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Abstract INTRODUCTION: The recent emergence of

massive amounts of data requires new algorithms that

are capable of processing them in an acceptable time

frame. Several proposals have been made, and all of

them share the idea of using a procedure to break down

the entire set of examples into smaller subsets, process

each subset with a learning algorithm, and then com-

bine the different partial results. Most of these models

make use of a parallel process, where each learning al-

gorithm learns independently for each subset of data.

OBJECTIVES: In our case, the goal is to propose a

new model to obtain classifiers based on fuzzy rules

that make use of a sequential model that can process a

large number of examples and to show that, for some

problems, a sequential procedure can be competitive in

time and learning capacity against parallel processing

proposals based on the MapReduce paradigm.

METHODS: This sequential processing uses a batch-

incremental learning technique that can process each

subset of examples. The incremental proposal makes

use of a biologically-inspired computation method. This

method is a cognitive computational model which use

genetic algorithms to learn fuzzy rules.

RESULTS: The experimentation carried out shows that

the incremental model is competitive with respect to a

parallel model proposed for addressing big data classi-

fication using fuzzy rules.
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1 Introduction

The term Big Data is usually applied to information

that cannot be analyzed or processed using traditional

methods [42]. Recently several papers that use big data

techniques to solve different types of problems were

published (e.g., [1,12,24,25,28,31–33]), many of which

make use of cognitively inspired techniques [8].

One of the characteristics of the inability to process

information is the handling of a massive amount of data

that prevent the use of current algorithms. Nowadays,

it is very frequent to collect a vast amount of data,
and it is necessary to propose new algorithms capable

of obtaining information from these data. Specifically,

in this work, we want to make a proposal that allows

us to tackle big data problems using fuzzy rule-based

classification systems [7,18].

The most popular model for addressing big data

problems is MapReduce [5,6]. MapReduce is a distri-

buted and parallel programming model specifically pro-

posed for processing a large amount of data. This model

has been successfully applied [3,9,10,34,36,38], how-

ever, when the goal of the classification process is to ob-

tain a single and interpretable rule base it has only been

applicable when very simple rule models were used.

In this work, we propose an alternative model for

working with classification problems. The fundamental

idea is to change the parallel model for a sequential

model in which the result of solving a subproblem is

used in the solution of the next one. This sequential

model will include an incremental learning algorithm

as part of the overall architecture. Incremental learn-
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ing algorithms [17,26,40] are algorithms in which input

data is continuously used to modify the current knowl-

edge of the model.

More specifically, the idea is to use a procedure to

break down the entire set of examples into smaller sub-

sets, process the first subset with an incremental learn-

ing algorithm to obtain a classifier, and then use the

second subset along with the classifier obtained in the

first step to obtain a new classifier that represents both

the first and second subsets of examples, and so on.

In specialized literature two types of incremental

learning are distinguished, batch-incremental ver-

sus instance-incremental [35]. In the instance-

incremental learning approach the algorithm learns for

each new example, while in the batch-incremental learn-

ing approach the algorithm is trained on batches of the

data.

Since in our case we have all the examples from

the beginning, a batch-incremental learning method is

appropriate, since each new subset of examples will be

considered as a new batch.

To develop this process, we make a batch-incremental

proposal based on an extension of a learning fuzzy rule

algorithm. There are several proposals to develop fuzzy

rule learning algorithms, many of them make use of cog-

nitive models such as genetic algorithms [20,23,27,39].

In our case, we will use NSLV-AR [15] a bio-inspired

computation algorithm for learning fuzzy rules. This

proposal is based on the models proposed in [14,37]

where we integrate the main ideas proposed there with

a new incremental algorithm, a complete formulation to

define a rule model that is capable of “remembering”

previously processed examples and incorporating new
ones, along with extensive experimentation.

In the next section we will present briefly some re-

lated work, next we make a theoretical discussion about

how to solve the problem by splitting the set of exam-

ples in either parallel or sequential processing of each

subset, making special reference to the sequential model

we propose. In Section 4 we will detail the model of the

rule that allows us to remember the use of past exam-

ples in relation to that rule, and in Section 5 we will

explain the learning algorithm. Section 6 will show the

experimental study conducted, and finally, the paper

ends with a conclusion section.

2 Related work

There is a wide variety of classification algorithms based

on the use of Fuzzy Rule-Based System (FRBS) [4,19,

21,22,27]. However, all these models suffer a clear de-

terioration in performance processing massive datasets,

which makes it impossible to use these classification al-

gorithms on big data problems [36].

Different proposals have appeared in the literature

to try to solve this problem. All of these proposals are

based on first splitting massive data into small chunks

and then process, in some way, the results obtained for

each chunk.

Most of the proposals published so far are based on

the use of the programming framework called MapRe-

duce [5,6], which automatically distributes and per-

forms parallel calculations on each chunk of the set of

examples. In a very simplified way, we could say that

MapReduce consists of two basic operations, the map

function that is responsible for dividing the original

database and processing each subproblem separately to

generate intermediate results, and the reduce function

that collects and aggregates the intermediate results of

the map function.

In [36] one of the first linguistic fuzzy rule-based

classification algorithm that makes use of the MapRe-

duce paradigm is proposed. This proposal uses first a

split of the set of examples, then uses the classification

algorithm of fuzzy rules of Chi et al. [4] to obtain each

classifier, finally, two different proposals for fuzzy rule

fusion are studied.

A new version of MapReduce combined with Chi

classification algorithm is proposed in [9]. This version

removes the dependency with respect to the mapper

number. The accuracy of the global model is the same

that will be obtained using a single node with all the

training examples.

The MapReduce paradigm has been also used to

learn rule associative classifiers [3] and other classifica-

tion algorithms not based on the use of rules, for exam-

ple, Random Forests with fuzzy trees [38,34] or kNN

and fuzzy prototypes [10].

When we analyze the previous proposals, we can

conclude that the MapReduce paradigm undoubtedly

helps to solve Big Data problems, and is a good alter-

native for the rapid construction of ensembles. However,

when the objective is to obtain a single knowledge base

represented by rules, it is only applicable to poorly ex-

pressive rule models. The reason is that only with this

kind of rules the process of combining rules is efficient.

With other more expressive rule models, such as CNF

or DNF, which allows the embedded selection of vari-

ables, the aggregation process works on non-polynomial

orders.

Recently, other models have been proposed that also

make use of the division of the set of examples, but

make use of incremental learning algorithms. These al-

gorithms can offer an efficient alternative for obtaining

a single knowledge base expressed in the form of rules,
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using more expressive representation models. The main

difference with the use of MapReduce is that the pro-

cessing is sequential rather than parallel. In [14] a first

proposal for the use of incremental learning algorithms

to obtain classification rules is proposed. Later in [37]

the study is extended and some parameters of the model

are analyzed.

The objective of this work is to define a formal con-

text on the use of incremental learning algorithm to ad-

dress big data classification problems using fuzzy rules,

also to propose a new version of the algorithm that

makes use of different parameters to improve response

time, as well as extensive experimentation to demon-

strate that the results are competitive compared to the

parallel proposal proposed in [36].

3 Parallel and sequential approaches for

massive data classification

In this section, we present a brief analysis that allows us

to visualize jointly the two technical groups that have

so far been used to address the definition of classifiers

based on fuzzy rules for the problem of processing mas-

sive data and that has been commented in the previous

section.

Given a set of p examples

E = {e1, e2, . . . , ep}

where each example is composed by n attributes and a

label value representing the particular category or class

of the example

ei = {ei1, ei2, . . . , ein, Bi},

being eij the j-th attribute value of the i-th example,

and Bi the value of the class label of the i-th example.

Using the paradigm of divide and conquer, a basic

proposal to process a large set of examples is to split it

into m smaller subsets:

E = {E1 ∪ E2 ∪ . . . ∪ Em} (1)

in such a way that for each subset Ei, obtaining a clas-

sifier is a viable problem. Each new subset of examples

Ei will be called an episode or batch of examples.

Let us suppose that, given a particular learning al-

gorithm (LA), we are able to get a classifier Ci for each

set of examples Ei (i.e., the i-th episode). Obviously,

since the final idea is to obtain a single classifier that

contains the information of each one of the classifiers

obtained on each episode, it is necessary to define some

procedure to do it. There are different ways to do this,

and one of the key ideas that we can take into account is

Fig. 1 A graphical view of the parallel model, where Ei rep-
resents a set of examples, called episode or batch of examples,
LA represents a learning algorithm, Ci the classifier obtained
by LA on the examples of the episode, and C the final classi-
fier.

an assumption of independence when getting each clas-

sifier over the previously learned classifiers. Thus, we

can develop the process in at least two different ways,

the first one makes use of a hypothesis of independence

and the second one does not.

