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Abstract
We give necessary and sufficient conditions on an Ore extension A[x; σ, δ], where A is a
finite dimensional algebra over a field F, for being a Frobenius extension of the ring of
commutative polynomials F[x]. As a consequence, as the title of this paper highlights, we
provide a negative answer to a problem stated by Caenepeel and Kadison.

Keywords Separable extension · Split extension · Frobenius extension · Biseparable
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1 Introduction

Frobenius extensions were introduced by Kasch [11,12], and by Nakayama and Tsuzuku
[15,16] as a generalization of the well known notion of Frobenius algebra. Of course the
underlying idea was to recover the duality theory of Frobenius algebras in a more general
setting. The notion of separable extension comes from the generalization of the well known
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notion of separable field extension. The classical definition of separable ring extension is due
to Hirata and Sugano in [7]. Both notions, Frobenius and separable, have been extended to
more general framework in category theory.

As it is explained in the Introduction of [1], deep connections between separable andFrobe-
nius extensions were found from the very beginning. For instance, Eilenberg and Nakayama
show in [2] that finite dimensional semisimple algebras over a field are symmetric, hence
Frobenius. A key result to extend this to algebras over commutative rings is due to Endo and
Watanabe, concretely they show that separable, finitely generated, faithful and projective
algebras over a commutative ring are symmetric [3, Theorem 4.2]. Their ideas were con-
nected to separable extensions, as defined in [7], by Sugano, who shows that separable and
centrally projective extensions are Frobenius, see [19, Theorem 2]. However, as Caenepeel
and Kadison say “it is implicit in the literature that there are several cautionary examples
showing separable extensions are not always Frobenius extensions in the ordinary untwisted
sense”. They provide one of these examples in [1, §4] under the stronger hypothesis that the
extension is split, but the Frobenius property is lost because the provided extension is not
finitely generated. Split extensions are naturally considered since separability and splitting
can be viewed as particular cases of the notion of separable module introduced in [20], see
also [8]. Biseparable extensions are therefore considered because they contain both notions
of separable and split extensions under the same module theoretic approach. Biseparable
extensions are finitely generated and projective, hence the example they provide is not a
counter example of their main question: “Are biseparable extensions Frobenius?”

This problem comes up again recently in the article [10], whether additional convenient
equations are always satisfied: this is the same as asking if a biseparable bimodule is Frobe-
nius. There are arguments in the monograph [9] as evidence for thinking this might be true,
as well as the weight of all classical examples.

In this paper we develop some techniques based in the Ore extensions introduced in [17] to
provide a counter example to the previous question. Our example also gives a negative answer
the same question but considering Frobenius extensions of the second kind as introduced by
Nakayama and Tsuzuku in [16].

This paper is structured as follows. In Sect. 2, we recall precise definitions of Frobenius
and biseparable extensions, and we recall again the main question we are going to answer.
In Sect. 3 Frobenius extensions are lifted under Ore extensions, while similar results are
obtained in Sect. 4 for biseparable extensions. Finally, in Sect. 5 the full counter example is
built.

2 Preliminaries

We recall the notions of Frobenius, separable and split extensions. All along the paper B
and C are arbitrary unital rings, whilst we reserve the letter A for denoting an algebra over a
field F. Following, for instance, [15], a unital ring extension C ⊆ B is said to be Frobenius
if B is a finitely generated projective right C-module and there exists an isomorphism B ∼=
B∗ = Hom(BC ,CC ) of C − B-bimodules. Here, by Hom(BC ,CC ), we denote the set of
morphisms of right C-modules from B to C . The additive group B∗ is endowed with the
standard C − B-bimodule structure given by (cχb)(u) = c(χ(bu)) for any χ ∈ B∗, c ∈ C
and b, u ∈ B.

The notion of a Frobenius extension is right-left symmetric as observed in [15, §1, page
11], i.e. C ⊆ B is Frobenius if B is a finitely generated projective left C-module and there
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Biseparable extensions are not necessarily Frobenius 519

exists an isomorphism B ∼= ∗B of B − C-bimodules, where ∗B = Hom(C B, CC) is a
B − C-bimodule in a analogous way.

This is a generalization of thewell-known notion of Frobenius algebra over a field, namely,
a finite dimensional F-algebra A is Frobenius if the following equivalent conditions hold:

1. there exists an isomorphism of right (or left) A-modules A ∼= A∗
2. there exists an associative and non-degenerate F-bilinear form 〈−,−〉 : A × A → F

3. there exists a linear functional ε : A → Fwhose kernel does not contain a non zero right
(or left) ideal.

Remark 1 The bijection between Frobenius forms (2.) and Frobenius functionals (3.) on A is
as follows. If 〈−,−〉 : A × A → F is a Frobenius form, then the rule ε(a) = 〈1, a〉 for any
a ∈ A defines a Frobenius functional ε : A → F. Conversely, if ε : A → F is a Frobenius
functional, set 〈a, b〉 = ε(ab) for any a, b ∈ A in order to get a Frobenius form.

