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Abstract: Objectives: We aimed to analyze potential predictors for the development of
metachronous fractures (MFs) after osteoporotic vertebral fractures (OVFs), with particular
focus on radiological variables obtained at initial X-rays and computed tomography (CT)
examinations, treatment applied (conservative management [CM] versus percutaneous ver-
tebroplasty [PV]), and fractures located at the thoracolumbar junction (T11-L2). Methods:
We conducted a two-center, observational retrospective study, including patients with
single-level OVFs treated with CM or VP. We collected socio-demographic, radiological and
treatment-related variables. We performed descriptive and contrastive bivariate analyses
based on the presence of MFs and univariate and multivariate logistic regression analyses
to obtain adjusted and crude odds ratios (aOR and cOR, respectively) for predicting MFs.
Finally, we performed receiver-operating characteristic (ROC) curve analyses to determine
the discriminative power of the models obtained. Results: Of the 90 patients included, 20
(22.2%) developed one or more MFs (15 in CM and 5 in PV groups, respectively; p = 0.037).
The treatment group (aOR for PV, 0.087; 95%CI, 0.015–0.379), presence of intravertebral cleft
(aOR, 5.62; 95%CI, 1.84–19.2) and difference in posterior height loss between X-rays and CT
(aOR, 0.926; 95%CI, 0.856–0.992) were identified as significant predictors for MFs, while
Genant’s numerical classification showed a trend toward significance (aOR, 1.97; 95%CI,
0.983–4.19; p = 0.064). A multivariate model combining these four variables showed optimal
fitting and correctly discriminated over 80% of cases (AUC, 0.828; 95%CI, 0.725–0.930).
Factors associated with MFs in thoracolumbar junction OVFs were intravertebral cleft,
CM, posterior height loss in CT, and DGOU OF3 fractures. Conclusions: The presence of
intravertebral cleft, a difference in posterior height loss between X-rays and CT equal to
or lower than 2.4%, higher grades of Genant’s numerical classification, and application of
CM instead of PV are predictors of MFs. These findings improve our understanding of the
factors involved in the development of MFs, but they need to be validated prospectively.
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1. Introduction
Osteoporotic vertebral fractures (OVFs) represent a health problem of high prevalence

and increasing incidence due to the aging of the population [1,2]. These fractures may be
associated with scarce or even absent symptoms, and some studies have suggested that
only one-third of these fractures are clinically detected [3]. However, they are a major
cause of morbidity, mortality and healthcare costs [1,4]. Up to 20% of OVFs may occur
without previous trauma [2] and their presence increases the risk of metachronous vertebral
fractures due to the highly deteriorated bone fragility in these patients [5,6].

There are different treatment options available for OVFs [7] and no universal agree-
ment on their optimal management has been achieved to date. An increasing body of
evidence emphasizes the need for adjusting the treatment strategy to the patient profile [8].
It is widely accepted that the first approach should be based on analgesic management
and treating osteoporosis itself with hygienic–dietary and pharmacological measures [9,10].
However, there is no current consensus on the optimal therapeutic strategy for fractures. In
most cases, conservative management (CM) is the first approach, although this decision
may be contingent upon the fracture type, stability or presence of neurological deficits [11].

In general, CM consists of the use of rigid, semi-rigid and soft orthoses, which aim
to minimize the shear forces on the fractured vertebrae. However, the scientific evidence
supporting the usefulness of orthoses is limited [12]. In addition, CM is not adequately
standardized, and up to one-third of patients with osteoporosis do not respond to it [13]. In
cases refractory to CM, it is possible to perform vertebral augmentation techniques. Finally,
more aggressive (i.e., surgical) techniques such as decompression of the central canal or
vertebral fixation can be necessary, although the risks of the latter are considerable [9].

Percutaneous vertebroplasty (PV) was the first vertebral augmentation technique de-
veloped. It was performed in France in 1984 for the treatment of an aggressive hemangioma
at C2 [14] and, by the end of the 1990s, it was widely adopted in clinical practice for the
treatment of different types of vertebral fractures [15–17]. Briefly, PV is an imaging-guided
percutaneous procedure by which a biological cement (usually polymethylmethacrylate)
is injected into the fractured vertebral body, with the aim of relieving pain and increasing
stability at the fracture site [9].

The efficacy of PV has been the subject of an ongoing debate since the publication of
two randomized clinical trials in which no benefit was found in comparison with placebo
in terms of pain control, improved functionality nor quality of life [18,19]. Likewise,
some authors argue that PV may be responsible for the development of metachronous
vertebral fractures (MFs) in adjacent vertebrae [20,21]. A relatively recent meta-analysis by
Buchbinder et al. [22] concluded that there is no scientific evidence to recommend its use
due to concerns related to both its efficacy and safety.