In the first case, that we call parallel model (see

Figure 1), each classifier is obtained independently of

the other classifiers taking into account only the exam-

ples of the corresponding episode, and the main prob-

lem is to decide how the different classifiers should be

combined to obtain a single final classifier.

In the second case, that we call sequential model,

each classifier is obtained taking into account the ex-

amples of the new episode, along with the previously

learned classifiers, and the main problem is how to

adapt or modify previous classifiers given a new set of

examples or episode.

One way to implement the parallel model could be

for example through the MapReduce paradigm, and the

algorithms discussed in the previous section are exam-

ples of this model.

The sequential model uses a division of the global

set of examples as shown in Equation (1). Obviously,

this step is similar to the use of a map function. In

relation to the process of obtaining a new classifier, we

have said that this depends on the previously obtained

classifiers, and this could be reflected in the following

expression

Ci = LA(Ei, C1, . . . , Ci−1) (2)

where LA is the particular learning algorithm used.

Thus, in order to obtain a new classifier Ci the learning

algorithm must take into account the new episode Ei
together with the previously learned classifiers

{C1, . . . , Ci−1}.

Assuming that the knowledge of a classifier already

takes into account the knowledge of previous classifiers,
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Fig. 2 A graphical view of the sequential model described
by equation 3, where Ei represents a set of examples, called
episode, LA represents a learning algorithm, Ci the classifier
obtained by LA on the examples of the episode or batch of
examples, and Cm the final classifier.

we can simplify the above expression and we can use a

simplifying assumption of the sequential model to learn

a new classifier Ci based only on the examples of the

new episode Ei and of the previous classifier Ci−1. That

is

Ci = LA(Ei, Ci−1). (3)

This assumption obviously simplifies the problem

but can lead to a possible loss of knowledge.

This model is shown in Figure 2. A reasonable ap-

proach to implement the model described by Equation

(3) is to use a batch-incremental learning algorithm.

A batch-incremental learning algorithm is an al-

gorithm able to update the knowledge learned (Ci−1)

when new examples (Ei) are obtained over time.

One of the most frequent applications of incremental

learning is the “concept drift” problem [41]. This prob-

lem consists in learning the change that the description

of a concept can have over time. This usually happens

because there are variables that affect the concept, and

that has not been considered in the learning problem.

In our case, there is no change in the concept to learn

and incremental learning, therefore, does not have to

consider this problem. This idea will be taken into ac-

count in the later design of the learning algorithm.

In relation to the stored examples used by an incre-

mental learning algorithm we can consider three types

of algorithms [26]:

– a learner with full instance memory, when all previ-

ously encountered examples are stored,

– a learner with partial-memory, when only some se-

lected examples are stored and used to learn a new

classifier, and

– a learner with no concept memory, when only the

examples of the new episode and no additional ex-

amples are considered for learning the new classifier.

In [16] a full instance memory incremental algorithm

of fuzzy rules, based on the use of NSLV-AR, was pro-

posed. However, a full instance memory algorithm is not

useful for learning classifier for big data problems since

our hypothesis is that the learning algorithm is unable

to learn when there is a massive number of examples.

However, a learner with a partial-memory provided that

the memory requirements are limited, can be useful to

develop a sequential model.

Thus, our goal is to propose a batch-incremental

learning algorithm with partial memory. This proposal

includes NSLV-AR as an essential part of the algorithm.

Once we have shown two models to generate clas-

sifiers for big data problems, the parallel and the se-

quential, it would be necessary to analyze some char-

acteristics of them. We have already commented in the

previous section that the parallel model may not be

very appropriate for learning models using expressive

rules when we are interested in obtaining a single and

interpretable rule base, whereas the sequential model

is. Another important aspect to take into account is

the efficiency of each of the models. A priori, a paral-

lel model might seem more efficient than a sequential

model, and in general, it is true when we are work-

ing with an unlimited number of processing units on

a decomposable problem. However, since this assump-

tion is not always true, there may be problems where

a sequential method is better. Parallel processing im-

plies independence in how to obtain the classifiers for

each subset of examples, in the sense that the partial

results obtained are only considered in the aggregation

of fuzzy rules, but never in obtaining each classifier.

However, incremental models will be more efficient in

some cases, and these cases depend on the possible re-

dundancy in the set of examples. We understand that

there is redundancy in the particular problem when the

information contained in the subset of examples is sim-

ilar to the information in the global set of examples. In

this way, when the database has sufficient redundancy,

the sequential model can be much more efficient since

instead of learning in each subset, it learns with the

first subsets of examples, and from there it only has to

make small modifications to the rule base. Thus, con-

sidering an extreme case, it is possible that the parallel

model is learning in each node, again, and again the

same knowledge, while the sequential model will only

learn for the first subset and for the rest of the sub-

sets will only verify that this knowledge was applicable

to the whole set of examples. However, when the re-

dundancy in the data set is very small, it is perfectly

possible for a parallel model to work better.
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4 Rule model

The basic model of a rule used in [36] is

IF X1 is A1 and X2 is A2 and . . . and Xn is An

THEN Y is B with weight w

where X1, . . . , Xn are the attributes, A = (A1, . . . , An)

are the linguistic terms taken for each attribute, Y is the

consequent variable, B is the value of the consequent

variable and w is a measure of the weight associated

with the rule. We denote this rule as RB(A,w).

However, in this paper, we use an extended and

more expressive rule model that simplifies the obtained

knowledge. This model allows the value assigned to each

variable (i.e., Ai) to be a set of fuzzy labels of the do-

main. This is interpreted like assigning a disjunction of

linguistic terms to an attribute.

As mentioned above our goal is to develop an in-

cremental learning algorithm with partial memory, and

apply it to big data classification problems. For this

purpose, we first need to have a flexible model of fuzzy

rules that can contain a memory of its performance

with examples used in the past, but which are no longer

available. This kind of memory must be modified with

the addition of new examples since all the examples

are equally important. This fact is completely different

from other kinds of problems, as the previously men-

tioned concept drift problem, where the algorithm must

take into account the time when the examples are in-

corporated. To this end, first, we present a rule model,

as well as a binary coding of the rule.

4.1 Coding simple rules

We use the extended fuzzy rule model described in the

previous section, and we use a binary code for repre-

senting the antecedent of each rule. As each rule has n

antecedent variables

X1, . . . , Xn

each one having an associated fuzzy domain Di with pi
components, the antecedent of a rule is an element of

P (D1)× . . .× P (Dn),

where P (Di) is the set of subsets of Di.

A way to encode the antecedentA = (A1, A2. . . . , An)

of a rule RB(A,w) is to use a vector of p1+. . .+pn zero-

one components. This vector is noted as BinaryCode(A)

and the value of component (p1 + . . .+ pi−1 + j) of the

vector is 1 if the j-th element in domain Di is a value

of the variable Xi, and 0 otherwise, with i=1...n and

j=1...pi.

Finally, the consequent of the rule is represented as

an integer value which refers to the position of the par-

ticular value of the domain, that is, for example, we use

the number 3 to represent the third value of the domain.

The weight of the rule w is usually calculated from the

number of positive and negative examples of the rule,

and it is coded as a real number representing its value.

The last two elements that we include in the coding are

the number of positive and negative examples covered

by the rule.

Let us suppose that we are working with the IRIS

database [13], which contains 4 real predictive attributes

(SepalLength [SL], SepalWidth [SW], PetalLength [PL],

PetalWidth [PW]) and a classification variable with

3 classes (Setosa, V ersicolour, V irginica). Further-

more, let us suppose that we use for each predictive

attribute five uniformly distributed fuzzy labels on its

ranges (V ery Low [VL], Low [L], Medium[M], High

[H], V ery High [VH]). So, each variable is coded with

five different values, and therefore, the complete an-

tecedent needs 20 values to be coded. An example of

the antecedent of a rule could be the following one:

SL SW PL PW

11111 00001 00011 11111

This antecedent is

SW is High and PL is Medium or High

as SL and PW are irrelevant variables since it has as-

signed all the possible values of its respective domains.

