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produces fast response times when the set of rules is small and is applied
to a small set of examples. In this paper we explore new versions to imple-
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analysis on the neighborhood of rules around the example. We study exper-
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good accuracy results and a significant reduction in the response time.
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1. Introduction

One of the fundamental components of knowledge-based systems is the
inference engine. In the design of fuzzy rule based systems this component is
related with the use of fuzzy reasoning [18]. There is a large number of works
that analyze, study alternatives and apply the fuzzy reasoning [4, 12, 13, 15,
16]. However, the inference for classification problems with fuzzy rules when
there is a high number of fuzzy rules have not been studied enough.

The complexity of the inference of the winning rule for classification prob-
lems depends on three factors, the number of rules, the number of examples
and the number of variables considered in the antecedent of the rules. Thus,
when the complexity of this process is not large the time required to perform
the inference is negligible and the process followed does not matter. However,
when some of these factors are large, the process can be time consuming and
it is convenient to analyze in detail how it can be done in an efficient way.

Although there may be a certain relationship between the three factors,
for example, a large number of examples and variables may imply a large
number of rules, we will focus our study on reducing the influence of the
number of rules on the inference method, since both the number of variables
and the number of examples depend on the problem.

The problem of inferring over a large set of rules has not been frequently
raised in the literature to the best of our knowledge. In [2], an inference
model combining the algorithm defined for Mamdani systems [11] and TSK
systems [14] is proposed, but it is experimented on only a set of 256 rules, and
it does not solve the problems that arise in classification problems when large
number of rules are needed. The problem has not really become apparent
until massive datasets considered as big data have been used [7, 8].

One way to reduce the influence of the factor number of rules in the
process is to avoid reviewing all the rules by focusing the search for the best
or winning rule on the rules in a neighborhood of the example. The idea of
neighborhood, which we will define later, corresponds to those rules that are
likely to have an influence on the example, and which can be constructed in
a simple way from the example.

The main problem of the neighborhood of an example is that it could also
contain a very large set of rules, so it is necessary to define certain heuristics
that allow the search for the best rule to be performed as efficiently as possible
and thus reduce the response time of the inference method.

The basic idea of using a neighborhood exploration method to propose
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a fuzzy rule inference algorithm was first proposed in [10]. In this paper,
starting from the basic algorithm, we propose some improvements aimed at
reducing the response time of inference in complex problems. In this way, the
main contribution is the definition of a hybrid fuzzy rule inference method
that combines the different proposals made in this work and that is obtained
from the experimental study.

The process we have followed to carry out the experimental study is as
follows. We select a set of datasets with different levels of complexity, from
very simple datasets to datasets commonly used in big data problems. On
these datasets we apply the Chi algorithm [3] to obtain a set of rules for each
dataset. We use these rule sets to test the effectiveness of each proposed
inference algorithm.

The organization of the paper is as follows. In the next section we de-
scribe in detail the different steps of the winning rule inference method for
classification, and from that description we propose a standard algorithm to
perform the inference that can be interpreted as a linear search for the best
rule in the set of rules where the inference is performed, from this proposal
and an improvement of it, we propose in the next section a change of model
in which the search is not done directly in the set of inference rules but in the
neighborhood of the rule, and different improvements of the basic proposal
are proposed. In Section 5, an extensive experimental study is carried out
and the results are discussed.

2. Problem definition

With the idea of analyzing the possible problems posed by the inference
with fuzzy rules, first, we describe in detail this process of inference. To do
this, we describe the fuzzy rule model with weight that we use and step by
step the operations that are necessary to perform.

Given n linguistic variables Xi, i = 1 . . . n, where each variable has a
fuzzy domain Di composed of ni = |Di| linguistic labels

Di = {Ai
1, A

i
2, . . . , A

i
ni
}.

Given these variables, their associated domains and a consequent variable
Y representing the class to be learned, the set of all weighted fuzzy rules that
could be defined is named RG, and each rule has the form

R : IF X1 is A1
j1

and X2 is A2
j2

and . . . and Xn is An
jn
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THEN Y is B with weight w(R)

where Ai
ji

is a particular value of the domain Di, Y is a discrete variable
with an associated domain DY representing the consequent of the rule, and
B a particular value of this domain, and w(R) is a measure of the weight
associated with the rule.

As we have said, RG is composed by all the possible rules that can be
generated with the n antecedent variables, with the consequent variable and
with the different associated weights.

Now, we consider a particular set of fuzzy rules for which we want to
define the inference process, this set could be obtained, for example, as the
output of a rule learning algorithm as [3]. We will note this set as

RI = {R1, R2, . . . , Rm}
and obviously

RI ⊆ RG.

From this set of rules RI and a given example e=(e1, e2, . . . , en), the fuzzy
reasoning allows us to obtain the class associated with this example given
the set of rules. The procedure for obtaining the class associated with the
example is very simple using the well-known method of the winning rule and
it has the followings steps:

� First we calculate the adaptation between the example e and the an-
tecedent of a rule R ∈ RI by applying a t-norm T

A(R, e) = T (µA1
j1

(e1), . . . , µAn
Jn

(en)),

where µAk
jk

is the membership function of the fuzzy sets Ak
jk

.

� Next we incorporate the weight of the rule into this adaptation using
a certain operator Op

h(A(R, e), w(R)) = Op(A(R, e), w(R)).

� Finally we select the rule of RI that maximizes this value, that is to
say,

maxR∈RIh(A(R, e), w(R)) (1)

and the class associated with that rule is assigned to the example.
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Frequently, the minimum or the product are used as T-norms, and the
product is used as the operator Op.

In this way the inference model of the winning rule used in classification
can be solved through the optimization process described by equation 1.

Thus, given an example e=(e1, e2, . . . , en) the calculation of the class as-
sociated with the example given the rule set RI can be solved by an algorithm
that checks the adaptation of the example to each rule sequentially, calculates
the weight and keeps the maximum value. This process can be understood,
for each example, as a search for the best rule using the Equation 1 as op-
timization criteria. Algorithm 1 describes the different steps for a particular
example e and the set of rules RI .

Algorithm 1 Linear search

1: function Standard Inference(e, RI)
2: BestCurrentMatching = 0
3: for i = 1 to m do
4: CurrrentMatching = 1
5: for j = 1 to n do
6: CurrentMatching = T(CurrentMatching, µAj

ij

(ej))

7: end for
8: CurrentMatching = Op(CurrentMatching, w(Ri))
9: if CurrentMatching > BestCurrentMatching then

10: BestCurrentMatching = CurrentMatching
11: Class = ClassOfRule(i)
12: end if
13: end for
14: return Class
15: end function

This algorithm has a time complexity O(mxn), being m the number of
rules where the inference is made and n the number of variables of each rule,
and the whole process is repeated for each example. Obviously, the inference
is very dependent on the number of rules that our system has. In simple prob-
lems really the inference can be applied without any inconvenience, however,
there are problems in which the number of rules is very high.

Thus, this inference model has been used on classifiers and problems with
massive data [7, 8]. These methods using the MapReduce model [5, 6], and
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the Chi algorithm [3] learn a fuzzy rules set in a relatively fast way but
obtaining a very high number of rules. When it is necessary to perform the
inference with massive datasets and on a problem with a very high number of
rules, the problem is that the inference can be very slow, or even impossible
to do in an acceptable time [10].

A simple improvement of the previous algorithm is to change the linear
search of the best rule to a linear search with pruning (see Algorithm 2). The
idea is very simple, during the search we keep the value of the best adaptation
between the example and the rule calculated so far, and if the current partial
calculation of the adaptation of a component of the example with part of the
rule is already worse than the best adaptation we have calculated, obviously
since we use a t-norm, that rule cannot compete with the best rule anymore
and we can abandon the calculation of the rest of the adaptations.