The correspondence between Frobenius functionals (3.) and left A-isomorphisms (1.)
is given as follows. For any Frobenius functional ε, we may define α : A → A∗ as
α(a)(b) = ε(ab) for any a, b ∈ A, which becomes a left A-isomorphism. Conversely,
for any left A-isomorphism α : A → A∗, the rule ε(a) = α(a)(1) for any a ∈ A provides a
Frobenius functional ε. See [13, Theorem 3.15] for full details. In particular, for each F-basis
{a1, . . . , ar } of A there exists an F-basis {b1, . . . , br } of A such that {α(b1), . . . , α(br )} is
the dual basis of {a1, . . . , ar }, i.e.

ε(b jai ) = α(b j )(ai ) = δi j . (1)

Following [7], the extension C ⊆ B is called separable if the canonical multiplication
map

μ : B ⊗C B → B

b1 ⊗ b2 
→ b1b2

splits as a morphism of B-bimodules, i.e. there exists p ∈ B ⊗C B such that bp = pb for
all b ∈ B and μ(p) = 1. The splitting map is therefore determined by 1 
→ p.

Finally, C ⊆ B is called split if the inclusion map C → B splits as a morphism of
C-bimodules, i.e. there exists a C-bimodule morphism ξ : B → C such that ξ(1) = 1.

In [1, Definition 2.4], the notion of a separable module is extended to the concept of
biseparablemodule.When particularizing to ring extensions, [1, Lemma3.3] says thatC ⊆ B
is called to be biseparable if one of the following equivalent conditions holds:

1. B is biseparable as B − C-bimodule and finitely generated projective as left C-module.
2. B is biseparable as C − B-bimodule and finitely generated projective as right C-module.
3. B is biseparable as B − C-bimodule and as C − B-bimodule.
4. C ⊆ B is split, separable and finitely generated projective as left C-module and as right

C-module.

Henceforth, motivated by the arguments provided in the Introduction, the following ques-
tion is stated in [1]:

Problem 1 [1, Problem 3.5] Are biseparable extensions Frobenius?

The main aim of this paper is to build an example of a ring extension which is biseparable
and not Frobenius, giving a negative answer to Problem 1. Throughout the paper we assume
that A is a finite dimensional F-algebra of dimension r . Let also denote by σ : A → A an
algebra F-automorphism and δ : A → A a σ -derivation on A, i.e. δ(ab) = σ(a)δ(b)+δ(a)b
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520 J. Gómez-Torrecillas et al.

for all a, b ∈ A. We denote by R the ring of (commutative) polynomials F[x] and by S the
Ore extension A[x; σ, δ], that is, the ring of polynomials with coefficients in A written on
the left whose product is twisted by the rule xa = σ(a)x + δ(a) for any a ∈ A. This notation
is fixed throughout the rest of the paper.

We give conditions on σ and δ in order to get that R ⊆ S inherits the corresponding
properties (separable, split, Frobenius) from F ⊆ A. A precise construction of A, σ and δ

will lead to the counterexample.

3 Lifting Frobenius extensions

Given a ∈ A, n ≥ 0 and 0 ≤ i ≤ n, we denote by Nn
i (a) the coefficient of degree i when

multiplying xn on the right by a in S. That is to say,

xna =
n∑

i=0

Nn
i (a)xi , (2)

and, for
∑n

i=0 gi x
i ∈ S,

(
n∑

i=0

gi x
i

)
a =

n∑

i=0

(
n∑

k=i

gk N
k
i (a)

)
xi . (3)

We may then consider F-linear operators Nn
i : A → A for every i and n with 0 ≤ i ≤ n. If

we set Nn
i = 0 whenever i < 0 or i > n, then we obtain inductively

Nn+1
i = σNn

i−1 + δNn
i . (4)

These maps were introduced in [14], where Nn
i is denoted by f ni .

The ring extension R ⊆ S makes S free of finite rank both as a left as a right R-module.
More precisely, we have the following result.

Lemma 1 Let {a1, . . . , ar } be an F-basis of A. The following statements hold.

1. {a1, . . . , ar } is a right basis of S over R.
2. {a1, . . . , ar } is a left basis of S over R.

Proof (1) This is an easy computation.
(2) It is well known that Sop = Aop[x; σ−1,−δσ−1] (see e.g. [6, page 39, Exercise 2R]).

Now, apply part (1) to Sop .

By {a∗
1 , . . . , a

∗
r } we will denote the basis of the left R-module S∗ dual to an R-basis

{a1, . . . , ar } of S as right R-module, determined by the condition a∗
i (a j ) = δi j .

The aim of this section is to characterize when R ⊆ S is a Frobenius ring extension in
terms of the σ -derivation δ acting on A. The key result to get such a characterization is the
following theorem.

Theorem 1 There exists a bijective correspondence between the following sets.

1. Frobenius functionals on the F-algebra A.
2. Right S-isomorphisms from S to S∗.
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Proof Let ε : A → F be a Frobenius functional on A.
To define a right S-linear map αε : S → S∗ we just need to specify αε(1) ∈ S∗. For every

f = ∑
i fi x i ∈ S, set

αε(1)( f ) =
∑

i

ε( fi )x
i .

This map is indeed right R-linear, since

αε(1)( f x) =
∑

i

ε( fi )x
i+1 = αε(1)( f )x .

Note that, by the right S-module structure of S∗, one has, for every f , g ∈ S,

αε( f )(g) = αε(1)( f g) = αε( f g)(1).

Let f = ∑n
i=0 fi x i ∈ S with fn = 0 such that αε( f ) = 0. Then, for any b ∈ A, we get

from (3) that

0 = αε( f )(b) = αε( f b)(1) =
n∑

i=0

ε

(
n∑

k=i

fk N
k
i (b)

)
xi .

