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Abstract

Objective: Time-restricted eating (TRE), a dietary approach that confines food intake

to specific time windows, has shown metabolic benefits. However, its impact on

body weight loss remains inconclusive. The objective of this study was to investigate

the influence of early TRE (eTRE) and delayed TRE (dTRE) on fat mobilization using

human adipose tissue (AT) cultures.

Methods: Subcutaneous AT was collected from 21 participants with severe obesity.

We assessed fat mobilization by measuring glycerol release in AT culture across four

treatment conditions: control, eTRE, dTRE, and 24-h fasting.

Results: TRE had a significant impact on lipolysis (glycerol release [mean (SD)] in

micromoles per hour per gram: control, 0.05 [0.003]; eTRE, 0.10 [0.006]; dTRE, 0.08

[0.005]; and fasting, 0.17 [0.008]; p < 0.0001). Both eTRE and dTRE increased lipoly-

sis compared with the control group, with eTRE showing higher glycerol mobilization

than dTRE during the overall 24-h time window, especially at the nighttime/habitual

sleep episode (p < 0.0001). Further analysis of TRE based on fasting duration

revealed that, independently of the time window, glycerol release increased with
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fasting duration (in micromoles per hour per gram: 8 h = 0.08 [0.001]; 12 h = 0.09

[0.008]; and 16 h of fasting = 0.12 [0.011]; p < 0.0001).

Conclusions: This study provides insights into the potential benefits of TRE on fat

mobilization and may guide the design of future dietary strategies for weight man-

agement and metabolic health.

INTRODUCTION

Obesity prevalence has steadily risen worldwide over the past few

decades, becoming a significant public health concern due to its

association with various comorbidities [1–3]. Meal timing and meal

frequency can influence obesity, with evidence suggesting that

irregular eating patterns and excessive snacking may contribute to

weight gain and an increased risk of obesity [4]. In the contemporary

world, an alarming trend reveals that over 50% of the population has

eating periods that exceed 15 h/day [5]. At the same time, only a

minority of the population maintains a fasting duration of at least

12 h [6].

The advantages of fasting on body weight, intestinal function, glu-

cose tolerance, and blood pressure have been underlined in previous

research [7]. As a result, eating plans based on extended fasting have

become popular. One such plan is time-restricted eating (TRE), which

limits energy intake to a specific time window by maintaining fasts of

at least 14 to 16 h and often aiming to have mealtimes coincide with

biological rhythms [8,9].

One of the primary purposes of opting for TRE is body weight

loss. Nevertheless, results are still contradictory; although some

cohort studies have observed a body weight reduction with the

implementation of TRE [10,11], this effect was not observed in

other studies [12]. On the other hand, benefits derived from TRE

on metabolism have been observed, especially in glycemic control

[13,14]. Several clinical trials have further reported that TRE results

in increased insulin sensitivity, reduced blood pressure, and

decreased appetite [11,15,16]. There are no studies, to our knowl-

edge, specifically on TRE and its relationship with peripheral clocks.

However, it has been shown that mealtime schedules can shift

clock gene expression rhythms and can synchronize endogenous

circadian rhythms in circulating glucose concentrations (i.e., inde-

pendent of behavioral and environmental cycles), indicating that

human peripheral circadian rhythms can be regulated by eating

time [17,18].

Several studies have further investigated the best time for food

intake for TRE. New concepts include early TRE (eTRE), i.e., limiting

food to early hours, and delayed TRE (dTRE), i.e., eating later in the

day [19]. Meta-analyses globally have found no significant weight loss

differences between eTRE and dTRE [20]. However, independent

studies have shown that eTRE improves blood pressure [11] and glu-

cose tolerance [13] compared with dTRE. More trials and mechanistic

studies are needed to determine the impact of eTRE on body weight

regulation.

Although adipose tissue (AT) is the main organ affected by

TRE [21], there are no mechanistic studies, to our knowledge, in

human AT culture regarding the impact of TRE on fat mobilization.

Therefore, we aimed to study the impact of TRE on fat mobilization in

AT. The hypothesis was that TRE would increase fat mobilization

Study Importance

What is already known?

• Time-restricted eating (TRE) has become popular in

recent years as a novel strategy for weight loss. However,

results on weight loss with TRE are conflicting, and the

relationship between TRE and weight loss must be better

understood.