Algorithm 2 Linear search with pruning

1: function Standard Inference Prunned(e, RI)
2: BestCurrentMatching = 0
3: for i = 1 to m do
4: CurrentMatching = w(Ri)
5: while j ≤ n and CurrentMatching > BestCurrentMatching do
6: CurrentMatching = T(CurrentMatching, µAj

ij

(ej))

7: j = j + 1
8: end while
9: if CurrentMatching > BestCurrentMatching then

10: BestCurrentMatching = CurrentMatching
11: Class = ClassOfRule(i)
12: end if
13: end for
14: return Class
15: end function

This algorithm is an improved version of the algorithm proposed in [10]
in which the own weight is used to perform pruning. Obviously the result of
Algorithm 2 as opposed to Algorithm 1 depends on the order in which the
rules are explored, however, in any case it is an improvement over the basic
version since it reduces the number of calculations needed to obtain the class
of the winning rule although in the worst case it is still O(mxn).
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3. Exploring the rules in the neighborhood of the example

The idea of this section is to explore alternative ways to make the in-
ference that can reduce the calculation time used by Algorithms 1 and 2.
Fundamentally these improvements can be interpreted as alternative ways
to solve the optimization problem described by the Equation 1. The idea of
pruning raised in Algorithm 2 is an interesting idea that we maintain in the
successive improvements that we propose. However, to make a qualitative
leap in improving the inference process when we have a very high number of
rules, it is necessary to change the search process radically. The central idea
is to change the search space. This space is no longer RI , it is RG.

Although it seems surprising searching in a larger space may reduce the
response time, the reason is that the search will be focused on a subset of
rules in the neighborhood of the example. Moreover, the search starts at a
specific point in this space, that is, the rule that best fits the example.

To this end, given an example e, the set of rules that have strictly positive
adaptation with the example is defined by

N(e) = {R ∈ RG|h(A(R), e) > 0}.

N(e) contains all the rules that cover the example e to a positive degree,
so it contains the rules that could be triggered by that example, or in other
words the set RG−N(e) corresponds to the rules that could not be triggered
by the example in any way. We call N(e) the neighborhood of the example.
The elements of N(e) do not have to be rules from the RI set and therefore
do not have to be rules that participate in the example’s inference, i.e,

N(e) 6⊆ RI .

However, the winning rule must necessarily belong to the set N(e) since
it needs to have a positive adaptation with the example to be the solution to
the optimization process defined by the Equation 1. Therefore the winning
rule is found in the set

N(e) ∩RI .

A relevant rule of the setN(e) is the rule that contains the best adaptation
of each component of the example with each antecedent variable of the rule.
This rule that we call the central rule of N(e) and we notice for C(e) does
not have to belong to the set RI .
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Figure 1: Tree representing the set N(e) where Xi are the antecedent variables and L1

is the label with the best adaptation to the example and L2 is the label with the worst
adaptation to the example, for problems in where for each real value of the domain there
are only two labels with positive adaptation

Our idea is to define a search process on the set N(e), always taking into
account that if the explored rule does not belong to the set RI it will not be
considered, and taking as a starting point the central rule of the set N(e).

Thus, with the idea of exploring the set N(e) to select the winning rule, we
represent this set by a tree. This tree has in each node a variable, and in each
arc a possible value of this variable, among those values (fuzzy labels) which
have positive adaptation with the example, representing the assignment of
that value to the node variable. The leaf nodes in this tree represent the
antecedents of all possible rules of N(e).

Figure 1 represents an example in which we have four antecedent variables
X1, X2, X3 and X4, where for simplicity in the representation we suppose
that for each real value of the domain there are only two labels with pos-
itive adaptation (see Figure 2) except at the end points, as it happens for
example when we take domains where the labels are uniformly distributed.
We will notice for L1 the label (among the fuzzy labels of the domain of
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Figure 2: A domain for which each real value has positive adaptation with exactly two
fuzzy labels except at the end points

the corresponding variable) with the best adaptation to the example and for
L2 the label with the worst adaptation to the example. When a value has
adaptation with more than two labels, the idea is the same and we use as
many literals Li as necessary, and L1 would represent the label with the best
adaptation, L2 the second best, and so on.

Figure 1 shows the tree and each internal node represents an antecedent
of a partially assigned rule. For example, the inner node of the tree with
a bold square represents the assignment to the antecedent variables of the
following values

(X1 = L2, X2 = L1, X3 = Unassigned,X4 = Unassigned).

and therefore a rule with the following antecedent

IF X1 is L2 and X2 is L1 THEN ...

However, each leaf node represents a complete assignment of values to the
four variables, as for example the tree leaf node with a bold square in the
Figure 1 represents the assignment to the antecedent variables of the following
values

(X1 = L1, X2 = L2, X3 = L2, X4 = L2).

and therefore a rule with the following antecedent

IF X1 is L1 and X2 is L2 and X3 is L2 and X4 is L2 THEN ...
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This tree is a complete representation of all the antecedents of the rules of
N(e) through the tree’s leaf node. We use this representation to describe
the different search algorithms that represent the inference process. The
description that we have made of the tree, associating each level of the tree
to a new assignment of a value to a variable facilitates during the search
process the inclusion of the pruning defined in the Algorithm 2.

The first proposal to calculate the winning rule based on the exploration
of the set N(e) that we propose is described by Algorithm 3 and it uses
a backtracking search algorithm on the tree associated to N(e) with the
following particularities:

� In each node of the search we have a partial assignment of values to
variables (the assignment is complete in the leaf nodes) and we use
this partial assignment to calculate the partial adaptation between the
example and that assignment, when that value is worse than the value
of the best complete assignment obtained so far the node is pruned, i.e.,
the search process stops at that node and causes a backward movement.
As we have commented before, all the rules that could be obtained from
that node are worse than another one we have found.

� When during the search we reach a leaf node then we have a complete
assignment, in that moment we check if there is a rule in RI with that
antecedent, if not found in this set the leaf node is ignored, otherwise
we consider it in the calculation of the winning rule. We have used a
hash table for the implementation of the rules of the set RI , so checking
if the antecedent of the rule in a leaf node belongs or not to RI is done
in a very efficient way.

Due to the way the previous tree was created, the backtracking search
(Algorithm 3) starts by exploring the central rule of the example, then goes
through the rest of the neighborhood rules, discarding the rules that do not
belong to the RI inference rule set or those that we are sure will have a worse
adaptation than the best one found so far.

The last parameter MaxRule establishes the maximum number of rules
that this inference process will check in the neighborhood of the central
rule. When MaxRules=∞ is taken, no limitation on the number of rules is
considered.
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Algorithm 3 Backtracking search with pruning in the neighborhood of the
example

1: function Neighborhood Inference(e, RI , MaxRules)
2: vector σ[n]
3: for i=1 to n do
4: σ[i] = i
5: end for
6: return BackTrack (1, ∅, 1.0, 0.0, ∅, MaxRules)
7: end function

8: function BackTrack(i, CurrentRule, CurrentAdapt, &BestAdapt, &CurrentClass,
&MaxRules)

9: if (MaxRules ≤ 0 then
10: else if (CurrentAdapt ≤ BestAdapt) then
11: return
12: else if (i == n) then
13: MaxRules = MaxRules− 1
14: if (CurrentRule ∈ RI) then
15: w = WeightOf(CurrentRule)
16: CurrentAdapt = Op(CurrentAdapt, w)
17: if (CurrentAdapt > BestAdapt) then
18: BestAdapt = CurrentAdapt
19: CurrentClass = ClassOf(CurrentRule)
20: end if
21: end if
22: return CurrentClass
23: end if
24: for j=1 to |Di| do
25: if (µAi

j
(ei) > 0) then Push back(v,Ai

j)

26: end if
27: end for
28: Sort(v)
29: for k=1 to |v| do
30: CurrentClass = BackTrack (σ[i + 1], Append(CurrentRule, Xi is Ai

k),
T (CurrentAdapt,Ai

k(ei), BestAdapt, CurrentClass, MaxRules)
31: end for
32: return CurrentClass
33: end function

In the implementation of Algorithm 3 two functions have been used:
a main non recursive function (called Neighborhood Inference) that
receives the previous parameters and uses an auxiliary recursive function
(called BackTrack) that really implement the inference. With the idea
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that the recursive function can be used in the description of the following
algorithms, we use a σ function that associates each index i with itself. This
function is really important in the next algorithm.

The parameters used in the BackTrack function are:

� i is the index of the variable being evaluated at any given time, for
1 ≤ i ≤ n. Since σ keeps the index unchanged, the variables are
processed in the default order, that is, first the first variable, second
the second variable, and so on. In the following algorithm we will
change this order using the function σ.