In particular, ε( fn Nn
n (b)) = ε( fnσ n(b)) = 0 for every b ∈ A. Since σ is an automorphism,

ε( fnb) = 0 for all b ∈ A and, thus, the kernel of ε contains the right ideal generated by fn ,
a contradiction. Thus αε is injective.

Finally, it remains to prove that αε is surjective. Let {a1, . . . , ar } be an F-basis of A. Let
us show that xna∗

i ∈ Im αε for all n ≥ 0 and 1 ≤ i ≤ r , which yields the result.
For any n ≥ 0, since {σ n(a1), . . . , σ n(ar )} is an F-basis of A, by (1), there exist

b(n)
1 , . . . , b(n)

r ∈ A such that

ε
(
b(n)
i σ n(a j )

)
= δi j (5)

for all 1 ≤ i, j ≤ r . For each 1 ≤ i ≤ r , set

g(i) =
n∑

k=0

g(i)
k xk ∈ S,

where g(i)
n = b(n)

i and, for each 0 ≤ m ≤ n − 1,

g(i)
m = −

r∑

	=1

b(m)
	

(
n∑

k=m+1

ε
(
g(i)
k Nk

m(a	)
))

. (6)

Then, by (5), for all 1 ≤ i, j ≤ r ,

ε
(
g(i)
n σ n(a j )

)
= ε

(
b(n)
i σ n(a j )

)
= δi j (7)
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and

ε
(
g(i)
m Nm

m (a j )
)

= ε
(
g(i)
m σm(a j )

)

(6)= ε

(
−

r∑

	=1

(
b(m)
	

(
n∑

k=m+1

ε
(
g(i)
k Nk

m(a	)
)))

σm(a j )

)

= −
r∑

	=1

n∑

k=m+1

ε
(
g(i)
k Nk

m(a	)
)

ε
(
b(m)
	 σm(a j )

)

(7)= −
n∑

k=m+1

ε
(
g(i)
k Nk

m(a j )
)

.

Hence
n∑

k=m

ε
(
g(i)
k Nk

m(a j )
)

= 0 (8)

for 1 ≤ i, j ≤ r , 0 ≤ m ≤ n − 1. Now

αε(g
(i))(a j ) = αε(g

(i)a j )(1)

(3)=
n∑

m=0

ε

(
n∑

k=m

g(i)
k Nk

m(a)

)
xm

(8),(7)= xna∗
i (a j ).

So xna∗
i = αε(g(i)) ∈ Im αε , as required.

Conversely, letα : S → S∗ be a right S-isomorphism.Wewould like to define εα : A → F

as εα(a) = α(a)(1) for a ∈ A. We need first to show that α(a)(1) ∈ F for every a ∈ A.
Consider again the F-basis {a1, . . . , ar } of A, and set gi = α−1(a∗

i ) for i = 1, . . . , r . If we
prove that the F-linearly independent set {g1, . . . , gr } is contained in A, then it becomes an
F-basis of A.

Write gi = ∑ni
k=0 gik x

k . Therefore,

δi j = a∗
i (a j )

= α(gi )(a j )

=
ni∑

k=0

α(gik x
k)(a j )

∗=
ni∑

k=0

α(gik)(x
ka j )

=
ni∑

k=0

α(gik)

(
k∑

m=0

Nk
m(a j )x

m

)

†=
ni∑

k=0

k∑

m=0

α(gik)(N
k
m(a j ))x

m,

where equality ∗ comes from that α is a right S-morphism, and † is due to α(gik) is a right
R-morphism for every k and i . Now, if ni ≥ 1, then

α(gini )(σ
ni (a j )) = 0
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Biseparable extensions are not necessarily Frobenius 523

for every j ∈ {1, . . . , r}. By Lemma 1, {σ ni (a1), . . . , σ ni (ar )} is a right R-basis of S, so
α(gini ) = 0 and then gini = 0. Hence, ni must be zero, so gi ∈ A for each 1 ≤ i ≤ r .
Therefore, the F-linear map α satisfies that α(gi )(a j ) = δi j , for the F-bases {g1, . . . , gr }
and {a1, . . . , ar } of A. This obviously implies that α(a)(b) ∈ F for every a, b ∈ A, and that
the bilinear form on A given by 〈a, b〉 = α(a)(b) is non-degenerate. Therefore, εα is a well
defined Frobenius functional on A.

It remains to prove that both constructions are inverse one to each other. Indeed, let ε be
a Frobenius functional on A. Keeping the previous notation, for any a ∈ A,

εαε (a) = αε(a)(1) = ε(a).

On the other hand, let α be a S-right isomorphism from S to S∗. We want to check that
αεα = α. Since both are right S-linear maps, it is enough if we prove that αεα (1) = α(1).
And these twomaps are right R-linear, so that the following computation, for a ∈ A, suffices:

αεα (1)(a) = εα(a) = α(a)(1) = α(1)(a).

Condition (1) in Theorem 1 is quite close to the notion of Frobenius extension, remov-
ing the need of being a left R-module morphism. We have not found in the literature that
this condition has been introduced and studied. For this reason, let us now introduce semi
Frobenius extensions.

