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A B S T R A C T

Active Learning (AL) has the potential to solve a major problem of digital pathology:
the efficient acquisition of labeled data for machine learning algorithms. However, ex-
isting AL methods often struggle in realistic settings with artifacts, ambiguities, and
class imbalances, as commonly seen in the medical field. The lack of precise uncer-
tainty estimations leads to the acquisition of images with a low informative value. To
address these challenges, we propose Focused Active Learning (FocAL), which com-
bines a Bayesian Neural Network with Out-of-Distribution detection to estimate dif-
ferent uncertainties for the acquisition function. Specifically, the weighted epistemic
uncertainty accounts for the class imbalance, aleatoric uncertainty for ambiguous im-
ages, and an OoD score for artifacts. We perform extensive experiments to validate our
method on MNIST and the real-world Panda dataset for the classification of prostate
cancer. The results confirm that other AL methods are ’distracted’ by ambiguities and
artifacts which harm the performance. FocAL effectively focuses on the most infor-
mative images, avoiding ambiguities and artifacts during acquisition. For both experi-
ments, FocAL outperforms existing AL approaches, reaching a Cohen’s kappa of 0.764
with only 0.69% of the labeled Panda data.
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1. Introduction

Artificial Intelligence (AI) methods have obtained impres-

sive results in digital pathology and in some cases, AI models

even outperformed expert pathologists in cancer classification

(Zhang et al., 2019; Hekler et al., 2019; Ehteshami Bejnordi

et al., 2017). The hope is that AI can make the diagnosis more

accurate, objective, reproducible, and faster in the future (Dim-

itriou et al., 2019).

To achieve this goal, trained, specialized AI models for
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each subtask are required, for example for the quantification of

tumor-infiltrating lymphocytes in lung cancer (Shvetsov et al.,

2022), metastasis detection of breast cancer in lymph nodes

(Ehteshami Bejnordi et al., 2017; Schmidt et al., 2022) or Glea-

son grading of prostate cancer (Bulten et al., 2022; Otálora

et al., 2020). Openly available, labeled datasets are limited to

certain subtasks, and for many future applications, the aggrega-

tion of large amounts of labeled data remains challenging be-

cause the annotation requires medical experts. This makes the

labeling process time-consuming and expensive. A common

approach to labeling is to divide a region or Whole Slide Image

(WSI) into small patches that are individually labeled (Dim-

itriou et al., 2019). The model is then trained to make local

patch-level predictions that can be aggregated for the final di-

agnosis. The problem with supervised deep learning methods is

the need for large amounts of detailed (patch-level) annotations

for training to obtain a satisfying predictive performance. To

alleviate this burden, semi-supervised learning (Li et al., 2018;

Marini et al., 2021; Lu et al., 2020; Schmidt et al., 2022; Otálora

et al., 2020) and multiple instance learning (Campanella et al.,

2019; Chikontwe et al., 2020; Li et al., 2021) have become ma-

jor fields of interest in the recent years. Another very promising

approach to efficiently handle labeling resources is active learn-

ing.

Active Learning (AL) describes machine learning methods

that actively query the most informative labels. In the AL set-

ting, the AI model starts training with a small set of labeled

images and iteratively selects images from a large pool of un-

labeled data. These selected images are labeled in each iter-

ation by an ’oracle,’ in our application a medical expert. AL

has several benefits: (i) The model training and dataset creation

go hand-in-hand. The performance of the model is constantly

monitored to assess if the collected labeled data is enough - or

if more labeled data is needed to reach the desired performance.

(ii) The model looks for the most informative images automat-

ically in the acquisition step. In other approaches that require

labeling (e.g. semi-supervised learning), finding these informa-

tive, salient images may require a lot of manual searching. (iii)

AL is very data-efficient, while other paradigms such as multi-

ple instance learning often require large datasets to compensate

for missing instance labels (Campanella et al., 2019).

Notice that AL methods can be combined with other

paradigms such as semi-supervised and multiple instance learn-

ing to leverage the advantages of multiple different perspec-

tives (Gao et al., 2020; Huang et al., 2021). To narrow down

our contribution, in this article we focus on improving existing

probabilistic models in a pure AL setting, but we make several

suggestions to combine the proposed FocAL method with other

approaches as future work in section 4.

Related work In AI research, different AL strategies have been

proposed to determine the most informative images. Early ap-

proaches used the uncertainty estimation of support vector ma-

chines (Joshi et al., 2009), Gaussian processes (Li and Guo,

2013) or Gaussian random fields (Zhu et al., 2003) to rate the

image informativeness. With the rise of deep learning, the fo-

cus shifted to Bayesian Neural Networks (BNNs) for AL (Gal

et al., 2017), which was adapted several times for histopatho-

logical images (Rączkowski et al., 2019; Carse and McKenna,

2019; Meirelles et al., 2022). This approach has the advan-

tage of a probabilistic uncertainty estimation which is not only

used for acquisition, but it is also crucial for diagnostic predic-

tions in medical applications. BNNs allow the application of

several different uncertainty-based acquisition functions, such

as BALD (Houlsby et al., 2011), Max Entropy (Rączkowski

et al., 2019; Shannon, 1948), and Mean Std (Alex Kendall and

Cipolla, 2017). Other publications focus on the user interface

and server application of AL (Lee et al., 2021; Marée et al.,

2016) rather than the AL model itself. In the existing literature,

the uncertainty estimation is often only used to determine the

amount of new information in each image. We extend this idea

by using complementary uncertainty measures to avoid label-

ing uninformative, ambiguous, or artifactual images. In digital

pathology, several data-related challenges like artifacts, ambi-

guities, and the typical huge class imbalance hinder the applica-

tion of AL (see "Problem analysis" paragraph below). Our pro-

posed method tackles these problems successfully by precise
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uncertainty estimations which leads to improved performance.

BNNs are not only of interest for the AL acquisition, their

capacity to estimate the predictive uncertainty is highly impor-

tant in safety-critical areas like medicine (Kwon et al., 2020) or

autonomous driving (Alex Kendall and Cipolla, 2017). The un-

certainty estimation helps to distinguish confident predictions

from risky ones. In our case, we aim to decompose uncertainty

into epistemic uncertainty and aleatoric uncertainty describing

the model and data uncertainty, respectively (Der Kiureghian

and Ditlevsen, 2009). Epistemic uncertainty describes uncer-

tainty in model parameters that can be reduced by training with

additional labeled data. Therefore it can serve as a measure of

informativeness in the active learning process. Unfortunately,

the epistemic uncertainty is not only high for informative, in-

distribution images but also for OoD images. In fact, epistemic

uncertainty has recently been used explicitly for OoD detection

(Xiao et al., 2019; Mukhoti et al., 2021; Nguyen et al., 2022).