� The variable CurrentRule stores the antecedent of the rule to be eval-
uated, initially is an empty string, and the antecedent is obtained by
adding assignments of values to variables following the downward move-
ment through the tree associated to N(e). When i=n the assignment
has been finished and we have a complete antecedent of a rule.

� The variable CurrentAdapt is the degree of adaptation of the an-
tecedent described in CurrentRule from the first to the i-th variable.

� The variable BestAdapt is the best adaptation of a complete antecedent
among all that has been evaluated previously. Initially its value is zero.

� The variable CurrentClass is used to store the consequent or class of
the rule that provided the value to BestAdapt.

� The variable MaxRules is the maximum numbers of rules in the neigh-
borhood of the example to be explored.

Some of the arguments of the BackTrack function have a & symbol
indicating that those arguments are passed by reference, while those that
do not have it are passed by value. This distinction between both types of
argument passing is relevant for the behaviour of the recursive process.

Finally, it is also used in the algorithm the example that is being inferred
e, being ei the i-th component of this example, the domains of the antecedent
variables, being Di the domain of the i-th variable and RI the the set of rules
used in the inference process.

The description of the process is as follows. There are three stop condi-
tions,
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� the first one uses the parameter MaxRules and will be explained later,

� the second one applies when the adaptation obtained up to the vari-
able i, that is CurrentAdapt, does not exceed the adaptation of the
best existing rule in the rule base already found, that is, the value of
BestAdapt. In this case, a pruning is done and it goes to look for
another option.

� The last stop condition occurs when all the antecedent variables (i = n)
are instantiated. In this case, it is checked if the rule with the current
antecedent is in the rule set RI . If it is, the weight of the rule is taken
and the function h is calculated from the Equation 1. If the value of
the function h is bigger than the one of BestAdapt, then BestAdapt is
changed with this new adaptation and the class is the class of this rule.
Otherwise, this rule is not considered as an alternative to give output
to the inference and is ignored.

When neither of the three stop conditions is true then all the labels of the
variable Xi that have adaptation with the component i of the example are
taken and ordered from greater to lesser in a vector v. For each one of the
labels with non-zero adaptation of the i-th variable a recursive call is made
(step 30) using now the next variable (Xi+1), and the following parameters:

� a new CurrentRule in which to the antecedent defined by previous
CurrentRule a new antecedent component, such that ‘Xi is Lk’, is
added, being Lk the k-th label of the reordered Di domain,

� a new CurrentAdapt variable defined as the t-norm between the one we
already had and the adaptation between the component of the example
with the k-th label,

� and finally the BestAdapt and CurrentClass variables.

The ranking described in lines 24 to 28 of the Algorithm 3 consists of
detecting those fuzzy labels with positive adaptation with the component of
the example, and once detected, sort them in a decreasing way following the
structure of the tree described above.

Now it is time to explain the reason for the first stop criterion. This algo-
rithm explores the rules in the neighborhood of the example, and as we have
already said, these rules do not have to belong to the RI set. This search
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is more efficient than exploring the RI set directly in many cases, but when
the example is not covered by any rule from that set the process becomes
inefficient as it requires exploring all the rules in the example’s neighborhood
before realizing that no rule is applicable. To avoid this problem we include
the parameter MaxRules that limits the number of rules the algorithm ex-
plores. When the MaxRules parameter is taken as infinite, the output of
this algorithm must be exactly the same as the two previous algorithms, ex-
cept for possible ties in the value of the function h. This may be due to
the fact that in the two previous models there is an order between the rules,
and that order allows solving ties. In the new algorithm we do not have an
order of the rules in the previous sense, so it can be solved in different ways.
For smaller values of the parameter the algorithm becomes an approximate
method for making the inference.

The complexity of this algorithm does not depend now on the number of
rules in the set RI , but it depends on the number of antecedent variables n,
in fact the algorithm must explore all the rules of the neighborhood of the
example (when MaxRules = ∞), therefore it will have a complexity O(2n)
(If we assume that every real value in the range of each variable is covered
by exactly two linguistic labels, as is the case, for example, in domains where
the labels are uniformly distributed). Although it does not actually involve
all the antecedent variables, it only involves the continuous variables with an
associated fuzzy domain. The possible improvement of this algorithm over
the two previous ones depends on the concrete problem, and in particular on
the number of rules of the set RI and the number of antecedent variables n
as we will study in the experimental section.

Algorithm 3 is the reference model for all the neighborhood search pro-
cesses we have defined in this paper. A first improvement of this algorithm
is related to the use of a heuristic function that allows us to explore the vari-
ables Xi is an order other than the default. The order in which the variables
are explored obviously influences the pruning process, so once we have cal-
culated the partial adaptation between the component in the example and
the different fuzzy labels of the variable, if the adaptation between the best
fitting label and the adaptation between the worst fitting label is very large,
that means that the use of that variable is more interesting than if the dif-
ference between the adaptations is smaller. The reason is that the greater
the difference, the greater the value of the best adaptation is and therefore
we begin by exploring those variables with the labels that have the best
adaptation. The heuristic that describes the previous idea is the following:
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∆(i) = maxj(µAi
j
(ei))−minj(µAi

j
(ei)).

Algorithm 4 is an adapted version of Algorithm 3 in which we explore
the variables not in a default order but in a decreasing order based on the
heuristic ∆. The reordering of the variables makes use of the σ function that
records the most convenient order for their exploration following the idea of
heuristics.

Algorithm 4 Heuristic backtracking search with pruning in the neighbor-
hood of the example

1: function Heuristic Neighborhood Inference(e, RI , MaxRules)
2: vector σ[n], ∆[n]
3: for i=1 to n do
4: σ[i] = i
5: ∆(i) = maxj(µAi

j
(ei))−minj(µAi

j
(ei))

6: end for
7: Sort(σ) using ∆ heuristic
8: return BackTrack (σ[1], ∅, 1.0, 0.0, ∅, MaxRules)
9: end function

The last of the algorithms we propose based on the exploration of the
neighborhood of the example is based Algorithm 4, but adds a new heuristic
criterion. This new algorithm will make use of a pruning process and the ∆
heuristic described above, and will of course explore the neighborhood of the
example, but now we introduce a new parameter that limits the neighborhood
that can be explored. Since Algorithm 4 starts exploring the central rule of
the example and from that rule it explores rules that we have heuristically
ordered from best to worst, now instead of exploring all the neighborhood
rules, the search is limited to a neighborhood near the central rule, and that
proximity will be determined by a distance parameter.

Thus we define a measure of distance between rules. Given two rules from
the set RG

R1 : IF X1 is A1
r1

and X2 is A2
r2

and . . . and Xn is An
rn

THEN Y is B1 with weight w(R1)
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R2 : IF X1 is A1
s1

and X2 is A2
s2

and . . . and Xn is An
sn

THEN Y is B2 with weight w(R2)

We define the distance between the two rules as follows:

d(R1, R2) =
n∑

i=1

δi(R1, R2)

where

δi(R1, R2) =


0 if Ai

ri
= Ai

si

1 otherwise.

In this way the distance between two rules is defined as the number
of antecedent variables that have different assignment in each rule. The
definition of near neighborhood makes use of the distance to the central rule
as follows:

Nd(e) = {R ∈ N(e)|d(R,C(e) ≤ d}.

Special cases of this definition would be:

N0(e) = {C(E)}

and
N∞(e) = N(e).

That is, when the distance is zero we only have in the set the central rule,
and when the distance is infinite the set is all N(e).

Well, the basic idea of the Algorithm 5 is to keep the elements that have
been added in the Algorithm 3 and 4, but to make use of a parameter d that
limits the search to the space Nd(e) with the idea of making more efficient the
process of search and making use of the heuristic criterion that the proximity
to the central rule has direct influence in the detection of the winning rule.