• This study aims to investigate the impact of TRE on fat

mobilization in human adipose tissue (AT) to gain mecha-

nistic insights into its effects.

What does this study add?

• The study demonstrates, in ex vivo explants of human

AT, that both early TRE (eTRE) and delayed TRE (dTRE)

are more effective in mobilizing fat from AT than a regu-

lar dietary pattern.

• eTRE shows higher fat mobilization during the 24-h time

window than dTRE. Differences were significant during

the nighttime/habitual sleep episode.

• This study, focused on AT culture, provides valuable

mechanistic insights into the effects of TRE on AT fat

mobilization.

How might these results change the direction of

research or the focus of clinical practice?

• The findings suggest that eTRE and dTRE patterns can

enhance fat mobilization, but eTRE may offer additional

benefits in fat mobilization from AT, particularly during

the nighttime.

• Understanding the impact of fasting duration on AT fat

mobilization may lead to more personalized TRE recom-

mendations and optimized TRE strategies for better

weight loss outcomes and metabolic improvements.
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compared with a more typical eating pattern with meals spread across

the 16-h day and fasting during the nighttime. Additionally, we aimed

to determine the effect of TRE on body fat mobilization compared

with 24 h of continuous fasting. We measured glycerol release, the

most direct measure of lipolysis in AT explants [22], from subcutane-

ous AT culture in individuals with obesity simulating four different

conditions: 1) 24-h continuous fasting; 2) a typical dietary pattern

with four meals across the day and nighttime fasting (control); 3)

eTRE; and 4) dTRE. The goal was to gain insights into the mechanistic

aspects of how TRE affects body fat mobilization.

METHODS

Participants

Subcutaneous AT biopsies were obtained from individuals with obe-

sity (n = 21) with a mean (SD) age of 39.33 (10.38) years and a mean

(SD) body mass index (BMI) of 40.51 (5.56) kg/m2 and who under-

went laparoscopic gastric bypass surgery at the Hospital Quirónsalud

(Murcia, Spain). The general characteristics of the population are pre-

sented in Table 1.

AT biopsies were obtained from abdominal subcutaneous AT at

the end of the surgical procedure, i.e., between 5 p.m. and 8 p.m.,

for all participants. Anthropometry, meal timing, metabolic syn-

drome (MetS), and sleep characteristics were assessed in the

morning before the surgical procedure. Written informed consent

was obtained following the Declaration of Helsinki and the study

was approved by the Ethical Committee of the University of Mur-

cia, Spain.

Anthropometry and MetS characteristics

Body weight was determined in participants wearing light clothes

while barefoot using a digital electronic weighing scale. Height was

determined using a Harpenden digital stadiometer with the participant

standing and the head in the Frankfurt plane. The BMI was calculated

using weight in kilograms divided by height in meters squared. Total

body fat (percent) was measured by bioimpedance with a Tanita

TBF-300.

Waist circumference was measured at the umbilicus level, and hip

circumference was measured at the widest circumference over the

great trochanters [23]. The waist-hip ratio was calculated as the

ratio between waist and hip circumferences. Fasting serum con-

centrations of glucose, triglycerides, high-density lipoprotein cho-

lesterol, low-density lipoprotein cholesterol, and total cholesterol

were determined and obtained at the clinical analysis laboratories

of the Hospital Quirónsalud. Arterial systolic and diastolic blood

pressure was measured with a mercury sphygmomanometer while

the participant was seated for at least 10 min. A MetS score

was calculated for each participant based on thresholds for waist

circumference (≥80/94 cm), fasting glucose (5.6 mmol/dL),

triglycerides (1.7 mmol/L), high-density lipoprotein cholesterol

(1.03 mmol/L for men and 1.29 mmol/L for women), and systolic

or diastolic blood pressure (130 mm Hg and 85 mm Hg, respec-

tively), with a maximum value of six points [24].

Sleep characteristics, meal timing, and drug therapy

The same interviewer questioned all individuals regarding their habit-

ual food and sleep schedules. The interview included the following

sleep-related questions: 1) “At what time do you go to sleep?”; and 2)

“What time do you usually awake in the morning?” The sleep duration

was determined as the difference between sleep onset and offset.