Aleatoric uncertainty describes irreducible uncertainty in the

data due to ambiguities that cannot be improved with additional

labeling. Studies have shown that training with ambiguous data

can harm the performance of the algorithm considerably if not

taken into account (Gao et al., 2017; Bernhardt et al., 2022). In

the Panda challenge, label noise associated with the subjective

grading assigned by pathologists was considered to be a major

problem (Bulten et al., 2022).

To estimate these uncertainties with BNNs, Kendall and Gal

(2017) proposed a network with two final probabilistic layers,

corresponding to the two uncertainty measures. A theoretically

sound, more stable, and efficient approach (relying on a single

probabilistic layer) was proposed by Kwon et al. (2020). We

base our BNN for uncertainty estimations on the latter method

due to the mentioned advantages. In Section 3.2 we outline how

the uncertainty estimations can be interpreted in the context of

clinical applications like pathology.

To avoid acquiring image patches with artifacts, we apply

OoD detection. Commonly, OoD data refers to the data that

originate from a different distribution than the training data

(which are called “in-distribution”) (Sun et al., 2022). In the

context of AL and pathology, we define the in-distribution

as the distribution of patches containing (cancerous or non-

cancerous) tissue. All the images with artifacts (such as pen

markings, tissue folds, blood, or ink) (Kanwal et al., 2022) will

be considered OoD. These artifacts are inevitable in real-world

data and there are several reasons to exclude them from the dis-

tribution of interest for acquisition: (i) It is impossible to learn

all possible artifacts explicitly due to their wide variability. We

argue that a model should reliably classify tissue and predict a

high uncertainty for everything it does not know. (ii) It harms

the performance of AL algorithms to acquire images with ar-

tifacts, as we show empirically in Section 3. (iii) The model

should focus on learning what is cancerous instead of every-

thing that is not cancerous. By learning cancerous patterns it

automatically learns what is not cancerous (everything else).

In OoD detection, early methods used the depth (Johnson

et al., 1998; Ruts and Rousseeuw, 1996) or distance (Knorr and

Ng, 1998, 1999) of datapoints, represented by low-dimensional

feature vectors. With the rise of deep learning, OoD metrics

were often applied to the features extracted by a deep neural

network (Abati et al., 2019; Sun et al., 2022; Lee et al., 2018).

In line with previous research, we utilize extracted feature vec-

tors and implement a density-based OoD scoring method (Bre-

unig et al., 2000) to detect artifacts in the data.

Problem Analysis Although AL has a huge potential for digital

pathology, we analyze several challenges that hinder its appli-

cation in practice:

• Medical imaging problems like pathology often have a

high class imbalance. For example, in prostate cancer

grading, the highest Gleason patterns may be underrepre-

sented which needs to be taken into account during acqui-

sition. Other AL algorithms treat each class equally and

are not able to acquire a sufficient number of images of

this underrepresented class in our experiments (Section 3).

• Many patches are ambiguous. There may be patches

for which even subspecialists disagree on their label, or

patches containing multiple classes. Assigning labels to

these patches is difficult and may be detrimental to the
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quality of the dataset and the algorithm’s performance.

This not only slows the labeling process down, but it can

also add noise to the training data as only one label per

patch is assigned. In fact, label noise associated with the

subjective grading assigned by pathologists was consid-

ered one key problem in the Panda challenge (Bulten et al.,

2022).

• WSIs can contain many different artifacts, such as pen

markings, tissue folds, ink, or cauterized tissue. Exist-

ing AL algorithms often assign a high informativeness to

these patches although they do not contain important in-

formation for model training, as we show empirically in

the experimental section 3.

We want to stress that similar problems of class imbalance, am-

biguities, and artifacts are present in many other medical imag-

ing applications, such as CT scans for hemorrhage detection

(Wu et al., 2021), dermatology images for skin cancer classifi-

cation (Esteva et al., 2017) or retinal images for the detection of

retinopathy (Gulshan et al., 2016-12).

Contribution To address these challenges we propose Focused

Active Learning (FocAL), a probabilistic deep learning ap-

proach that focuses on the underrepresented malignant classes

while ignoring artifacts and ambiguous images. More specifi-

cally, we combine a Bayesian Neural Network (BNN) with Out

of Distribution (OoD) Detection to estimate the three major ele-

ments of the proposed acquisition function. The weighted epis-

temic uncertainty rates the image informativeness, taking the

class imbalance into account. The aleatoric uncertainty is used

to avoid ambiguous images for acquisition. The OoD score

helps to ignore outliers (like artifacts) that do not contribute

information for the classification of tissue. While BNNs un-

certainties, OoD scores, and AL based on an acquisition func-

tion are known concepts/approaches in machine learning liter-

ature, our contribution lies in combining them in a principled

and sound manner to tackle class imbalance, ambiguities, and

artifacts for medical images. We show empirically that the pro-

posed acquisition function help focus on labeling salient, in-

formative images while other methods often fail to address this

realistic data setting.

The article is structured as follows. We outline the theory of

the proposed model, including the BNN and OoD components

of the acquisition function in Section 2. In Section 3, we per-

form an illustrative MNIST experiment to analyze the behavior

of existing AL approaches when artifacts and ambiguities are

present. Furthermore, we demonstrate that each of our model

components works as expected to avoid acquiring images with

ambiguities and artifacts, overcoming the problems of the ex-

isting approaches. For the Panda prostate cancer dataset, we

perform an ablation study about the introduced hyperparame-

ters, analyze the uncertainty estimations, and report in the fi-

nal experiments that our method can reach a Cohen’s kappa of

0.763 with less than 1% of the labeled data (4400 labeled image

patches). Finally, in Section 4 we conclude our article and give

an outlook of future research.

2. Methods

Here we describe the three elements of FocAL: the fea-

ture extractor, the Bayesian Neural Network, and the Out-of-

distribution score. The final paragraph of this section out-

lines the acquisition function and algorithm of the novel FocAL

method. An overview of the model components is depicted in

Figure 1.

Active Learning (AL) In AL we assume that at the beginning

a small set of labeled data Dtrain = {xi, yi}i=1,..,N of images xi

and labels yi and a pool of unlabeled dataDpool is available. We

assume each y to be a C-dimensional, one-hot encoded vector,

where C stands for the number of classes. A machine learn-

ing modelM trains with a labeled set Dtrain and then chooses

a subset A ⊂ Dpool of unlabeled images to be labeled (by a

specialist, such as a pathologist in the given application). The

choice is made with the help of an acquisition function a(x,M)

which estimates the informativeness of each image x. Proba-

bilistic Active Learning The images with the highest acquisi-

tion scores are labeled and added to Dtrain. Then, the model is

retrained with the updated training set. This acquisition step is

repeated iteratively such that the model performance increases
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Fig. 1. Model overview of the proposed FocAL method. It consists of three main components: feature extractor, BNN, and OoD detection (blue boxes). The
figure shows how the different components are combined for training and acquisition.

while more and more labeled data is aggregated.