To encode a full rule we just have to add to the

antecedent coding an additional symbol to encode the

class of the rule by an integer value, the weight cod-

ing as a real number, and the number of positive and

negative examples to the rule.

4.2 Coding sets of rules

With the idea of creating a structure that represents a

set of rules and serves as a memory for an incremental

learning algorithm, first, we are going to define an order

relation between the antecedents of the fuzzy rules.

Definition 1 Let A1 = (A11, A12, . . . , A1n) and A2 =

(A21, A22, . . . , A2n) be two antecedents of rules. We say

A1 � A2 if and only if A1i ⊆ A2i ∀ i=1 to n.



6 Antonio González et al.

This order relation represents the idea of inclusion

of antecedents, A1 is included in A2, since all example

satisfying in a positive degree the antecedent A1, also

satisfy in a positive degree the antecedent A2. On the

other hand, using the binary coding of the antecedent,

this relation is equivalent to a component to component

comparison of the zero one vector, that is, using the

IRIS database, the following relation is verified

10000 00001 00011 11111 � 11111 00001 01111 11111.

Obviously, � verifies the reflexivity, antisymmetry

and transitivity properties, then it is an order relation.

However, it is not a total order relation.

From this definition, it is very simple to extend the

relationship to rules.

Definition 2 Let A1 = (A11, A12, . . . , A1n) and A2 =

(A21, A22, . . . , A2n) the antecedents of rulesRB1
(A1, w1)

and RB2(A2, w2) respectively. We say

RB1(A1, w1) � RB2(A2, w2) if and only if

A1 � A2 ∧ B1 = B2

and the number of positive and negative examples cov-

ered by both rules is equal.

That is, a rule is less than or equal to another rule

if both have the same consequent, the same covered

examples, and therefore the same weight, but the an-

tecedent of the first rule is less than or equal to the

antecedent of the second one.

The relation � for rules is not a total order relation

and represents a comparison of rules from the point of

view of the length of the description of the rule an-

tecedent.

To understand this idea, let us realize that the rule

model we are using must be interpreted as a discrimi-

nant description, in the sense given in [29], i. e. a rule

specifies a single way or several alternative ways to dis-

tinguish the class of the rule from the rest of classes.

As indicated in [29] one of the most interesting descrip-

tions is the minimal discriminant descriptions that are

the shortest in the sense of the length of the description.

This minimal discriminant description corresponds to a

maximum of the order relation � of all the descriptions

valid for a class. This is because the maximum is the

one that includes the most values in each variable, and

therefore the maximum is the one that eliminates the

most variables. In the same way, we can obtain the max-

imal discriminant descriptions as the minimum of the

order relation � of all the descriptions valid for a class.

Thus, given a rule R we could calculate the complete

set of rules related to R through the relation � and

we can represent this set through its lower and upper

bounds.

The lower end of this set of rules can be obtained

by selecting the rule R that verifies

R � R and 6 ∃R′/R′ � R

and this lower end corresponds to the maximal discrim-

inant description of the rule R, that we call, large dis-

criminant rule.

Similarly we can obtain the upper end of this set of

rules as the rule R that verifies

R � R and 6 ∃R′/R � R′

and this upper end corresponds to the minimal discrim-

inant description of the rule R, that we call, short dis-

criminant rule.

Somehow all the rules that are found between R

and R through the relation �, are rules equivalent to

R from the point of view that are similar descriptions

for a problem, given the current set of examples.

Using the binary description of the rule’s antecedent,

we could say that in the maximal discriminant descrip-

tion a number one is added in the description if there

is no negative evidence to add the value that represents

this number one. Instead, in the minimal discriminant

description, number one is added, only when there is

positive evidence that allows us to add that value.

As we have said before, we want to extend the rule

model so that in some way it serves as a memory of

how the rule works in past examples. Our idea is to

move from the simple rule to a new rule set structure,

represented by the short description and large descrip-

tion of the rule. Each large and short description rule
pair, through the order relation, defines a set of rules

that are adapted correctly to the examples processed

so far. This set of rules is defined by all those rules that

are located between the large description rule and the

short description rule, using the order relation between

rules. That “interval” of rules is just the type of mem-

ory we were looking for and it will be the one that the

incremental learning algorithm will use.

Specifically, our learning algorithm will always ob-

tain large description rules. From those rules, we will

calculate their short description versions.

Using the previous example of the IRIS database,

let us suppose we obtain a maximal discriminant de-

scription as

SL SW PL PW

11100 01111 11011 11000

being its associated linguistic description

SL is {V L,L,M} and SW is {L,M,H, V H} and
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PL is {V L,L,H, V H} and PW is {V L,L}

and from this rule we calculate an equivalent minimal

discriminant description

SL SW PL PW

11111 11111 11011 11000

being its associated linguistic description

PL is {V L,L,H, V H} and PW is {V L,L},

the assumption in both cases is that rules have the same

consequent, number of positive and negative examples

and weight. Both rules represent a lower and upper

boundary respectively of the rule set compatible with

the current information.

The code associated with this set of rule will be an

extension of the previous rule code. The main compo-

nent of the representation is the antecedent part and the

idea is to extend the zero-one coding of an antecedent

to a code with three values:

– 1 the value is present in the antecedent,

– 0 the value is not present in the antecedent,

– ? the value may or may not be present in the an-

tecedent.

So, we establish a new codification for the antecedent

of a set of rules in the following way:

Code(Ã) = {Codei(Ã)}i=1...p

being now Codei(Ã) ∈ {0, 1, ?}, p = p1+p2+. . .+pn and

Ã a representation of a set of antecedents between the

minimal and maximal discriminant description using

the order relation.

Given the large discriminant rule

R = RB(A,w)

and the associated short discriminant rule

R = RB(A,w)

where A and A are the antecedents of R and R respec-

tively, we can generate the code of the set of antecedent

between both rules as:

– If BinaryCodei(A) = 1 and BinaryCodei(A) = 1

then Code(Ã) = 1.

– If BinaryCodei(A) = 0 and BinaryCodei(A) = 0

then Code(Ã) = 0.

– If BinaryCodei(A) = 0 and BinaryCodei(A) = 1

then Code(Ã) =?.

Note that the option

BinaryCodei(A) = 1

and

BinaryCodei(A) = 0

is not possible since A � A. Code(Ã) represents the

antecedent of the set of rules.

Using the previous example of the IRIS database,

the following description:

SL SW PL PW

111?? ?1111 11011 11000

represents a set of antecedent of rules. Specifically, the

set of antecedents between the minimal and maximal

discriminant rule.

The representation of the antecedent of A is ob-

tained by instantiating all “?” values with “0”, and the

representation of the antecedent of A is obtained by

instantiating all “?” values with ‘1”, as long as the re-

strictions of the � relation between rules are verified.

The number of antecedents contained in a partic-

ular set of antecedent of rules Ã, which will be called

Cardinal(Ã), can be calculated from the number of “?”

symbols in the coding. Particularly, this number is 2k,

being k the number of “?”. So, in the previous example,

the subset is composed by 23 = 8 antecedents, where

the antecedents of the short and large description rules

establish the upper and lower ends in this representa-

tion.

To codify a set of rules, we first codify the set of

antecedents, as shown above, and add the consequent

rule and the weight, along with the number of positive

and negative examples of the associated short and large

discriminant rule.

Code(RB(Ã), w) =

(Code(Ã), B,w,N+
inf , N

−
inf , N

+
sup, N

−
sup)

where Code(Ã) is the coding of the set of antecedents,B

is the consequent or class of the rule, w is the weight,

N+
inf and N−inf represent the number of positive and

negative examples values of the large discriminant rule

respectively, and in a similar way N+
sup and N−sup refer

to the values of the number of positive and negative

examples of the short discriminant rule.

The set of rules defined by this model flexibly repre-

sents all rules compatible with the current information,

that is, with the examples that have been processed

by the algorithm so far (even when they are no longer

stored).
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4.3 Inference using sets of rules

It is necessary to define the process of inference when we

work with rules such as those described in the previous

subsection, that is, we need to define the inference for

a set of rules, where each one of these rules represent a

set of rules again, precisely all those included between

the large and short discriminant rules.