Definition 1 A unital ring extensionC ⊆ B is said to be right (resp. left) semi Frobenius if B
is a finitely generated projective right (resp. left) C-module and there exists an isomorphism
B ∼= B∗ of right B-modules (resp. an isomorphism B ∼= ∗B of left B-modules).

Our aim now is to prove that A is a Frobenius algebra over F if and only if the extension
R ⊆ S is left or right semi Frobenius.

Theorem 2 Let A be an F-algebra. The following statements are equivalent:

1. A is a Frobenius F-algebra,
2. the extension R ⊆ S is right semi Frobenius,
3. the extension R ⊆ S is left semi Frobenius.

Proof The equivalence between (1.) and (2.) is Theorem 1.
In order to check the equivalence (1.) if and only if (3.), observe that A is Frobenius if

and only if Aop is Frobenius. By Theorem 1, Aop is a Frobenius F-algebra if and only if
F[x] ⊆ Aop[x; σ−1,−δσ−1] is right semi Frobenius. Since F[x] = R = Rop and Sop =
Aop[x; σ−1,−δσ−1] (see e.g. [6, page 39, Exercise 2R]), it follows that Aop is a Frobenius
F-algebra if and only if R ⊆ S is left semi Frobenius.

Remark 2 Although, by Theorems 1 and 2, R ⊆ S is left semi Frobenius if and only if it
is right semi Frobenius, it is an open question to know if, in general, the notion of semi
Frobenius extension is left–right symmetric, as it does for Frobenius extensions, see [15, §1,
page 11].

We now refine the latter results in the realm of Frobenius extensions.

Theorem 3 There exists a bijective correspondence between the sets of

1. R − S-isomorphisms from S to S∗.
2. Frobenius functionals ε : A → F satisfying εσ = ε and εδ = 0.
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524 J. Gómez-Torrecillas et al.

3. Frobenius forms 〈−,−〉 : A × A → F satisfying the conditions 〈a, b〉 = 〈σ(a), σ (b)〉
and 〈σ(a), δ(b)〉 + 〈δ(a), b〉 = 0 for all a, b ∈ A.

Proof In order to prove the bijection between (1.) and (2.) it is enough to show that left
R-linearity of a right S-isomorphism α : S → S∗ is equivalent to the conditions described
in (2.) on the corresponding Frobenius functional ε under the bijection stated in by Theorem
1.

Now, α is left R-linear if and only if α(x f ) = xα( f ) for every f ∈ S. But, since α is
right S-linear, the latter is equivalent to the condition α(x) = xα(1). Both α(x) and xα(1)
are right R-linear maps, so, they are equal if and only if α(x)(a) = (xα(1))(a) for every
a ∈ A. Thus, from the computations

α(x)(a) = α(xa)(1) = α(σ(a)x + δ(a))(1) = ε(σ (a))x + ε(δ(a)),

(xα(1))(a) = xα(1)(a) = xα(a)(1) = xε(a) = ε(a)x,

we get that α is left R-linear if and only if ε(σ (a)) = ε(a) and ε(δ(a)) = 0 for every a ∈ A.
The bijection between (2.) and (3.) follows from the bijection between Frobenius forms

and Frobenius functionals explained in Remark 1.

The following direct consequence of Theorem 3 is the characterization which will be used
to build an example of biseparable extension which is not Frobenius.

Theorem 4 R ⊆ S is Frobenius if and only if there exists a Frobenius functional ε : A → F

verifying εσ = ε and εδ = 0.

We finish the section showing a family of examples of left and right semi Frobenius, but
not Frobenius, extensions.

Example 1 Let p be a prime number and Fp the finite field of p elements. Consider some
n > 1, and the field extension Fp ⊆ Fpn . Then Fpn is a Frobenius Fp-algebra. Let τ :
Fpn → Fpn be the Frobenius automorphism, i.e. τ(x) = x p for any x ∈ Fpn . Then, there
exists α ∈ Fpn such that {α, τ(α), . . . , τ n−1(α)} is an Fp-basis of Fpn . We set then the
τ -derivation δ : Fpn → Fpn given by

δ(b) = (τ (b) − b)
α

τ(α) − α

for any b ∈ Fpn . By Theorem 2, Fp[x] ⊆ Fpn [x; σ, δ] is left and right semi-Frobenius.
Nevertheless, it is not Frobenius. Indeed, by Theorem 4, Fp[x] ⊆ Fpn [x; τ, δ] is Frobenius
if and only if there exists a Frobenius functional ε : Fpn → Fp such that ετ = ε and εδ = 0.
But, in such a case, since δ(α) = α,

0 = ε(δ(α)) = ε(α) = ε(τ (α)) = · · · = ε(τ n−1(α)).

So that ε = 0.

4 Lifting biseparable extensions

In this section we aim to provide conditions for ensuring that the extension R ⊆ S is
biseparable. Since, by [1, Lemma 3.3] and Lemma 1, this is so if and only if R ⊆ S is
separable and split, we deal with both notions independently. Let us first analyze the property
of being split.
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Biseparable extensions are not necessarily Frobenius 525

Let C ⊆ B be a ring extension, σ : B → B an automorphism of B and δ : B → B a
σ -derivation on B such that σ(C) ⊆ C and δ(C) ⊆ C .

