of a sequence of 𝑘 symbols from an alphabet, this is achieved
by adding 𝑟 additional redundancy symbols to the message. This process
is called encoding, and the resulting string of length 𝑛 = 𝑘 + 𝑟 is called
a codeword. The encoding process has been traditionally tackled by
endowing the code with some algebraic structure and selecting a finite
field F as the alphabet. Among all error correcting codes, the family
of linear codes are some of the most popular techniques to perform
this task, and they have been successfully implemented in DVD/Blu-
Ray discs, deep space transmissions, or wireless communications just
to mention a few applications (Huffmann & Pless, 2003).

A linear code  is noted as [𝑛, 𝑘]𝑞 , and it is able to encode up to
𝑞𝑘 messages of length 𝑘 symbols into codewords of length 𝑛. It is a 𝑘-
dimensional vector subspace of F𝑛

𝑞 , where 𝑞 is the number of elements
in the finite field F𝑞 . A linear code is specified by a generating matrix
𝐺𝑘,𝑛, and the encoding process of a message 𝑥 of length 𝑘 provides
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a codeword 𝑐 of length 𝑛 as the product 𝑐 = 𝑥𝐺. Its error correction
capability depends on the code distance 𝑑(), which is calculated as the
minimum weight of all codewords 𝑑() = 𝑚𝑖𝑛{𝑤(𝑐), 𝑐 ∈ }, where 𝑤(𝑐)
is the number of nonzero elements in the codeword 𝑐 (i.e. the Hamming
distance of 𝑐 to the vector 0 of length 𝑛). The error correction capability
of a linear code is also bounded by the perfect error correction theorem
of Richard Hamming (Hamming, 1950), so that to detect and correct
an error in 𝑒 symbols of a message, then the code distance must fulfill
𝑑() ≥ 2𝑒 + 1.

Despite the simplicity of the definition, calculating a word of a
linear code with length 𝑑() is a NP-hard problem (Vardy, 1997),
and so it is to know the right error correction capability of the code.
To overcome this limitation, traditional approaches attempt to impose
additional constraints over linear codes to ensure a lower bound for
𝑑(). As a result, subfamilies of linear codes such as BCH, Goppa, Reed–
Solomon, Reed–Muller, etc. Huffmann and Pless (2003) are proposed in
the literature. In these cases, having a lower bound for 𝑑() ensures a
minimum error correction capability, although the true error correction
capability remains unknown. Although these alternatives can palliate
the problem partially for error correction applications, finding the exact
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𝑑() is also of interest in code-based post-quantum cryptography (Over-
eck & Sendrier, 2009). Here, the secret key is a code from a family
f codes for which an efficient decoding algorithm is known, that is
asked so that it looks like a random linear code. In these cases,

nowing a codeword of minimum distance may lead to the design of
ttacks to this type of codes.

There are different approaches in the literature to tackle the prob-
em of calculating 𝑑(), by setting the problem forth as an optimiza-
ion task. The most known is the Brouwer and Zimmermann’s algo-
ithm (Betten et al., 2006) and its extension in Lisonek and Trummer
2016), which is an exact algorithm that performs heuristic search over
he solution space. In the worst case, the complete solution space has
o be explored, although it can be used for small codes with a relatively
ffordable execution time. Other algorithms attempt to approximate
ower/upper bounds for the code distance using approximate algo-
ithms with probability estimations (Leon, 1988). Metaheuristics have
lso been used to find an upper bound of 𝑑(), as for instance Simulated

Annealing (Muxiang & Fulong, 1994), Tabu Search and Ant Colony
Optimization (Bland, 2007), although Genetic Algorithms have been
more studied for both generic linear codes (Barbieri et al., 2005; Dontas
& De Jong, 1990) and specific subfamilies such as QR codes (Nouh &
Belkasmi, 2013), or BCH and DCC codes (Askali et al., 2013).

Most of the aforementined metaheuristics methods attempt to find
a linear combination 𝑥 of rows of generating matrix 𝐺 that minimizes
the weight 𝑤(𝑥𝐺). In the recent work (Cuéllar et al., 2021) it was
demonstrated that there exists a column permutation of the gener-
ating matrix whose Reduced Row Echelon Form (RREF) (Liesen &
Mehrmann, 2015) contains a row 𝑟 so that 𝑤(𝑟) = 𝑑(). The main
outcome of this method allows to change the traditional order solution
representation 𝑥 ∈ F𝑘

𝑞 to a permutation representation 𝑥 ∈ 𝑛, where
𝑛 is the set of permutations of 𝑛 symbols. The authors used this result
to design genetic algorithms to perform a search over the space 𝑛 to
provide a column permutation of 𝐺 whose RREF contains a row with
optimal 𝑑(). This approach shows good results in practice and it is
able to overcome local optima of previous approaches. However, the
main limitation lies in the computation cost of the RREF method for a
solution evaluation.

In this work, we deepen into the approach of Cuéllar et al. (2021),
and provide an adaptation of evolutionary algorithms and fitness calcu-
lation to high-performance computing models. Concretely, we propose
an adaptation of the evolutionary CHC algorithm described in Cuéllar
et al. (2021) and RREF calculation for its parallel implementation in
high-performance general-purpose computing on graphics processing
units (GPGPU). We study different models of parallelization, and pro-
vide experimental results to test each approach. Moreover, we also
study the special case where the underlying finite field is 𝐺𝐹 (2), which
is of special interest due to its particular use in real applications.

The manuscript is structured as follows: Section 2 describes the
existing related works in the literature, for parallelization of both evo-
lutionary algorithms and RREF calculation. Then, Section 3 describes
the parallel computing model, the design of parallel components of
the algorithm and solution evaluation. Section 4 shows a performance
analysis of the designed parallel components, and applications to real
scenarios. Finally Section 5 concludes and provides future works.

2. Related work

We may highlight two main trends in the design of contemporary
distributed and/or parallel algorithms for high-performance computing
systems. One follows data-oriented design principles, as for instance the
former Map-Reduce from Google or the Resilient Distributed Dataset
of Apache Spark paradigms (Stephen et al., 2017), both widely used
in Big Data applications. The models in this category attempt to divide
large amounts of data among different computing units that run the
same algorithm over splits of the dataset. Then, the partial outcomes
2

are aggregated to obtain the final result, similarly to a Divide-and-
Conquer approach. The models within the second trend attempt to
split algorithms themselves into small components that run in separate
computing units in parallel, each one in charge of running specific code
and interacting with the other components to build the desired algo-
rithm behavior. These models are of special interest when the dataset
is not as large as in a Big Data scenario, but the computational cost
of the algorithm is high. Here, we can also distinguish between pure
parallel algorithm designs, or parallelization of some components of the
algorithm. Let us focus on the case of evolutionary algorithms, which is
a central part of this manuscript. In the former case, we cite as example
the classic Parallel Genetic Algorithm (Mühlenbein & Born, 1991),
the Master–Slave (Cantú-Paz, 1998) or the island model of Genetic
Algorithms (Cantú-Paz, 1998). On the other hand, the latter case has
been studied in the last decade and, in the case of genetic algorithms,
we can find multiple full algorithm component parallelizations, as for
instance (Pospichal et al., 2010).

The proposal of this manuscript clearly lies within the second trend,
since our dataset is a single generating matrix 𝐺𝑘,𝑛 which, in a worst
scenario, requires a size of a few MB of computer memory. However,
the estimated computational cost is high since the execution of a
genetic algorithm (GA) requires the evaluation of multiple solutions
at each iteration. Moreover, as it was mentioned in the introduction,
our approach is based in the results of Cuéllar et al. (2021), where
evolutionary algorithms were used to evolve populations of permu-
tations in 𝑛, and the fitness function requires the calculation of the
RREF, with complexity in (𝑘𝑛2). To solve these limitations, we propose
a full parallelization of the components of the algorithm and fitness
calculation.

As it has been mentioned, there has been a big effort to propose
parallel models of evolutionary algorithms and their implementation
in GPGPU since the last decade. Examples are the implementation
of island models and master–slave strategies to solve the problem of
temporal dynamics of gene regulatory networks (García-Calvo et al.,
2018), the implementation of island models in Nesmachnow et al.
(2010) to solve scheduling problems using heterogeneous computing
and grid systems and flexible flow shop scheduling problems in Luo
et al. (2018), or a general implementation of the master–slave model
for the Python language in Skorpil et al. (2019).