Furthermore, the question “How many times do you usually wake up

during the night?” was asked to assess the number of awakenings dur-

ing nocturnal sleep. None of the participants was a shift worker, and

none reported insomnia. Habitual timing of food intake was assessed

by asking the following question: “At what time do you usually have

breakfast (lunch or dinner)?” Additionally, nighttime fasting duration

was estimated using the following formula: the timing of the previous

T AB L E 1 General characteristics of the participants.

Total
population (N = 21)

Mean SD

Sex (% female) 52.4

Age (y) 39.33 10.38

BMI (kg/m2) 40.51 5.56

Total body fat (%) 44.17 7.5

MetS traits

Waist circumference (cm) 121.35 13.97

WHR 0.89 0.067

Glucose (nmol/L)a 5.54 1.81

Triglycerides (nmol/L)a 1.87 0.79

Diastolic BP (mm Hg)a 80 14

Systolic BP (mm Hg)a 114 12

MetS score 2.47 1.30

Nighttime sleep habits

Sleep onset (hh:mm) 23:51 1:51

Sleep offset (hh:mm) 7:17 2:55

Sleep duration (h) 7.92 1.47

Number of nocturnal awakenings/per night 1.78 1.2

Habitual meal timing

Breakfast onset (hh:mm) 7:58 1:08

Lunch onset (hh:mm) 14:49 0:46

Dinner onset (hh:mm) 21:01 0:39

Nighttime fasting duration (h) 13.41 1.19

Abbreviations: BP, blood pressure; MetS, metabolic syndrome; WHR,

waist-hip ratio.
aFasting conditions.

1682 TIME-RESTRICTED EATING IN ADIPOSE TISSUE

 1930739x, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oby.24057 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [14/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



night’s last meal (dinner) minus the timing of the first meal of the next

day (breakfast). None of the participants followed a dietary restriction

diet except for the preoperative restriction imposed by the surgeon,

which was the same for all. Some participants took antihypertensives,

antidiabetics, and xanthine oxidase inhibitors.

Study design

The study design is represented in Figure 1. On day 1, the circadian

rhythm of all explants was synchronized with dexamethasone

between 6 a.m. and 7 a.m. to guarantee uniform synchrony among all

cells and explants [25]. To mitigate the potential influence of dexa-

methasone on lipolysis, a thorough 1-h post-synchronization washout

was carried out. The four treatment conditions were the following:

control, simulating a more typical dietary pattern with four daily meals

(every 4 h) and nighttime fasting (from midnight to 8 a.m.); eTRE, sim-

ulating eTRE with the eating window between 8 a.m. and 12 p.m.;

dTRE, simulating dTRE with the eating window between 4 p.m. and

8 p.m.; and fasting, simulating continuous 24 h of fasting. On day 1,

the explants were incubated according to the treatment, and, on day

2, the same treatment guidelines were maintained while the explants

and culture medium were collected every 4 h at different circadian

times (CTs; i.e., CT0 [hh:mm; 08:00], CT4 [noon, i.e., 12:00], CT8

[16:00], CT12 [20:00], CT16 [midnight, i.e., 00:00], CT20 [04:00], and

CT24 [08:00]). In total, in each individual, four AT samples were cul-

tured (one for each condition, i.e., control, fasting, eTRE, and dTRE) at

each CT (CT0–CT24) for a total of 28 samples of AT per individual.

Because the experiment was planned to be performed in

21 individuals for every condition, the expected number of samples

was 21 � 28 = 588. However, we did not have enough AT for the

control condition in one participant; therefore, the final number was

588 � 7 = 581 AT samples. To keep the culture medium constant

and to be able to compare the media among different conditions, the

media were refreshed every 4 h for all conditions. Furthermore, in

the control condition, glucose was added during the day every 4 h to

keep glucose constant during the eating condition.

AT culture

After surgery, AT biopsies (30–40 g of AT/patient) were cut into

small pieces of 1 to 2 mm3 to enhance the contact of the AT with

the culture medium. The fragments were combined in each well to

obtain an approximate weight of 400 mg for each CT (no technical

replicates). The explants were incubated in a total of 400 μL of cul-

ture medium. Different media were used for each treatment:

DMEM, which was supplemented with 10% fetal bovine serum

(FBS) and glucose (4.5 g/L) to simulate eating (Eating-Medium), and

DMEM without glucose and without FBS to simulate fasting

(Fasting-Medium). All media were supplemented with a penicillin–

streptomycin-glutamine mixture.