Proposition 1 Suppose that C ⊆ B is split and ξ : B → C is a C-bimodule morphism with
ξσ = σξ , ξδ = δξ and ξ(1) = 1, then C[x; σ, δ] ⊆ B[x; σ, δ] is split.

Proof We define ξ̂ : B[x; σ, δ] → C[x; σ, δ] as, for any f = ∑n
i=0 bi x

i ∈ B[x; σ, δ],

ξ̂ ( f ) =
n∑

i=0

ξ(bi )x
i .

We check that ξ̂ is a C[x; σ, δ]-bimodule morphism. Let a ∈ C and f = ∑n
i=0 bi x

i ∈
B[x; σ, δ],

ξ̂ (x f ) = ξ̂

(
x

n∑

i=0

bi x
i

)

= ξ̂

(
n∑

i=0

σ(bi )x
i+1 + δ(bi )x

i

)

=
n∑

i=0

ξ(σ (bi ))x
i+1 +

n∑

i=0

ξ(δ(bi ))x
i

=
n∑

i=0

σ(ξ(bi ))x
i+1 +

n∑

i=0

δ(ξ(bi ))x
i

= x
n∑

i=0

ξ(bi )x
i

= x ξ̂ ( f ),

and

ξ̂ (a f ) = ξ̂

(
n∑

i=0

abi x
i

)
=

n∑

i=0

ξ(abi )x
i = a

n∑

i=0

ξ(bi )x
i = aξ̂ ( f ),

so ξ̂ is left C[x; σ, δ]-linear. Analogously,

ξ̂ ( f x) = ξ̂

(
n∑

i=0

bi x
i+1

)
=

n∑

i=0

ξ(bi )x
i+1 =

(
n∑

i=0

ξ(bi )x
i

)
x = ξ̂ ( f )x,
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526 J. Gómez-Torrecillas et al.

and

ξ̂ ( f a) = ξ̂

(
n∑

i=0

bi

(
i∑

k=0

Ni
k(a)xk

))

=
n∑

i=0

i∑

k=0

ξ(bi N
i
k(a))xk

=
n∑

i=0

i∑

k=0

ξ(bi )N
i
k(a)xk

=
n∑

i=0

ξ(bi )

(
i∑

k=0

Ni
k(a)xk

)

=
n∑

i=0

ξ(bi )x
ia

= ξ̂ ( f )a,

so ξ̂ is right C[x; σ, δ]-linear. Clearly, ξ̂ (1) = 1, and thus B[x; σ, δ] ⊆ C[x; σ, δ] is split.
Corollary 1 If there exists an F-linear map ξ : A → F such that ξ(1) = 1, ξσ = ξ and
ξδ = 0, then R ⊆ S is split.

Proof Observe that any finite dimensional F-algebra A is split, since there is an F-basis of A
containing the element 1. Hence, the corollary follows from Proposition 1, since σ|F = idF
and δ|F = 0.

The transfer of separability in Ore extensions is studied in [5]. For brevity, we denote by
σ⊗ and δ⊗ the maps

σ⊗ : B ⊗C B → B ⊗C B

b1 ⊗ b2 
→ σ(b1) ⊗ σ(b2)

δ⊗ : B ⊗C B → B ⊗C B

b1 ⊗ b2 
→ σ(b1) ⊗ δ(b2) + δ(b1) ⊗ b2

for every b1, b2 ∈ B. By [5, Lemma 27], σ⊗ and δ⊗ are well defined.
We will use the following proposition whose easy proof compares xp and px in the light

of the rule defining the product in an Ore extension.

Proposition 2 [5, Theorem 29] If C ⊆ B is separable and there exists a separability element
p verifying σ⊗(p) = p and δ⊗(p) = 0, then C[x; σ, δ] ⊆ B[x; σ, δ] is separable.

In [4, Theorem 8] a converse to Proposition 2 is provided when δ = 0. Here, we generalize
part of this result when δ is an inner σ -derivation. So, for the rest of this section, σ : A → A
is an F-linear automorphism and δσ,b : A → A is a σ -derivation defined by

δσ,b(a) = ba − σ(a)b

for some b ∈ A. Hence R = F[x] and S = A[x; σ, δσ,b]. Recall that we have fixed an F-basis
{a1, . . . , ar } of A.
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Lemma 2 The set {ai ⊗R a j xk | 1 ≤ i, j ≤ r , k ≥ 0} is an F-basis of S⊗R S. Consequently,
the map

ϕ : S ⊗R S →
⊕

k≥0

(A ⊗F A)xk,
[
ai ⊗R a j x

k 
→ (ai ⊗F a j )x
k
]

is an F-isomorphism that provides an N-grading on S ⊗R S as an F-vector space.

Proof It can be derived from Lemma 1 and [18, Corollary 8.5] that S ⊗R S is a free right
R-module with basis {ai ⊗R a j | 1 ≤ i, j ≤ r}, hence {ai ⊗R a j xk | 1 ≤ i, j ≤ r , k ≥ 0} is
an F-basis. Consequently ϕ is an isomorphism because {(ai ⊗F a j )xk | 1 ≤ i, j ≤ r , k ≥ 0}
is a basis of

⊕
k≥0(A ⊗F A)xk .

Proposition 3 If R ⊆ S is separable and δ = δσ,b is inner, then F ⊆ A is separable.