The literature also offers papers describing full parallelization of
the components of an evolutionary algorithm, as for instance the
works (Pospichal et al., 2010; Sinha et al., 2016; Luo et al., 2019;
Berisha et al., 2017; Xie & Ning, 2013; Chen et al., 2011). These ap-
proaches share the same basic parallelization principles of components
of GAs and their implementation in GPGPUs; however, each paper
addresses a different problem with different solution representation,
crossover, mutation and fitness evaluation. In our case, we propose a
full parallelization of the CHC algorithm described in Cuéllar et al.
(2021). Other authors have also tackled the problem of creating a
parallel version of CHC, as in Bilbao and Leguizamón (2019). Here, the
authors propose the CHC to find optimal locations for aerogenerators
in wind farms, and propose an island model to distribute different
solution populations over multiple computing cores. The closest paper
to the approach described in this manuscript that we have found in the
literature is (Filipiak & Lipiński, 2012), which proposes a parallelization
of the CHC algorithm to solve the traveling salesman problem. Here,
the recombination and evaluation are performed in parallel, and also
a new operator for local search, included to improve solution quality.
Our approach goes beyond the ideas of Filipiak and Lipiński (2012),
and we propose to parallelize the whole evolutionary process including
initialization, parent selection, recombination threshold calculation and
replacement operators of the classic CHC algorithm (Eshelman, 1991).

To conclude with the description of the related work regarding
GA parallelization, we cite the survey in Umbarkar and Joshi (2013),
which provides a taxonomy of parallelization models of evolution-
ary algorithms to help the interested reader to deepen into specific

parallelization techniques as an initial literature search point.
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Fig. 1. Diagram of the main computation flow of CHC.

On the other hand, there is not much literature regarding the
parallel calculation of RREF, although we may cite the papers (Dumas
et al., 2014; Linton et al., 2018). In Dumas et al. (2014), five different
proposals are studied for Gauss elimination over finite fields using
OpenMP technology. Of special interest to our work is the approach
to find Gauss elimination with no rank defficiency, as the generat-
ing matrices of linear codes are not rank deficient. In this approach,
computations are split into column tiles that are processed in parallel.
Our work differs substantially from this paper, since our underlying
parallel model is based on GPGPU architectures. Moreover, we target at
multiple RREF calculations (one for each individual in the population),
so that a different parallelization model is required rather than for
calculation of a single RREF. Similarly, the work in Linton et al. (2018)
attempts to perform Gaussian elimination by dividing a matrix into
square submatrices, and takes advantages of concurrency to process
each individual block in parallel on different computing units. The
paper assumes that the objective is also to calculate Gauss elimination
over a single matrix, and takes advantage of all computing units to
propose the parallel algorithm. In our work, we propose a different
parallel model that can be used to calculate multiple RREFs in parallel
and, in contrast to previous approaches, it can be integrated easily into
a genetic algorithm computing flow.

3. Parallel model and design

In this section, we first review the CHC algorithm and its compo-
nents to make the article self-contained. The goal is not to provide
a full description of the algorithm, which can be found in Eshelman
(1991), Cuéllar et al. (2021), but to outline its main behavior so that
we may distinguish candidate components to be parallelized. After
that, Section 3.1 describes the ground model used to build the parallel
algorithm, whose components are described in Sections 3.2–3.7.

The CHC algorithm is an evolutionary algorithm that holds a bal-
ance between diversity and convergence, where diversity focus on
genotypic distances among solutions in the population. It is based
on four main components: elitist selection, the HUX recombination
operator, an incest prevention check to avoid the recombination of
similar solutions, and a population reinitialization method when a local
optimum is found. Fig. 1 shows the computing flow of the algorithm,
whose description is as follows:

First a population 𝑃 is initialized and evaluated according to a
fitness measure. After that, a recombination threshold 𝐷 is calculated as
the average distance of individuals in 𝑃 , being the Hamming distance
the criterion used in this article. A recombination threshold decrement
value is also computed as 𝑑𝑒𝑐 = 𝜏𝐷𝑚𝑎𝑥, where 𝐷𝑚𝑎𝑥 is the maximum
distance among solutions in the population and 𝜏 is an hyperparameter,
usually 𝜏 ∈ [0, 1]. Then, the main loop of the algorithm starts by
checking if a stopping criterion is satisfied (i.e. to have a number of
solutions evaluated, to obtain a solution with a given fitness, etc.).
While this criterion does not hold, the individuals in the population are
shuffled and matched by pairs (parent selection). Each pair of parents
3

are then combined using a crossover operator (recombination) to gener-
ate two new solutions, only if the distance between the parent solutions
is over 𝐷. This provides a population of children containing between
0 and |𝑃 | individuals, depending on how many parents recombined,
and the fitness of the children is calculated. The best solutions among
parents and children will replace 𝑃 for the next algorithm’s iteration
(replacement). If either no child was generated during crossover, or the
population at next iteration equals the population at current iteration,
the recombination threshold is updated as 𝐷 ← 𝐷 − 𝑑𝑒𝑐 and, if 𝐷 is
under or equals 0, then 𝑃 is replaced with new random solutions and
the best solution found until the current iteration (reinitialization with
elitism).

In our work, our population is a set of permutations of 𝑛 elements,
and the fitness calculation requires the computation of the RREF of a
generating matrix 𝐺𝑘,𝑛 of a linear code whose columns are permuted
according to each individual. Thus, the components of the algorithm
that can be parallelized are the initialization/reinitialization of the pop-
ulation, the computation of the recombination threshold, the crossover,
the replacement and the fitness calculation. The parent selection is
calculated as a random permutation of |𝑃 | elements, which can reuse
the initialization algorithm to generate a single permutation of |𝑃 |
elements. Next, we describe the parallelization model and the parallel
proposals.

3.1. The parallel model

Nowadays, the Compute Unified Device Architecture (CUDA) is
the most used model for GPGPU programming among all paralleliza-
tion models, due the NVIDIA® supremacy in the market. A general-
ization of this model is also adopted by the Open Computing Lan-
guage (OpenCL), which is intended to be a standard. Although the
CUDA architecture is well known and a deep description can be found
in NVIDIA et al. (2020), the next paragraphs provide an outline for
article self-completeness and to introduce the notation used in the next
subsections.

There are two main concepts in CUDA parallelization: The host
(usually a CPU), that controls the computing flow of the main program,
and the device, which is a GPU or cluster of GPUs able to run parallel
programs. Parallel programs (kernels) in CUDA run on a grid. When a
kernel is launched, the host must indicate the number of blocks and
threads per block used to executed the kernel, so that the grid contains
a set of |𝐵| blocks, and each block contains the same number of threads
|𝑇 |. Each block in the device grid is identified by an index 𝐵𝑖 ranging
from 0 to |𝐵|−1, and each thread within a block is identified by a local
thread index 𝐿𝑇𝑗 ranging from 0 to |𝑇 | − 1. Thus, each thread in the
device can be uniquely identified by the global index 𝐺𝑇𝑘 = 𝐿𝑇𝑗+|𝑇 |𝐵𝑖.
CUDA is built upon the principle ‘‘Single Instruction Multiple Threads’’
(SIMT), so that a thread is the minimum parallel computation unit, and
all threads must run the same kernel at the same time.

There is a hierarchy of working memory in CUDA, which essentially
organizes memory in Global memory (slower, accessible by all threads
in all blocks, massive -order of GB-, persistent during a CUDA session),
Shared memory (faster than global memory, shared by all threads in a
block, in the order of a few KB, volatile among different kernel execu-
tions), and Local memory (very fast, private to each thread, composed
of a few registers or very few KB). All threads in the same block can
share information through the shared memory and can synchronize
execution during a kernel run, but threads among different blocks
cannot share information nor synchronize execution.