However, several clinical trials support the safety and efficacy of PV, as is the case
with VAPOUR (2016), in which the time from fracture onset to PV was short [23], or the
recent VERTOS V trial on chronic OVFs [24], which showed positive results favoring PV.
Recent meta-analyses concluded that PV is effective, with proven benefits compared to
CM, although the importance of using adequate selection criteria for patients has been
stressed [25]. In this context, elderly people with recent, painful OVFs seem to be the most
suitable patient profile that can benefit from PV [25,26].
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Despite the increasing knowledge on the pathophysiology of OVFs, the question on
whether PV increases the risk of MFs compared to CM remains unsolved. In addition, the
identification of predictive factors involved in the development of metachronous OVFs
is still limited. Some conditions (e.g., diabetes mellitus, chronic obstructive pulmonary
disease), medications (e.g., corticosteroids), bone health indicators (e.g., bone mineral
density) and demographic factors (e.g., age, sex, body mass index) have been linked to
a higher risk of MFs [27,28]. However, radiological variables on X-rays and computed
tomography (CT) images, which are the most frequently used imaging examinations when
acute OVF is suspected due to their greater availability as compared to magnetic resonance
imaging (MRI) [29,30], have been insufficiently explored in this setting. Of note, OVFs at
the thoracolumbar junction deserve particular attention, as they have been reported to be a
specific risk factor for higher kyphotic deformity and subsequent loss of sagittal balance,
increasing the odds of developing MFs [31].

We previously reported that some radiological variables such as differences in posterior
vertebral height loss between standing X-rays and CT or the fractured vs. non-fractured
vertebral density ratio were associated with the development of vertebral collapse in OVFs
treated with CM [32]. On the basis of these findings, we hypothesized that radiological
variables from initial imaging examinations could be helpful for predicting the development
of MFs and that the application of PV could be an important factor to be considered
regarding this complication.

The main objective of this study was to identify potential predictors for the develop-
ment of MFs after OVFs, with particular focus on radiological variables obtained at initial
X-rays and CT examinations as well as the treatment applied (CM vs. PV). A secondary
objective was to identify such predictors in the subgroup of patients with fractures located
in the thoracolumbar junction.

2. Materials and Methods
2.1. Study Design and Patient Selection

A retrospective observational study was designed from a consecutive series of patients
with acute OVF of the thoracolumbar spine diagnosed by imaging examinations at the
Hospital Universitario Virgen de las Nieves and the Hospital Universitario San Cecilio
between 1 January 2019 and 31 December 2023. The Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guidelines were followed in the design
of this study [33]. This study was approved by the Provincial Ethics Committee of Granada
(code TFG-FX-2019).

The following inclusion criteria were established:

1. Patients diagnosed with acute OVF by X-rays and CT.
2. Patients with radiological follow-up of their fracture at least 12 months after diagnosis.
3. Type A fractures of the AO Spine Classification [34,35].
4. Management with CM or PV (in the latter case, during the first 6 months after diagnosis).

The exclusion criteria were:

1. Lack of follow-up X-rays and/or CT at least 12 months after initial diagnosis.
2. Presence of two or more simultaneous OVFs.
3. Patients treated by spinal surgery prior to the diagnosis of OVF or during follow-up.
4. Patients with non-diagnostic-quality imaging examinations.

To ensure a balanced distribution of patients treated conservatively and with PV,
patient selection was performed as follows: search filters were applied in the hospital
radiology information system, which is common to both institutions involved, using the
keywords “vertebral fracture” or “spinal fracture” (filter: all words). Single vertebral
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fracture cases were checked one by one and recorded in a spreadsheet. Next, the treatment
applied was examined and classified according to whether it was fully conservative or
with PV (in the first 6 months after diagnosis). Finally, the inclusion and exclusion criteria
were applied consecutively by date of imaging examination and the first 45 patients treated
conservatively, and the first 45 patients treated with PV were selected. Therefore, a total of
90 patients with OVF were analyzed in this study.

2.2. Study Variables

The dependent variable was the development of MFs on follow-up. The independent
qualitative variables were sex, fracture location, cause (spontaneous, stress, fall), type of
treatment applied (PV or CM), and presence of intravertebral cleft. In addition, we consid-
ered the type of fracture at initial diagnosis based on the following classification systems:

1. Morphological (wedge-shaped, biconcave, crush) and quantitative (grade 0, 1, 2, 3)
classifications by Genant (34).

2. Classification of the German Society of Orthopedics and Traumatology (DGOU) (OF2-
OF5) (35).

3. Classification of the AO Spine (A1 to A4) (32,33).
4. Sugita classification (swelled-front, bow-shaped, projecting, concave, dented) (36).

Independent quantitative variables were patient age, vertebral height loss in anterior,
middle and posterior walls at diagnosis, difference in anterior, middle and posterior
height loss between standing X-rays and supine CT images at diagnosis, density of the
fractured and non-fractured vertebral bodies as well as fractured/non-fractured vertebrae
and fractured vertebra/aorta density ratios.

To calculate vertebral height loss, the fractured vertebral body measurements were
divided by the mean of the measurements made on the two adjacent vertebrae. To compare
the variability between X-rays and CT measurements, the differences in height loss of each
wall (i.e., anterior, middle and posterior) between both imaging techniques were calculated.
Figure 1 shows illustrative examples of the measurements made.

As in our previous study [32], the values of CT density in Hounsfield Units (HU) [36]
were measured by applying 1.5–2 cm2 oval region of interest (ROI) areas at two different
levels of the trabecular bone of the fractured vertebra, in the two adjacent healthy vertebrae
and in the aortic lumen. The mean value of these measurements was used as the final
density value for the fractured vertebra, the normal vertebra and the aorta, respectively
(Figure 2). For measurements in the fractured vertebra, cystic cavities or sclerotic lines of
impaction were avoided. The aorta was chosen as the internal reference standard.