On day 0 (the day of surgery), subcutaneous AT was cut and

washed with phosphate-buffered saline (PBS). AT explants were dis-

tributed in seven wells (400 mg of AT for each well), one for each CT,

and this was repeated for each condition (four conditions). These

points were chosen to coincide with the usual start of the first meal in

the morning, i.e., CT0 = 8 a.m., and the rest of the CTs were chosen

F I GU R E 1 Study design. Treatment conditions: control, simulating a regular dietary pattern with four daily meals and nighttime fasting from
midnight to 8 a.m. of the following day; early time-restricted eating (eTRE), eTRE between 8 a.m. and noon; delayed TRE (dTRE), dTRE between
4 p.m. and 8 p.m.; and fasting (F), 24 h of continuous fasting. All the explants were synchronized between 6 and 7 a.m. On day 1, the explants were
incubated according to the treatment, and, on day 2, the same treatment guidelines were maintained while the explants and culture medium were
collected every 4 h. Horizontal, orange, dotted lines indicate fasting hours, the gray rectangles with the plates allude to simulated mealtimes,
approximate habitual nighttime sleep episodes of the patients from whom the adipose tissue was obtained are represented by gray rectangles, the
awake day is represented by white rectangles, and blue arrows point to the explant sampling moments. [Color figure can be viewed at
wileyonlinelibrary.com]
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every 4 h to represent regular intervals throughout the 24-h day/

night cycle, including the meal schedule. All explants were incubated

with Eating-Medium until midnight on day 0. At midnight, explants

were washed with PBS, and the culture medium was changed to

Fasting-Medium to simulate overnight fasting. At 6 a.m., all explants

were synchronized with dexamethasone (Fasting-Medium +1 μM

dexamethasone) for 1 h, washed with PBS, and, between 7 and

8 a.m., re-incubated with Fasting-Medium.

On day 1, at 8 a.m., the eating window started for the control and

eTRE groups. The control group was incubated for 16 h, refreshing

the medium every 4 h until midnight with Eating-Medium to simulate

a regular dietary pattern with four daily meals (every 4 h). During the

nighttime, AT was maintained in fasting with Fasting-Medium (from

midnight to 8 a.m.) to simulate nighttime fasting. On the other hand,

eTRE was incubated for only 4 h with Eating-Medium until noon,

remaining the rest of the day and the night in fasting. The dTRE group

was incubated for 4 h with Eating-Medium between 4 and 8 p.m., and

it was maintained with Fasting-Medium in the hours before and after

the eating window and during the night. Finally, the fasting group was

continuously incubated during the 24 h with Fasting-Medium.

On day 2, the same eating/fasting pattern was maintained, and

explants and culture medium were collected every 4 h, as shown in

Figure 1.

All cultures were kept at 37�C in a modified atmosphere of 7%

carbon dioxide (CO2). AT explants were collected and immediately

frozen in liquid nitrogen at �195.8�C and preserved in freezers at

�80�C in cryotubes for subsequent glycerol analysis.

Lipolysis in cultured AT explants

Lipolysis was evaluated by measuring the glycerol released (micro-

moles per hour per gram), a direct product of lipolysis in AT

explants [22]. Glycerol was determined by a Glycerol Standard solu-

tion and Free Glycerol Reagent according to the manufacturer’s

instructions. Finally, the absorbance at 540 nm was detected with

CLARIOstar plate readers to measure the released glycerol.

Statistical methods

The characteristics of the participants are expressed as mean and SD

in Table 1. The glycerol release (micromoles per hour per gram) did

not follow a normal distribution; therefore, it was log-transformed. A

linear mixed model was developed to determine potential differ-

ences in glycerol release among different treatment conditions, and

the following were considered as fixed factors: treatment (control,

eTRE, dTRE, and fasting) and CT (each point of the circadian cycle).

The individual was considered the random effect to analyze the cor-

relations among data of the same patient. The response variable was

the logarithm of the glycerol release (micromoles per hour per gram).

We considered the interactions between treatment and circadian

timing.