Considering the previous constraints, the proposed parallel model
consists of a host that runs the main computing flow of the CHC
algorithm in Fig. 1, and each component of the algorithm is executed
as a kernel on the device. We design each kernel so that each block is
assigned with a sub-task that requires no interaction with other blocks,
but threads in the same block may collaborate to build the desired
kernel behavior for their corresponding sub-task. Since memory transfer
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between host and device can be a bottleneck, our design assumes that all
elevant information for kernels is stored in the device global memory
uring the CHC algorithm execution (i.e. population, fitness, offspring,
istance between individuals). Algorithm 1 outlines the host program,
here 𝑁𝐶 is the number of children generated during replacement and
𝑒𝑤𝐶 the number of children that are included in the population at

he next algorithm iteration. The next sections describe each kernel in
etail.

Algorithm 1: Computing flow control of CHC at host
|𝑃 |: Population size
𝜏 : Recombination threshold decrement hyperparameter
𝐺𝑘,𝑛: Generating matrix of the code

1 Memory allocation in device for 2·|𝑃 | solutions, their fitness,
and distance

2 Call Initialization kernel
3 Call Evaluation kernel
4 Download best fitness and solution from device to host
5 Call Recombination threshold calculation kernel
6 Call Recombination threshold aggregation kernel
7 Download 𝐷, 𝑑𝑒𝑐 from device to host
8 while stopping criterion not satisfied do
9 Call Parent Selection kernel
10 Call Recombination kernel
11 Download 𝑁𝐶 from device to host
12 if 𝑁𝐶=0 then
13 Update 𝐷 ← 𝐷 − 𝑑𝑒𝑐
14 else
15 Call Evaluation kernel
16 Call Replacement kernel
17 Download 𝑁𝑒𝑤𝐶 from device to host
18 if 𝑁𝑒𝑤𝐶=0 then
19 Update 𝐷 ← 𝐷 − 𝑑𝑒𝑐
20 else
21 Download best fitness and solution from device to

host
22 if 𝐷 ≤ 0 then
23 Call Reinitialization kernel
24 Call Evaluation kernel
25 Download best fitness and solution from device to host
26 Call Recombination threshold calculation kernel
27 Call Recombination threshold aggregation kernel
28 Download 𝐷, 𝑑𝑒𝑐 from device to host

3.2. Initialization and reinitialization

The Initialization/Reinitialization kernel is in charge of generating a
population of |𝑃 | random permutations of 𝑛 elements 𝑃0, 𝑃1,… , 𝑃

|𝑃 |−1
n device global memory. If Reinitialization takes place, then only |𝑃 |−1
olutions are generated randomly, and the best solution found during
he evolutionary process is inserted in the population as the remaining
ermutation. Although initialization/reinitialization is not frequently
xecuted during the CHC algorithm runcycle, and therefore is not a
ottleneck, its parallelization might help to speed up execution. The
roposed parallel initialization kernel is straightforward. Its design
ssumes that each thread 𝐺𝑇𝑖 in the device is in charge of generating
olution 𝑃𝑖 in the population, and runs the code described in Algorithm
. The permutation 𝑃𝑖 is created by exchanging a random position 𝑃𝑖(𝑘)
nd 𝑃𝑖(𝑗) for each component 𝑗 = 1..𝑛. The fitness of the corresponding
olution is initialized to Unknown so that evaluation kernel can latter
istinguish the solutions that require evaluation. An exception is made
or thread with global index 0 which, in the case of reinitialization,
erforms a copy of the best solution found to the population individual
0.

The time complexity of each kernel execution is (𝑛) if the number
f simultaneous running threads |𝑇 | > |𝑃 |. Being compared with the
4

w

equential version running in (|𝑃 |𝑛), the benefits of this parallelization
trategy will increase with the population size. Finally, running this
ernel requires to optimize the number of blocks 𝐵 and threads per
lock 𝑇 to be instantiated by the host call, and this is an experimental
roblem that is solved in Section 5.

Algorithm 2: Initialization/Reinitialization kernel
P: Population in global memory
n: Permutation length (scalar)
reinit: flag with value true if reinitialization, or false if

initialization
Best : best solution found (global memory)
Fitness: Fitness of solutions (global memory)

1 if 𝑟𝑒𝑖𝑛𝑖𝑡 and 𝐺𝑇𝑖 = 0 then
2 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = Fitness of Best
3 foreach j=1..n do
4 𝑃𝑖(𝑗) = 𝐵𝑒𝑠𝑡𝑆𝑜𝑙(𝑗)
5 else
6 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = Unknown
7 foreach j=1..n do
8 𝑃𝑖(𝑗) = 𝑗
9 foreach j=1..n do
10 k= random value in 1..𝑛
11 Exchange values of 𝑃𝑖(𝑗), 𝑃𝑖(𝑘)

3.3. Recombination threshold

The recombination threshold 𝐷 is initialized to the average distance
etween all solutions in the population as 𝐷 = 2

|𝑃 |(|𝑃 |−1)
∑

|𝑃 |−1
𝑖=0 𝐷(𝑖),

where 𝐷(𝑖) =
∑

|𝑃 |
𝑙=𝑖+1 𝑑(𝑖, 𝑙). In this work, 𝑑(𝑖, 𝑙) = ∑𝑛−1

𝑘=0(𝑃𝑖(𝑘) ≠ (𝑃𝑙(𝑘))) is
he Hamming distance between 𝑃𝑖 and 𝑃𝑙, where 𝑛 is the permutation
ength and the operator ≠ returns 1 if 𝑃𝑖(𝑘) and 𝑃𝑙(𝑘) contain different
alues, and returns 0 otherwise. The time complexity to compute 𝐷
ith a sequential algorithm is (𝑛|𝑃 |2).

The idea behind the parallelization of calculation of 𝐷 is to separate
he computation of each value 𝐷(𝑖), and then aggregate these values to
btain 𝐷. Thus, our parallel design matches block 𝐵𝑖 in the grid with
olution 𝑃𝑖, and each block is in charge of calculating 𝐷(𝑖). Every thread
𝑇𝑗 within a block calculates a portion of 𝑑(𝑖, 𝑙). More specifically,
ach thread computes the distance among components 𝑃𝑖(𝑗 + 𝑘|𝑇 |) and
𝑙(𝑗 + 𝑘|𝑇 |),∀𝑘 ∶ 𝑗 + 𝑘|𝑇 | ≤ 𝑛, and update a shared memory variable
enoted as 𝐷𝑖 with these partial results. Algorithm 3 summarizes the
arallelization of calculation of 𝐷(𝑖). To improve execution time, we
lso assume that 𝑃𝑖 is in shared memory for each block 𝐵𝑖, respectively.
lgorithm 3 runs in (𝑛|𝑃 |∕|𝑇 |) and, if |𝑇 | >= 𝑛, it can achieve
(|𝑃 |). We remark that an atomic update in Algorithm 3 and later
lgorithms means operations that are executed as a single, undivisible
omputer instruction that cannot be splitted nor subdivided in other
impler operations. Atomic operations avoid concurrent interferences
nd unexpected behaviors when different threads write to the same
emory space.

As no synchronization is allowed among blocks in the grid, an-
ther kernel is required to aggregate all values 𝐷(𝑖) when all blocks
inish running Algorithm 3. Algorithm 4 is in charge of making this
ggregation. As there must be information exchange between threads
o make this aggregation, a single block must be used. We designed the
ggregation using the reduction technique. Without loss of generality,
e assume |𝑃 | to be a power of 2 for the explanation, and a number
f threads 𝑘 = |𝑇 | = |𝑃 |∕2 for optimal kernel execution. Each thread
𝑇𝑖 aggregates the values 𝐷𝑖 and 𝐷𝑖+𝑘. Then, the process is repeated
pdating 𝑘 = ⌊𝑘∕2⌋ until 𝑘 = 0, and thread 0 is responsible to average
he aggregated values. Before each new iteration begins, the threads
re synchronized to ensure that all values 𝐷𝑖 have been updated.
ig. 2 shows an example of aggregation of an array of 𝐷𝑖 values for
population of |𝑃 | = 8 individuals. As we may see, the algorithm runs

ith a time complexity of (𝑙𝑜𝑔2(|𝑃 |)).
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Fig. 2. Example of recombination threshold aggregation kernel with population size
|𝑃 |=8.