All CT scans were performed using 64-detector-row (Lightspeed VCT, General
Electric®, Boston, MA, USA) and 128-detector-row (Ingenuity, Philips®, Amsterdam, The
Netherlands) multidetector machines. CT images with a thickness of 0.63–1.25 mm and
reconstructions with the same range were obtained. Two radiologists (ANONYMIZED and
ANONYMIZED) with 1 and 7 years of experience, respectively, performed the measure-
ments independently using the Carestream Vue system (Phillips®). The mean values of
both measurements were used as final values. Fracture classification was also performed
by both radiologists independently. In case of disagreement, the study was reviewed by a
senior radiologist (ANONYMIZED) who decided the final classification for the fracture.



Diagnostics 2025, 15, 160 5 of 17Diagnostics 2025, 15, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 1. Examples of radiological variables assessed in our sample, from a 58-year-old woman (A–
C) and an 88-year-old man (D). Patient 1. X-rays ((A), magnified in (B)) and CT at diagnosis (C). The 
height of each wall (anterior, middle and posterior) was measured through lines parallel to the an-
terior vertebral walls. Relative measurements were obtained for each fractured vertebral body by 
dividing them between the mean of the respective measurements in the cephalad and caudal verte-
bral bodies. Note that some cases involved subtle findings such as the asymmetric, focal endplate 
depression depicted with a white arrow in (B). Patient 2. CT at diagnosis (D) showing an obvious 
subchondral defect (orange arrow) consistent with a large intravertebral cleft. 

As in our previous study [32], the values of CT density in Hounsfield Units (HU) [36] 
were measured by applying 1.5–2 cm2 oval region of interest (ROI) areas at two different 
levels of the trabecular bone of the fractured vertebra, in the two adjacent healthy verte-
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density value for the fractured vertebra, the normal vertebra and the aorta, respectively 
(Figure 2). For measurements in the fractured vertebra, cystic cavities or sclerotic lines of 
impaction were avoided. The aorta was chosen as the internal reference standard. 

Figure 1. Examples of radiological variables assessed in our sample, from a 58-year-old woman (A–C)
and an 88-year-old man (D). Patient 1. X-rays ((A), magnified in (B)) and CT at diagnosis (C). The
height of each wall (anterior, middle and posterior) was measured through lines parallel to the
anterior vertebral walls. Relative measurements were obtained for each fractured vertebral body
by dividing them between the mean of the respective measurements in the cephalad and caudal
vertebral bodies. Note that some cases involved subtle findings such as the asymmetric, focal endplate
depression depicted with a white arrow in (B). Patient 2. CT at diagnosis (D) showing an obvious
subchondral defect (orange arrow) consistent with a large intravertebral cleft.
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Figure 2. Examples of CT density measurements in a fractured vertebral body (arrow) and adjacent
healthy vertebrae. The dashed lines with arrows indicate the level of different measurements in the
axial plane. The dashed circles represent the region of interest (ROI) measured in the central part of
the vertebral body.
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2.3. Statistical Analysis

A descriptive analysis was performed expressing qualitative variables as absolute and
relative frequencies and quantitative variables as means and standard deviations. To analyze
potential confounders that could be involved in the treatment applied, we performed both a
univariate descriptive analysis for the whole sample and a bivariate descriptive analysis,
including separated descriptive data for each of the treatment groups. This provided
information on variables that could differ between patients managed with CM and PV.

Bivariate analyses were then performed to compare the group of patients who de-
veloped MFs and the group of patients who did not develop them. For these bivariate
analyses, quantitative and qualitative variables were compared using Student’s t-tests and
chi-squared tests (or Mann–Whitney/Fisher’s exact tests when the conditions to apply the
respective parametric tests were not met).

Then, to analyze how the independent variables which showed statistically significant
differences in the bivariate analyses comparing the categories of the treatment applied were
able to predict the development of MFs, we performed univariate and multivariate binary
logistic regression analyses. Crude and adjusted odds ratios (cOR and aOR, respectively)
with their corresponding 95% confidence intervals (95%CIs) were obtained. For aORs
related to the treatment applied, we adjusted the models for the variables that had resulted
as significantly different in the corresponding bivariate descriptive analysis. To compare
the consistency and fit of the multivariate models, we utilized the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). Finally, receiver-operating
characteristic (ROC) curves were used for discriminant analysis, and the Youden index was
used to select the cut-off points that maximize the sensitivity and specificity of the variables
of the models obtained.

As for the secondary objective of this study, all analyses were also performed for the
subgroup of patients with fractures located at the thoracolumbar junction (T11-L2). All
data were analyzed with the R software version 4.3.2 for Windows (Vienna, Austria). The
level of statistical significance was established for p values less than 0.05.