A large discriminant rule is the most specific rule

consistent with the information, so if an example veri-

fies this rule it means that there are examples in the

training set similar to the current example, and we

should use this rule to classify. However, if that large

discriminant rule does not classify it could mean that

you need more general rules for classifying. Thus, our

proposal is to use first the large discriminant rules and

if one of them is triggered, then the class of that rule

is assigned to the example. If no one is triggered, then

the short discriminant rules are used, and the class cor-

responding to the rule triggered with a higher value is

assigned to the example. Otherwise, no class is assigned.

5 Learning algorithm

Since our goal is to use incremental learning algorithms

for solving big data classification problems using fuzzy

rules, we need to take into account some common char-

acteristics of the incremental learning algorithms for its

application. These characteristics are that the concept

to be learned may change over time (concept drift) and

that the full set of examples is not known. However,

in our case, as stated above the concept drift prob-

lem can be ignored as there is no need to consider a

change of concept to learn and the size of the example

set is large but it is known. The idea is to take advan-

tage of these two peculiarities by proposing a batch-

incremental learning scheme for classification problems.

In [16] a first approach towards an incremental learn-

ing algorithm based on the sequential covering strategy

was proposed. This algorithm is based on a fuzzy rule

learning algorithm called NSLV-AR [15]. One of the

main features of this algorithm is its ability to learn

a set of fuzzy rules based on a previous set of fuzzy

rules and new examples. However, the proposed algo-

rithm stores all the examples, that is, it is a full instance

memory incremental learning algorithm, and this makes

it not directly applicable to big data problems as we

explained before. Therefore we need to define an incre-

mental learning algorithm with partial memory. The

proposed algorithm is based on NSLV-AR, and in the

next section, we briefly explain the main ideas of this

algorithm.

5.1 NSLV-AR

NSLV-AR is a fuzzy rule learning algorithm based on

the use of the sequential covering strategy [30]. This

strategy uses a decomposition model in order to it-

eratively learn a single rule on each step. Thus, each

learned rule is added to the rule base, being part of the

rule base until the end of the learning process. How-

ever, the sequential covering strategy of NLSV-AR de-

scribed in Algorithm 1 is characterized by the revision

of already learned rules in each iteration. This constant

revision of rules allows NSLV-AR to modify/adapt pre-

viously learned rules on a new set of examples, and this

behavior is the key to incremental learning algorithms.

Algorithm 1 NSLV-AR

1: function NSLV-AR(E,Learned rules)
2: Action← Return One Action (E, f,
3: Learned rules, new rule, rules to remove)
4: while (Action 6= STOP ) do
5: Learned rules← Add (Learned rules,
6: new rule)
7: if (Action == REPLACE) then
8: Learned rules← Remove
9: (Learned rules, rules to remove)

10: end if
11: E ← Penalize (Learned rules, E)
12: Action← Return One Action (E, f,
13: Learned rules, new rule, rules to remove)
14: end while
15: return Learned rules
16: end function

The sequential covering algorithm of NSLV-AR de-

scribed in Algorithm 1 has as inputs a set of examples E

and a set of rules Learned rules, which may be empty.

It uses the procedure Return One Action, implemented

through a genetic algorithm and outputs one of these

actions: AGGREGATE, REPLACE or STOP. Return -

One Action analyzes two different fuzzy rules, the best

rule increasing the accuracy and the best rule replacing

rules, and it makes a decision about which one is the

best choice. Depending on the decision, the procedure

has a different output,

– AGGREGATE when the decision is adding a new

rule,

– REPLACE when the decision is removing one or

more rules replaced by a new rule also returning

the list of replaceable rules (rules to remove), and

finally

– STOP when the rule base cannot be improved and

no action must be carried out.

The multi-criteria evaluation function used in NSLV-

AR is:
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f(R) = [Ψδ(R), |Ω(R)|, svar(R), sval(R)]

where:

– Ψδ(R) is the product of consistency and complete-

ness conditions.

– |Ω(R)| is the number of rules that R can replace

from the set of learned rules.

– svar(R) is the number of irrelevant variables.

– sval(R) is the number of understandable assign-

ments.

Two rules are compared through the previous multi-

criteria evaluation function along with the use of lexi-

cographical order.

The weight of a rule R in NSLV-AR is defined as:

ωE(R) =
n+E(R) + 1

n+E(R) + n−E(R) + 1
.

5.2 Adapting NSLV-AR to the incremental learning

framework

The main feature of the NSLV-AR algorithm is that

it allows us to remove rules included in the initial rule

set or to add new rules (if needed) for obtaining a new

rule set with a better representation of the examples

included in the training set.

However, direct use of the algorithm for incremental

learning is not recommended, as in its original design it

assumes that all examples are available. When we use

the algorithm on a batch of examples, obtained from

the partitioning of the complete set of examples, some

drawbacks may appear:

– The weight of each rule learned by the algorithm

takes its value on the current training set. This is a

problem because a rule with a high success rate for

a particular subset of examples could be a rule with

a low success rate for the whole set of examples.

Rules with a high success rate frequently have a

weight close to 1 and they are better than the rest

of rules in the inference process. So, it is necessary to

additionally include in NSLV-AR a specific process

in the incremental learning algorithm that allows

changing the weight of a rule.

– The remove rule process only takes into account the

current training set. So, rules that are included in

the algorithm that were learned in a previous sub-

set are removed when they are not relevant for the

classification of the current examples. Because this

behavior may not be correct when the whole set of

examples is not available, the rules that are added

in previous episodes must be protected during the

current iteration and they cannot be replaced. Ob-

viously, this restriction reduces the ability to elimi-

nate irrelevant rules. Therefore, it will be necessary

to include an additional process in the incremen-

tal learning algorithm for removing rules with low

weight.

Both issues will be tackled in the algorithm de-

scribed below. In addition to all of the above, it is

also necessary to make some modifications to NSLV-

AR, specifically:

– Distinguish between the initial set of rules that are

input in the algorithm and the rules that are added

by the algorithm to the rule set so that only the

latter can be modified.

– Decrease the dependence of this value on the cur-

rent episode In order to make a better estimation

of the weight of the rules. To do that we will use

an extended set of examples that will include the

current episode along with some previous episodes.

Precisely making use of this extended set makes the

learning algorithm be classified as a partial memory

incremental algorithm.

– Extend the algorithm so that it can learn sets of rule

pairs, a large discriminant rule, and a short discrim-

inant rule, as described in Section 4. These pairs of

rules try to capture those rules for the same class

that have similarities in their description and that

therefore represent adjacent zones in the space of

the input variables. However, the original algorithm

works with a non-paired rule set. The extension of

the algorithm for considering paired rule sets is sim-

ple: during learning, only large discriminant rules

are considered. In the end, for each new large dis-

criminant rule, an associated short discriminant rule

is obtained using a hill-climbing search algorithm.

5.3 Describing the incremental learning algorithm

As mentioned above, we initially have a set of examples

E. Moreover, we assume that we have a partition of this

set of examples

E = {E0 ∪ E2 ∪ . . . ∪ Em−1}

where in each episode Ei there are size examples, ex-

cept perhaps the last one. size will be a fixed parameter

from the beginning. We have started the index i to zero

in the first episode to facilitate the description of the

algorithm, but we still maintain a partition with m sets.

We can add different elements of the partition using

the following notation

AE(i, j) = {Ei ∪ Ei+1 ∪ . . . ∪ Ej}
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where we suppose that

Ei = ∅

when i < 0 or i > m− 1, and i ≤ j.
The incremental algorithm includes three fundamen-

tal elements:

– A learning algorithm (NSLV-AR adapted) that from

a new episode generates the new knowledge that did

not exist using the previous examples.

– An aggregation procedure that combines the new

knowledge gained with the episode with the existing

knowledge associated with the previous examples.

– A procedure for adjusting the weights of a rule.

Our proposal of incremental learning algorithm is

described in Algorithm 2.