Algorithm 3: Recombination threshold calculation kernel
P: Population in global memory
𝐷𝑖: Sum of distances D(i) of 𝑃𝑖 to 𝑃𝑙 ,∀𝑙 > 𝑖
Data: 𝐿𝐷𝑖: Shared memory distance calculated by threads in

block 𝐵𝑖
1 if 𝐿𝑇𝑗 = 0 then
2 𝐿𝐷𝑖=0
3 synchronize threads
4 distance= 0
5 for l=𝐵𝑖 + 1 to |𝑃 | do
6 for k=𝐿𝑇𝑗 to n in steps of |𝑇 | do
7 Update distance= distance+d(𝑃𝑖(𝑘), 𝑃𝑙(𝑘))
8 Update atomically shared value 𝐿𝐷𝑖 = 𝐿𝐷𝑖+distance
9 synchronize threads
10 if 𝐿𝑇𝑖 = 0 then
11 𝐷𝑖 = 𝐿𝐷𝑖

Algorithm 4: Recombination threshold aggregation kernel
(𝐷0, 𝐷1, ..., 𝐷|𝑃 |−1): Distances 𝐷(𝑖) calculated by Algorithm 3
D : Average distance of all members of the

population
1 𝑘 = |𝑇 |
2 while 𝑘 ≥ 1 do
3 if 𝐿𝑇𝑖 < 𝑘 then
4 Update 𝐷𝑖 = 𝐷𝑖+𝑘
5 Update 𝑘 = ⌊𝑘∕2⌋
6 Synchronize threads
7 if 𝐿𝑇𝑖 = 0 then
8 𝐷 = 𝐷02∕(|𝑃 |(|𝑃 | − 1))

3.4. Parent selection

As we mentioned in Section 3, parent selection is a special case
of the initialization kernel since a single permutation of |𝑃 | values
has to be generated. We name this permutation as 𝑝𝑎𝑟𝑒𝑛𝑡𝑠. Solutions
in the population 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖] and 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖+1], 0 ≤ 𝑖 < |𝑃 |∕2, are
matched to generate new solutions using the crossover procedure. Thus,
the initialization kernel is reused to perform parent selection whose
execution requires one block and one thread only. It is equivalent to a
sequential procedure, and therefore the time complexity of the kernel
5

call is (|𝑃 |).
3.5. Crossover

We use the algebraic crossover operator 𝐴𝑋2 described in Cuéllar
et al. (2021), under the hypothesis that the composition of permuta-
tions with good fitness, may produce a solution with better fitness.
Given two parents 𝑃1 and 𝑃2 to be recombined, two new children
are generated as 𝐶1 = 𝑃1◦𝑃2, 𝐶2 = 𝑃2◦𝑃1, where ◦ stands for the
permutation composition operator.

Algorithm 5: Recombination kernel
P: Population
parents: indices of parents to be combined
C : Generated children
Fitness : Updated fitness
Data: 𝐿𝐷𝑖, shared memory containing the distance between

the 𝑖-th pair of parents
1 if 𝐿𝑇𝑗 = 0 then
2 𝐿𝐷𝑖 = 0
3 localDistance= 0
4 for k=𝐿𝑇𝑗 to n in steps of |𝑇 | do
5 update localDistance=

localDistance+𝑑(𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖](𝑘), 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖+1](𝑘))
6 update atomically 𝐿𝐷𝑖 = 𝐿𝐷𝑖+localDistance
7 Synchronize threads
8 if 𝐿𝐷𝑖 ≥ 𝐷 then
9 if 𝐿𝑇𝑗 = 0 then
10 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(2𝑖) = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛
11 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(2𝑖 + 1) = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛
12 for k=𝐿𝑇𝑗 to n in steps of |𝑇 | do
13 𝐶2𝑖(𝑘) = 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖](𝑘)◦𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖+1](𝑘)
14 𝐶2𝑖+1(𝑘) = 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖+1](𝑘)◦𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖](𝑘)
15 else
16 if 𝐿𝑇𝑗 = 0 then
17 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(2𝑖) = 𝑁𝑜𝑛𝑒;
18 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(2𝑖 + 1) = 𝑁𝑜𝑛𝑒;

As the composition of two permutations of size 𝑛 can be imple-
mented in (𝑛), and we need to generate |𝑃 | compositions in the worst
case, the sequential version of the crossover can be implemented in
(𝑛|𝑃 |). The proposed parallel kernel is designed to run |𝑃 |∕2 blocks
with 𝑛 threads per block. Then the crossover for the entire population
can be performed in (|𝑃 |𝑛∕(|𝑇 ||𝐵|)). If |𝐵| ≥ |𝑃 | and |𝑇 | ≥ 𝑛,
then the time complexity of the method is (1). In our kernel, a
block 𝐵𝑖 is in charge of the recombination of 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖], 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2𝑖+1]
to generate children 𝐶2𝑖, 𝐶2𝑖+1, and each thread within the block is in
charge of combining a portion of approximately ⌈𝑛∕|𝑇 |⌉ components
of the parents.

The proposed kernel also calculates incest prevention, i.e. two par-
ents 𝑃𝑖, 𝑃𝑗 are combined if 𝑑(𝑖, 𝑗) ≥ 𝐷. Thus, the kernel is divided
into two parts: First, the distance between parents is calculated. If this
distance is over the recombination threshold 𝐷, then recombination
takes place for those parents, where each block’s thread 𝐿𝑇𝑗 recombines
components 𝐿𝑇𝑗 + 𝑘|𝑇 |,∀𝑘 ∶ 𝑗 + 𝑘|𝑇 | ≤ 𝑛 from the source parents. In
this case, the fitness of the generated children is tagged as Unknown
so that the evaluation kernel can distinguish which solutions must be
evaluated. Otherwise, the children’s fitness is tagged as None to indicate
that the children does not exists. Algorithm 5 outlines the kernel run
by each thread.

3.6. Replacement

The replacement operator generates population 𝑃 at next iteration
considering the best |𝑃 | solutions among population and children at
the current iteration. The replacement is easily performed by creating
a joint population 𝑃 ′ = 𝑃

⋃

𝐶 of maximum size 2|𝑃 |, and indexing each
′
individual in 𝑃 using indices 𝑖𝑑𝑥[0..2|𝑃 |−1]. Then, a sorting procedure
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is performed with the criterion 𝑖𝑑𝑥[𝑖] < 𝑖𝑑𝑥[𝑗] ↔ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑖] < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑗],
and the individuals whose sorted indices are in 𝑖𝑑𝑥[0]..𝑖𝑑𝑥[|𝑃 | − 1]
will become population at the next iteration. The best way to do this
with a sequential algorithm performs in (|𝑃 |𝑙𝑜𝑔2(|𝑃 |)) using a fast
sorting method. The same time complexity can be achieved in the
parallel replacement kernel proposed in this work, although a practical
improvement in performance can be obtained.

Any parallel sorting algorithm could be used to fulfill the purpose of
replacement, as for instance (Casanova et al., 2017). However, current
sorting methods designed for GPU attempt to sort very large arrays,
which is not the case in our work. Our population, in the worst case, is
expected to have a very few thousands of individuals, so that complex
parallel sorting strategies are not required. In our case, a basic approach
is suitable for our purposes as in Davidson et al. (2012).

The kernel is designed using the reduction technique, and it is
based on the merge operation of the well-known algorithmMergeSort. As
there must be communication between all threads to perform parallel
sorting, the kernel must be executed in a single block. Without loss of
generality, we assume that |𝑃 | is power of 2, and the number of threads
to call the kernel is |𝑇 | = |𝑃 |∕2 for explanation purposes.

The kernel works as follows: First, at iteration 𝑖𝑡 = 1 a number of
𝑘 = |𝑇 | = |𝑃 |∕2 threads combine consecutive lists of 2𝑖𝑡−1 = 1 elements
to provide a sorted list of 2 elements. Next, at iteration 𝑖𝑡 = 2 we
update 𝑘 = 𝑘∕2 and each thread is assigned with two consecutive lists
of 2𝑖𝑡−1 = 2 sorted elements, which are merged into a new list of 4
sorted elements. The process repeats until a single list of |𝑃 | elements
is obtained. Algorithm 6 outlines the kernel algorithm run by each
thread, and Fig. 3 shows an example of sorting a population of 2|𝑃 | = 8
individuals and 4 threads.