3. Results
3.1. Main Characteristics of Patients and Vertebral Fractures in Our Sample

Of the 90 patients included in this study (mean age, 72.5 years; 74.4% women), the
most frequent cause observed for OVFs was falling from standing height (80%), the level at
which the OVF was most frequently located was L1 (37.8%), and the most frequent fracture
types according to AO Spine, DGOU, Sugita and Genant’s morphological and Genant’s
numerical classifications were, respectively, A1 (52.2%), OF2 (74.4%), bow-shaped (36.7%),
biconcave (48.9%), and 0.5 and grade 1 (42.2%). Significant differences were observed in the
distribution of categories in the AO Spine classification (p < 0.001), with a higher prevalence
of Grade 0.5 fractures in the CT group compared to the PV group. In total, 20 patients
(22.2%) developed one or more MFs on follow-up (15 in the conservatively treated group
and 5 in the PV-treated group; p = 0.022). Table 1 shows the descriptive analysis of the
socio-demographic variables, causes, location and type of the fractures included in this
study. Supplementary Table S1 shows the same descriptive analysis for the subgroup of
patients with OVFs located at the thoracolumbar junction.

Regarding the radiological variables measured, we observed baseline differences
between the CT and PV groups in fractured vertebra density and fractured-to-healthy
vertebral density ratio (higher in the PV group, p = 0.001 and p = 0.030, respectively), loss of
posterior height measured in X-rays and CT (higher loss in the PV group in both, p = 0.009
and p = 0.031, respectively), and loss of anterior height measured in CT (higher loss in the
PV group, p = 0.007). In addition, a higher loss of middle vertebral height was observed
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at the end of follow-up in the CT group (p = 0.019). The 12 other radiological variables
showed no statistically significant differences between groups, although several trends
were observed, indicating greater height loss in the PV group, in general. Table 2 shows
the descriptive analysis of the radiological variables assessed in this study. Supplementary
Table S2 shows the same descriptive analysis for the subgroup of patients with OVFs
located at the thoracolumbar junction.

Table 1. Descriptive analysis of the socio-demographic variables, causes, location and types of the
fractures. Data are expressed as mean ± standard deviation or absolute (relative) frequencies for
quantitative and qualitative variables, respectively. * Significant p-value.

Variable Total Sample (N = 90)
X ± SD/N (%)

Vertebroplasty (n = 45)
X ± SD/N (%)

Cons. Management
(n = 45)

X ± SD/N (%)
p-Value

Sex (female) 67 (74.4) 31 (68.9) 36 (80) 0.227

Age 72.5 ± 9.5 72.6 ± 10.3 72.3 ± 8.8 0.860

Follow-up 24.6 ± 20.9 27.3 ± 26.3 21.9 ± 13.3 0.226

Cause of Fracture 0.629
Fall from standing height 77 (85.6) 37 (82.2) 40 (88.9)

Spontaneous 6 (6.7) 4 (8.9) 2 (4.4)
Stress 7 (7.8) 4 (8.9) 3 (6.7)

Fracture Level 0.315
T7 3 (3.3) 2 (4.4) 1 (2.2)
T8 3 (3.3) 3 (6.7) 0 (0)
T11 8 (8.9) 4 (8.9) 4 (8.9)
T12 13 (14.4) 7 (15.6) 6 (13.3)
L1 34 (37.8) 12 (26.7) 22 (48.9)
L2 13 (14.4) 8 (17.8) 5 (11.1)
L3 7 (7.8) 4 (8.9) 3 (6.7)
L4 7 (7.8) 3 (6.7) 4 (8.9)
L5 2 (2.2) 2 (4.4) 0 (0)

Fracture Type AO Spine 0.446
A1 47 (52.2) 23 (51.1) 24 (53.3)
A2 2 (2.2) 2 (4.4) 0 (0)
A3 29 (32.2) 13 (28.9) 16 (35.6)
A4 12 (13.3) 7 (15.6) 5 (11.1)

Fracture Type DGOU 0.602
OF2 67 (74.4) 33 (73.3) 34 (75.6)
OF3 22 (24.4) 11 (24.4) 11 (24.4)
OF4 1 (1.1) 1 (2.2) 0 (0)

Fracture Type Sugita 0.381
Swelled-front 19 (21.1) 13 (28.9) 6 (13.3)
Bow-shaped 33 (36.7) 16 (35.6) 17 (37.8)

Projecting 12 (13.3) 4 (8.9) 8 (17.8)
Concave 21 (23.3) 10 (22.2) 11 (24.4)
Dented 5 (5.6) 2 (4.4) 3 (6.7)

Fracture Type Genant m. 0.580
Wedge 42 (46.7) 21 (46.7) 23 (51.1)

Biconcave 44 (48.9) 21 (46.7) 21 (46.7)
Crush 4 (4.4) 3 (6.7) 1 (2.2)

Fracture Type Genant n. <0.001 *
0.5 23 (25.6) 1 (2.2) 22 (48.9)
1 38 (42.2) 29 (64.4) 9 (20)
2 29 (32.2) 15 (33.3) 14 (31.1)

Metachronous fractures 20 (22.2) 5 (11.1) 15 (33.3) 0.022 *
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Table 2. Descriptive analysis of the radiological variables assessed in the study with bivariate
descriptive analysis based on the treatment that was applied. Data are expressed as mean ± standard
deviation or absolute (relative) frequencies for quantitative and qualitative variables, respectively.
* Significant p-value.