Feature Extraction The feature extractor f FE
α , with model pa-

rameters α, is the first component of the proposed model. We

use a Convolutional Neural Network (CNN) to extract high-

level 128-dimensional features z = f FE
α (x) from each image

patch. The exact architecture of the feature extractor depends

on the image data and task, see the implementation details for

each experiment in Section 3. The feature extractor is trained

during the AL process end-to-end with the BNN by gradient

descent, see Figure 1. Although training the feature extractor is

important for obtaining good final results, the emphasis of this

article lies on the development of the BNN and OoD detection

which perform the high-level reasoning, as described in the next

paragraphs.

Bayesian Neural Network (BNN) The BNN model f BNN
β , with

model parameters β, allows probabilistic reasoning based on the

extracted feature vectors Z = {zi}. Note that the feature extrac-

tor and BNN head together could also be interpreted as a large,

convolutional BNN with Bayesian layers near the output. Pre-

vious studies have shown that this combination of deterministic

convolutions and Bayesian fully connected layers is the most

effective way to introduce Bayesian uncertainty in the AL con-

text (Zeng et al., 2018). Here, we treat the feature extractor

and BNN separately, because the features are also used later for

OoD detection. The BNN is not only able to make accurate

classification predictions but can also estimate epistemic and

aleatoric uncertainty. These estimated uncertainties will be fur-

ther described below. They play a crucial role in the proposed

acquisition function (see the last paragraph of this section).

The BNN in our model consists of two fully connected lay-

ers with 128 units and a final softmax output layer. In compari-

son to deterministic networks with weight parameters ω, BNNs

treat the model weights as random variables with a probability

distribution p(ω). As the true posterior distribution p(ω|Dtrain)

is intractable, it has to be approximated. Following the suc-

cess of similar approaches in recent studies (Gal et al., 2017;

Alex Kendall and Cipolla, 2017; Kwon et al., 2020), we use

variational inference to approximate the posterior distribution

by a tractable variational distribution qβ(ω), where β describe

the variational parameters of the distribution. Specifically, we

define q as a product of independent Gaussian distributions over

each model weight, parametrized by mean and variance. To

approximate the real posterior, the minimization of the KL di-

vergence KL(qβ(ω)|p(ω|Dtrain)) is achieved by maximizing the

evidence lower bound (ELBO) utilizing the reparametrization

trick (Kingma et al., 2015). Gradient descent allows the opti-

mization of the BNN and the feature extractor end-to-end. We

denote the ELBO loss function as L(pα,β(y|x), y). The predic-

tive distribution pα,β(y|x) is obtained by applying the feature

extractor z = f FE
α (x) and integrating the BNN through Monte

Carlo sampling as:

pβ(y|z) =
∫

p(y|ω, z)qβ(ω) dω (1)

≈
1
T

T∑
t=1

p(y|z, ωt),

where we use Monte Carlo sampling by drawing T realizations

{ωt}t=1,..,T of the variational weight distribution. The argmax

over classes of the vector pβ(y|z) defines the predicted class.

For notational convenience, we will drop the parameters α and
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Fig. 2. Illustration of aleatoric and epistemic uncertainty. Two classes are
depicted by blue circles and pink squares, separated by learned (solid) and
optimal but unknown (dashed) decision boundaries. Samples not observed
in training are shown in gray. A region with high aleatoric uncertainty
(green) includes samples that are inseparable given available features. Un-
certainty in this region cannot be reduced by further training with samples
from this region. More discriminative features or additional features are
needed to reduce this aleatoric uncertainty. A region with high epistemic
uncertainty (brown) shows significant discrepancies between the learned
and optimal decision boundaries due to lack of training samples in this re-
gion. Additional training with samples from this region can reduce this
epistemic uncertainty and improve model accuracy.

β when not needed. We show in Figure 1 an overview of the

forward and backward pass with gradient descent.

Bayesian Uncertainty Estimations In Addition to the class

prediction (eq. 1), the BNN is able to estimate the uncertainty,

measured by the predictive covariance matrix Covp(y∗ |z∗,Z,Y)(y∗).

This variance can be further decomposed into epistemic and

aleatoric uncertainty.

Epistemic uncertainty (model uncertainty) measures the un-

certainty introduced by the model parameters ω and can be re-

duced with more labeled training data. A high epistemic uncer-

tainty indicates a high informativeness of a given image. Un-

fortunately, using only the epistemic uncertainty for acquisition

can lead to an unwanted outcome. If the data is contaminated

with outliers such as artifacts, this can result in acquiring only

outliers that do not contribute any value towards learning the

classes of interest, as shown empirically in the experimental

section 3.

Aleatoric uncertainty (data uncertainty) captures the uncer-

tainty inherent in the data due to ambiguities. It can not be

reduced with more labeled data. Images with a high aleatoric

uncertainty should be avoided during acquisition as the chance

of mislabeling (due to ambiguous image content) or inherent

data noise is higher for these images.

The estimating epistemic and aleatoric uncertainty, which are

intuitively explained in Figure 2, can be calculated in different

ways. Here, we follow the approach of Kwon et al. (2020),

which does not require additional parameters, is numerically

stable, and has a strong theoretical background. The covariance

matrix is decomposed into

Covp(y∗ |z∗,Z,X)(y∗) =
1
T

T∑
t=1

{p(y∗|z∗, ωt) − p̂(y∗|z∗)}
⊗

2

︸                                     ︷︷                                     ︸
:=epistemic uncertainty

(2)

+
1
T

T∑
t=1

diag{p(y∗|z∗, ωt)} − p(y∗|z∗, ωt)
⊗

2

︸                                                ︷︷                                                ︸
:=aleatoric uncertainty

where p̂(y∗|z∗) = 1
T
∑T

t=1 p(y∗|z∗, ωt), diag{p(y∗|z∗, ωt)} is the di-

agonal matrix formed by the vector entries of p(y∗|z∗, ωt) in the

diagonal, and the outer product v
⊗

2 = vvT .

Note that both epistemic and aleatoric uncertainties are given

as C ×C covariance matrices with values of the uncertainty per

class on the diagonal. We define the C- dimensional vectors of

class-wise uncertainties as σ2
ep for the epistemic and σ2

al for the

aleatoric uncertainty.

Out-of-Distribution (OoD) Detection For the OoD detection,

we use an unsupervised, density-based model f OoD
γ with param-

eters γ 1, based on the extracted features z. Instead of having a

binary decision (in/out of distribution), we want to score each

feature vector of the unlabeled images with a Local Outlier Fac-

tor (LOF) (Breunig et al., 2000). The LOF is based on the k-

nearest neighbors Nk(z) of a vector z and the local reachability

density lrdk(z), a density measure based on the distance to the

k-nearest-neighbors.