Algorithm 6: Replacement kernel
𝑃
⋃

𝐶: Joint population of parents and children
idx : array containing the index of each individual in 𝑃

⋃

𝐶
fitness: array containing the fitness of individuals in 𝑃

⋃

𝐶
Data: 𝑜𝑢𝑡, local memory array to store partial merged lists

1 it= 0
2 while 2𝑖𝑡−1 < |𝑃 | do
3 𝑏𝑒𝑔𝑖𝑛 = 𝑚𝑖𝑛{2|𝑃 |, 2𝐿𝑇𝑖2𝑖𝑡−1}
4 𝑒𝑛𝑑 = 𝑚𝑖𝑛{2|𝑃 |, 2𝐿𝑇𝑖+12𝑖𝑡−1}
5 𝑐𝑒𝑛𝑡𝑒𝑟 = (𝑏𝑒𝑔𝑖𝑛 + 𝑒𝑛𝑑)∕2
6 𝑖 = 𝑏𝑒𝑔𝑖𝑛, 𝑗 = 𝑐𝑒𝑛𝑡𝑒𝑟
7 𝑘 = 𝑏𝑒𝑔𝑖𝑛
8 while 𝑖 < 𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑗 < 𝑒𝑛𝑑 do
9 if fitness[idx[i]] <= fitness[idx[j]] then
10 out[k]= idx[i]
11 update i=i+1, k=k+1
12 else
13 out[k]= idx[j]
14 update j=j+1, k=k+1
15 while 𝑖 < 𝑐𝑒𝑛𝑡𝑒𝑟 do
16 out[k]= idx[i]
17 update i=i+1, k=k+1
18 while 𝑗 < 𝑒𝑛𝑑 do
19 out[k]= idx[j]
20 update j=j+1, k=k+1
21 update it= it+1
22 Synchronize threads
23 foreach k in begin..end do
24 idx[k]= out[k]
25 Synchronize threads

3.7. Fitness calculation

Let 𝐺𝑘,𝑛 be a generating matrix for a linear code , 𝑥 ∈ 𝑛 a
permutation of 𝑛 columns of 𝐺 , and 𝐺′ = 𝑅𝑅𝐸𝐹 (𝐺, 𝑥) a procedure
6

𝑘,𝑛
Fig. 3. Example of replacement kernel with population size 2|𝑃 | = 8.

that calculates 𝐺′, the Reduced Row Echelon Form of matrix 𝐺 whose
columns are permuted according to 𝑥. Theorem 1 in Cuéllar et al.
(2021) states that there exists a permutation 𝑥∗ ∈ 𝑛 of 𝑛 columns of
𝐺𝑘,𝑛 for which a row 𝑟 of the matrix 𝐺′ = 𝑅𝑅𝐸𝐹 (𝐺, 𝑥∗) fulfills 𝑤(𝑟) =
𝑑(). Let us rewrite 𝐺′ as a list of rows of length 𝑛, 𝐺′ = {𝑟1, 𝑟2,… , 𝑟𝑘}.
The fitness 𝑓 (𝑥) of a solution 𝑥 in the population is then calculated
as it is shown in Eq. (1), and the algorithm must find the solution
𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥{𝑓 (𝑥)}.

𝑓 (𝑥) = 𝑚𝑖𝑛{𝑤(𝑟𝑖),∀𝑟𝑖 ∈ 𝐺′} (1)

The traditional method for computing the RREF has a time complex-
ity in (𝑘𝑛2) (Liesen & Mehrmann, 2015). If the population contains
|𝑃 | solutions whose fitness must be evaluated, then the evaluation
sequential procedure has a time complexity of (|𝑃 |𝑘𝑛2).

We propose a parallelization of the computation of RREF to reduce
the time complexity of population evaluation. The proposed kernel
behaves in time complexity (𝑛⌈𝑘∕|𝑇 |⌉), considering it can run in |𝑃 |
blocks of |𝑇 | threads per block. If 𝑘 = |𝑇 |, then the time complexity
is (𝑛). The design of the kernel is as follows: Each block 𝐵𝑖 is in
charge of evaluating a solution 𝑃𝑖 in the population, and each thread
𝐿𝑇𝑗 in a block is responsible to perform the required operations to
calculate row 𝑗 of the resulting matrix 𝐺′. Algorithm 7 outlines the
basic kernel procedure. First, each thread 𝐿𝑇𝑗 makes a local copy of row
𝑗 of matrix 𝐺, whose components are permuted according to solution
𝑃𝐵𝑖

in the population, only if the solution requires evaluation. After
that, the algorithm starts traveling rows from 𝑐𝑅𝑜𝑤 = 0 and columns
from 𝑐𝐶𝑜𝑙 = 0 and, for each row, it calculates the pivot (first row in
current column with a non-zero value), storing the pivot row index
in 𝑖𝑑𝑥𝑃 𝑖𝑣𝑜𝑡. If no pivot exists for the current column, then the next
column of the matrix is checked. Otherwise, the pivot located at column
𝑐𝐶𝑜𝑙 must be the unity value, and the thread in charge of 𝑟𝑗 = 𝑟𝑖𝑑𝑥𝑃 𝑖𝑣𝑜𝑡
updates 𝑟𝑗 = (𝑟𝑗 (𝑐𝐶𝑜𝑙))−1 ⋅ 𝑟𝑗 . After that, it is ensured that current row
𝑟𝑐𝑅𝑜𝑤 contains the pivot, and finally, all remaining threads responsible
of rows 𝑟𝑗 where 𝑟𝑗 (𝑐𝐶𝑜𝑙) ≠ 0 are updated to make value 0 in the current
column. Thus, current column has all elements equal to 0 but the pivot
row, with value 1. Next row and column are checked to continue the
RREF calculation. Once the complete RREF has been calculated each
thread 𝐿𝑇𝑗 calculates 𝑤(𝑟𝑗 ) and updates the fitness that corresponds to
their block if it is necessary.

We remark that addition, product and inverse calculation in F𝑞 have
a time complexity of (1). A special case is the finite field F2, where
𝑖−1 = 𝑖, the product can be implemented as logic 𝑎𝑛𝑑 gates, and addition
as logic 𝑥𝑜𝑟 gates. Also, binary codes are the most extended in the
literature and the ones with most of practical applications. For this
reason, a binary implementation of Algorithm 7 has been also included
in the experiments, which uses bit-wise representation of matrix 𝐺
in 32-bit words, and performs finite field operations as bit-wise logic
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Algorithm 7: Evaluation kernel
𝑃 : Population to be evaluated
Fitness: array containing the fitness of individuals in 𝑃
Data: 𝑟𝑗 , array with 𝑗-th row of 𝐺′ to be calculated by the

thread (local thread memory)
Data: 𝑟𝑃 𝑖𝑣𝑜𝑡, array containing the pivot row (shared memory)
Data: cRow, cCol, current row and column indices (shared

memory)
Data: idxPivot, current pivot row (shared memory)

1 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑖) is Unknown then
2 foreach k in 1..n do
3 𝑟𝑗 (𝑃𝐵𝑖

(𝑘)) = 𝐺(𝑗, 𝑘)
4 if 𝐿𝑇𝑗 = 0 then
5 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = ∞
6 cRow, cCol= 0
7 idxPivot= k
8 Synchronize threads
9 while 𝑐𝑅𝑜𝑤 < 𝑘 and 𝑐𝐶𝑜𝑙 < 𝑛 do
10 if 𝑟𝑗 (𝑐𝐶𝑜𝑙) ≠ 0 then
11 Update atomically idxPivot= min{idxPivot, j}
12 Synchronize threads
13 if idxPivot=k then
14 cCol= cCol+1
15 else
16 if 𝐿𝑇𝑗 = 𝑖𝑑𝑥𝑃 𝑖𝑣𝑜𝑡 then
17 Update 𝑟𝑗 = (𝑟𝑗 (𝑐𝐶𝑜𝑙))−1 ⋅ 𝑟𝑗
18 copy 𝑟𝑗 to shared 𝑟𝑃 𝑖𝑣𝑜𝑡
19 Synchronize threads
20 if 𝐿𝑇𝑗 = 𝑐𝑅𝑜𝑤 and 𝑐𝑅𝑜𝑤 ≠ 𝑖𝑑𝑥𝑃 𝑖𝑣𝑜𝑡 then
21 Update 𝑟𝑗 = 𝑟𝑗 + 𝑟𝑃 𝑖𝑣𝑜𝑡
22 Exchange 𝑟𝑗 , 𝑟𝑃 𝑖𝑣𝑜𝑡
23 Synchronize threads
24 Update 𝑟𝑗 = 𝑟𝑗 + 𝑟𝑃 𝑖𝑣𝑜𝑡 ⋅ 𝑟𝑗 (𝑐𝐶𝑜𝑙) if 𝑘 ≠ 𝑐𝑅𝑜𝑤
25 Synchronize threads
26 if 𝐿𝑇𝑗 = 0 then
27 Update