In the description of this algorithm we changed the structure of the recur-
sive function BackTrack to that new BackTrack2 function to include
the parameter distance and use it conveniently.
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Algorithm 5 Heuristic backtracking search with pruning in the nearby
neighborhood of the example defined by a distance measure

1: function Heuristic Nearby-Neighborhood Inference(e, RI , d)
2: vector σ[n], ∆[n]
3: for i=1 to n do
4: σ[i] = i
5: ∆(i) = maxj(µAi

j
(ei))−minj(µAi

j
(ei))

6: end for
7: Sort(σ) using ∆ heuristic
8: return BackTrack2(σ[1], ∅, 1.0, 0.0, ∅, d)
9: end function

10: function BackTrack2(i, CurrentRule, CurrentAdapt, &BestAdapt, &Current-
Class, Distance)

11: if (Distance < 0 then
12: return
13: else if (CurrentAdapt ≤ BestAdapt) then
14: return
15: else if (i == n) then
16: MaxRules = MaxRules− 1
17: if (CurrentRule ∈ RI) then
18: w = WeightOf(CurrentRule)
19: CurrentAdapt = Op(CurrentAdapt, w)
20: if (CurrentAdapt > BestAdapt) then
21: BestAdapt = CurrentAdapt
22: CurrentClass = ClassOf(CurrentRule)
23: end if
24: end if
25: return CurrentClass
26: end if
27: for j=1 to |Di| do
28: if (µAi

j
(ei) > 0) then Push back(v,Ai

j)

29: end if
30: end for
31: Sort(v)
32: for k=1 to |v| do
33: CurrentClass = BackTrack2(σ[i + 1], Append(CurrentRule, Xi is Ai

k),
T (CurrentAdapt, Ai

k(ei), BestAdapt, CurrentClass, Distance-(k-1) )
34: end for
35: return CurrentClass
36: end function
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4. Discussions of experimental results

Once we have described the different methods to perform inference on
fuzzy rules in classification problems, in this section we will analyze the be-
havior of these methods. This study is conducted in two steps, first we
analyze the behavior of the algorithms that we can consider exact, i.e., they
return exactly the class of the winning rule. This first study involves Algo-
rithms 1, 2, 3 and 4, although Algorithm 1 finally is not considered, since its
results are the same as those produced by Algorithm 2 in terms of accuracy,
and the execution times are significantly worse than those obtained by this
second algorithm. The second step involves Algorithm 5, since it is not an
exact algorithm, it is an approximate algorithm in which the output of the
algorithm may not be that of the winning rule. Once these two steps are
completed we will propose a hybrid approach that combines the previous
algorithms and obtains the best results.

Moreover, in the study we will distinguish between the algorithm based on
a sequential search over the set of rules, i.e. Algorithm 2, which we will refer
to as sequential approach (Algorithm 1 is also included in this approach),
and the algorithms based on a search in the neighborhood of the central
rule of the example (Algorithm 3 and 4) which we will refer to as recursive
approach.

Both algorithms of the recursive approach make use of the MaxRules
parameter in the function BackTrack, which determines the maximum
number of rules that are explored in the neighborhood of the central rule
of the example before abandoning the search. This parameter will take the
value 1024 throughout the experimentation, and we will justify this value
later.

In this experimentation we have used the datasets shown in Table 1.
This table shows the 50 classification problems that we have considered, all
of them are extracted from the UCI machine learning repository [1]. All the
selected datasets are well known and are frequently used. These datasets also
represent a wide spectrum of different situations to be considered in machine
learning such as binary problems, multiclass problems, multiclass problems
with a large number of classes, problems with few or many variables, problems
for which a small or large number of rules are obtained, problems with few
or many examples, etc.

In all the above datasets we will use to discretize the continuous domains
of the variables a set of uniformly distributed fuzzy sets with cutoff at 0.5.
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Dataset Var CVar Ex Dataset Var CVar Ex
abalone 8 7 4174 magic 10 10 19020
adult 14 6 45222 mammogr 5 1 830
australian 14 7 690 movement 90 90 360
automobile 25 15 159 newthyroid 5 5 215
balance 4 4 625 page-blocks 10 10 5472
banana 2 2 5300 penbased 16 16 10992
bands 19 19 365 phoneme 5 5 5404
bupa 6 6 345 pima 8 8 768
census 41 9 142521 ring 20 20 7400
cleveland 13 13 297 saheart 9 8 462
coil2000 85 2 9822 satimage 50 36 6435
connect-4 42 0 67557 segment 19 19 2310
covtype* 54 10 495141 shuttle 9 9 57999
crx 15 6 653 sonar 60 60 208
fars* 29 5 62123 spambase 57 57 4597
flare 11 0 1066 spectfheart 44 44 267
german 20 3 1000 susy 18 18 5000000
heart 13 5 270 texture 40 40 5500
hepmass 28 28 10500000 thyroid 21 6 7200
higgs 28 28 11000000 twonorm 20 20 7400
ionosphere 35 32 351 vehicle 18 18 846
iris 4 4 150 vowel 13 11 990
kddcup* 41 27 4856150 wine 13 13 178
led7digit 7 7 500 wineq-red 11 11 1599
letter 16 16 20000 wineq-white 11 11 4898

Table 1: Datasets used in this experimental study. The columns represent the following
information: Dataset is the name of the dataset, Var indicates the number of predictive at-
tributes, CVar indicates the number of predictive variables with a continuous domain and
Ex the total number of examples. The datasets’ name mammogr, movement, wineq-red,
and wineq-white correspond to datasets mammographic, movement libras, winequality-
red and winequality-white respectively. The dataset with a ? (covtype, fars and kddcup)
correspond with versions of the original dataset transformed for binary classification that
have been used on big data paper as such [9].
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Throughout this experimental study we will use five triangular fuzzy sets in
this discretization in the different datasets considered (domains similar to
the one described in Figure 2).

The order of complexity of a single inference of the algorithms of the
sequential approach depends on the number of rules and the number of vari-
ables involved in those rules. The order of complexity of the algorithms of
the recursive approach depends exponentially on the number of continuous
variables. In particular the order is O(2C), where C is the number of contin-
uous variables of the particular problem, since given the discretization model
we have used a real value has an adaptation with at most two fuzzy sets of
its domain.

All experiments have been performed on a computer with 8 IntelCore
i7-6700 processors and 15.6 Gb memory running on Ubuntu 20.04.2 64-bit
operating system 1.

To obtain the set of rules with which to perform the inference in the
different datasets we will use the so-called Chi algorithm [3], which is no
more than the version of the Wang and Mendel algorithm [17] but applied
to classification problems to obtain the sets of rules for each of the selected
datasets. The choice of this algorithm is justified for the following reasons:

(a) It is a simple learning algorithm that can run very fast and in fact
has been used as an algorithm to tackle big data problems where the
number of examples in the problem is very high [7].

(b) It generates fuzzy rules that take into account all the attributes of the
problem, and this fact is important to illustrate the influence of the
number of attributes on the time consuming inference.

(c) It can generate a very large number of rules for some problems. This
is very important to study the efficiency of the different approaches to
perform inference.

Table 2 reports the results obtained by the Chi algorithm using a 10-fold
cross-validation. The average number of rules obtained, the accuracy over
the training set and the average time consumed by the learning algorithm

1The algorithms described here have been implemented in C++ and
can be accessed through the web page https://github.com/Raul-PerezR/
Inference-Recursive-Classification-FuzzyRules
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have been considered for each of the datasets as relevant information for this
study.

Dataset Rules Train Time(s) Dataset Rules Train Time(s)
abalone 207.3 31.15 0.030 magic 1912.4 84.01 0.139
adult 19796.4 89.99 0.502 mammog 160.3 87.35 0.004
australian 500.9 96.81 0.007 movement 294.6 100 0.030
automobile 124.3 100 0.003 newthyroid 47.2 95.35 0.001
balance 562.5 100 0.003 page-blocks 163.8 93.82 0.041
banana 19.6 77.08 0.018 penbased 7739 99.87 0.122
bands 326.1 100 0.005 phoneme 228.2 82.38 0.028
bupa 120.8 76.52 0.002 pima 426.6 90.49 0.007
census 80968.1 99.26 4.509 ring 5060.3 99.34 0.108
cleveland 258.4 98.99 0.003 saheart 354 96.75 0.004
coil2000 7532.2 98.74 0.709 satimage 2149.3 78.21 0.164
connect-4 60801.3 100 1.647 segment 888.4 95.76 0.029
covtype* 23087.9 84.91 16.231 shuttle 73.8 91.59 0.413
crx 522.7 98.47 0.007 sonar 187.2 100 0.010
fars* 39933.7 100 1.560 spambase 1379.8 86.67 0.173
flare 269.8 85.27 0.007 spectfheart 240.3 100 0.008
german 898.4 100 0.012 susy 274477 70.39 60.012
heart 235.6 100 0.003 texture 3697.8 97.69 0.167
hepmass 9404420 99.9 203.699 thyroid 943.9 94.25 0.080
higgs 8706010 95.54 215.924 twonorm 6654.2 99.99 0.103
ionosphere 273.4 100 0.009 vehicle 712.7 98.58 0.011
iris 41.8 95.33 0.001 vowel 649.7 98.69 0.010
kddcup* 2868 99.95 127.538 wine 159.4 100 0.002
led7digit 82.1 79.6 0.004 wineq-red 771 83.99 0.016
letter 7585.2 88.15 0.237 wineq-white 1086.8 66.35 0.040

Table 2: Results obtained by the Chi algorithm using a 10-fold cross-validation. Column
Rules shows the number of rules, Train the accuracy on the training set and Time(s) the
number of seconds consumed by the learning algorithm.