Algorithm 2 An incremental algorithm adapted to big

data
1: function INCREMENTAL (E, size, t, k)
2: Thld = 1.00
3: R = ∅
4: i = 0
5: Ei = E.Select(i, i + 1, size)
6: while (Ei 6= ∅) do
7: R.UpdateWeight(Ei)
8: R.FilterRule()
9: E→i (t) = E.Select(i, i + t, size)

10: if (R.Predict(E→i (t)) ≥ Thld) then
11: Thld = UpdateThreshold(E→i (t), R, Thld)
12: i = i + 1 + t
13: else
14: E←i (k) = E.Select(i− k, i, size)
15: Rs = NSLV-AR(Ei, R.SubSet(Ei), E←i (k))
16: R = R.CombineRule(Rs)
17: Thld = UpdateThreshold(Ei, R, Thld)
18: i = i + 1
19: end if
20: Ei = E.Select(i, i + 1, size)
21: end while
22: return R
23: end function

The algorithm has as inputs the complete set of

examples and three parameters. These parameters al-

low you to generate three subsets of examples in each

episode. The first subset is Ei which is the training set

that will use the NSLV-AR algorithm in the i-th episode

and which contains size examples. The second one

E→i (t) = AE(i, i+ t− 1)

is the set that we will use to check if the set of rules pre-

viously obtained by the incremental learning algorithm

satisfy the examples of several successive episodes. This

set is formed by the union of the examples of the episode

i-th and the following t−1 episodes, where t is a param-

eter. If we use t=1 then we only check the performance

of the rules on the i-th episode examples. Finally, the

subset

E←i (k) = AE(i− k + 1, i)

is the set that we will use to estimate the weight of

the new rules, and is composed by the union of the

examples of the current episode and the k-1 episodes

previous to the current one.

The algorithm begins by initializing four variables,

the first one Thld is the threshold, which represents a

value between 0 and 1, from which it is considered that

the accuracy of the set of rules obtained in previous

episodes is sufficient and it is not necessary to learn

using the examples of the new episode (or extended

episode). It will initially take the value 1. The second

variable is R which represents the complete set of rules.

It’s initially empty. The third one is i which represents

the index of the current episode, and finally, Ei which

is the current episode, which is initiated through the

Select procedure. E.Select(a, b, c) extracts the subset

of examples of the E set from the a× c position to the

(b× c)− 1 position.

Just after the initialization of the four variables, a

cycle begins. This cycle represents an iterative proce-

dure that is repeated until there are no more examples

to process, and therefore the current episode is empty.

Within the cycle, the first thing to do is to update the

weight of the rules obtained in previous episodes with

the examples of the current episode (line 7) and to re-

move bad rules (line 8). The idea is to know the ca-

pacity to predict the current set of rules on new exam-

ples. These two processes are related to those described

in subsection 5.2. The procedure R.FilterRules() has a

simpler implementation, it removes all the rules in R

with weight less than

0.9

#classes

being #classes is the number of classes involved in the

classification problem.

We then select an extended set of examples (line

9) from the current episode (determined by parameter

t). The R.Predict(E→i (t)) procedure returns a number

between 0 and 1, which represents the capacity of pre-

diction of the rule set over the extended set of examples.

This value is compared with the threshold. When the

value is larger than or equal to the threshold then it is

not necessary to learn with these examples, as the rules

sufficiently represent them. In this case, the threshold

is recalculated taking into account the new examples,

then all the episodes corresponding to the extended set

of examples are skipped.
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In the other case, when the value obtained is less

strict than the threshold, it is necessary to learn again.

Thus, on line 15, the NSLV-AR algorithm will produce

new rules. To do this, R.SubSet(Ei) first extracts the

subset of rules of the complete set of rules R that are

triggered on the examples of Ei and we use the extended

set of examples E←i (k) (using parameter k) to estimate

the weights.

The result of applying NSLV-AR is a new set of rules

Rs. This set represents those new rules that need to be

added to the complete set of rules in order to represent

the new examples. But, before adding them, it is nec-

essary (line 16) to combine the new rules with the old

ones. At this point it is important to remember that the

algorithm is working with short discriminant rules, but

each one of these rules has associated a large discrimi-

nant rule. In this way, the rule model we are considering

is an interval of rules contained between these two ex-

treme rules. Thus, when we have a previously obtained

rule interval, and another rule interval obtained in the

current iteration, the idea of the combination is to keep

the intersection of both intervals, which represents the

consistent information between the previously learned

rules and the new rules.

To do this, the R.CombineRule(Rs) procedure will

first add all new rules that are not related to those

previously obtained, and then add those combined rules

in the intersection between the intervals corresponding

to the previously obtained rules and the new rules. This

procedure will be described in Subsection 5.3.2.

Next (line 17) we update the threshold value taking

into account only the examples of the current episode,

and we move on to the next episode and repeat the

loop. Finally, the algorithm ends up returning the R

rule set.

There are two aspects of the description of the above

algorithm that need to be described in more detail, the

first being how to update the threshold and the second

is how to combine rules.

5.3.1 Threshold estimation

A correct update of the threshold is fundamental for

the previous incremental algorithm. In fact, the thresh-

old determines whether the current rules correctly rep-

resent current examples and we do not need to learn

with these examples, or whether it is necessary to learn

new rules. Therefore, the threshold value will definitely

affect the final accuracy of the rule set and the time

needed to obtain it.

The most appropriate value for the threshold would

be the accuracy on the complete set of examples E,

but obviously, this value is not known. There are un-

doubtedly several ways to estimate the threshold pa-

rameter. In our experimentation, we have used as initial

value 1 and subsequently, for each iteration, the value

is updated by taking a 10% reduction in the average

individual predictive capacity over each of the previous

episodes. This value can be considered as a pessimistic

estimation of the accuracy.

5.3.2 Combining rules

The incremental learning algorithm will use sets of rules

instead of simple rules. A key element in this algorithm

is the process of adapting sets of rules learned in previ-

ous episodes to the information given by the new set of

examples. To do this we define a method of combining

compatible sets of rules.

Definition 3 We say that two sets of rules RB(Ã1, w)

and RB(Ã2, w) are compatible if and only if the asso-

ciated intervals to each rule overlap, that is, there is at

least one simple rule included in both sets of rules.

In relation to the code of the set of rules the com-

patibility can be easily checked:

RB(Ã1, w) and RB(Ã2, w) are two sets of rules com-

patible when

∀i Codei(Ã1) = Codei(Ã2)

or

if Codei(Ã1) 6= Codei(Ã2)

then

Codei(Ã1) =? or Codei(Ã2) =?.

When RB(Ã1, w) and RB(Ã2, w) are compatible we

can combine both pattern rules in a new pattern rule

that includes those rules contained in both pattern rules.

Thus, we define

combine(RB(Ã1, w), RB(Ã2, w)) = RB(Ã3, w)

where

Code(RB(Ã3)) = (Code(Ã3), B,w,N3+
inf , N

3−
inf , N

3+
sup, N

3−
sup)

and

Codei(Ã3) =


? if Codei(Ã1) = Codei(Ã2) =?

Codei(Ã1) if Codei(Ã1) 6=?

Codei(Ã2) otherwise

and if Cardinal(Code(Ã1)) ≥ Cardinal(Code(Ã2)) then

N3∗
a = N1∗

a

in other case,

N3∗
a = N1∗

a +N2∗
a

where a = {inf, sup} and ∗ = {+,−}.
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6 Experimental section

In this section, we study the behavior and scalability of

the proposal introduced in the previous sections, as well

as the adjustment of some of its parameters. Subsection

6.1 includes a study on the granularity of the domain.

Subsection 6.2, 6.4 and 6.3 analyze the influence of the

size, t and k parameter, respectively. Subsection 6.5

shows an scalability study. Finally. Subsection 6.6 con-

tains a comparison of the proposal with parallel models.

In this experimentation, we will use seven databases

from the UCI dataset repository [2], which are described

in Table 1. In this table, Nemo refers to the short name

for each dataset, #Ex represents the number of exam-

ples and #Atts shows the number of attributes, where

the C component reflects the number of continuous at-

tributes and N the number of nominal attributes. As

occurred in [14] and [36], some of the selected databases

have multiple classes, so we maintain the same criteria

reducing these problems to two classes. To perform the

comparison we applied the Wilcoxon’s test in each ex-

periment. In every case, we used a significance level of

α = 0.05.

Table 1 Summary of Databases. The names of several
databases have been changed to match the ones in [14].