Variable
Total Sample

(N = 90)
X ± SD/N (%)

Vertebroplasty
(n = 45)

X ± SD/N (%)

Cons. Management
(n = 45)

X ± SD/N (%)
p-Value

Intravertebral cleft 34 (37.8) 13 (28.9) 21 (46.7) 0.082

Healthy vertebra density 87.3 ± 32.3 88.6 ± 33.0 86.0 ± 32.0 0.703

Fractured vertebra density 139.6 ± 52.0 158.4 ± 54.1 120.8 ± 42.7 <0.001 *

Aorta density 42.3 ± 14.5 42.1 ± 8.2 39.8 ± 5.0 0.124

Fracture/non-fracture density ratio 1.9 ± 1.5 2.1 ± 1.9 1.6 ± 0.7 0.062

Fracture/aorta density ratio 3.5 ± 1.5 3.8 ± 1.5 3.1 ± 1.4 0.030

Loss of anterior height (X-rays) 26.1 ± 15.8 29.3 ± 17.8 22.9 ± 12.9 0.054

Loss of middle height (X-rays) 29.9 ± 12.3 32.4 ± 13.2 27.4 ± 11.0 0.052

Loss of posterior height (X-rays) 9.5 ± 10.3 12.3 ± 11.1 6.7 ± 8.7 0.009 *

Loss of anterior height (CT) 19.5 ± 14.1 23.5 ± 14.9 15.6 ± 12.1 0.007 *

Loss of middle height (CT) 25.5 ± 14.1 28.1 ± 15.5 22.8 ± 12.2 0.074

Loss of posterior height (CT) 7.8 ± 8.5 9.7 ± 10.0 5.9 ± 6.1 0.032 *

Loss of anterior height (X-rays–CT) 6.6 ± 9.2 5.9 ± 8.9 7.4 ± 9.7 0.436

Loss of middle height (X-rays–CT) 4.4 ± 11.5 4.3 ± 11.2 4.6 ± 12.0 0.912

Loss of posterior height (X-rays–CT) 1.7 ± 8.2 2.6 ± 7.3 0.8 ± 8.9 0.305

3.2. Variables Associated with the Development of Metachronous Vertebral Fractures

In the bivariate contrastive analyses comparing patients who developed MFs versus
those who did not, in addition to the type of treatment applied (p = 0.022), we observed
significant differences in the presence of intravertebral cleft (p = 0.004), difference in loss of
posterior height between standing X-rays and CT (p = 0.042), and AO Spine fracture type
classification (p = 0.028). Table 3 shows the results of the bivariate analyses. Supplementary
Table S3 shows the same contrastive analyses for the subgroup of patients with OVFs
located at the thoracolumbar junction.

Table 3. Factors associated with the development of new osteoporotic vertebral fractures. Data are
expressed as mean ± standard deviation or absolute (relative) frequencies. * Significant p-value.

Variable Total Sample
(N = 90)

New Fractures
(n = 20)

No New Fractures
(n = 70) p-Value

Treatment 0.022 *
Percutaneous vertebroplasty 45 (50) 5 (25) 40 (57.1)
Conservative management 45 (50) 15 (75) 30 (42.9)

Sex (Female) 67 (74.4) 17 (85) 50 (71.4) 0.220

Age 72.5 ± 9.5 71.6 ± 7.3 72.7 ± 10.1 0.564

Follow-up 24.6 ± 20.9 23.5 ± 15.0 24.9 ± 22.4 0.784

Cause 0.380
Spontaneous 6 (6.7) 0 (0) 6 (8.6)

Stress 7 (7.8) 2 (10) 5 (7.1)
Fall from standing height 77 (85.5) 18 (90) 59 (84.3)
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Table 3. Cont.

Variable Total Sample
(N = 90)

New Fractures
(n = 20)

No New Fractures
(n = 70) p-Value

Fracture Type (AO Spine) 0.162
A1 47 (52.2) 7 (35) 40 (57.1)
A2 2 (2.2) 0 (0) 2 (2.9)
A3 29 (32.2) 8 (40) 21 (30)
A4 12 (13.3) 5 (25) 7 (7.8)

Fracture Type (DGOU) 0.057
OF2 67 (74.4) 11 (55) 56 (80)
OF3 22 (24.4) 9 (45) 13 (18.6)
OF4 1 (1.1) 0 (0) 1 (1.4)

Fracture Type (Sugita) 0.501
Swelled-front 19 (21.1) 3 (15) 16 (22.9)
Bow-shaped 33 (36.7) 9 (45) 24 (34.3)

Projecting 12 (13.3) 4 (20) 8 (11.4)
Concave 21 (23.3) 4 (20) 17 (24.3)
Dented 5 (5.6) 0 (0) 5 (7.1)

Fracture Type (Genant morphol.) 0.665
Wedge 42 (46.7) 11 (55) 36 (51.4)

Biconcave 44 (48.9) 8 (40) 31 (44.3)
Crush 4 (4.4) 1 (5) 3 (4.3)

Fracture type (Genant numerical) 0.028 *
0.5 23 (25.6) 5 (25) 18 (25.7)
1 38 (42.2) 4 (20) 34 (48.6)
2 29 (32.2) 11 (55) 13 (18.6)