1Note that the parameters γ consist of the locations and densities of the
currently labeled feature vectors. These are not model parameters in the strict
sense but we follow this notation for coherence.
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The LOF of a vector z is defined as

LOFk(z) =
1

|Nk(z)|

∑
z′∈Nk(z)

lrdk(z′)
lrdk(z)

(3)

with hyperparameter k which should be set to the minimum

amount of expected datapoints in a cluster (Breunig et al.,

2000). Intuitively, the LOF is high if a feature vector lies in

a region with a lower density than its neighbors (indicating an

outlier). If the region of a feature vector has the same den-

sity as its neighbors, its LOF is close to 1. The upper bound

depends on the characteristics of the data, i.e. the distances be-

tween feature vectors. Empirically we observed that scaling the

LOF by 0.1 leads to an OoD score that is in same the range

as the other uncertainty measures (epistemic and aleatoric un-

certainty). Therefore, we define the outlier scoring function as

s(x) = 0.1 LOFk( f FE(x)). (4)

Note that the scaling factor does not introduce an additional hy-

perparameter. It is inherently tuned by manipulating the weight-

ing factor λood in eq. 5 for which we perform experiments in

section 3.2. The hyperparameter k can be set to a rough esti-

mate of the minimum number of initial images x ∈ Dtrain that

are not affected by ambiguities or artifacts. We set it to k = 10

for MNIST and k = 50 for the Panda dataset.

Focused Active Learning (FocAL) We propose an acquisition

function that combines the uncertainty-based measures and the

OoD scoring discussed above:

a(x,M) = wTσ2
ep(x)︸     ︷︷     ︸

weighted ep. unc.

−λal
1
C

∑
c

σ2
al(x)c︸          ︷︷          ︸

aleatoric unc.

−λood s(x)︸︷︷︸
OoD score

(5)

with the (calculated) class weight vector w = [w1,w2, ..,wC]T

(see eq. 6) and hyperparameters λal ∈ R+, λood ∈ R+. The

images with the highest scores of the acquisition function are

selected for labeling in each step. Each component fulfills a

specific task in the acquisition process:

1) Weighted Epistemic Uncertainty With the BNN we can cal-

culate the informativeness of each unlabeled image measured

by the epistemic uncertainty. This measure has a sound theo-

retical background and a proven track record in practice. The

advantage of BNNs is that this approach estimates the epistemic

uncertainty for each class independently. Existing approaches

based on epistemic uncertainty often just take the sum over all

classes. For our proposed model, we want to emphasize the in-

formativeness of underrepresented classes. Therefore, we mul-

tiply the epistemic uncertainty of each class with a class-weight

wc which is calculated by

wc =
Ntrain

Nc ∗C
(6)

with Ntrain being the number of labeled images, Nc being the

number of labeled images of class c and C the number of

classes. Initially, the class weights are calculated based on all

available labels D0
train. Then, the class weights are recalculated

at each acquisition step s, depending on the given label distri-

bution of the current set Ds
train. This allows the algorithm to

automatically adjust to class imbalances inDtrain.

2) Aleatoric Uncertainty The BNN measures the aleatoric un-

certainty of each unlabeled image. We down-weight the infor-

mativeness of images based on their aleatoric uncertainty es-

timate to avoid labeling ambiguous patches. Although in the

existing literature the aleatoric uncertainty is described as a

measure of data uncertainty, we found that it does not capture

data uncertainty for images with a different appearance (OoD).

Therefore, an additional measure for the OoD images is neces-

sary.

3) OoD Score To avoid the acquisition of outliers we apply an

OoD algorithm on extracted image features. We down-weight

the informativeness of images with a high OoD score. This al-

lows the network to focus on the in-distribution data and acquire

informative image patches.

The active learning procedure is summarized in Algorithm 1.

After the acquisition steps are completed, the trained models are

not only able to give accurate classification predictions for each

new test image but also the epistemic and aleatoric uncertainty

and OoD score which is very useful for the pathologist in the

diagnostic process. In the regions where all three uncertainty

measures are low, the prediction is reliable and the pathologist

can trust the classification result.
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Algorithm 1 FocAL algorithm

Input: Start training set D0
train, pool of unlabeled data D0

pool,
models f FE

α , f BNN
β , f OoD

γ , number of acquisition steps S .
Output: Optimal model parameters α, β, γ; training dataset
DS

train
for s = 0 to S do

Train f FE
α , f BNN

β withDs
train.

Predict features Ztrain ← f FE
α (Xtrain)

Update f OoD
γ with Ztrain

Predict features Zpool ← f FE
α (Xpool)

Estimate unc. σ2
ep(Xpool), σ2

al(Xpool)← f BNN
β (Zpool)

Estimate OoD scores s(Xpool)← f OoD
γ (Zpool) (eq. 4)

Select acq. set As with a(Xpool, { f FE
α , f BNN

β , f OoD
γ }) (eq. 5)

Label As

Add As to labeled dataDs+1
train ← D

s
train ∪ As

Remove As from poolDs+1
pool ← D

s
pool \ As

end for
return Optimal model parameters α, β, γ; training dataset
DS

train.

3. Experiments

For the empirical validation, we use two publicly available

datasets, Panda and MNIST. In the MNIST dataset, we arti-

ficially introduce ambiguities and artifacts to demonstrate the

functionality of the different model components. The proposed

FocAL strategy avoids ambiguities, and artifacts and outper-

forms other approaches. In the second experiment with the

Panda dataset, we apply the model to real-world data. We per-

form a study about the introduced hyperparameters, analyze the

uncertainty estimations of the model, and compare different AL

methods that were used in the recent literature:

RA (Gal et al., 2017; Carse and McKenna, 2019; Rączkowski

et al., 2019): Random Acquisition (RA) is a simple baseline

method that uses a uniform distribution over the images instead

of an informativeness measure.

EN (Gal et al., 2017; Zeng et al., 2018; Rączkowski et al.,

2019): The maximum entropy (EN) is used for acquisition. As

entropy is a measure of new information, the most informative

images should be obtained.

BALD (Houlsby et al., 2011; Gal et al., 2017; Carse and

McKenna, 2019; Rączkowski et al., 2019): Acquisition with

Bayesian Active Learning by Disagreement (BALD). The idea

of BALD is to select the images that maximize the mutual in-

formation between predictions and model posterior. This is one

of the most popular methods adapted in recent literature.

MS (Gal et al., 2017): The Mean Std (MS) measures the uncer-

tainty by the average standard deviation of the predictive distri-

bution. The idea is to acquire images with the least confident

predictions.

EP (Nguyen et al., 2019): BNN using only the epistemic un-

certainty as calculated in equation 2. This method is similar

to FocAL, but without weighting the epistemic uncertainty and

without the aleatoric uncertainty and OoD scoring.