To understand whether fasting duration per se influenced fat mobi-

lization, a secondary mixed model was developed. In this model, we

analyzed differences between eTRE and dTRE in 24-h average glycerol

release after matching, by fasting duration, both eTRE and dTRE. Fast-

ing duration and treatment were considered as fixed factors. In order to

understand whether differences in fasting duration depended on the

time window, we considered the interactions between fasting duration

and treatment. All of the analyses were further repeated after adjusting

by different covariates such as age, sex, drug therapy, and individual

chronotype (Morning-Evening Questionnaire [MEQ]), and significance

was maintained. Statistical analyses were conducted using IBM SPSS

Statistics for Windows. All statistical tests and hypotheses’ significance

level were p < 0.05. The standard error of the mean (SEM) glycerol

release was calculated using Bootstrap Stata. GraphPad Prism software

version 8.0.2 was used to obtain the figures.

RESULTS

The general characteristics of the participants (n = 21) are shown in

Table 1. Participants had class 2 or 3 obesity (BMI ≥ 35 kg/m2). Waist

circumference and triglycerides concentrations were above the nor-

mal ranges according to the International Diabetes Federation (IDF),

whereas blood pressure and serum glucose concentrations were

within the normal ranges [26].

The population average glycerol release of the 21 participants’ AT

cultures for every CT (i.e., each point of the circadian cycle, every 4 h)

in each treatment condition is represented in Figure 2. Statistical

results from the linear mixed model showed that there were signifi-

cant independent differences in glycerol release (micromoles per hour

per gram) for the following: 1) the treatment conditions (control,

eTRE, dTRE, or fasting; p < 0.0001); and 2) the circadian timing

(p < 0.0001). Additionally, significant interactions were found

between the treatment and the circadian timing for glycerol release

(p < 0.0001), suggesting that the effect of the treatment on glycerol

release changes depending on the circadian timing.

Further exploratory analyses with the same mixed models for

each circadian time showed significant differences between control

and eTRE at CT0, CT4, CT12, CT16, CT20, and CT24 and between

control and dTRE at CT4, CT8, CT20, and CT24, as indicated in

Figure 2 by the asterisks and hash symbols. The control condition was

significantly different at every CT compared with the 24-h continuous

fasting condition (p < 0.0001). Furthermore, significant differences

were also found between eTRE and the fasting condition at every CT

except CT0 and CT24 (8 a.m.) and between dTRE and the fasting con-

dition at every CT except CT4 (noon) and CT8 (4 p.m.), with higher

glycerol release in the fasting condition. Symbols for significance

between fasting and any condition are not represented in Figure 2 to

avoid confusion.

Figure 3A represents the 24-h average glycerol release in the four

treatment conditions. As expected, significant differences were found

between control and the fasting condition (p < 0.0001), with signifi-

cantly higher glycerol release in the fasting condition. Significant

1684 TIME-RESTRICTED EATING IN ADIPOSE TISSUE
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differences were also found between control and both TRE conditions

(eTRE and dTRE), with significantly higher glycerol release in the TRE

conditions (p < 0.0001) during the 24-h period. Statistical results from

the linear mixed model showed a higher fat mobilization in eTRE than

in dTRE during the 24-h period (p = 0.019).

Furthermore, after dividing the day between the daytime/habitual

waking episode and the nighttime/habitual sleeping episode, signifi-

cant differences were found between both TRE timing windows

(eTRE and dTRE) only during the nighttime/habitual sleeping episode

(from midnight to 8 a.m. of the following day; p = 0.000007;

Figure 3C), whereas no significant differences were found during the

daytime/habitual active episode (p = 0.976; Figure 3B).

Further exploratory analyses matched both eTRE and dTRE

according to the fasting duration (Figure S1). Results from the linear

mixed model showed that, independent of the time window (early or

delayed), glycerol release increased with fasting duration. At 8 h of

fasting, the glycerol release was 0.08 [0.001] μmol/h/g, whereas at

12 h of fasting it was 0.09 [0.008] μmol/h/g, and at 16 h of fasting it

was 0.12 [0.011] μmol/h/g (p < 0.0001), with no significant interac-

tions between the duration of fasting and the early or delayed time

window (p = 0.988). All of the analyses were further repeated after

adjusting for age, sex, drug therapy, and individual chronotype, and

significance was maintained.

DISCUSSION

The study aimed to investigate the impact of TRE on fat mobilization

in subcutaneous AT culture from individuals with class 2 and 3 obesity.