Proof Let p ∈ S ⊗R S be a separability element. We do not lose generality if we assume
p = ∑r

i=1
∑m

j=0 ai ⊗R gi j x j . Let a ∈ A, where {a1, . . . , ar } is an F-basis of A. Since
ap = pa we have

r∑

i=1

m∑

j=0

aai ⊗R gi j x
j =

r∑

i=1

m∑

j=0

j∑

k=0

ai ⊗R gi j N
j
k (a)xk

=
r∑

i=1

m∑

k=0

m∑

j=k

ai ⊗R gi j N
j
k (a)xk .

By Lemma 2 and by applying ϕ, we get that, for all 0 ≤ 	 ≤ m,

r∑

i=1

aai ⊗F gi	 =
r∑

i=1

m∑

j=	

ai ⊗F gi j N
j
	 (a) ∈ A ⊗F A.

Multiplying on the right by b	 and adding all the obtained identities we have

m∑

	=0

r∑

i=1

aai ⊗F gi	b
	 =

m∑

	=0

r∑

i=1

m∑

j=	

ai ⊗F gi j N
j
	 (a)b	

=
r∑

i=1

m∑

j=0

j∑

	=0

ai ⊗F gi j N
j
	 (a)b	.

Since ba = σ(a)b + δσ,b(a), an inductive argument on j , which uses (4), shows that

j∑

	=0

N j
	 (a)b	 = b ja,

hence
r∑

i=1

m∑

	=0

aai ⊗F gi	b
	 =

r∑

i=1

m∑

j=0

ai ⊗F gi j b
j a.

So p̂ = ∑r
i=1

∑m
j=0 ai ⊗F gi j b j satisfies a p̂ = p̂a for all a ∈ A. Now, since

1 = μ(p) =
r∑

i=1

m∑

j=0

ai gi j x
j ∈ A[x; σ, δσ,b],
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it follows that 1 = ∑r
i=1 ai gi0 and 0 = ∑r

i=1 ai gi j for all 1 ≤ j ≤ m. Therefore μ( p̂) = 1
and p̂ is a separability element for F ⊆ A.

5 An answer to a problem of Caenepeel and Kadison

In this section, with the aid of the results of Sects. 3 and 4, we give a negative answer to
Problem 1.

Example 2 (Answer to Problem 1) Let F8 be the field with eight elements described as
F8 = F2(a), where a3 + a2 + 1 = 0. Let τ be the Frobenius automorphism on F8, that is,
τ(c) = c2 for every c ∈ F8. Observe that {a, a2, a4} is an auto dual basis of the extension
F2 ⊆ F8. Set A = M2(F8), the ring of 2 × 2 matrices over F8, and consider the F2-
automorphism σ : A → A defined as the component-by-component extension of τ to A.
That is, σ is given by

σ

(
x0 x1
x2 x3

)
=

(
τ(x0) τ (x1)
τ (x2) τ (x3)

)
=

(
x20 x21
x22 x23

)
for every

(
x0 x1
x2 x3

)
∈ A. (9)

We can also set the inner σ -derivation δ : A → A given by δ(X) = MX − σ(X)M for
X ∈ A, where

M =
(
0 0
0 a

)
.

Our aim is to prove that the ring extension F2[x] ⊆ A[x; σ, δ] is split and separable, and
hence biseparable, but not Frobenius. For simplicity, we denote

e0 =
(
1 0
0 0

)
, e1 =

(
0 1
0 0

)
, e2 =

(
0 0
1 0

)
and e3 =

(
0 0
0 1

)
.

Hence, an F2-basis of A is given by B = {a2i e j such that 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3}.
Let ε : A → F2 be an F2-linear map. If we force εσ = ε, then

ε
(
a2

i+1
e j

)
= εσ

(
a2

i
e j

)
= ε

(
a2

i
e j

)

for every 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3, so that ε is determined by four values γ0, γ1, γ2, γ3 ∈ F2

such that ε(a2
i
e j ) = γ j for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3.

Let us then consider ξ : A → F2 the F2-linear map determined by γ0 = 1, γ1 = 0, γ2 = 0
and γ3 = 0. Firstly,

ξ

(
1 0
0 1

)
= ξ

(
a + a2 + a4 0

0 a + a2 + a4

)

= ξ(ae0) + ξ(a2e0) + ξ(a4e0) + ξ(ae3) + ξ(a2e3) + ξ(a4e3)

= 1.
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On the other hand, for any x0, x1, x2, x3 ∈ F8,

δ

(
x0 x1
x2 x3

)
=

(
0 0
0 a

) (
x0 x1
x2 x3

)
+

(
x20 x21
x22 x23

) (
0 0
0 a

)

=
(

0 0
ax2 ax3

)
+

(
0 ax21
0 ax23

)

=
(

0 ax21
ax2 a(x3 + x23 ).