FocAL: The proposed FocAL method as described in Section 2.

The reason to choose these baselines is that they all share the

rationale of “acquiring the samples with highest uncertainty”,

and they just differ on how this uncertainty is calculated in prac-

tice. This is relevant because the goal of our work is precisely

to show that these measurements of uncertainty are not enough

to deal with ambiguities and artifacts present in real world data,

such as in the medical imaging domain. In contrast, we will see

that FocAL copes with this scenario more satisfactorily.

3.1. MNIST

The goal of this experiment is to illustrate the functionality

of FocAL in a controlled environment with an intuitive dataset

with artificial artifacts and ambiguities.

Dataset The well-known MNIST dataset (Deng, 2012) contains

60,000 training and 10,000 test images of handwritten digits

with 28x28 greyscale pixels. Of the original training split, we

randomly sample 2000 images of which 20 images are initially

labeled (Dtrain) while 1980 images remain initially unlabeled

(Dpool). This relatively low number of images is chosen for bet-

ter visualization of the data distribution (Fig. 4 and 5). In each

acquisition step, 10 images are acquired (labeled) until Dtrain

contains 200 labeled images. We also sample 200 validation

images (from the training split) to use a reasonably small val-

idation set in the context of limited labeled data (Oliver et al.,

2018). For testing, we use the original test split of 10000 im-

ages. Furthermore, we adjust this dataset to mimic the problems

in digital pathology that we want to tackle. The class imbalance

is obtained by reducing the original 10 classes to only 3 classes:
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Digit ’0’, digit ’1’, and ’all other digits’. The classes ’0’ and

’1’ represent the malignant classes (10% portion of the whole

dataset each) while ’all other digits’ represent the healthy tissue

(80% portion of the whole dataset).

Artifacts and Ambuiguities The artificial artifacts and ambi-

guities are obtained by adding perturbations to the input im-

ages, as depicted in Figure 3. We use three different perturba-

tions that mimic artifacts and ambiguities in histopathological

images: Black dots are randomly added to 75% of the total im-

age pixels by setting the greyscale value to 0. This simulates

pen marker or ink in histopathological images that can cover

large parts of image patches. Gaussian blur filter with a stan-

dard deviation of σ = 4 is used to simulate the blur caused by

wrong focus. Merging by randomly blending one image with

another image of a different class together leads to ambiguous

images with two different plausible labels (while maintaining

the original one-hot encoded label). This simulates ambiguities

by the presence of two cancerous classes in one image patch or

edge cases with unclear ground truth label. Each of the three

perturbations is applied to a total of 200 unlabeled images.

Implementation Details As the images of MNIST are very

small, we use a simple feature extractor consisting of one con-

volutional layer with 4 filters (stride 3x3), max pooling (stride

2x2), and one fully connected layer with 128 units. The BNN

consists of two fully connected layers with 128 units each and

a final softmax layer with three output units, corresponding to

the three classes. We use the cross-entropy loss and the Adam

optimizer (Kingma and Ba, 2015) for 1000 epochs before each

acquisition step. The learning rate is set to 0.0001 and mul-

tiplied by 0.5 if the validation accuracy does not increase for

50 epochs. The combination of a high number of epochs and

learning rate reduction assures complete convergence at each

acquisition step. We experimentally set the weight factors to

λal = 0.5 and λood = 2.0 since it showed the best results (tested:

0.5, 1.0, and 2.0 for each hyperparameter). Note, that an ex-

tensive ablation study of these hyperparameters is included in

Section 3.2 for the Panda dataset.

Data Distribution First, we empirically analyze the data dis-

Fig. 3. Images with ambiguities and artifacts that should be avoided dur-
ing AL acquisition. The top row shows MNIST images with the artificial
noise types ’Merging’, ’Gaussian Blur’, and ’Black Dots’. They simulate
the artifacts and ambiguities encountered in histopathological images (bot-
tom row) in the Panda dataset. The left Panda patch contains two different
classes (Gleason Grade 3 and 4), the middle patch is blurry due to wrong
microscope focus, and the right patch is covered by pen marker, obscur-
ing most tissue parts. Although a clear categorization is difficult, we pro-
pose the following scale: The images on the left side show ambiguities but
the images are in-distribution because their appearance (color distribution
and shapes) is normal. The images on the right side can be considered
OoD because the color distribution and shapes substantially differ from
the ’normal’ images of interest. The blurry images are in between these
two extremes as the color distribution and appearance is slightly OoD and
they contain ambiguities due to blurry edges and patterns. We will see that
with the proposed FocAL method, the shown images are avoided thanks to
the aleatoric uncertainty and OoD score.

tribution with respect to the artificial artifacts and ambiguities.

For this purpose, we plot the feature vectors z after the complete

AL process using the FocAL method. We reduce the features to

a two-dimensional distribution with t-SNE and depict the data

in Figure 4. The distribution empirically reflects the categoriza-

tion shown in Fig. 3. The images with ’black dots’ are OoD

because they are far away from the data distribution of inter-

est. The images with ’Gaussian blur’ are partially OoD and the

’merged’ images are completely in-distribution. Similarly, am-

biguities can be identified. The ’merged’ images and a part of

the images with ’Gaussian blur’ are ambiguous and therefore

close to the class boundaries. The images with ’Black dots’

are not ambiguous. Apart from this data-related observation,

the figure shows that the model learns to separate the classes

during the active learning procedure. This class-separation is a

necessary step for a good final classification.

Acquisition Figure 5 shows the acquisition behavior of FocAL

and competing methods. It confirms that the FocAL model
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Fig. 4. Feature distribution of the 2000 images (Xtrain and Xpool) after the
last acquisition step with 200 labeled images. Each point represents the
feature vector z of an MNIST image, reduced to two dimensions by t-SNE.
The distribution supports our categorization of artifacts and ambiguities
(Fig. 3). The images with ’black dots’ (depicted as squares) are OoD while
the ’merged’ images are ambiguous and therefore close to the class bound-
aries. Blurred images show both characteristics (OoD and ambiguities) as
some images are far away from the distribution of interest, while others lie
close to the class boundaries.

components work as expected in practice. The weighted epis-

temic uncertainty of the FocAL method (5a) is high (bright

greyscale color) for images at the class boundaries, but also

for noisy images (especially of the noise type ’Black dots’ and

’Merging’). This means that it is a good measure of infor-

mativeness, but ’distracted’ easily by artifacts and ambiguities.