Datasets Nemo #Ex #Atts (C/N)

Census cens 141544 41 (8/32)
Covtype 2 vs 1 covt 495141 54 (10/44)
Fars Fatal Inj vs No Inj fars 62123 29 (5/24)
Kddcup DOS vs normal kddc 4856151 41 (26/15)
Poker 0 vs 1 poke 946799 10 ( 0/10)
Susy susy 5000000 18 (18/0)
HepmassAll hepm 10500000 28 (27/1)

With respect to the infrastructure used to perform

the experiments, we have used the cluster of the re-

search group Soft Computing and Intelligent Informa-

tion Systems (http://sci2s.ugr.es). This cluster has 16

nodes connected with a 40Gb/s Infiniband. Each node

is equipped with two Intel E5-2620 microprocessors (at

2 GHz 15MB cache) and 64GB of main memory running

under Linux CentOS 6.5. The head node of the cluster

is equipped with two Intel E5645 microprocessors (at

2.4 GHz, 12MB cache) and 96GB of main memory. In

the experimentation, all the processes have been exe-

cuted in a sequential fashion using only one node.

6.1 Study on the granularity of the domain

The first study is dedicated to analyzing the best gran-

ularity associated with the fuzzy domain. To do so,

we have studied the behavior of the algorithm on the

databases we have previously selected and with the use

of three, five, seven, nine and eleven fuzzy linguistics

labels uniformly distributed over the universe of values

of each continuous variable.

Table 2 Average prediction capacity (Test) for the different
granularity values

3 labels 5 labels 7 labels 9 labels 11 labels

cens 94.20 94.10 94.22 94.28 94.31
covt 71.19 75.46 75.33 75.59 75.85
fars 100.00 100.00 100.00 100.00 100.00
kddc 99.82 99.74 99.76 99.81 99.77
poke 54.52 54.52 54.52 54.52 54.52
susy 64.90 68.76 69.36 68.43 68.16
hepm 73.83 78.74 80.35 80.24 79.97

mean 79.78 81.62 81.93 81.84 81.80

Table 3 Running time (in seconds) for the different granu-
larity value

3 labels 5 labels 7 labels 9 labels 11 labels

cens 88.40 101.02 94.63 102.69 102.19
covt 135.72 355.90 456.47 580.64 942.74
fars 13.60 13.49 11.69 13.48 12.34
kddc 139.89 144.63 150.52 175.30 160.36
poke 417.14 417.14 417.14 417.14 417.14
susy 676.17 1582.33 1899.73 3998.54 2346.73
hepm 6691.17 6657.74 4284.89 5485.56 7336.40

Mean 1166.01 1324.61 1045.01 1539.05 1616.84

Table 4 Average number of rules for the different granularity
values

3 labels 5 labels 7 labels 9 labels 11 labels

cens 15.10 16.89 15.10 14.50 14.40
covt 22.60 67.00 85.40 97.90 150.50
fars 2.90 2.80 2.70 3.00 2.80
kddc 5.90 5.60 5.50 6.10 5.20
poke 209.00 209.00 209.00 209.00 209.00
susy 59.60 126.00 129.40 238.30 133.90
hepm 208.40 193.80 113.90 128.30 158.90

Mean 74.79 88.73 80.14 99.59 96.39
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Table 5 Average number of variables per rule for the differ-
ent granularity value

3 labels 5 labels 7 labels 9 labels 11 labels

cens 29.59 31.54 32.19 31.60 31.24
covt 39.81 44.34 45.21 44.83 46.01
fars 19.38 20.20 21.88 22.06 22.93
kddc 37.42 37.95 37.95 38.23 37.95
poker 6.99 6.99 6.99 6.99 6.99
susy 16.38 16.85 17.22 17.52 17.67
hepm 23.86 25.41 26.18 26.62 27.13

Mean 24.78 26.18 26.80 26.83 27.13

The rest of the parameters used are the following:

– the size parameter that establishes the number of

examples in each episode, fixed to 1000,

– the t parameter which corresponds to the number of

episodes used for testing the threshold value, fixed

to 1,

– the k parameter indicating the number of episodes

used for obtaining an approximation to the weight

of each new rule, fixed to 10.

– default configuration for the parameters of the NSLV-

AR algorithm.

Tables 2, 3, 4 and 5 show the accuracy on unseen

examples, running time, the number of obtained rules

and the average number of variables per rule, respec-

tively on each database and each granularity value. In

all tables, the final row shows the average value of each

column.

In relation to the average prediction capacity (Ta-

ble 2) we can observe that the results are quite similar

except in the case of 3 labels. This fact does not indi-

cate that the number of labels is an irrelevant factor,

but that the appropriate value for each problem is dif-

ferent. For example, for cens and covt the best value is

11 while for hepm is 7. In fars and poke all values are

the same. In the case of poke, it is natural, since all its

variables are nominal or integer.

The increase in the number of labels directly affects

the size of the solution space. In the case of a problem

with n continuous variables and l labels, the solution

space associated with the rule model used in this ap-

proach is 2n×l for each rule. Therefore, an increase in l

implies an exponential increase in the solutions space.

Table 3 shows how this increase in solution space affects

runtime. Both the global mean behavior and the par-

ticular behavior of each database do not show changes

in execution times that are related to exponential in-

creases in the solution space.

Table 4 shows the average number of rules obtained

for each number of labels. In this case, the general trend

indicates a direct correlation between the number of

rules and the number of labels. However, this increase

does not have an exponential rate.

Table 5 shows that the behavior in relation to the

average number of variables per rule is very stable in

relation to the use of a different number of labels to

discretize the domain, although a slight increase of the

value can be observed when the granularity is increased.

Using the average results of all the previous tables,

we can observe that the case of 7 labels is the one that

shows a good compromise. This number of labels will

be used from now on in the following experiments.

6.2 Studying on the influence of the size parameter

The second study aims to determine the possible influ-

ence of episode size on accuracy and time required to

learn.

The size parameter establishes the number of ex-

amples that are presented to the learning algorithm in

each iteration of the incremental process. The learning

algorithm (NSLV-AR in our case) is the most time-

consuming task of our proposal. The time spent by

NSLV-AR grows with the number of examples in the

training set.

The other two tasks that use high amount of time

are UpdateWeight and CombineRule. The latter

is not directly dependent on the number of examples,

as it only depends on the number of learned rules.

The time consumed by the former depends on three

factors: number of examples (size), number of rules

(#rule) and number of variables involved in the learn-

ing problem (#Attribute), achieving a complexity order

of O(size×#rule×#Attribute).

In Tables 6 and 7 the results obtained by the in-

cremental proposal using different values for the size

parameter on the different databases are shown. In re-

lation to the rest of the parameters of this experiment,

we have considered 7 labels for continuous variables,

t=1 and k=10.

From these tables, we can observe that the running

time grows with the size of the episode, except for the

initial value size=500. For this size, the algorithm ob-

tains a larger running time since it produces a large

number of rules that increase the needed time for the

tasks UpdateWeight and CombineRule.

Almost the same conclusion (growths as size grows)

can be detected when the predictive capacity is exam-

ined, although the increase is smaller and does not al-

ways occur.

For determining an appropriate value for the size

parameter that combines an acceptable prediction ca-
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Table 6 Accuracy on test set (in %) for different values of the size parameter

500 1000 2000 3000 4000 5000 10000 20000
cens 94.22 94.22 94.31 94.37 94.36 94.39 94.54 94.71
covt 75.11 75.33 76.65 76.95 76.94 77.01 78.49 78.61
fars 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

kddc 99.74 99.76 99.79 99.86 99.89 99.92 99.91 99.94
poke 54.33 54.52 54.50 55.78 55.38 55.61 57.11 56.13
susy 65.20 69.36 69.30 71.51 72.09 73.37 71.41 72.71

hepm 80.23 80.35 80.84 79.28 80.16 81.46 80.96 81.65
Mean 81.26 81.93 82.42 82.54 82.69 83.11 83.20 83.39

Table 7 Running time (in seconds) for different values of the size parameter

500 1000 2000 3000 4000 5000 10000 20000
cens 51.33 94.63 233.35 388.53 612.74 823.14 2139.14 6240.90
covt 420.65 456.47 752.27 1026.79 1296.73 2081.81 4027.96 7260.38
fars 7.88 11.69 18.56 25.18 34.90 44.74 80.30 149.56

kddc 149.02 150.52 226.16 242.24 290.39 355.31 604.74 1276.29
poke 1493.88 417.14 182.12 306.20 141.38 298.81 270.66 421.61
susy 11457.40 1899.73 1869.81 2246.53 3048.81 4243.24 3606.05 6445.82

hepm 8957.19 4284.89 6662.83 9767.55 7834.32 12619.70 22557.70 50928.40
Mean 3219.62 1045.01 1420.72 2000.43 1894.18 2923.82 4755.22 10388.99

Table 8 Average number of rules for different values of the size parameter

500 1000 2000 3000 4000 5000 10000 20000
cens 14.90 15.10 21.80 23.30 27.30 26.90 34.29 48.80
covt 114.30 85.40 84.10 80.40 84.60 107.10 99.30 84.60
fars 2.90 2.70 2.80 2.80 2.90 2.90 2.60 2.20

kddc 5.40 6.10 7.20 6.90 7.80 8.30 7.40 9.60
poke 1197.20 209.00 58.60 74.50 27.70 49.70 20.39 14.80
susy 1166.77 238.30 97.20 102.00 129.00 156.69 86.80 98.30

hepm 312.60 113.90 183.28 262.37 182.60 292.25 377.00 481.66
Mean 402.01 80.14 65.00 79.00 65.99 91.98 89.68 105.71

pacity in an acceptable time we can calculate the ratio:

PredictionCapacity(%)

Time(sg)

Figure 3 graphically shows the value of this ratio for

different values of size, and we can observe that in

size = 1000 the maximum value is obtained, that is,

for the databases considered in this experimentation

the best value for the size parameter that combines

the accuracy on non-seen examples and running time

is 1000.