Intravertebral cleft 34 (37.8) 13 (65) 21 (30) 0.004 *

Healthy vertebra density 87.3 ± 32.3 89.6 ± 30.5 79.2 ± 37.8 0.209

Fractured vertebra density 139.6 ± 52.0 136.9 ± 52.1 149.1 ± 51.9 0.360

Aorta density 42.3 ± 14.5 40.6 ± 5.6 42.2 ± 10.2 0.378

Fracture-to-healthy vertebra density ratio 1.9 ± 1.5 1.8 ± 1.5 2.2 ± 1.2 0.205

Fracture-to-aorta density ratio 3.5 ± 1.5 3.4 ± 1.4 3.5 ± 1.8 0.067

Loss of anterior height (X-rays) 26.1 ± 15.8 24.9 ± 16.5 30.5 ± 12.2 0.162

Loss of middle height (X-rays) 29.9 ± 12.3 30.2 ± 12.4 28.9 ± 12.4 0.677

Loss of posterior height (X-rays) 9.5 ± 10.3 9.4 ± 10.4 9.5 ± 10.4 0.961

Loss of anterior height (CT) 19.5 ± 14.1 18.2 ± 14.8 24.2 ± 10.2 0.093

Loss of middle height (CT) 25.5 ± 14.1 24.7 ± 14.5 28.2 ± 12.7 0.329

Loss of posterior height (CT) 7.8 ± 8.5 10.9 ± 7.6 6.9 ± 8.5 0.058

Loss of anterior height (X-rays–CT) 6.6 ± 9.2 6.7 ± 9.3 6.3 ± 9.4 0.873

Loss of middle height (X-rays–CT) 4.4 ± 11.5 5.5 ± 11.2 0.7 ± 12.1 0.100

Loss of posterior height (X-rays–CT) 1.7 ± 8.2 −1.5 ± 8.0 2.6 ± 8.0 0.042 *

3.3. Predictors for the Development of Metachronous Vertebral Fractures

The results of the univariate logistic regression analysis for MFs were statistically
significant for the treatment group, intravertebral cleft, and difference in loss of posterior
height between X-rays and CT. For the Genant’s classification (numerical), the results
showed a trend toward significance (p = 0.064). In the multivariate logistic regression
analyses, we analyzed two models, one with the three significant variables (“treatment”,
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“intravertebral cleft”, “difference in loss of posterior height between X-rays and CT”) and
another one with the four variables (i.e., adding Genant’s classification). A comparison
between the model with three variables and the model with four variables showed that AIC
decreased from 87.26 to 81.74 and BIC decreased from 97.26 to 94.24, indicating that the
inclusion of the latter variable improved model fit, with an optimal balance between quality
of fit and model complexity. Table 4 shows the results of the univariate and multivariate
regression analyses. Supplementary Table S4 shows the same contrastive analyses for the
subgroup of patients with OVFs located at the thoracolumbar junction.

Table 4. Univariate and multivariate logistic regression analyses for the prediction of metachronous
fractures including the variables that showed statistically significant differences in the bivariate
analyses. CM, Conservative management. OR, odds ratio. cOR, crude OR. aOR: adjusted OR. 95%CI,
95% confidence interval. U p-value of the univariate regression analysis. M p-value of the multivariate
regression analysis. * Significant p-value. ˆ For this variable, apart from sex and age, adjustment for
the six variables that showed statistically significant differences in the bivariate descriptive analyses
of Tables 1 and 2 was made.

Variable cOR [95%CI] p-Value U aOR [95%CI] p-Value M

Treatment [Ref: CM] 0.250 [0.075–0.724] 0.015 0.050 [0.006–0.253] ˆ 0.001 *

Genant (numerical) 1.720 [0.879–3.560] 0.123 1.97 [0.983–4.190] 0.064

Intravertebral cleft 4.330 [1.550–13.000] 0.006 5.62 [1.840–19.200] 0.003 *

Loss of posterior height (X-rays–CT) 0.930 [0.862–0.995] 0.047 0.926 [0.856–0.992] 0.038 *

3.4. Discriminative Power of the Models for Predicting Metachronous Fractures

The results of the ROC curve analyses for each of the significant models are shown in
Table 5 and represented in Figure 3. For the variable “loss of posterior height (X-rays–CT)”,
the optimal cutoff of 0.240 (Youden index = 0.328) showed a sensitivity of 60% and a
specificity of 72.9% to predict MFs. Supplementary Table S5 and Supplementary Figure S1
show the same analyses and graphical representation for the subgroup of patients with
OVFs located at the thoracolumbar junction. For the variable “loss of posterior height
(CT)”, the optimal cutoff of 0.161 (Youden index = 0.447) showed a high sensitivity (92.9%)
but a low specificity (51.9%) to predict MFs.

Table 5. Receiver-operating characteristic curve analysis for the variables of the multivariate model
to predict the development of new fractures. The combined model with 3 variables includes the
variables “treatment”, “intravertebral cleft”, “difference in loss of posterior height between X-rays and
CT”. The combined model with 4 variables includes these variables as well as “Genant’s classification
(numerical)”. AUC, area under the curve. 95%CI, 95% confidence interval. * Significant p-value.

Variable AUC [95%CI] p-Value

Treatment [Ref: CM] 0.660 [0.547–0.774] 0.012 *

Genant (numerical) 0.611 [0.462–0.761] 0.107

Intravertebral cleft 0.675 [0.555–0.795] 0.005 *

Loss of posterior height (X-rays–CT) 0.660 [0.519–0.802] 0.030 *

Combined model (3 variables) 0.781 [0.672–0.891] <0.001 *

Combined model (4 variables) 0.828 [0.725–0.930] <0.001 *
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Figure 3. Receiver operating characteristic (ROC) curves of the univariate and multivariate models
obtained for the prediction of metachronous vertebral fractures. The colored curves represent the
ROC curves for each significant independent variable based on the univariate logistic regression
results (see legend). The blue curve refers to the multivariate model with 4 variables. The gray
diagonal line corresponds to the reference of a random classification (line of no discrimination).