The aleatoric uncertainty (5b) captures images with ’Merging’

and ’Gaussian blur’ while the OoD score (5c) highlights the

images with ’Black dots’. These images with ambiguities and

artifacts are avoided during acquisition. As a result, the Fo-

cAL method (5d) acquires only 1 ambiguous image while 9 ac-

quired images are informative and contain several images of

the minority classes ’0’ and ’1’. Furthermore, the acquisition

analysis highlights the problems of existing AL methods. EN

in Figure 5e and BALD in Figure 5f are highly ’distracted’ by

images with ambiguities and artifacts and do not acquire any

informative data in this step. Ambiguous images are close to

class boundaries while OoD images have a ’novel’ image con-

tent due to their different appearance. Therefore, the acquisition

scores of other AL methods for these images are usually high.

Although here we depict only the data distribution of features

from the first acquisition step, these observations are represen-

tative for all further acquisition steps as well.

Model Comparison Figure 6a confirms the previous observa-

tion (Fig. 5e and 5f) that other methods acquire many images

with artifacts and ambiguities, even more than the model with

random acquisition (RA). Figure 6b shows that the acquisition

of many images with ambiguities and artifacts harms the test

performance, as the model EN acquires the most images with

ambiguities and artifacts and shows the worst performance. The

other AL methods also acquire a substantial amount of im-

ages with ambiguities and artifacts and their performance is

on par or even below the baseline model with random acqui-

sition RA. Note that in other studies AL methods outperform

random acquisition but many are conducted on clean, highly

curated datasets. This often does not apply to real-world data

(like histopathological images). The proposed FocAL method

effectively avoids acquiring uninformative images which leads

to the overall best performance.

To compare to the supervised baseline, we try two different

settings: one trained with all 2000 images (including the 600

images with artifacts and ambiguities) and another one with

only the 1400 images without perturbations. Again, we report

the average results over 5 independent runs. The supervised

model trained without artifacts and ambiguities performed sub-

stantially better (accuracy 0.965; mean f1 score: 0.940) than

the model trained with all 2000 images (accuracy 0.939; mean

f1 score: 0.901). This confirms our hypothesis that avoiding

artifacts and ambiguities is essential for a good performance.

We observe that the FocAL method reaches the supervised per-

formance (with all 2000 images) with only 90 labeled training

images (4.5% of all images) and even outperforms this super-

vised performance due to the successful avoidance of perturbed

images. Therefore, FocAL not only alleviates the labeling pro-

cess - but it can also save resources usually necessary for data

curation. The performance of the supervised model trained on

the highly curated dataset with 1400 images is reached by Fo-

cAL with 190 labeled images (9.5% of all training data).

3.2. Panda

The Panda dataset is a large open dataset for the classification

of prostate cancer. We use this dataset for hyperparameter tun-
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(a) FocAL epistemic unc. (b) FocAL aleatoric unc. (c) FocAL OoD score

(d) FocAL acquisition score (e) EN acquisition score (f) BALD acquisition score

Fig. 5. Feature distribution, uncertainty, and acquisition scores for the first acquisition step (best viewed with zoom), similar to Figure 4. Labeled images are
dots filled with turquoise (Digit "0"), pink (Digit "1"), or yellow (other digits). Unlabeled images are dots with greyscale color, representing the uncertainty
or acquisition score (the higher the brighter). The datapoints with a green edge represent noise-free images (good for training) and datapoints with a red
edge represent images with artifacts, blur or ambiguities. For the proposed FocAL method, the epistemic uncertainty (a) measures image informativeness,
but it is easily distracted by artifacts and ambiguities. These uninformative images can be captured by a high aleatoric uncertainty (b) or a high OoD score
(c). Therefore, in the final FocAL acquisition (d), 9 noise-free images are acquired (and only 1 ambiguous image). The competing methods EN (e) and
BALD (f) in comparison acquire almost only images with artifacts or ambiguities in this step which adds less information to the training.

ing, analysis of the different uncertainty measures, and finally

for a comparison of the different AL methods.

Dataset The Panda dataset (Bulten et al., 2022) consists of

10,616 WSIs and was presented at the MICCAI 2020 confer-

ence as a Kaggle challenge. Two institutes participated in la-

beling the WSIs. The images from Radboud University Med-

ical Center come with detailed label masks of all tissue parts

in the Gleason Grading (GG) scheme. The classes are ’Non-

cancerous’ (NC), ’Gleason 3’, ’Gleason 4’, and ’Gleason 5’ de-

pending on the architectural growth patterns of the tumor. The

second institute, the Karolinska Institute, only assigned binary

(cancer vs. healthy) labels and we therefore disregard their im-

ages for our experiments. After sorting out corrupted images,

a total of 5058 WSIs are left of which we used 1000 WSIs for

testing and 30 WSIs for validation that were randomly chosen.

The WSIs were divided into 50% overlapping 512x512 patches.

To use a multi-scale feature extractor (see Implementation para-

graph below), we determine the class of each patch by its center

segment (256x256 square), depending on the majority class of

the pixels if at least 5% of the pixels are annotated as cancer-

ous. If less than 5% of the pixels are annotated as cancerous,

the patch is assigned the non-cancerous label. If a patch con-

tains more than 95% of background (according to the annota-

tion mask), it is disregarded. Therefore, the dataset is already
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(a) Acquired images with artifacts or ambiguities

(b) Test accuracy

Fig. 6. Results of the MNIST Experiments with mean and standard error of
five independent runs. In 6a the total acquired noisy images are plotted and
in 6b and the accuracy. The proposed FocAL algorithm effectively avoids
acquiring images with ambiguities and artifacts and shows the strongest
performance.

curated because several artifacts are already excluded in this

step. Note that in other experiments, where the dataset curation

is more difficult, the advantage of FocAL might be even bigger.

For the empirical validation, we design two different exper-

iments, small-Panda for studying the hyperparameter setting

due to computational constraints and big-Panda with all avail-

able images for the final experiments. The big-Panda setup in-

cludes all available 4028 WSIs from the Radboud center for

training. In this setup, we start with 400 initial images. To

ensure having patches of all classes, we use the following pro-

cedure: for each class, we randomly select 20 WSIs in which

the class is predominant. The information of predominant class

is available in the clinical information of prostate cancer im-

ages. Then, we sample 5 patches of the predominant class from

all selected WSIs. Therefore we have 4 classes × 5 patches

× 20 WSIs, which leads to 400 patches with 100 patches per

class. In practice, pathologists can reproduce this procedure

by assessing the WSIs by predominant classes and annotate 5

patches per WSI for the dominant class. In each acquisition

step, we acquire 400 more patches. In the small-Panda exper-

iment, we take a subset of 200 WSIs for training. For the AL

initial set, we follow a similar procedure as in big-Panda. We

randomly choose 20 WSIs with 5 labeled patches each, result-

ing in 100 labeled patches in total (equally distributed over the

classes with 25 patches per class). We perform 16 acquisition

steps of 50 patches each.

The common metric to measure the classification of prostate

cancer is Cohen’s quadratic kappa which measures the simi-

larity of the ground truth and the predictions, taking the class

order into account (misclassifying Gleason 5 as Gleason 4 has

less impact than misclassifying Gleason 5 as NC).