The outcome measure was glycerol release, which serves as an indica-

tor of lipolysis or fat mobilization from the AT explants. The study

design allowed for a comprehensive evaluation of the effects of dif-

ferent simulated eating patterns on fat mobilization, including eTRE

and dTRE, along with continuous fasting (fasting condition) and a typi-

cal dietary pattern with several meals across the day and nighttime

fasting (control condition).

Results showed significant differences in glycerol release among

the four treatment conditions and across the circadian time points,

indicating a dynamic influence of both treatment and circadian timing

on lipolysis. The exploratory analyses also revealed that eTRE and

dTRE showed significantly higher glycerol release than the control

condition, suggesting that both TRE patterns can enhance fat mobili-

zation from AT. Importantly, eTRE showed higher glycerol mobiliza-

tion than dTRE, which would suggest that concentrating eating in the

morning could produce additional benefits regarding lipolysis and fat

breakdown than concentrating eating during the evening. Eating in

the morning may be better aligned with the body’s natural circadian

rhythm because, during the morning hours, the body shows higher

diet-induced thermogenesis [27], faster gastric emptying [28], higher

glucose tolerance [29], increased beta cell function [30], and lower

insulin resistance [31–33] than during the evening. The exploratory

analyses comparing the duration of fasting between eTRE and dTRE

showed that longer fasting durations were linked to increased glycerol

release, irrespective of the time window.

TRE has become popular as a novel strategy to lose weight and

combat metabolic diseases in part because it does not require tedious

and time-consuming methods such as calorie counting [34]. The pre-

sent study aims to provide a greater understanding of the role of TRE

in body fat mobilization in human AT. To our knowledge, this is the

first study to evaluate dietary strategies of TRE directly in explants of

human AT ex vivo, in which circadian time and fasting duration are

taken into account. The study focuses on human AT culture, which is

particularly valuable because it offers mechanistic insights into the

effects of TRE at a cellular level. Furthermore, this approach is rele-

vant because AT plays a fundamental role in fat mobilization and, sub-

sequently, in weight loss [35].

The observed increase in glycerol release during both eTRE and

dTRE, compared with the control condition, suggests that TRE

enhances lipolysis and fat breakdown compared with a regular eating

pattern with meals every 4 h during the day and fasting during the

nighttime, which might be linked to improved insulin sensitivity and

reduced adiposity, as has been seen in previous clinical trials

[12,36,37]. Animal studies have also revealed that limiting the feeding

schedule to a specific time window, compared with a regular

F I GU R E 2 Population average glycerol release every 4 h during
the 24-h time window according to the treatment. Data are
represented as black squares for control, white squares with black
borders for fasting, white circles with black borders for early time-
restricted eating (eTRE), and black triangles for delayed TRE (dTRE). All
SEM values are represented as vertical lines. Asterisks and hash
symbols indicate statistical significance (p < 0.0001). Asterisks were
included when differences were significant between control and eTRE
at the circadian time (CT) points and hash symbols when differences
were significant between control and dTRE. The control condition was
significantly different at every point compared with the 24-h
continuous fasting condition (p < 0.0001) for every CT. Furthermore,
significant differences were also found between eTRE and the fasting
condition at CT4, CT8, CT12, CT16, and CT20 and between dTRE and
the fasting condition for CT0, CT12, CT16, CT20, and CT24 (symbols
for significance are not represented to avoid confusion). The x-axes are
represented in relative local clock time (hours; top x-axis) and CT
(bottom x-axis). On the top x-axis, the approximate habitual sleep
episode of the patients from whom the adipose tissue was obtained is
represented with a gray horizontal bar, and the awakening day is
represented with a white horizontal bar. Data are presented as
mean ± SEM.
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feeding pattern, leads to significant weight loss, decreased adipocyte

size, increased β-oxidation, and browning of white AT by increased

expression of uncoupling protein 1 (UCP-1) [38,39] and also

decreased expression of cell death–inducing DNA fragmentation

factor-like effector C (CIDEC), an inhibitory gene for lipolysis [40].