The data shown in the Train column are obtained directly from the learn-
ing algorithm and we are not using an inference algorithm. The Chi algorithm
places a grid over the search space and counts the examples that fall into each
grid. When all the examples have been placed in the corresponding grid, it
looks over each grid and associates as a class, the majority class among the
examples that are in that grid. In this way it is known which examples are
well classified (those that are of the majority class), and those that will be
misclassified.

Some conclusions we draw from the experimentation collected by Table
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2 are:

� The Chi algorithm is a learning method that is not very time consum-
ing. The time is proportional to the number of examples in the prob-
lem, for this reason, problems that have more examples take longer,
although a problem like higgs that has 11 million examples takes on
average less than 3 minutes to learn.

� The Chi algorithm can generate a very large number of rules. The most
outstanding examples where we can observe this high number of rules
are hepmass which has more than 9 million rules and higgs with more
than 8 and a half million.

� If we calculate the ratio of examples per rule, we can see that most
of the datasets have a value of less than 2 (specifically, 27 of the 50
datasets). This fact indicates that for these problems the rules are
supported by very few examples. Only 8 of the 50 have a value greater
than 15 for this indicator.

As already discussed in the previous sections where the inference algo-
rithms have been presented, the two different approaches put the computa-
tional effort in different areas of the search space, while the algorithms of
the sequential approach search over the set of rules and therefore, their or-
der of complexity is associated with the number of variables of the problem
and the number of rules, the versions of the recursive approach search in the
neighborhood of the central rule to the example, and therefore their order
of complexity is exponential to the number of continuous variables of the
problem. Therefore, to study the efficiency of these approximations it seems
interesting to make a division by cases taking into account the number of
rules and the number of continuous variables involved in the problem.

Figure 3 shows the division made for this experimentation. The 50
datasets have been divided into 4 groups:

� Group A: It has 14 datasets and is composed of those with a number
less than or equal to 10 continuous variables and a number of rules less
than or equal to 500.

� Group B: It has 12 datasets and is composed of those that have a
number less than or equal to 10 continuous variables and a number of
rules greater than 500.
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Figure 3: The four groups (A,B,C and D) considered in this experimentation, taking into
account the number of rules obtained by the Chi algorithm and the number of continuous
variables of each dataset.

� Group C: It has 8 datasets and is composed of those with more than
10 continuous variables but less than or equal to 500 rules.

� Group D: It has 16 datasets and is composed of those with more than
10 continuous variables and more than 500 rules.

A specific study for each of these groups will follow.

4.1. Study on Group A datasets

In this subsection we study datasets with a low number of rules and a
low number of continuous variables.

Table 3 reports the results obtained by Algorithms 2, 3 and 4 on the
group A datasets. As previously mentioned, Algorithm 1 has been removed

23



from the study to facilitate the readability of the tables since its results in
time are always greater than those of Algorithm 2 and its results in terms of
accuracy are exactly the same.

Since we have taken as the value of the MaxRules parameter the value
210 = 1024 and as the number of continuous variables is less than or equal to
10, this means that in these cases, the whole neighborhood is explored, and
consequently, the results of the sequential inference (Algorithm 2) coincide
with those of the recursive versions (Algorithms 3 and 4), in terms of accu-
racy, and for that reason only one column for Test and one column for %NC
will appear in Table 3.

dataset Test %NC Alg2(µs) Alg3(µs) Alg4(µs)
abalone 16.70 0.12 29.00 19.23 16.46
shuttle 92.42 0.01 23.74 13.86 10.74
iris 95.33 0.00 12.29 3.17 4.72
newthyroid 95.35 0.93 13.42 3.79 3.79
banana 79.38 0.02 6.97 1.34 1.70
heart 22.22 74.07 57.04 33.23 13.71
saheart 60.82 6.49 77.26 27.40 17.59
bupa 55.65 2.90 38.58 10.21 8.11
led7digit 63.60 15.20 22.86 2.60 4.42
page-blocks 93.70 0.20 42.58 6.83 8.09
mammog 76.87 7.47 26.91 2.44 3.85
flare 61.54 25.14 40.02 3.26 4.94
pima 66.02 3.26 82.90 13.33 10.10
phoneme 80.59 0.00 44.44 4.39 4.64
Average 68.58 9.7 37 10.36 8.06

Table 3: Results obtained on the Group A (datasets with low number of rules and contin-
uous variables). The columns show the following information: Test accuracy on the test
set, %NC percent of examples from the test set not triggered by any rule and Alg2(µs),
Alg3(µs) and Alg4(µs) average time consumed (in microseconds) by each algorithm for
doing the inference of one example. The last row shows the average of each one of the
column.

The obvious difference between these algorithms is the time used in per-
forming the inference. The last three columns show the average time it takes
to perform the inference of an example for each of the algorithms. It can be
observed that in all cases, the Algorithm 2 presents a higher time consump-
tion which on average can be estimated as 4 times more than that of the
other algorithms. Comparing the two recursive versions, there is no a clear
conclusion, although Algorithm 4 was slightly better. In any case, we are
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measuring in microseconds (using the C/C++ ”time.h” library functions)
and therefore the difference between both is not really significant.

In a slightly deeper analysis we can observe that the time reduction is
greater for datasets with few continuous variables (such as flare or mammog
with 0 and 1 respectively) being of the order of 10 times faster. This result
confirms the analysis on the order of complexity discussed above. Algorithms
3 and 4 will be more efficient and the advantage of their use will be reflected
more with problems with a low number of continuous variables.

Despite all the above, and the advantage in efficiency demonstrated in
the experimentation, for problems in this group A, there is no real difference
in their use. An average time of 37 microseconds per inference is a very
reasonable time and for most problems (other than big data problems with
a large number of examples) the classical approach will perform well.

4.2. Study on Group B datasets

In this subsection we study datasets with a high number of rules and a
low number of continuous variables.

Table 4 reports the results obtained by Algorithms 2, 3 and 4 on the
group B datasets. As in the previous group, the column Test shows the
prediction ability on the test set and the column %NC shows the percentage
of examples in the test set that are not triggered by any of the learned rules
coincide for all algorithms. The reason for this is exactly the same as stated
above since the number of continuous variables for the datasets contained in
this group is again less than or equal to 10.

A priori this group represents the most favorable situation for the recur-
sive approach and the most unfavorable for the sequential approach, since
the efficiency of the former depends on the number of continuous variables
and in this group it is less than 10, and the complexity of the algorithm of the
second approach depends on the number of rules, and in all these datasets
the number of rules is greater than 500.