)
(10)

Therefore, ξδ = 0. By Corollary 1, the extension F2[x] ⊆ A[x; σ, δ] is split.
Let us prove that the map ξ is the only non trivial F2-linear map verifying the equalities

ξσ = ξ and ξδ = 0. Let us suppose that ε : A → F2 is a non zero F2-linear map that verifies
the equation εσ = ε. As reasoned above, it is determined by some values γ0, γ1, γ2, γ3 ∈ F2.
Nevertheless,

– If γ1 = 1, then εδ

(
0 1
0 0

)
= ε

(
0 a
0 0

)
= 1,

– If γ2 = 1, then εδ

(
0 0
1 0

)
= ε

(
0 0
a 0

)
= 1,

– If γ3 = 1, then εδ

(
0 0
0 a

)
= ε

(
0 0
0 a2 + a3

)
= ε

(
0 0
0 a + a2 + a4

)
= 1,

so that εδ = 0 implies γ1 = γ2 = γ3 = 0. Hence, γ0 = 1, and ε = ξ . Note that the kernel
of ξ contains the left ideal

J =
{(

0 c2
0 c3

)
| c2, c3 ∈ F8

}
,

so that there is no Frobenius functional ε : A → F2 verifying εσ = ε and εδ = 0. By
Corollary 4, the extension F2[x] ⊆ A[x; σ, δ] is not Frobenius.

Finally, let us prove that the extension is separable. Consider the element p ∈ A ⊗F2 A
given by

p =
(
a 0
0 0

)
⊗

(
a 0
0 0

)
+

(
a2 0
0 0

)
⊗

(
a2 0
0 0

)
+

(
a4 0
0 0

)
⊗

(
a4 0
0 0

)

+
(
0 0
a 0

)
⊗

(
0 a
0 0

)
+

(
0 0
a2 0

)
⊗

(
0 a2

0 0

)
+

(
0 0
a4 0

)
⊗

(
0 a4

0 0

)
.

This is a separability element of the extension F2 ⊆ A, since it is the composition of the
separability element a⊗a+a2⊗a2+a4⊗a4 of the extension F2 ⊆ F8, and the separability
element e0 ⊗ e0 + e2 ⊗ e3 of the extension F8 ⊆ A, see [5, Examples 4 and 5] and [7,
Proposition 2.5]. Although it is straightforward to check that σ⊗(p) = p and δ⊗(p) = 0, due
to its importance in this paper, we detail explicitly all the computations. Since the Frobenius
automorphism induces a permutation on {a, a2, a4}, it follows that

σ⊗(p) =
(
a2 0
0 0

)
⊗

(
a2 0
0 0

)
+

(
a4 0
0 0

)
⊗

(
a4 0
0 0

)
+

(
a 0
0 0

)
⊗

(
a 0
0 0

)

+
(
0 0
a2 0

)
⊗

(
0 a2

0 0

)
+

(
0 0
a4 0

)
⊗

(
0 a4

0 0

)
+

(
0 0
a 0

)
⊗

(
0 a
0 0

)

= p.

123



530 J. Gómez-Torrecillas et al.

Let us now compute δ⊗(p). Recall δ⊗ = σ ⊗δ+δ⊗ id. By (10) and (9), δ
(
c 0
0 0

) = (
0 0
0 0

)

for each c ∈ F8, so

δ⊗
((

a2
i

0
0 0

)
⊗

(
a2

i
0

0 0

))
=

(
a2

i+1
0

0 0

)
⊗

(
0 0
0 0

)
+

(
0 0
0 0

)
⊗

(
a2

i
0

0 0

)
,

for 0 ≤ i ≤ 2. Hence

δ⊗(p) = δ⊗
((

a 0
0 0

)
⊗

(
a 0
0 0

))
+ δ⊗

((
a2 0
0 0

)
⊗

(
a2 0
0 0

))

+ δ⊗
((

a4 0
0 0

)
⊗

(
a4 0
0 0

))
+ δ⊗

((
0 0
a 0

)
⊗

(
0 a
0 0

))

+ δ⊗
((

0 0
a2 0

)
⊗

(
0 a2

0 0

))
+ δ⊗

((
0 0
a4 0

)
⊗

(
0 a4

0 0

))

= δ⊗
((

0 0
a 0

)
⊗

(
0 a
0 0

))

+ δ⊗
((

0 0
a2 0

)
⊗

(
0 a2

0 0

))
+ δ⊗

((
0 0
a4 0

)
⊗

(
0 a4

0 0

))

(11)

Moreover, by (10) and (9) again,

δ⊗
((

0 0

a2
i

0

)
⊗

(
0 a2

i

0 0

))
=

(
0 0

a2
i+1

0

)
⊗

(
0 a2

i+1+1

0 0

)
+

(
0 0

a2
i+1 0

)
⊗

(
0 a2

i

0 0

)
,

so we can follow the computations in (11) to get

δ⊗(p) =
(
0 0
a2 0

)
⊗

(
0 a3

0 0

)
+

(
0 0
a2 0

)
⊗

(
0 a
0 0

)

+
(
0 0
a4 0

)
⊗

(
0 a5

0 0

)
+

(
0 0
a3 0

)
⊗

(
0 a2

0 0

)

+
(
0 0
a 0

)
⊗

(
0 a2

0 0

)
+

(
0 0
a5 0

)
⊗

(
0 a4

0 0

)
,

(12)

where we have used that a7 = 1. The identities a3 = a + a4 and a5 = a2 + a4 in F8 allow
us to expand (12) in order obtain
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δ⊗(p) =
(
0 0
a2 0

)
⊗

(
0 a + a4

0 0

)
+

(
0 0
a2 0

)
⊗

(
0 a
0 0

)

+
(
0 0
a4 0

)
⊗

(
0 a2 + a4

0 0

)
+

(
0 0

a + a4 0

)
⊗

(
0 a2

0 0

)