TRE has been proposed as a potential therapeutic strategy for

weight management in adults with obesity [41–43]. However, there is

still debate in the scientific community regarding the efficacy of TRE

as a dietary strategy for weight loss [44]. Indeed, several studies have

suggested that TRE is no more effective for weight loss than diets with-

out a time restriction [45,46]. This controversy could be related to the

fact that the recommended duration of the eating window for weight

loss needs to be clarified. In humans, the most frequently recommended

eating window ranges from 6 to 10 h, which has been shown to pro-

duce weight loss and metabolic improvements in several studies

[11,47]. In the current experiment, to test our hypothesis in extreme

fasting conditions that have already been used in humans [16], we have

simulated what would have happened in AT with an eating window of

4 h. Results show that this short 4-h eating window (eTRE or dTRE)

produces more significant fat mobilization than a regular eating pattern

with several meals during the daytime and fasting during the nighttime.

Cienfuegos et al. [16] observed in humans that 4 h of TRE mobilized

more fat than no schedule restriction, which supports our results.

Another confounding factor that may impact the disparity among

studies is the timing of the eating window, i.e., whether the eating

window during TRE occurs in the morning or the evening. Human

studies have shown that consuming most calories earlier in the day

and limiting food intake in the evening have potential health benefits

such as improved lipid levels, glycemic control, weight loss, and

reduced hunger [37,43,48,49]. Our results show significant differ-

ences in 24-h glycerol release between the early and delayed timing

window toward a higher glycerol mobilization in eTRE than in dTRE,

which was particularly relevant during the nighttime/habitual sleeping

episode, whereas no significant differences were found during the

daytime or habitual waking episode within both TRE timing windows.

The findings suggest that eTRE, which initiates the eating window

early in the day, may promote more efficient fat mobilization during

the nighttime, increasing lipolysis [50] to meet energy needs during

nighttime fasting [35]. Although our results show significant differ-

ences between eTRE and dTRE glycerol release during the 24 h

(Figure 3A), previous meta-analyses have found no differences in

body weight between eTRE and dTRE [20]. Indeed, mechanisms

underlying the effects of meal timing on health outcomes may be

multifactorial.

Among this study’s strengths is the fact that it is the first, to our

knowledge, to evaluate the direct effect of TRE on an ex vivo circa-

dian pattern in human AT. One of the limitations of the present work

is that the study was conducted on people with class 2 and 3 obesity

to ensure a sufficient quantity of AT for explant culture; therefore,

results may not be directly transferable to the general population.

Furthermore, the study was only performed in subcutaneous AT and

not in visceral AT. Even though age, sex, medications, and individual

chronotype did not significantly impact the results, further studies in

larger populations should test whether there may be differences

dependent on sex, age, and chronotype that were too small to be

detected in the current study. In addition, we only determined data

every 4 h during the 24-h time window due to limitations in the

amount of AT collected, and we only tested a 4-h eating window,

which may be difficult to apply in today’s society. Further studies

should be performed testing different eating windows of longer

duration to test whether the effects of TRE are similar.

In summary, we have shown that, when simulating eTRE and dTRE

in human AT, fat mobilization was higher than when simulating a regular

dietary pattern with four daily meals (every 4 h) and nighttime fasting

F I GU R E 3 Average glycerol release in different treatment conditions. Control (C; black bar), n = 20; early time-restricted eating (eTRE;
dotted bar), n = 21; delayed TRE (dTRE; striped bar), n = 21; and fasting (F; gray bar), n = 21. (A) 24-h glycerol release is divided in two periods:
(B) the daytime/awake period (from 8 a.m. to midnight) and (C) the nighttime/sleeping period (from midnight to 8 a.m. of the following day). All
SEM are represented as vertical lines. Data are presented as mean ± SEM. *Indicates statistical significance (p < 0.0001). NS, not significant.
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(from midnight to 8 a.m., i.e., a 16/8 pattern). Moreover, between eTRE

and dTRE, differences were found in the amount of glycerol released

during the 24 h of the day, with increased glycerol released during the

night period in the eTRE compared with the dTRE condition. These

results may lead to a better understanding of the mechanistic factors

involved in these novel dietary strategies that use TRE for weight loss.

Nevertheless, in order to translate these conclusions to general practice,

it is essential to compare different time window durations and to con-

sider the habitual meal timing of the individuals and other factors that

may be involved in the effectiveness of these treatments, such as age;

sex; individual chronotype; or genetic, physiological, psychological, and

environmental factors.O
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