𝑐𝑅𝑜𝑤 = 𝑐𝑅𝑜𝑤 + 1, 𝑐𝐶𝑜𝑙 = 𝑐𝐶𝑜𝑙 + 1, 𝑖𝑑𝑥𝑃 𝑖𝑣𝑜𝑡 = 𝑘
28 Synchronize threads
29 Calculate 𝑤(𝑟𝑗 )
30 Update atomically 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 𝑚𝑖𝑛{𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖), 𝑤(𝑟𝑗 )}

operations. This implementation help to reduce the operations of RREF
calculation in a ratio of ⌈𝑛∕32⌉ which, for contemporary codes, is a
great advantage.

4. Experiments

The experiments are organized in two blocks: Section 4.1 describes
an experimental study of the computational cost of parallel components
of the CHC algorithm described in Section 3. Then, in Section 4.2
the complete CHC algorithm is applied over real datasets to study the
computational cost in both F8 and F2 finite fields.

4.1. Performance study of parallel components

Here we study the computational cost of the parallel components
described in Section 3. To do so, we design a set of experiments and
calculate the computational cost of each component. The population
size and the permutation length of individuals are varied in increasing
size, denoted as a tuple (|𝑃 |, 𝑛).

Also, different grid sizes are tested for each case, also described as a
tuple (Number of blocks, Threads per block). A special case of a grid size
(1, 1) is included in all experiments, to study the gain of parallelization
7

m

against a pure sequential algorithm, where a single block containing a
single thread must perform all operations to achieve the desired results.
The values |𝐵| and |𝑇 | for the grid size vary for each experiment,
and are set to the values we suggested during kernel description in
Section 3. In addition, other extreme grid cases (|𝐵|, 1) and (1, |𝑇 |) are
studied for those components where it is possible to configure more
than one block, as well as the suggested block size and threads per
block for each kernel, i.e. (|𝐵|, |𝑇 |).

To be able to perform these comparisons, the kernels described in
Section 3 were adapted so that each thread can accomplish the work-
load of multiple threads, and each block can accomplish the workload
of multiple blocks. These kernels were implemented in CUDA, and we
used Python language and PyCUDA library as control host of algorithm
computing flow. All experiments were performed using a single NVIDIA
GPU model GTX 1050 with 640 cores running at 1455 GHz, 2 GB RAM,
6 Streaming Multiprocessors, 1024 maximum threads per block.

Statistical tests were performed to know if there are significant
differences among the different grid sizes for the same settings. To do
so, we run 50 experiments for each population and grid sizes. Then,
a normality Saphiro-Wilk test with confidence 95% was applied to
know if all data distributions are drawn from a normal distribution.
If so, then the results of the grid sizes were sorted in ascending order
of average time (the median value was used instead of the mean if
any data distribution is not parametric). A paired t-test was applied
to compare distributions if all of them are parametric, and a Wilcoxon
test was used if not, both with 95% confidence level.

Tables 1 to 7 show the results obtained to measure execution time
of the proposed kernels. Rows contain the population sizes tested, and
columns the grid sizes. Cells describe the average computational time
spent by each setting, in seconds. In addition, subscripts are used to
rank in ascending order the execution time according to the statistical
tests. Value (1) is for the solutions that spent the lower computational
time. If statistical tests concluded that there are no significant differ-
ences between two settings, then the same rank value (𝑖) is plotted
in the corresponding row cells. Population settings of (|𝑃 |, n) equals
o (30, 50), (100, 500), (1000, 1500) and (2000, 5000) were used for all
omponents except for evaluation, where populations larger that |𝑃 | =
100 consumed a high computational time in sequential algorithms.

Regarding the initialization kernel, statistical tests concluded that
using a grid of |𝑃 | blocks with a single thread per block is the best
hoice for small population and permutation sizes, and there are sig-
ificant differences with the second best choice. However, for a large
opulation and permutation length, using the maximum threads per
lock available, and the minimum number of blocks, provide the best
esults. In this case, the parallel proposal achieves a time that is 102,31
imes faster than the sequential version of the algorithm, and it is able
o reduce the execution time from the order of seconds to the order of
entiseconds.

If we consider the recombination threshold calculation kernel, Ta-
le 2 shows the experiments performed for increasing sizes of popu-
ation and permutation length, with different grid configurations. We
bserve that the execution time of the sequential algorithm increases
ubstantially and, for population sizes of |𝑃 | = 1000 with 𝑛 = 1500,
t exceeds tens of seconds. For larger populations, it can also exceed
he time in minutes. However, the parallel kernel is able to reduce
he time execution substantially, and we can obtain a gain ranging
rom 31,41 times faster (population size (30, 50)) to 786,58 times faster
population size of (2000, 5000)). The optimal grid setting in this case is
o use a number of blocks equals to the population size, and a number
f threads per block equals to the permutation length. Thus, multiple
hreads collaborate to calculate partially the distance of a solution
atched with their corresponding block to the remaining solutions

n the population. Even if the recombination threshold calculation is
erformed only after a few iterations, the time gain of the parallel
ernel provides a huge advantage against the sequential algorithm, and

ay help to reduce the overall execution time of the algorithm.
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Table 1
Computational time of initialization/reinitialization kernel.

Population (1, 1) (|𝑃 |, 1) (1, min{1024, n}) (|𝑃 |/min{1024, n}, min{1024, n})

(30, 50) 0.000830(4) 0.000039(1) 0.000044(3) 0.000044(2)
(100, 500) 0.019984(3) 0.000298(1) 0.000343(2) 0.000344(2)
(1000, 1500) 0.595605(4) 0.005867(1) 0.007643(3) 0.007623(2)
(2000, 5000) 3.974139(4) 0.049915(2) 0.052351(3) 0.038843(1)
t

v
t
a
o

Table 2
Computational time of recombination threshold computation kernel.

Population (1, 1) (|𝑃 |, 1) (1, min{1024, n}) (|𝑃 |, min{1024, n})

(30, 50) 0.001068(4) 0.000077(2) 0.000416(3) 0.000034(1)
(100, 500) 0.072788(4) 0.001525(2) 0.004968(3) 0.000335(1)
(1000, 1500) 24.758136(4) 0.207915(2) 0.599276(3) 0.073151(1)
(2000, 5000) 343.210720(4) 7.639736(3) 3.283687(2) 0.436334(1)

Table 3
Computational time of recombination threshold aggregation kernel.

Population (1, 1) (1, |𝑃 |)

(30, 50) 0.000013(1) 0.000067(2)
(100, 500) 0.000014(1) 0.000014(1)
(1000, 1500) 0.000020(1) 0.000020(1)
(2000, 5000) 0.000036(1) 0.000036(1)

Table 4
Computational time of recombination kernel.

Population (1, 1) (⌊|𝑃 |∕2⌋, 1) (1, min{1024, n}) (⌊|𝑃 |∕2⌋, min{1024, n})

(30, 50) 0.000502(4) 0.000044(2) 0.000053(3) 0.000013(1)
(100, 500) 0.015078(4) 0.000323(3) 0.000157(2) 0.000029(1)
(1000, 1500) 0.454974(4) 0.004979(3) 0.002161(2) 0.000513(1)
(2000, 5000) 3.013751(4) 0.036462(3) 0.012214(2) 0.002581(1)

Table 5
Computational time of replacement kernel.