The results empirically confirm the above and the execution time ob-
tained by Algorithms 3 and 4 are significantly better than that obtained by
Algorithm 2. On average, the results of the recursive approach are on the
order of about 200 times faster than the sequential version. This difference
is also related to the number of continuous variables. For example, in the
connect-4 dataset which has no continuous variables, the recursive version
is of the order of more than 700 times faster than the time of Algorithm
2. For the autralian dataset, more similar inference times are obtained, and
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dataset Test %NC Alg2(µs) Alg3(µs) Alg4(µs)
australian 54.64 34.06 97.87 27.35 12.88
crx 40.74 52.37 103.55 25.26 14.81
balance 0.00 100.00 77.14 1.52 2.33
german 0.60 99.40 142.84 25.19 13.70
thyroid 91.99 1.36 209.86 13.20 14.62
magic 81.63 0.09 399.34 24.21 14.28
coil2000 24.27 73.66 2108.63 75.94 81.93
adult 63.32 21.37 4733.32 20.89 13.16
covtype* 85.69 0.01 8644.59 64.92 54.62
fars* 44.88 55.12 14934.89 33.82 35.16
connect-4 0.00 100.00 21070.95 14.50 27.31
census 48.09 50.08 30766.76 108.33 48.39
Average 44.65 48.96 6940.81 36.26 27.77

Table 4: Results obtained on the Group B (datasets with low number of continuous
variable and high number of rules). The columns show the following information: Test
accuracy on the test set, %NC percent of examples from the test set not triggered by any
rule and Alg2(µs), Alg3(µs) and Alg4(µs) average time consumed (in microseconds) by
each algorithm for doing the inference of one example. The last row shows the average of
each one of the columns.

despite that, it goes from 97 microseconds to 27 microseconds in the worst
case, i.e. the recursive versions are more than three times faster than those
of Algorithm 2.

The percentage of examples not triggered by any rule, column %NC,
theoretically disadvantages the recursive approach, since it forces it to explore
the whole neighborhood to find no rule to trigger. But when the set of
continuous variables is low, that time is assumable, as it happens in this
group.

On the other hand, it can be observed how the number of rules negatively
affects the efficiency of the sequential approach. The number of rules ranges
from 500 in the australian dataset to 80968 in the census dataset. The
results show that for this group, the recursive versions is significantly better,
producing very important time reductions in the inference. As an example,
the time consumed by the inference in Algorithm 2 to do the 10-fold cross-
validation for the census dataset (that has a total of 142521 examples) was
73 minutes, while Algorithm 4 needed less than 7 seconds to perform the
same task.

In relation to the behavior of the two algorithms of the recursive version
for the datasets of this group we can say that Algorithm 4 performs better
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in most cases (it is the best in 8 of the 12 datasets) than Algorithm 3, but
no statistically significant differences are found between them.

4.3. Study on Group C dataset

In this subsection we study datasets with a low number of rules (less than
500) and a high number of continuous variables (more than 10). From the
point of view of complexity orders, this group represents the most favorable
case for the sequential approach. Here we will show whether the empirical
results support this theoretical behavior.

Alg2 Alg3 Alg4
Dataset Test Time(µs) Test Time(µs) Test Time(µs)
wine 75.28 48.38 46.07 471.56 58.43 232.68
cleveland 18.86 61.86 18.52 46.92 18.86 24.13
automobile 42.14 30.42 27.67 515.86 40.25 294.08
bands 33.42 71.20 8.49 756.22 16.44 350.86
ionosphere 54.99 91.12 20.23 594.07 34.19 318.15
spectfheart 23.97 120.77 0.00 690.15 0.00 538.99
sonar 16.83 109.09 0.00 781.63 0.00 639.81
movement 63.33 171.56 18.33 892.87 22.78 769.66
Average 41.10 88.05 17.41 593.66 23.87 396.05

Table 5: Results obtained on the Group C - part one (datasets with low number of rules
and high number of continuous variables). The two first columns are associated with the
Algorithm 2, next two columns with Algorithm 3 and the last two columns with Algorithm
4. The last row shows the average of each one of the columns. For each algorithm, the
accuracy on the test set (Test) and the time consumed by the inference of one example in
microseconds (Time(µs)) are shown.

The parameter MaxRules of the function BackTrack is taken as 1024
= 210 as in the previous groups. However, since now in this group the number
of continuous variables is greater than 10, by taking this value we assume
that not all the neighborhood of the central rule of the example is explored
and therefore, the result given by the sequential approach does not neces-
sarily match the one given by the recursive approach (since not all rules are
explored).

Moreover, as Algorithms 3 and 4 differ in the heuristics used to explore
the neighborhood, the results between them are also different. For the sake
of clarity of the results and to provide more readable tables, we have divided
the relevant information on the behavior of these algorithms into two tables.
Table 5 reports the results in accuracy over the total of test examples (Test)
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and the time consumed by an inference for each of the algorithms, while
Table 6 reports the accuracy over the examples of the test set but only over
those examples that trigger some rule (Test* ) as well as the percentage of
examples that are not triggered by any rule (%NC ).

The results of the table 5 show that the algorithms of the recursive ap-
proach are not very appropriate for this type of datasets since they present
high inference time and worse accuracy than the sequential approach. Under
these characteristics, the sequential model is preferable. On average, Algo-
rithm 2 offers more than twice the accuracy and is more than 5 times faster
than the other two algorithms.

Alg2 Alg3 Alg4
Dataset Test* %NC Test* %NC Test* %NC
wine 96.40 21.91 97.62 52.81 98.11 40.45
cleveland 65.88 71.38 66.27 72.05 65.88 71.38
automobile 88.16 52.20 100.00 72.33 95.52 57.86
bands 66.67 49.86 72.09 88.22 68.97 76.16
ionosphere 97.97 43.87 98.61 79.49 98.36 65.24
spectfheart 48.12 50.19 0.00 100.00 0.00 100.00
sonar 97.22 82.69 0.00 100.00 0.00 100.00
movement 93.06 31.94 100.00 81.67 100.00 77.22
Average 81.69 50.51 66.82 80.82 65.86 73.54

Table 6: Results obtained on the Group C - part two (datasets with low number of rules
and high number of continuous variables). The two first columns are associated by the
algorithm 2, next two columns with algorithm 3 and the last two columns with algorithm 4.
For each algorithm, the accuracy on the test set considering only the examples that trigger
any rule (Test* ) and the percentage of examples that do not trigger any rule (%NC ) are
shown.

A more detailed analysis reveals that the difference in accuracy between
the two approaches is due to the high number of examples that do not trigger
any rule when the recursive version is used. The column %NC associated
with Algorithm 2 of the Table 6 shows the percentage of examples that are
not triggered by any rule. Comparing this column with the same information
but from Algorithms 3 and 4, it can be seen that except for the cleveland
dataset where the percentages are similar, the increase in this parameter
is always higher than 17 points. There are two extreme situations to be
highlighted, the specfheart and sonar datasets where the recursive approach
fails to match any example with any rule.

From Table 6 we can draw the following conclusions:
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� The difference in the parameter %NC between Algorithms 3, 4 and Al-
gorithm 2 shows the proportion of examples that are triggered by rules
that are not among the 1024 best-fitting ones. In addition, algorithms
3, 4 use different heuristics to estimate this order in the evaluation and
that is different in both.

� From the above fact, it follows that the degrees of adaptation with
which the examples trigger the rules take low values.

� When the examples of the test set are correctly distributed over the
clusters that were recognized by the learning algorithm over the train-
ing examples, the recursive approach works well, even better than the
sequential approach, giving similar values in cleveland dataset.

� If we compare the results obtained by Algorithms 3 and 4 we can ob-
serve that in all the datasets the latter obtains better results in the
two parameters studied. This indicates that the heuristic used in this
algorithm improves experimentally to the one proposed in Algorithm
3. On average the improvement is 6 % in accuracy and about 200
microseconds less per inference.

The conclusion for the group C datasets is that the sequential approach
of Algorithm 2 is the best option since nothing can be assured about the
behavior of the test examples.

4.4. Study on Group D datasets

In this subsection we study datasets with a high number of rules (more
than 500) and a high number of continuous variables (more than 10).

In the three previous groups we have concluded that the empirical results
have demonstrated what could be intuited from the order of complexity of
each algorithm. On the one hand, group B with many rules would favor
the recursive approach, group C with many continuous variables made the
sequential approach the recommended one. In the case of group A, where
the time-increasing variables were at low values for both approaches, exper-
imentation showed that the recursive approach offered better results.

In this last group we find datasets with a high number of rules and a high
number of continuous variables, that is, this group contains datasets where
the variables that affect high time consumption are found with high values

29



for the both approaches and therefore it is more difficult to estimate which
one can offer better results.