6.3 Studying on the influence of the t parameter

The t parameter in the incremental proposal is related

to the number of episodes used to detect whether the

current set of rules correctly represents the new exam-

ples. If this is the case, it is not necessary to do anything

with the examples of such episodes, otherwise, the al-

gorithm returns to work with a single episode and learn

again. Obviously, parameter t is intended to accelerate

the learning process by skipping batches of correctly

represented examples.

So far in our studies, we have used only one episode

(t = 1), but we want to study the influence of using this

parameter. We maintain size=1000 in all cases.

In Tables 9 and 10 the accuracy and running time

obtained for different values of the t parameter, respec-

tively, are shown.

Table 9 Accuracy on test set (in %) for different values of
the t parameter fixing size = 1000

1 5 10 15
cens 94.21 94.21 94.22 94.22
covt 75.39 75.57 75.44 75.45
fars 100.00 99.99 99.99 99.99

kddc 99.70 99.66 99.66 99.66
poke 54.50 54.17 54.45 54.14
susy 69.30 69.64 69.54 69.36

hepm 80.30 80.32 79.94 80.07
Mean 81.90 81.94 81.89 81.84

From the previous tables, we can conclude that the

t parameter has no effect on the prediction capacity.

It is possible to observe a slight reduction when t in-

creases but we can check that the prediction capacity is



An Incremental Approach to Address Big Data Classification Problems Using Fuzzy Rules 15

●

●

●

●

●

●

●

●

0.02

0.04

0.06

0 5000 10000 15000 20000

size

A
cc

ur
ac

y/
T

im
e(

s)

Fig. 3 Graphical representation of the rate between predic-
tion capacity and time required to learn for different values
of size

Table 10 Running time (in seconds) for different values of
the t parameter fixing size = 1000

1 5 10 15
cens 94.60 94.44 93.04 100.98
covt 456.40 322.70 278.99 276.54
fars 11.60 10.67 10.49 11.01

kddc 150.50 88.32 83.69 83.34
poke 417.10 131.93 245.78 159.20
susy 1899.70 794.85 854.77 965.80

hepm 4284.80 3771.92 3257.22 3294.09
Mean 1044.96 744.98 689.14 698.71

Table 11 Number of rules for different values of the t pa-
rameter fixing size = 1000

1 5 10 15
cens 15.00 15.00 15.00 15.00
covt 92.60 74.30 66.70 66.70
fars 2.70 2.70 2.70 2.70

kddc 5.70 5.70 5.70 5.70
poke 186.80 86.90 160.50 107.30
susy 175.90 75.70 93.40 115.10

hepm 177.50 167.20 157.90 161.69
Mean 93.74 61.07 71.70 67.74

practically constant. However, it is easy to verify that

it has a great influence on the time required to learn.

This influence can be clearly appreciated in Fig-

ure 4, where the ratio between accuracy and runtime

is shown for different t values. It can be observed that

for values of t less than 10 the ratio increases progres-

sively. From t = 10 that value is maintained and even

decreases a little. This behavior shows that when the

size of E→i (t) is greater than the size of an episode the

learning time is reduced while accuracy is maintained.

This improvement is due to the fact that the value of

the estimated threshold triggers less re-learning pro-

cesses since it has more global information of how the

following examples are that you will have to process. An

excessive value in this parameter would not provide this

advantage since the time consumed in the verification

does not compensate for the reduction in time.
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Fig. 4 Graphical representation of accuracy/running time
for different values of the t parameter, fixing size = 1000

Therefore, the experiments performed show that to

take t = 10 can significantly reduce the learning time,

without affecting the prediction capacity.

6.4 Study on the influence of the k parameter

The k parameter determines the size of the set of exam-

ples (E←i (k)) used to estimate the weight of the rules

learned in the i−th episode. In this subsection, we want

to illustrate the influence of this parameter on the be-

havior of the proposal. Thus, for this experiment, we

set the number of labels to 7, size=1000 and t = 10.

The rest of the parameters, that are not subject of this

study, remain with the same value.

Tables 12 and 13 show the prediction capacity and

the execution time of the proposal for 4 different values

of k. Among these values, k = 1 has been considered,

that is, E←i (k) = Ei.
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Table 12 Accuracy on test set (in %) for different values of
the k parameter fixing size = 1000 and t = 10

1 10 20 30
cens 92.62 94.22 94.21 94.22
covt 69.14 75.44 75.57 75.45
fars 99.99 99.99 99.99 99.99

kddc 99.66 99.66 99.66 99.66
poke 54.53 54.45 54.17 54.14
susy 57.17 69.54 68.64 69.36

hepm 62.43 79.94 80.32 80.07
Mean 76.51 81.89 81.79 81.84

Table 13 Running time (in seconds) for different values of
the k parameter fixing size = 1000 and t = 10

1 10 20 30
cens 132.16 93.04 95.49 99.95
covt 630.45 278.99 301.37 303.68
fars 12.92 10.49 10.67 11.50

kddc 145.73 83.69 86.04 92.39
poke 831.83 245.78 259.30 271.84
susy 3238.92 854.77 850.91 884.82

hepm 7134.20 3257.22 3667.22 3792.01
Mean 1732.32 689.14 753.00 779.46

The obtained results show that for k = 1 the pro-

posal has a significantly lower prediction capacity and

a significantly longer execution time than for the rest

of the values considered of k. This fact shows the use-

fulness of the E←i (k) set to update the weight of the

rules taking into account previous examples.

Except for k=1, for the rest of values of k there are

no significant differences in time or prediction capac-

ity. Also, it can be observed that while in precision the

average values remain constant, in the case of the ex-

ecution time a slight increase can be appreciated as k

grows. For this reason, we consider that k = 10 is an

appropriate value for this parameter.

6.5 Study on scalability

Now we want to show how the proposal works as the

number of examples in the training set increases. Table

14 shows the results obtained at runtime and number

of rules for the susy database considering size = 1000,

t = 10 and k = 10.

Table 14 Size-up on the Susy database

1% 10% 20% 30% 100%
time 68.5 235.9 409.6 412.9 689.1
rules 61.9 63.1 61.7 74.5 93.4

The figure 5 shows the growth in runtime taking dif-

ferent percentages of examples from the database. Two

tendencies can be clearly observed, on the one hand
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Fig. 5 Graphical representation of the relation between per-
centage of data used of the Susy database and running time

in the initial phase of the process (in the case of susy

up to 20%) the time grows with a steeper slope and

a second part where the growth is maintained with a

much milder slope. The first part reflects that the al-

gorithm needs time to find a set of rules that accom-

modate the new episodes. During this time the process

of re-learning new rules to readjust the knowledge is

executed more times, which causes a higher time con-

sumption. In the second part, the slope of growth is

lower because it is not necessary to re-learn so many

times.

The dashed line reflects the estimated time for ex-

ecution of the algorithm assuming that each episode

learns independently without making use of the knowl-

edge generated in previous episodes. Compared to that

theoretical time, the actual execution consumes only

about 10%.

In relation to the number of rules, as shown in Table

14, we can observe a slight growth depending on the

number of examples used, but in no case an exponential

growth.

From these results, we can deduce that the algo-

rithm presents a good efficiency in relation to the in-

crease in the size of the sets of examples both in execu-

tion time and in the number of rules obtained.