Population (1, 1) (1, min{1024, 2⋅|𝑃 |})

(30, 50) 0.000594(2) 0.000055(1)
(100, 500) 0.006305(2) 0.000163(1)
(1000, 1500) 0.614006(2) 0.001333(1)
(2000, 5000) 2.476954(2) 0.002686(1)

If we focus on results of the recombination threshold aggregation
ernel in Table 3, we find that there are no significant differences
etween the sequential algorithm and the parallel kernel when the size
f the population increases. In this case, it can be expected this behavior
ince the value to be aggregated is relatively small (|𝑃 | = 2000), and
he population size should be larger to effectively obtain benefits of
arallelization in aggregation operation.

Considering the recombination kernel in Table 4, we can see that
he proposed division |𝑃 |∕2 blocks with n threads provides the best
esults in all cases. Each block is in charge of combining two parents
o generate two children, and each thread is in charge of performing
he crossover of a fraction of the parent chromosomes. The gain in
xecution time increases with the population and permutation sizes,
anging from 38,61 times faster for the smaller case to 1167,67 times
aster for the largest setting. As recombination is a component that is
xecuted in every iteration of the CHC algorithm, this improvement has
big impact in the whole execution time.

If we focus on the replacement kernel in Table 5, we can also verify
substantial gain in the parallel kernel compared to the sequential

lgorithm. For a small size problem, |𝑃 | = 30, the gain in execution
ime is 10,8 times faster. For the largest population size, we obtain a
ain in time complexity of 922,17 times faster for the parallel kernel.
s this component is also executed every iteration of the algorithm, this

s a great improvement for the overall algorithm’s execution time.
Finally, we analyze the general version of the evaluation kernel

or 𝐺𝐹 (8) and its specific implementation for the binary case over
8

Table 6
Computational time of evaluation kernel over GF(x).

Matrix size (1, 1) (|𝑃 |, 1) (1, min{1024, n}) (|𝑃 |, min{1024, n})

(30, 50) 0.099388(4) 0.004668(2) 0.011550(3) 0.000528(1)
(100, 500) 31.407293(4) 0.590733(2) 1.282825(3) 0.148725(1)

Table 7
Computational time of evaluation kernel over GF(2)

Matrix size (1, 1) (|𝑃 |, 1) (1, min{1024, n}) (|𝑃 |, min{1024, n})

(30, 50) 0.033808(4) 0.001330(2) 0.003239(3) 0.000147(1)
(100, 500) 2.457932(4) 0.030540(2) 0.099620(3) 0.008287(1)

𝐺𝐹 (2). We may observe in Table 6 that the evaluation is the most
time consuming component of the algorithm, specially in the case of
𝐺𝐹 (8). If the problem is relatively small, with matrix sizes of 𝐺30,50,
he execution time is affordable for a population size of |𝑃 |=30 in

the sequential algorithm. However, if the problem size increases to
matrices of size 𝐺100,500, then the evaluation of |𝑃 |=100 individuals is
ery time consuming (in the order of seconds). The parallel version of
he algorithm assumes that each block evaluates a single individual,
nd each thread in the block is in charge of performing all operations
f a single matrix row. In the small case of (30, 50), the parallel version

provides a gain in execution time of 188,23 times faster. In the medium-
size case of (100, 500), the gain increases to 211,18 times faster, and
makes experimentation affordable for larger codes.

Considering the special case of 𝐺𝐹 (2), the matrices were imple-
mented using bit-level representation, so that each row divides its
size by the hardware word size 32. Also, finite field operations are
implemented with AND and XOR bitwise logic operations. In this case,
Table 7 shows a significant improvement in performance even in the
sequential algorithm, which reduces the execution time of matrices of
size 𝐺100,500 from 31,4 s to 2,45 s. Also the best parallel execution
reduces time from 0,15 s to 0,008 s. The gain in execution time from
sequential to the parallel version holds in the range of 200–300 times
faster than the sequential algorithm. As evaluation is a key component
in the algorithm, then reducing the evaluation time from 31,4 s to
the order of milliseconds is a significant improvement in our problem,
which enables the possibility to study codes of larger size than using
the sequential version of the algorithm.

To end up the discussion of the experimentation, we may conclude
that parallelization of all components help to reduce the execution
time of the complete algorithm. Moreover, a parallelization where each
block performs independent operations and each thread within a block
cooperates to accomplish the block objective is the best parallelization
strategy for the problem addressed. Also, a simplification of the calcu-
lation of RREF in bit-wise operations can help to reduce the execution
time of the evaluation kernel. This result is of special significance, as
most of the studied codes in the literature are built over 𝐺𝐹 (2).

4.2. Application to real scenarios

In this section, we compare the parallel version of CHC with the
sequential algorithm. To do so, we propose a set of linear codes previ-
ously studied in Cuéllar et al. (2021). The sequential algorithm is also
executed in GPU in a single core, to be able to compare the gain in time
execution for the parallel proposal. The goal of this experimentation is
to study the benefits of our approach as a method to find an upper
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Table 8
Results over 𝐺𝐹 (8) codes.

Code Time (sequential) Time (parallel) Best solution Time gain

(30, 16, 10)8 0.901 0.004 10856.0 217.33
(30, 18, 9)8 0.985 0.004 9856.0 238.95
(45, 22, 15)8 1.679 0.005 15871.38 331.92
(45, 24, 14)8 1.825 0.005 14871.38 363.36
(45, 26, 12)8 1.932 0.005 12871.38 370.13
(45, 28, 11)8 2.054 0.005 11871.38 385.40
(60, 28, 21)8 2.953 0.007 21846.28 404.57
(60, 30, 20)8 3.211 0.008 20846.28 420.50
(60, 32, 19)8 3.471 0.008 19846.28 433.21
(60, 34, 17)8 3.699 0.009 17846.28 413.31
(75, 30, 28)8 4.372 0.010 28861.24 424.29
(75, 35, 24)8 7.551 0.015 241600.62 500.44
(75, 40, 20)8 6.249 0.014 20861.24 462.34
(90, 19, 49)8 5.648 0.021 495474.38 267.52
(90, 50, 21 − 22)8 233.877 0.558 22100200.67 419.32
(90, 60, 16)8 206.452 0.424 1638588.56 487.31
(90, 70, 11)8 13.427 0.028 11865.93 472.08
(130, 85, 23)8 682.217 1.520 24100008.0 448.89
(130, 95, 18)8 571.297 1.290 1832317.12 442.90

bound of the distance of linear codes (or to confirm the designed
distance in the best case), with special focus in time complexity. For
this reason, a common setting is used among all problems studied. This
setting was tested over all problems and it provided suitable results
in average, in a preliminary experimentation. We used a population of
|𝑃 |= 500 individuals whose length n depends on each problem. The
value 𝜏 to calculate the decrement value of recombination threshold is
set to 0.1. There are two stopping criteria: Either to reach a maximum
of 100.000 solutions evaluated in the algorithm, or to find the optimal
code distance given by the known lower bound for each code. Finally,
we performed 30 runs of the algorithms for each dataset to make
statistical tests.

Two types of codes were used for the experimentation: 19 codes
of increasing size using 𝐺𝐹 (8) as underlying finite field, and 10 larger
odes over 𝐺𝐹 (2) to study the benefits of bit-wise parallel version of
REF. Table 8 shows the results of CHC execution over a single core
nd fully parallelized version. Column 1 describes the code as a tuple
𝑛, 𝑘, 𝑑)𝑞 , where 𝑛 is the code length, 𝑘 is the code dimension, 𝑞 is the

number of elements in the finite field, and 𝑑 the known code distance. If
a range 𝑑1–𝑑2 is provided instead of 𝑑, then the true distance of the code
is not known, but a lower/upper bound interval. We remark that most
of the known code distances were obtained by the sequential version of
the proposed method in Cuéllar et al. (2021). Columns 2–3 in Table 8
show the average time (in seconds) the algorithm spent to perform
single-core execution and parallel execution, respectively. Column 4
describes the best solution found, and it is shown in subscripts the
average number of evaluations required until the optimal/best solution
was found. Finally Column 5 shows the gain in execution time from the
sequential algorithm to the parallel proposal.