In this group we have 16 datasets, and as in group C we have divided the
results obtained in two tables. Table 7 reports the results on accuracy and
time consumed in the inference of an example for each one of the algorithms.

Alg2 Alg3 Alg4
Dataset Test Time(µs) Test Time(µs) Test Time(µs)

hepmass0.1% 75.77 3907504.76 13.83 1539.08 29.71 1072.97
higgs0.1% 58.54 3860736.36 27.58 996.74 49.40 503.74
kddcup* 99.95 650.58 99.95 22.91 99.95 31.10
letter 77.74 2195.16 76.13 150.19 77.43 72.81
penbased 95.58 1316.72 91.11 186.34 94.01 67.62
ring 68.92 1804.92 49.34 396.78 54.64 240.84
satimage 65.25 2025.13 56.25 439.11 64.83 313.37
segment 91.73 190.59 87.36 137.19 90.52 70.71
spambase 81.31 872.66 77.25 215.23 80.64 98.74
susy 73.81 104224.60 73.68 139.22 73.80 79.05
texture 92.85 2166.64 51.84 658.25 87.44 382.74
twonorm 89.15 2088.24 19.84 634.60 34.14 385.67
vehicle 60.28 223.55 42.44 448.42 52.01 208.21
vowel 93.64 127.75 93.64 53.22 93.43 22.06
wineq-red 56.85 205.61 56.79 76.43 56.79 30.72
wineq-white 49.92 352.38 49.84 58.75 49.92 24.60
Average 76.96 492917.85 60.43 384.53 68.04 225.31

Table 7: Results obtained on the Group D - part one (datasets with high number of rules
and high number of continuous variables). The two first columns are associated with the
Algorithm 2, next two columns with Algorithm 3 and the last two columns with Algorithm
4. The last row shows the average of each one of the column. For each algorithm, the
accuracy on the test set (Test) and the time consumed by the inference in microseconds
of an example (Time(µs)) are shown.The value 0.1% on the name of higgs and hepmass
datasets indicates that the results have been obtained using ten cross-validation but using
only the 0.1% of the examples of the test set in each one of the ten validations.

As in the experimentation carried out in all the previous groups, for
this group we will use 1024 as the value of the parameter MaxRules of the
procedure BackTrack and for the same reason already discussed in group
C, the output of the algorithms based on the recursive approach does not
have to match the output returned by the sequential approach, nor does the
output of the two algorithms of the recursive approach have to match.

In addition, within this group, there are two datasets that are particularly
complex and require a very efficient inference since they have more than 10
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million examples, generate more than 8 million rules and has 28 variables, all
continuous. These datasets are higgs and hepmass. Due to the high values
of these parameters, the inference take a long time. For this reason, both in
this study and in the following ones we make a special treatment of these
two datasets. If we look at the Table 7, both datasets have above their name
the value 0.1%. This value refers to the fact that the 10-fold cross validation
has been performed as in all the datasets of this study, but in this case,
in the inference, instead of taking 100 percent of the examples, only 1 per
thousand (0.1 percent) of the examples has been taken in each one of the 10
validations.

Under these conditions, in our case, the inference performed by the three
algorithms studied here learn the same models and test on exactly the same
examples, although this testing is only on 0.1 % of the total number of exam-
ples that should be tested. From the point of view of the time consumed by
the inference, it only affects the fact that this average has been made with
a lower number of examples, but the average that would be obtained and
applied on all the examples should be very similar. If we look at the value
obtained by Algorithm 2 on the dataset hepmass, we can observe that each
inference consumes almost 4 seconds on the computer on which the exper-
imentation has been performed, (3907505 µ seconds exactly). The dataset
has 10.5 million examples. In a complete cross validation, it is necessary to
make inferences on all the examples, i.e., it is necessary to make 10.5 million
inferences consuming an average of about 4 seconds only on the inference.
That means that 42 million seconds (1.3 years) are required to perform the
experiment. Applying the 0.1 % reduction we have managed to go from those
1.3 years to about 4.86 days. Similarly, the time needed for higgs was also
about 5 days compared to the 1.4 years that would have been needed taking
all the examples for testing.

Regarding the time analysis, it can be observed that the recursive ap-
proach obtains the lowest execution times for all datasets, with the only
exception of vehicle when using Algorithm 3. On the other hand, Algo-
rithm 4 obtains the lowest times except for the dataset kddcup*. In this
comparative study, algorithm 4 is about 1/3 faster than Algorithm 3. Com-
paring Algorithm 2 and Algorithm 4, it is observed that with datasets with
a high number of rules, the time differences of both approaches are more
pronounced. If we take all the datasets, except the ones that take more rules
susy, higgs and hepmass, Algorithm 4 is on average 7 times faster than Al-
gorithm 2. If only the last 3 datasets are considered, on average, Algorithm
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4 is five thousand times faster than Algorithm 2.
Although algorithms of the recursive approach are faster in time, on av-

erage there is a significant reduction in the overall accuracy, from 76.96 of
Algorithm 2 to 68.04 of Algorithm 4. This average loss of 8 % is not uniform
over all the datasets. We can indicate that there are 10 datasets where the dif-
ference in accuracy is less than 2 % (vowel, segment, wineq-red, wineq-white,
kddcup*, spambase, penbased, satimage, letter y susy), and yet in twonorm
and hepmass that difference is over 45 %.

Alg2 Alg3 Alg4
Dataset Test* %NC Test* %NC Test* %NC

hepmass0.1% 77.65 2.42 79.56 82.62 78.35 62.08
higgs0.1% 58.59 0.08 60.82 54.66 58.47 15.50
kddcup* 99.95 0.00 99.95 0.01 99.95 0.00
letter 77.75 0.02 77.18 1.36 77.64 0.27
penbased 98.85 3.31 98.93 7.91 98.92 4.96
ring 72.18 4.51 85.26 42.14 79.07 30.91
satimage 65.25 0.00 64.16 12.32 65.23 0.61
segment 93.22 1.60 93.21 6.28 93.52 3.20
spambase 84.70 4.00 84.51 8.59 84.63 4.72
susy 73.81 0.00 73.77 0.11 73.81 0.01
texture 92.92 0.07 91.61 43.42 93.11 6.09
twonorm 91.88 2.97 91.29 78.27 90.99 62.49
vehicle 61.74 2.36 66.48 36.17 63.86 18.56
vowel 93.73 0.10 93.73 0.10 93.72 0.30
wineq-red 57.53 1.19 57.58 1.38 57.61 1.44
wineq-white 50.01 0.18 49.96 0.24 50.02 0.20
Average 78.11 1.43 79.25 23.47 78.68 13.21

Table 8: Results obtained on the Group D - part two (datasets with high number of rules
and high number of continuous variables). The two first columns are associated with the
Algorithm 2, next two columns with Algorithm 3 and the last two columns with Algorithm
4. The last row shows the average of each one of the column. For each algorithm, the
accuracy on the test set considering only the examples that trigger any rule (Test* ) and
the percentage of examples that do not trigger any rule (%NC ). The value 0.1% on the
name of higgs and hepmass indicates that the results have been obtained using ten cross-
validation but using only the 0.1% of the example of the test part in each one of the ten
validations.

In table 8 we can observe a somewhat more detailed study of where these
discrepancies in accuracy come from and we can formulate the following
conclusions.

� The difference in the accuracy of the 10 datasets mentioned above is
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caused by the existence of the examples not covered by the rules.

� The discrepancy between hepmass and twonorm is also due to uncov-
ered examples. In this case, there is a very large difference in uncovered
examples.

� The percentage of accuracy on the examples covered is very similar.
Only the difference in favor of Algorithm 4 in the ring dataset is note-
worthy. The reason must be that there are rules farther away from the
one with maximum adaptation on the example with a higher weight
than closer rules. The sequential approach takes these farther away,
while in the recursive version the rule triggered by the other approach
falls outside its search space. A large but minor difference occurs in
vehicle (2.12 %), for the rest the differences are less than 1 %.

� It seems that the use of rules closer to the optimum may give an ad-
vantage in inference, since although the differences are usually small
(less than 1 %), they tend to favor the recursive approach.