Figures 4 and 5 show illustrative examples of patients from our sample with and
without MFs following OVFs at the thoracolumbar junction. Other illustrative examples in
patients with OVFs in locations different from the thoracolumbar junction are provided in
Supplementary Figures S2 and S3.
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Figure 4. Illustrative example of a patient without metachronous fractures in our sample. (A) Initial
X-rays. (B) Initial CT (MPR set at 1 mm). (C) Initial CT (MPR set at 100 mm for easier comparison with
measurements on X-rays). (D) Follow-up X-rays. This is a 77-year-old woman with a biconcave, grade
1 (Genant’s classification), OF2 (DGOU’s classification) fracture of L1. The loss of posterior vertebral
height (PVH) on CT was negative and the difference in loss of PVH was close to 0 (0.1%). She was
treated with vertebroplasty (note a slight cement leak at T12-L1 intervertebral disc) and developed
no metachronous fractures. In addition, follow-up X-rays 3 years later showed low-to-moderate local
kyphosis (monosegmental Cobb angle of 15◦) with preservation of sagittal balance (orange vertical
line in (D)).
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grade 2 (Genant’s classification), OF2 (DGOU’s classification) involving L1. The loss of posterior
vertebral height (PVH) on CT was 9.5% and the difference in loss of PVH between X-rays and CT
was 2%. She was managed conservatively and developed vertebral collapse and hyperkyphosis
(monosegmental Cobb angle close to 30◦) with loss of sagittal balance (sagittal vertical axis shown as
an orange vertical line at the left panel in (D)). At 2-year follow-up, she developed L1 collapse and a
metachronous fracture of T11 (yellow arrow in (D)).

4. Discussion
This study aimed to identify factors associated with the development of new incident

OVFs (i.e., MFs), with particular focus on a comparison between the differential effects
of PV and CM. As a secondary objective, we analyzed factors associated with MFs in
patients with fractures located at the thoracolumbar junction. In the whole sample, we
found that the presence of an intravertebral cleft and a difference in posterior height
loss between X-rays and CT in initial imaging examinations were significantly associated
with a higher risk of developing MFs, and a trend toward significance for the type of
fracture according to Genant’s numerical classification was observed. Conversely, PV was
associated with a significantly lower risk of subsequent OVFs, indicating a protective effect.
A combined model including four variables showed a moderate-to-high discriminant value
for predicting the development or not of MFs. In fractures located at the thoracolumbar
junction, we classified the fracture type according to DGOU; a higher loss of posterior height
at CT and the presence of intravertebral cleft increased the risk of developing MFs, while
PV showed a protective effect. A multivariate model combining three of these variables
also showed a moderate-to-high discriminant value for predicting the development or
not of MFs. However, there are some limitations that need to be considered, particularly
derived from the retrospective nature of this study and the relatively limited sample size,
which probably underpowered the statistical analyses.

Regarding radiological measurements, first of all, we found that the presence of
intravertebral cleft increased the chance of developing MFs, with higher OR values in
fractures located at the thoracolumbar junction. This is consistent with previous findings.
For instance, a study by Trout et al. found that patients treated with PV for fractures with
clefts had a nearly twofold (OR, 1.90; 95%CI, 1.04–3.49) increased risk of subsequent frac-
tures compared to those without clefts [37]. Our results showed an even more pronounced
association of over a fourfold increase in such a risk. Similarly, Wang et al. identified
intravertebral clefts as a significant risk factor for adjacent-level symptomatic fractures
after vertebral augmentation, with a higher incidence of new fractures within six months
post-procedure in patients with clefts [38]. However, to our knowledge, no specific studies
have assessed the risk of MFs in OVFs with intravertebral clefts managed conservatively, al-
though in these patients, clefts are a known risk factor for increasing vertebral collapse [31].
Considering that PV was found to have a significant protective effect for MFs in our sample,
further studies in patients managed conservatively are warranted to determine how the
presence of clefts in acute OVFs influences the prognosis and risk of MFs in these patients.

Secondly, we observed that involvement of the posterior wall increases the risk of
developing MFs. In the whole sample, the loss of posterior vertebral height between
standing X-rays and CT showed an inverse relationship with the risk of MFs, with an
optimal cutoff point of 2.4%. Interestingly, this pattern is opposite to the one found in
our previous study for predicting vertebral collapse [32]. Although the significance of this
finding from a pathophysiological perspective is unclear, we hypothesize that increased
tendency of the posterior wall to collapse could favor a more homogeneous distribution
of load forces, decreasing kyphotic angulation in the mid or long term, which is a known
risk factor for the development of MFs. In fact, Okamoto et al. demonstrated through
finite element analysis that kyphotic deformity significantly increases compressive stresses
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on adjacent vertebrae, thereby elevating the risk of subsequent fractures [39]. Similarly,
Huang et al. found that hyperkyphotic posture, which can result from increased local
kyphosis, is associated with a higher risk of MFs [40]. The association between vertebral
collapse and MFs considering kyphotic changes in the light of these findings should also
be explored in future studies. Notably, this trend was also observed in the subgroup of
patients with fractures located at the thoracolumbar junction, but it did not reach statistical
significance, probably owing to the more reduced sample size. Conversely, for these
patients, our results showed that a higher loss of posterior vertebral height at initial CT was
a predictor for developing MFs. Overall, these findings highlight the relevance of posterior
wall involvement in spinal stability and call for more profound analyses in future studies.