6.6 Comparison of the proposal with parallel models

Now, we want to study the performance of this proposal

in comparison with parallel models. We will carry out



An Incremental Approach to Address Big Data Classification Problems Using Fuzzy Rules 17

the comparison using the same databases described in

the paper, which coincide with the first five of those

initially described. Specifically, we first compare with

the proposal describe in [36]. In this paper, a classi-

fication algorithm (called Chi-FRBCS-BigData ap-

proach) for addressing the Big Data problems was pro-

posed. This algorithm combines the MapReduce ap-

proach with a fuzzy classification algorithm called Chi

[4]. In [36], a study of the influence of the number of

maps in the accuracy and running time on the Chi-

FRBCS-BigData approach is presented. In [11] a new

study on the same algorithm is proposed. In that work,

an analysis on the most appropriate number of fuzzy

labels used for discretizing the domain of continuous

variables is included. The second paper uses the same

databases that have been used in this work. Further-

more, in this second work, a new value of maps 512

is included. The global results obtained for each value

of maps taking 7 fuzzy labels (that is, with the same

discretization used in the global experimental part) is

shown in Table 15.

Table 15 Results in prediction capacity and running time
of the overall average of the datasets for different value of
maps using the algorithm based on the MapReduce approach
proposed in [11] using a discretization of 7 fuzzy labels

#Maps

32 64 128 256 512

Test 88.57 88.51 88.41 88.33 88.27
Time 8331.4 4886.5 5248.4 6012.56 6727.2

This table shows that the classification algorithm

based on the MapReduce model presents an accuracy

similar that our proposal. When the number of exam-

ples presented to the algorithm increases the global ac-

curacy of the knowledge obtained also increases. In this

case, a small value in maps represents a training set

with a high number of examples.

Using the same rate between prediction capacity

and time used in the previous subsection we can deter-

mine the most convenient number of maps. In Figure 6

the distribution of these values obtained for each maps

value is shown.

Figure 6 shows that the best combined value is found

for maps = 64.

To make the comparison of the prediction capability

we will use the Area Under the ROC Curve (AUC) used

in [9].

Table 16 presents the result obtained by both the

parallel and incremental version (this last with size =

1000, k = 10 and t = 10).
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Fig. 6 Graphical representation of the rate between accu-
racy(%) and running time (secs) obtained for each value of
maps in [11] using a discretization of 7 fuzzy labels

Table 16 Comparison on prediction capacity between the
incremental algorithm and parallel approach proposed in [11].
The version of the incremental algorithm with the following
parameter size = 1000, k = 10 and t = 10. Two aspects
have been studied, capacity of prediction (AUC) and runtime
(time).

Incremental Parallel
AUC time AUC time

cens 0.56 94.4 0.68 406.8
covt 0.92 322.7 0.87 4282.9
fars 1.00 10.7 0.99 159.4

kddc 0.99 88.3 0,99 15169.5
poke 0.54 131.9 0.59 4414.0

Table 16 shows that the incremental version is sig-

nificantly better in learning time, and gets the best re-

sult on all databases studied. As for the prediction capa-

bility, there are no significant differences. The MapRe-

duce version clearly gets the best result on poke and

cens, while the rest of the results get very similar val-

ues.

In [9] CHI-BD an improved version of the parallel

model proposed in [11,36] is described. This model also

uses Chi as a learning algorithm. The advantage pro-

posed in this work is that the set of rules obtained after

the learning process is independent of the number of

maps, that is to say, it would be the same set of rules

obtained if you worked with all the examples in a single

node. We will carry out the comparison using the same

databases described in the paper, which coincide with

the first six of those initially described.

Table 17 shows the results of the incremental algo-

rithm and CHI-BD, considering as aspects to study, the

area under the ROC curve, the time required for learn-

ing and the number of rules. The star added in some of
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Table 17 Comparison on prediction capacity between the
incremental algorithm and CHI-BD. The incremental algo-
rithm uses the following paramenters size = 1000, k = 10
and t = 10. Three aspects have been studied, capacity of pre-
diction (AUC), runtime (time) and number of rules (rules).
The star added in some of the databases indicates that the
databases used for the results obtained with the incremental
version are not exactly the same as those used in the study
proposed in [9]

Incremental Parallel
AUC time rules AUC time rules

cens 0.56 94.4 15.0 0.62 96 63598
covt* 0.92 322.7 74.3 0.74 75 8108
fars* 1.00 10.7 2.7 0.87 82 49584

kddc* 0.99 88.3 5.7 0,99 76 5734
poke* 0.54 131.9 86.9 0.59 100 54254

susy 0.72 794.9 75.7 0.62 103 9505

the databases indicates that the databases used for the

results obtained with the incremental version are not

exactly the same as those used in the study proposed

in [9]. In all cases, they are reductions from a multiclass

problem to a binary problem. In the ones used in this

work, one class is considered against another (OVO),

not considering the examples of the rest of classes. In

the other case, it is considered a class against the rest of

the classes (OVA). In both cases, the class considered as

positive for all the databases used coincides, although

obviously, the OVA case includes more examples of the

negative class. Therefore, the data contained in the ta-

ble should be considered as indicative. In any case, the

database cens and susy do coincide exactly.

The following conclusions can be drawn from the

results shown in Table 17:

– The number of rules obtained by the incremental
version is much lower than the number obtained

by the parallel approximation. Obviously, the rule

model used in our proposal allows greater expres-

siveness and a single rule summarizes the informa-

tion of many rules of the basic rule model. Espe-

cially noteworthy is the result of the fars database,

where the incremental model with an average of 2.7

rules allows to classify all the examples of the posi-

tive class, while the parallel model gets 49584 rules.

The complete set of fars with their 8 classes contains

100968 examples. This implies that each rule con-

tains an average of 2 examples. The fact of having

a high number of rules, not only implies a prob-

lem of loss of interpretability of the acquired knowl-

edge but also entails the additional problem of caus-

ing high time costs during the inference process. In

these cases, when there are a very high number of

rules, it is possible that the basic inference algorithm

on fuzzy rule sets is not very efficient and must be

adapted, either in parallel (with a MapReduce phi-

losophy, for example) or by developing a new more

efficient inference algorithm, in cases where paral-

lelization is not a possible option.

– Regarding the execution times, CHI-BD obtains very

good results, being remarkable those obtained in

covt and susy where it improves with clarity to those

obtained by the incremental model. In the rest, the

times are similar, except in fars, a unique database

where the incremental clearly obtains the best re-

sult.

– As for the AUC results, the incremental model ob-

tains the best result in half of the databases. As it

happened in the comparison with the previous par-

allel model, with this one the parallel model outper-

forms the incremental model in cens and poke.

From the comparative study of our proposal with re-

spect to the two parallel models, we can conclude that

there are databases where it is advisable to use a paral-

lel approach since it obtains better results both in accu-

racy and time of execution, in our study, the databases

cens and poke. However, there are others where the in-

cremental model is presented as a better alternative.

The fars database is an example of this. We think that

databases where the redundancy of the examples can

be easily expressed, through the rule model presented

in this paper, are favorable to the incremental model.

In databases where this is not verified or is only par-

tially verified, the parallel model based on MapReduce

might be more appropriate.

7 Conclusion

Working with a massive amount of data is a problem for

most learning algorithms. In this work, we have first an-

alyzed the use of the paradigm of divide and conquer in

order to solve big data problems. The MapReduce ap-

proach appears as a possibility within this model that

makes use of parallel computing. Another approach wi-

thin the previous paradigm is the sequential model, that

it is clearly an alternative to the classical MapReduce

approach, which is explored in this work. The sequential

model makes use of a batch-incremental learning algo-

rithm based on the use of a cognitive computational

model of learning fuzzy rules. We have given a com-

plete description of this model and have carried out

an experimental study that has allowed us to adjust

some of the parameters. A comparison has also been

made with a parallel model, proving that the results

are quite competitive. However, there are some points

that will require further study to improve the model.

In particular, the estimation of the threshold parame-

ter is very important for the algorithm and requires ad-
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ditional study, as well as the calculation of the weight

of the rules, currently, an estimate is made on a set

of episodes, but an estimate closer to the real weight

would probably improve the final results.
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21. González, A., Pérez, R.: Improving the genetic algorithm
of slave. Mathware and Soft Computing 16, 59–70 (2009)
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