Implementation For the feature extraction, we use the Effi-

cientNetB3 model (Tan and Le, 2019) as a CNN backbone in a

multi-scale architecture. Remember that the patch classes were

assigned based on the center 256x256 square of each patch with

resolution 512x512 (see dataset paragraph above). The center

square (256x256) is cropped and fed into the CNN. At the same

time, the complete 512x512 patch is resized to 256x256 and fed

into a parallel CNN. The two feature vectors (of 1536 dimen-

sions each) are concatenated, followed by a dropout layer and a

fully connected layer with 128 units. This approach has the fol-

lowing two advantages. First, the WSI can be segmented with

a high level of detail because the classification is performed for

relatively small patch centers of 256x256. Second, the con-

text (surrounding tissue) can still be taken into account by the

model.

The complete feature extractor has fewer than 22 million

trainable parameters (for comparison, a ResNet50 (He et al.,

2016) has over 23 million parameters). The BNN consisted, as

in the MNIST experiment, of two fully connected layers with

128 units and a final softmax layer with one output unit per

class. We train the model with the Adam optimizer (Kingma

and Ba, 2015) for 200 epochs for each acquisition step. The

learning rate is set to 1e−4 for the first 100 epochs, then re-
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Fig. 7. Hyperparameter Tuning of the FocAL method. The two hyper-
parameters λal and λood are analyzed which weigh the aleatoric uncer-
tainty and OoD detection, respectively. The best performing model with
λal = 0.5, λood = 1.0 is used for the final experiments. If the weight λal is
chosen too high, the performance of the model drops because the avoidance
of ambiguities is given too much importance.

duced to 1e−5 for the other 100 epochs.

Hyperparameter Tuning First, we perform experiments re-

garding the newly introduced hyperparameters. We analyze λal

and λood of the FocAL acquisition function (eq. 5) that weight

the importance of avoiding ambiguities and OoD images, re-

spectively. For this purpose, we use the small-Panda setup (as

described in the dataset paragraph above). Figure 7 shows the

results for different hyperparameter settings. If the factors are

too high, the model performance decreases, as the worst perfor-

mances are given for the models with (λal = 2.0, λood = 1.0)

and (λal = 2.0, λood = 2.0). We assume that in this case,

the model focuses too much on the avoidance of ambiguities

such that the novelty (measured by the epistemic uncertainty)

is not given enough importance. Especially a high λal can harm

the performance, as this measure sometimes mistakenly shows

high values for informative images at the class boundary. We

choose the model with λal = 0.5, λood = 1.0 for the final experi-

ments because it is the overall best-performing model. Note that

a comparable performance was obtained for the models with

(λal = 0.5, λood = 2.0) and (λal = 1.0, λood = 2.0). Overall the

performance is robust for all models with λal < 2.

Uncertainty Estimations Figure 8 illustrates the uncertainty

estimates in the first acquisition step of the FocAL method. It

shows that each component of the acquisition function works as

expected. The area with a high acquisition score (8g) is based

on a high epistemic uncertainty in the circle A in Figure 8d

and a low aleatoric uncertainty and OoD score in Figures 8e

and 8f, respectively. Indeed, the area contains cancerous tis-

sue and the model shows some misclassifications here (Glea-

son 4 instead of Gleason 3), as is clear by comparing Figures

8b and 8c. Therefore, labeling these patches can improve the

overall model performance. Other parts of the image show a

high aleatoric uncertainty, for example, circle B in Figure 8e.

This indicates ambiguous patches and therefore, these images

are avoided. The acquisition score in this area is low. In cir-

cle C in Figure 8f we see a region containing mainly artifacts

of dark ink. These artifacts are detected by the OoD detection

and therefore also avoided in the final acquisition, although the

epistemic uncertainty is high in this region. As the images are

produced at an early stage of the active learning process, the

model’s predictions (8c) are not yet accurate which is also re-

flected by high uncertainty values (8d - 8f).

In the diagnostic process, these uncertainties are important

to identify unreliable predictions. A high epistemic uncertainty

means that the model has to be further trained on this specific

tissue type. A high aleatoric uncertainty indicates data ambigu-

ities that might lead to a wrong class prediction. The OoD score

shows that the indicated region contains artifacts or content that

is substantially different from the learned data distribution. Low

uncertainties - of all measures - indicate that the model probably

made a correct classification in those areas.

Acquisition In Figure 9 we depict five patches with the highest

acquisition score of the methods EN, BALD, and FocAL. They

are taken from the third acquisition step but represent the gen-

eral tendency that can be observed throughout the active learn-

ing process. The proposed FocAL method avoids artifacts and

ambiguities and acquires representative patches containing can-

cerous tissue. All five patches with the highest acquisition score

contain either Gleason 3 or Gleason 4 in this acquisition step.

Overall, in the complete AL process (big-Panda setup), the Fo-

cAL method acquired the highest number of Gleason 5 patches.

It is the most severe grade and at the same time the most un-
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(a) WSI (b) Ground truth (c) Prediction (d) Epistemic unc. (e) Aleatoric unc. (f) OoD Score (g) Acquisition Sc.

Fig. 8. Visualization of predictions and uncertainties for a test slide at the first acquisition step of the Panda dataset (after training on the initial 400
patches). It was split into 120 overlapping patches and all heatmaps were produced by cubic interpolation of the patch center predictions. Uncolored parts
correspond to non-cancerous tissue (in 8b, 8c) and areas without (or with low) uncertainties (in 8d - 8g). The red circle A in Fig. 8d marks an area with
high epistemic uncertainty. As the aleatoric uncertainty and OoD score are low in this area, this results in a high acquisition score (green in Fig. 8g). The
area of circle A is informative. The red circle B in Fig. 8e shows an area with high aleatoric uncertainty due to slight blur and ambiguities. Therefore, the
final acquisition score is low in this area. The red circle C in Fig. 8f shows an area with artifacts (blue ink) that results in a high OoD score. Although the
epistemic uncertainty is high in this area, the acquisition of these non-cancerous and uninformative patches is avoided.

derrepresented one. In total 525 patches of Gleason 5 are ac-

quired on average in the three runs (while EN acquired 403 and

all other methods below 400 each). This shows, that the class

imbalance was successfully addressed. The EN acquisition as-

signs a high score for ambiguous patches that contain multiple

different classes, like patches 9b and 9e. Both patches include

glands of both Gleason 3 and Gleason 4, but for the classifica-

tion task, only one label per patch is assigned, which is Glea-

son 4 for patch 9b and Gleason 3 for patch 9e. We argue that

these ambiguities can slow down the labeling process because

the pathologists take longer for the decision in comparison to

the annotation of representative, non-ambiguous patches. The

BALD method, which is commonly used and has shown im-

pressive results on clean datasets (Gal et al., 2017), fails to find

informative patches. All five patches with the highest acquisi-

tion score contain artifacts and none of them contains cancer-

ous tissue. Similar observations can be made for the MS and

EP methods. All three methods (BALD, MS and EP) are highly

’distracted’ by artifacts resulting in an acquired dataset in which

many patches contain little or no tissue at all.