On the other hand, we observed an association between the categories of Genant’s
numerical classification and MFs in the whole sample, with a higher likelihood of devel-
oping MFs as the degrees of this classification increase. However, it should be taken into
account that there was an asymmetric distribution in the fracture categories between the
treatment groups, with a significantly higher number of OVFs grade 0.5 in the CM group.
Therefore, this finding may represent a confounding effect, explainable by the fact that
OVFs with minimal height loss are more prone to be treated conservatively rather than with
PV (at least in the short or mid term). This is supported by the results of our multivariate
analysis, where the inclusion of the Genant’s classification, which showed a trend toward
significance in the univariate regression analysis, improved model fitting. The other OVF
classifications analyzed showed no significant associations with the risk of developing
MFs, in line with other previous studies [41,42]. Interestingly, although we observed a
similar trend for the Genant’s numerical classification in the subgroup of patients with
OVFs at the thoracolumbar junction, it did not reach statistical significance (p = 0.058).
Conversely, the DGOU classification, which showed a trend toward significance in the
whole sample, did, probably due to the fact that only OF2 and OF3 fractures (i.e., no OF4
fractures) were present in patients with OVFs at the thoracolumbar junction. A higher risk
of developing MFs was found in OF3 fractures compared to OF2 fractures, emphasizing the
role of posterior wall involvement, in line with our previously described findings. These
findings underscore the need to find classification systems with greater prognostic capacity
for the development of OVFs.

Finally, probably the most interesting result that we observed is that PV was associated
with a significant decrease in the risk of developing metachronous OVFs compared to CM.
Specifically, the incidence of new incident OVFs in patients treated with PV occurred in
5 cases (11.1%), while in the CM group, it occurred in 15 cases (33.3%), with statistically
significant differences and a protective cOR of 0.250 and aOR of 0.050. These outcomes
were analogous in the subgroup of patients with fractures located at the thoracolumbar
junction, with 3 (9.7%) and 11 (29.7) MFs in patients treated with PV and CM, respectively
(p = 0.042), and cOR and aOR values of 0.253 and 0.120, respectively. Of note, for aOR,
we adjusted for variables that showed significant differences between patients managed
with CM and PV (potential confounders), apart from sex and age. The main biological
rationale for this finding lies in the decreased destabilization of the initial fracture focus
and corroborates the results of previous studies [43,44] while disagreeing with authors who
argued that the risk of developing MFs in adjacent vertebrae increases due to the stiffness
and biomechanical change caused by PV [45,46]. As in previous meta-analyses [44,47], our
findings defy the hypothesis that PV contributes to increased risk of subsequent vertebral
fracture but emphasize the need for adequately designed randomized controlled trials to
confirm these findings.

The main limitations of this study lie in its retrospective nature, in not having assessed
some potential confounders such as bone mineral density, and in the relatively limited
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sample size, which probably underpowered some statistical analyses and precluded level-
by-level contrastive analyses, particularly in the subgroup of patients with fractures located
at the thoracolumbar junction. Notably, the discrepancies observed in the predictivity of
some radiological variables in the whole sample as compared to patients with fractures
in the thoracolumbar junction, which probably owed to variations in both the sample
sizes and the specific features of vertebrae in different spinal segments, merit further
investigation. The main advantages of this study lie in the high number of radiological
variables measured by expert musculoskeletal radiologists, its two-centered nature, and
the long follow-up (mean follow-up over 2 years). Overall, it is necessary to validate our
results in prospective studies with larger sample sizes.

5. Conclusions
In osteoporotic vertebral fractures of the thoracic and lumbar spine, the presence of

an intravertebral cleft, a difference in loss of posterior vertebral height between standing
X-rays and CT equal to or lower than 2.4%, and the application of conservative treatment
instead of vertebroplasty were identified as potential predictors for the development of
metachronous vertebral fractures. In fractures located at the thoracolumbar junction, the
most relevant predictors were intravertebral cleft, posterior height loss compared to ad-
jacent vertebrae at initial CT over 1.6%, OF3 fractures of the DGOU’s classification, and
conservative management. These findings could improve our understanding of the course
of osteoporotic vertebral fractures and improve patient selection for treatment-based strate-
gies. However, some limitations of our study, particularly derived from its retrospective
nature, call for prospective validation in future studies with larger sample sizes.
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the development of new osteoporotic vertebral fractures in patients with fractures located at the
thoracolumbar junction; Supplementary Table S4. Univariate and multivariate logistic regression
analyses for the prediction of metachronous fractures in patients with vertebral fractures located at
the thoracolumbar junction, including the variables that showed statistically significant differences in
the bivariate analyses; Supplementary Table S5. Receiver-operating characteristics curve analysis
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bined model includes the variables “treatment”, DGOU classification and loss of posterior height;
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