+
(
0 0
a 0

)
⊗

(
0 a2

0 0

)
+

(
0 0

a2 + a4 0

)
⊗

(
0 a4

0 0

)

=
(
0 0
a2 0

)
⊗

(
0 a
0 0

)
+

(
0 0
a2 0

)
⊗

(
0 a4

0 0

)

+
(
0 0
a2 0

)
⊗

(
0 a
0 0

)
+

(
0 0
a4 0

)
⊗

(
0 a2

0 0

)

+
(
0 0
a4 0

)
⊗

(
0 a4

0 0

)
+

(
0 0
a 0

)
⊗

(
0 a2

0 0

)

+
(
0 0
a4 0

)
⊗

(
0 a2

0 0

)
+

(
0 0
a 0

)
⊗

(
0 a2

0 0

)

+
(
0 0
a2 0

)
⊗

(
0 a4

0 0

)
+

(
0 0
a4 0

)
⊗

(
0 a4

0 0

)

= 0.

(13)

By Proposition 2, F2[x] ⊆ A[x; σ, δ] is separable. Hence F2[x] ⊆ A[x; σ, δ] is a biseparable
extension which is not Frobenius.

At this point one could ask what happens if we replace the family of Frobenius extensions
in Problem 1 by a more general family. For instance, we can consider the family of Frobenius
extensions of second kind introduced in [16]. LetC ⊆ B be a ring extension and let κ : C →
C be an automorphism. There is a structure of leftC-module onC given by a ·κ b = κ(a)b for
each a, b ∈ C . Hence,C ⊆ B is said to be a κ-Frobenius extension, or a Frobenius extension
of second kind, if B is a finitely generated projective right C-module, and there exists a
C − B-isomorphism from B to B∗κ = Hom(BC , κCC ). The C − B-bimodule structure on
B∗κ is then given by (a f b)(c) = a ·κ f (bc) = κ(a) f (bc) for any f ∈ B∗κ , a ∈ C and
b, c ∈ B. It is clear that a Frobenius extension of second kind is left and right semi Frobenius.
A natural question that arises is then if a biseparable extension is a Frobenius extension of
second kind. In order to answer this question, we may prove similar results to those showed
in the previous sections.

Proposition 4 Let κ : R → R be an automorphism with κ(x) = mx + n for some m, n ∈ F

with m = 0. There exists a bijection between the sets of

1. R − S-isomorphisms α : S → S∗κ .
2. Frobenius functionals ε : A → F verifying εσ = mε and εδ = nε.

Proof By Theorem 1, there exists a right S-isomorphism β : S → S∗κ if and only if there
exists a Frobenius functional ε : A → F. Now, analogously to the proof of Theorem 4,

κ(x)β(1)(a) = mε(a)x + nε(a).

and

β(x)(a) = β(1)(xa) = β(1)(σ (a)x + δ(a)) = ε(σ (a))x + ε(δ(a))

for any a ∈ A. Hence, β is left R-linear if and only if εσ = mε and εδ = nε.
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Corollary 2 R ⊆ S is a Frobenius extension of second kind if and only if there exists a
Frobenius functional ε : A → F and m, n ∈ F with m = 0 such that εσ = mε and εδ = nε.

Are biseparable extensions Frobenius extensions of second kind? The answer is again
negative.

Example 3 (Biseparable extensions are not necessarily Frobenius of second kind)By the latter
result, Example 2 also provides an example of a biseparable extension which is not Frobenius
of second kind. Indeed, let κ : F2[x] → F2[x] be an automorphism. Hence κ(x) = x +n for
some n ∈ F2. The case n = 0 is already analyzed in Example 2. Therefore, set κ(x) = x +1.
By Proposition 4, F2[x] ⊆ A[x; σ, δ] is Frobenius of second kind if and only if there exists a
Frobenius functional ε : A → F2 verifying εσ = ε and εδ = ε. As reasoned in Example 2, ε
is determined by four values γ0, γ1, γ2, γ3 ∈ F2 such that ε(a2

i
e j ) = γ j for any i = 0, 1, 2

and j = 0, 1, 2, 3. Now,

– If γ0 = 1, then 0 = εδ

(
a 0
0 0

)
= ε

(
a 0
0 0

)
= 1,

– If γ1 = 1, then 0 = εδ

(
0 a
0 0

)
= ε

(
0 a
0 0

)
= 1,

– If γ2 = 1, then 0 = εδ

(
0 0
a2 0

)
= ε

(
0 0
a2 0

)
= 1,

– If γ3 = 1, then 0 = εδ

(
0 0
0 a2

)
= ε

(
0 0
0 a2

)
= 1,

so that εδ = ε if and only if ε = 0. By Corollary 2, F2[x] ⊆ A[x; σ, δ] is not Frobenius
of second kind. Additionally, we may state that the class of Frobenius extensions of second
kind is strictly contained in the class of left and right semi Frobenius.

We can formulate the next problem.

Problem 2 Are biseparable extensions left and right semi Frobenius?

The techniques developed in this paper are not suitable to handlewith this problem. In fact,
assume R ⊆ S is biseparable with δ = δσ,b inner. Then F ⊆ A is separable by Proposition 3.
By [2, Proposition 5] or [3, Theorem 4.2], F ⊆ A is a Frobenius extension, hence R ⊆ S is
right and left semi Frobenius by Theorem 2.
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