Model Comparison The proposed FocAL algorithm shows an

overall strong performance as reported in Figure 10 with a fi-

nal Cohen’s quadratic kappa of 0.764 with 4400 image patches

corresponding to only 0.69% of all patches of the dataset. Af-

ter the second acquisition step (with 1200 labeled patches and

more), the result is constantly better than RA, MS, EP, and

BALD, because the acquisition of artifacts and ambiguities is

actively avoided. As the FocAL acquisition selects representa-
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EN

(a) NC (b) Gleason 4 (c) Gleason 4 (d) NC (e) Gleason 3

BALD

(f) NC (g) NC (h) NC (i) NC (j) NC

FocAL

(k) Gleason 4 (l) Gleason 4 (m) Gleason 3 (n) Gleason 4 (o) Gleason 3

Fig. 9. Acquired image patches. Each row shows the five patches with the highest acquisition score of the methods EN, BALD, and FocAL at the third
acquisition step (after training with 800 labeled patches). Below each patch, we report the class and underline cancerous classes to highlight them. While
the EN strategy favors ambiguous patches (like patches 9b and 9e) and BALD gets distracted by artifacts that do not contain cancerous tissue, the proposed
FocAL method acquires informative patches that represent the cancerous classes well.

Fig. 10. Model Comparison on the Panda dataset (setting big-Panda). Sev-
eral existing methods (BALD, MS, and EP) are below or on par with ran-
dom acquisition (RA). This is the consequence of the acquisition of artifacts
in the active learning process. The EN method acquires fewer artifacts,
but more ambiguous images. This seems to be less harmful to the final re-
sult but leads to a more difficult labeling process and a less representative
dataset. The proposed FocAL method actively avoids artifacts and ambi-
guities and reaches a satisfying performance with a final Cohen’s quadratic
kappa of 0.764.

tive patches of the classes, including many images of the most

severe grade (Gleason 5) which is highly underrepresented, the

created dataset is of high quality. Therefore, our algorithm has

successfully addressed the challenges of histopathological la-

beling.

The methods BALD, MS, and EP, which are acquiring the

highest number of artifacts, show a weak performance in the

first acquisition steps. Their performance remains significantly

below the baseline of random acquisition (RA) until 2400

patches are acquired. Afterwards, their performance is com-

parable to RA, but not significantly better. This confirms the

previous findings of the MNIST experiments: these commonly

applied acquisition methods perform well on clean datasets but

artifacts have a major impact on their performance.

The EN method is less affected by the acquisition of artifacts

but acquires more ambiguous images as already seen in Figure

9 and the MNIST experiment 5. Interestingly, it appears that

this doesn’t significantly affect the predictive performance on

the Panda dataset, since the final Cohen’s quadratic kappa val-

ues are on par with those of FocAL across various acquisitions.

Nevertheless, it’s important to highlight some drawbacks of the

EN method. In the MNIST experiment, this approach exhib-

ited the poorest performance and gathered the greatest number

of patches with ambiguities and artifacts. Consequently, it may

not be suitable for other applications. Furthermore, the exten-

sive acquisition of ambiguous images in the Panda dataset can
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pose challenges in the posterior labeling process: the annota-

tion by pathologists might take longer and the chances of wrong

annotations are higher. Additionally, the resulting dataset may

hold less value as it primarily comprises edge cases specific to

this model, rather than representative patches from each class.

The final Cohen’s quadratic kappa value of EN is 0.759 (Fo-

cAL: 0.764). The supervised model with access to all 633.235

patch labels reaches a Cohen’s quadratic kappa of 0.841 for this

task.

Finally, notice that the numerical differences against base-

lines in Figure 10 are not large. In this sense, it is important to

consider that active learning in the histopathological image do-

main remains a tough challenge for which other approaches in

literature have shown only minor improvements in comparison

to the random and entropy baselines, see for example (Meirelles

et al., 2022; Carse and McKenna, 2019).

Model Limitations Although FocAL successfully addresses

the analyzed problems, there are some limitations worth dis-

cussing. We mimic the AL process with an already labeled

dataset but it needs to be validated in a human study in the

future. In practice, new problems but also advantages of Fo-

cAL might appear that are not notable in the experiments

with an already labeled dataset. The aleatoric uncertainty is

a widely adopted uncertainty measure for data uncertainty and

overall captures ambiguities in the data well, but it sometimes

shows false-positive values assigned to images close to the class

boundary, as seen in the MNIST experiment (Figure 5). Indeed,

we showed in the hyperparameter tuning for Panda (Figure 7)

that the weight of the aleatoric uncertainty λal must be care-

fully chosen. To further improve the model, a more precise

uncertainty estimation for ambiguities could be a promising di-

rection. Another limitation is that the model is currently trained

from scratch for each acquisition step, as adapted from Gal et al.

(2017). Incrementally updating the model parameters at each

step can reduce the overall training time, especially in the later

acquisition steps.

4. Conclusions and future work

In the presented experiments with the MNIST and Panda

datasets, the existing probabilistic AL approaches did not work

as expected when exposed to ambiguities and artifacts. The

widely used BALD algorithm, for example, acquires large

amounts of images with artifacts, leading to performance that

is often on par with or even below that of a random acquisi-

tion strategy. Furthermore, the resulting dataset is not a good

representative of the classes of interest. Our proposed FocAL

method addresses this issue by using precise uncertainty mea-

sures combined with OoD detection to avoid these ambiguities

and artifacts while accounting for the class imbalance. In our

experiments, we showed that each model component works as

expected and that the overall results improve considerably. The

acquired images are representative of the classes of interest and

form a high-quality dataset. To further improve the model in

the future, it would be interesting to combine the proposed Fo-

cAL model with other approaches in existing literature. One

promising direction is the combination of AL methods with

semi-supervised learning, for example, using a consistency loss

(Gao et al., 2020) or output discrepancy (Huang et al., 2021).

Another addition to our model could be a specific term pro-

moting diversity, as done in the CoreSet approach (Sener and

Savarese, 2018). Furthermore, it would be interesting to ana-

lyze AL methods for other types of medical images, such as

CT scans, dermatology images, or retinal images, with regard

to artifacts, ambiguities, and class imbalance. It is likely that

state-of-the-art methods such as BALD encounter similar prob-

lems, and the proposed FocAL method could provide a possible

solution. In addition to these future applications, human studies

are needed to validate the method in a real labeling process.
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