According to Table 8, we observe a substantial gain in execution
time of the proposal compared to the sequential algorithm, even for
small problems. Also, as it was expected, the optimal solution was
found in most of the problems. The gain in execution time from the
sequential to parallel version of the algorithm ranges from 200 to 500
times faster. This is a substantial increase which enables the possibility
to study larger codes with the proposed technique. A non-parametric
Wilcoxon test with 95% confidence level was applied to verify that
there are significant differences between execution time of sequential
and parallel algorithm designs.

On the other hand, Table 9 shows the results obtained to solve
binary codes. We used five BCH codes widely used in the literature and
five Extended QR codes (EQR). In this experiment, our goal is to test
experimentally the gain of the binary bit-wise implementation of paral-
lel RREF evaluation against the baseline parallel proposal implemented
9

for any finite field with integer representation. The structure of Table 9 g
Table 9
Results over 𝐺𝐹 (2) codes.

Code Time (integer) Time (binary) Best solution Time gain

BCH (511, 103, 123)2 6.837 0.777 128100000 8.80
BCH (511, 121, 117)2 9.055 0.848 136100000 10.68
BCH (511, 166, 95)2 14.441 1.205 119100000 11.98
BCH (511, 76, 171)2 0.226 0.025 1711072.0 8.99
BCH (511, 58, 183)2 0.139 0.018 183703.31 7.55
EQR (272, 136, 40)2 0.336 0.040 403227.1 8.36
EQR (338, 169, 40)2 6.890 0.722 4054474.58 9.54
EQR (368, 184, 48)2 9.710 1.004 4892005.0 9.67
EQR (432, 216, 48)2 15.814 1.494 68100000 10.59
EQR (440, 220, 48)2 16.960 1.530 64100000 11.08

is the same as in Table 8. According to the results obtained, we may
see that using a compact binary representation of the dataset, and XOR
and AND bit-wise operations, can provide a substantial improvement
in execution time. The gain ranges from 8.8 to 11.98 times faster
from baseline parallel algorithm to the binary implementation, which
suggests that the binary representation can obtain a gain in the order
of thousands of times faster than the sequential baseline algorithm. In
this case, the non-parametric Wilcoxon test with 95% confidence level
was also applied to verify that there are significant differences between
time complexity of binary and baseline methods.

To end up with the discussion of results, we also compare the
proposal with the existing method from Canteaut and Chabaud (1998)
in Table 10 regarding some BCH codes of length 511 for which a word
of minimum weight is still unknown. For the comparison, we use the
fast binary-encoding CHC algorithm run with a population of 10000
individuals and a stopping criterion of 100000000 solutions evaluated.
Ten different experiments (algorithm executions) were performed in
each case. Column 1 in Table 10 shows the code (word length, dimen-
sion and designed distance); Column 2 prints the average computing
time for each execution; Column 3 describes the minimum weight word
obtained by our approach; and Column 4 plots the reference distance
found in Canteaut and Chabaud (1998, TABLE VII). We remark with (*)
those codes for which our proposal was able to achieve a new result.
In Canteaut and Chabaud (1998, Proposition 8) it is argued that, for a
given BCH code with designed distance 𝛿, if a word with even weight
𝑤 > 𝛿 is found, then there exists a word of weight 𝑤−1. For this reason,
the experiments in Canteaut and Chabaud (1998) were stopped when
reaching a word of weight 𝛿+1. The number of codewords with weight
𝛿 +1 is (𝑛− 𝛿)∕(𝛿 +1) times greater that the number of codewords with
weight 𝛿. Also, it is conjectured that the true minimum distance of a
BCH code does not exceed 𝛿 + 4. These authors obtained a codeword
of weight 30 for the BCH code (511, 385, 29) in less than a minute,
and, in theory, it should takes around 16 min for finding a codeword
with weight 29. Our method reached the distance in less than four
minutes on average. They also found a word of weight 38 for the code
(511, 358, 37) in three days (theoretically, around 37 days for finding a
word of minimum weight). Our method needed, on average, around
40 min for finding a word of weight 37. For the codes (511, 340, 41)
and (511, 193, 87) we have not reached the minimum distance before
the stopping criterion held, but we have found codewords with weight
42 and 88 in around 7 and 4 h, respectively. In Canteaut and Chabaud
(1998), the authors assert that they needed between one and three
weeks for these tasks. On the other hand, we have also found words of
weight 𝛿+4 and 𝛿+5 for the BCH codes (511, 238, 75) and (511, 148, 107),
espectively, and these results support the aforementioned conjecture
bout the distance of BCH codes. In the case of the code (511, 229, 77),
e found a new upper bound with a word of weight 83, although it is
nsure if the true distance is under this value.

We remark some lessons learned after this piece of research. First,
arallel design of algorithms must take into account the hardware
rchitecture where they will be implemented, to fully optimize time

ain. In our case, since the parallel proposal was targeted at GPU
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Table 10
Comparison with some codes in Canteaut and Chabaud (1998, TABLE VII).

Code Time (s.) Best solution Reference solution

BCH (511, 148, 107) 20311.23 112 (*) Unknown
BCH (511, 193, 87) 15647.64 88 88
BCH (511, 229, 77) 2698.99 83 (*) Unknown
BCH (511, 238, 75) 24604.12 79 (*) Unknown
BCH (511, 340, 41) 24963.31 42 42
BCH (511, 358, 37) 2268.28 37 (*) 38
BCH (511, 385, 29) 221.10 29 (*) 30

implementation, the main principle we followed to build the design
was to split the problem into separate non overlapped subproblems
that will be solved among blocks, and to use threads within a block
in cooperation to solve a specific subproblem. Also, global memory
accesses can be a bottleneck in GPUs, so that the use of local and/or
shared memory should be prioritized by threads whenever it is possible,
to avoid concurrent use (mainly write operations) to the same memory
region. Regarding the problem of finding the minimum distance of
linear codes, our approach shows high potential with regards other
previous works published in the literature, and more specifically the
sequential algorithm of Cuéllar et al. (2021). On the other hand, we
remark that the results provided by the algorithm must be considered
as upper bounds of the true code distance but, when it is equal to
the designed code distance, this is confirmed. The accuracy of the
proposal to find the true minimum distance depends on the specific case
being studied, but theoretical studies (Weishui & Chen, 1996; Raphaël,
1998) over the complexity class of approximated algorithms, and more
specifically genetic algorithms, ensure that the global minimum can be
achieved with non-zero probability as the population size and number
of algorithm iterations increases.

5. Conclusions

In this work, we propose a GPU-based parallel model for the com-
putation of Reduced Row Echelon Form and its integration within a
complete parallel design of an adaptation of the CHC evolutionary
algorithm. We analyze the time complexity of the resulting parallel
components of the algorithm both in theory and practice, and conclude
that the gain in execution time in practice may vary from nearly 100
to nearly 1000 times faster than a sequential algorithm, depending on
the component of the algorithm. Moreover, we tested the approach in
different real datasets considering linear codes over 𝐺𝐹 (8) and 𝐺𝐹 (2).
In the latter case, a bit-wise operations implementation of the parallel
RREF algorithm may provide a gain in execution time of thousands
of times faster with respect to a sequential algorithm running integer
representation of the code matrix. The results obtained in the experi-
ments also suggest that the classic McEliece’s cryptosystem (McEliece,
1978) could be vulnerable to an attack following this methodology. As
a future work we may also consider the adjustment of our methods to
other settings. For instance, convolutional codes comprise an important
class of codes whose error-correcting capacity is measured with respect
to the free distance. In Johannesson and Zigangirov (1999) it is showed
an algorithm for computing the free distance based on the iterated
calculation of two sequences related to the Hamming distance of certain
block codes. Therefore, a suitable insertion of our techniques in this
scheme could speed up the calculation of the free distance. Another
important class of codes is the one formed by low density parity check
(LDPC) codes. These are linear block codes with a parity check matrix
containing a relatively few non-zero elements. Therefore, by adapting
our algorithms to the calculation of the minimum distance through a
parity check matrix, we could take advantages of this property and get
good performance with respect to the run-time.
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