� Algorithm 4 has a better prediction capability on examples that trigger
some rule than Algorithm 3. In the cases, where this does not happen
(vehicle, ring, higgs and hepmass), it is because there is a significant
difference in the percentage of examples that do not trigger any rule
between the two algorithms. For example, in higgs, Algorithm 3 has
a 2-point higher hit percentage than Algorithm 4, but there is a 40-
point difference in fewer examples covered by Algorithm 3. These high
differences in the percentage of examples not covered between the two
algorithms cause the heuristics implemented in Algorithm 4 to pro-
duce better results in time, rule coverage and accuracy compared to
Algorithm 3.

Two things can be concluded from the above analysis:

� Algorithm 4 presents a prediction capability similar to that offered by
the sequential approach with a very significant reduction in time when
the former triggers a rule, but

� the high percentage of examples that are not triggered by the recursive
approach versus the sequential one, makes this approach not usable for
all problems.
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With these two conclusions in mind, we now study the behavior of Algo-
rithm 5, which is a modified version of Algorithm 4 in which a new heuristic is
added consisting of using a distance between rules to perform the exploration
of the neighborhood of the central rule to the example.

4.5. Study of Algorithm 5

In the previous study on the group of datasets containing a high number
of rules and a high number of continuous variables, it has been seen that
the recursive approach has a behavior that produces a very significant re-
duction of time, but for some datasets, the high number of examples that
are not triggered by any rule produces an undesirable result in some cases.
Frequently the problem is due to the fact that the triggered rules have very
low values in the degree of adaptation between example and antecedent.

In order to see to what extent these degrees of theoretical adaptation
affect the results obtained by the recursive approach, we study now the Al-
gorithm 5. This algorithm is a version of Algorithm 4 with an additional
constraint of limiting the neighborhood where to search for the rule. This
restriction is defined by the value of the parameter d that takes integer values
and was defined in the description of the Algorithm 5.

Table 9 reports the results on accuracy, both on the total number of
examples (Test) and on only the examples that are triggered by rule (Test* )
for 5 values of the distance parameter d.

Test Test*
Dataset 0 1 2 3 5 0 1 2 3 5

hepmass0.1% 0.76 6.26 20.67 38.78 63.73 81.09 80.06 79.94 79.62 78.33

higgs0.1% 13.25 32.45 46.46 53.52 57.74 64.63 59.27 58.4 58.4 58.63
kddcup* 99.92 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95
letter 57.06 74.44 77.21 77.54 77.62 83.01 77.96 77.71 77.64 77.64
penbased 33.77 67.41 84.53 91.31 95.16 99.41 99.22 99 98.94 98.88
ring 29.03 44.88 50.73 55.00 62.97 96.67 90.96 84.32 78.1 72.54
satimage 46.95 59.47 63.68 64.88 65.27 66.37 65.27 65.28 65.27 65.29
segment 69.57 85.71 90.09 90.91 91.52 94.36 93.97 93.87 93.54 93.42
spambase 62.69 75.79 79.68 80.81 81.23 81.23 84.28 84.69 84.74 84.71
susy 66.71 73.43 73.80 73.80 73.81 68.71 73.65 73.83 73.81 73.81
texture 33.64 66.18 82.56 88.80 91.85 92.55 92.86 92.71 92.92 92.85
twonorm 0.14 3.34 15.09 36.97 75.15 100 89.17 91.63 91.63 91.66
vehicle 9.46 28.13 45.86 55.44 59.57 78.43 69.79 66.9 65.14 61.99
vowel 44.14 81.01 91.62 93.43 93.64 95.62 95.02 94.48 93.81 93.73
wineq-red 43.65 52.78 55.66 56.54 56.85 68.1 58.86 57.53 57.62 57.57
wineq-white 40.83 48.55 50.04 49.92 49.92 57.14 49.55 50.26 50.03 50.01
Average 40.72 56.24 64.23 69.23 74.75 82.95 79.99 79.41 78.82 78.19

Table 9: Results obtained in accuracy on the total number of test examples Test and
accuracy considering only the examples of the total that are triggered by some rule Test*
for the set of distance values 0,1,2,3 and 5.

In Table 9 and in column 0 of Test, Algorithm 5 uses a distance d=0 so
it checks if the central rule to the example belongs to the set of inference
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rules and if so it uses it, otherwise it returns no output. Thus, results of
percentages close to 100 % would indicate that the data used for testing move
in the same grids as the data where the rules were learned, and furthermore,
those grids contain examples that are mostly of the class from which they
were learned. This is the case of the dataset kddcup*. On the other hand,
datasets with values close to 0 % would indicate the opposite, i.e., either the
test data are not on the grids that were created in the training or, if they
are, in these grids there was not a good discrimination of classes or the class
of the test examples does not coincide with those of the training. To try to
understand what actually happens we can look at column 0 of Test*. Here
we have the accuracy of the rule base when the inference triggered some rule.
We can observe that in this case the accuracy values are high. Therefore the
fundamental reason for low values in column 0 of Test is because no rules
are triggered, since the results when rules are triggered are quite acceptable,
for example, if we look at hepmass it ranks at 0.76 % over all examples, but
it has a hit probability of 81.09 % when any rule is triggered. Analogously,
twonorm goes from 0.14 % to 100 % when it triggers a rule.

In addition, if we look at the trend of the values of Test* as the value of
d increases, we can observe that the values tend to be maintained, although
they fall slightly. In the average behavior we can observe the smoothness of
this drop. However we can observe that when the value of d increases the
values of Test increase considerably as well. In conclusion, when d increases
and therefore we are allowing in the search rules that are further away from
the central rule to the example, the overall accuracy percentage goes up and
the accuracy percentage when the system matches a rule with the example
goes down a little bit.

In Figure 4 we can observe the behavior of the inference on the percentage
of examples that are not triggered by any rule as the value of d increases.
A significant decrease can be observed in all datasets. This fact, together
with the two previous ones, indicates that by increasing the value of d we
also increase the accuracy on all the examples, decreasing the percentage of
examples on which no rules are triggered and maintaining (although slightly
decreasing) the accuracy of the rules when the system uses one of them.

As a conclusion of the above, we could increase the value of d until we find
an inflection point where the drop of Test* is important or the percentage of
examples not triggered by any rule is reduced to the maximum, but this is
not possible, because increasing d implies increasing exponentially the search
space of the rules and that implies an extraordinary consumption of time.
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Figure 4: Percentage of examples not triggered by any rule for the set of distances values
0, 1, 2, 3 and 5.

Table 10 reports the average time (expressed in microseconds) consumed
when performing the inference of an example for each of the datasets studied
and for the different values of d. We can observe that for values of d < 3 the
consumption is very small and therefore very fast inferences are produced,
with value 3 the inferences begin to consume a lot of time, and from it, the
time shoots exponentially.

From these results, the use of this algorithm with a low value of d produces
good prediction results in many cases requiring a very small amount of time.
However, the fact that the percentage of examples not triggered by any rule
is high makes it unfeasible as a single method for performing inference. But,
it does seem that it could be used as an agile method with a high degree of
accuracy in a first stage of an inference process combining other techniques.

In the following subsection we propose a hybrid inference algorithm that
combines several of the algorithms presented here to obtain a new model in
inference that could obtain results similar to classical inference (sequential
approach) while reducing inference times and therefore be of great use in
problems with a very high number of rules and continuous variables.

36



Dataset 0 1 2 3 5

hepmass0.1% 0.22 1.05 8.42 3355.04 26151.90
higgs0.1% 0.23 0.97 5.38 1414.23 4947.68
kddcup* 0.34 0.27 0.32 0.29 29.42
letter 0.16 0.34 0.63 0.78 93.12
penbased 0.16 0.25 0.42 0.65 95.10
ring 0.19 0.57 2.01 6.56 3316.88
satimage 0.35 1.91 14.05 79.32 96419.89
segment 0.22 0.38 0.65 0.95 225.42
spambase 0.53 0.69 0.96 1.49 651.02
susy 0.15 0.33 0.65 0.81 87.59
texture 0.40 2.44 24.34 168.44 238850.91
twonorm 0.19 0.71 3.03 13.34 9585.85
vehicle 0.22 0.46 1.46 3.81 1175.22
vowel 0.15 0.17 0.25 0.24 38.61
wineq-red 0.12 0.20 0.30 0.35 43.28
wineq-white 0.14 0.21 0.28 0.32 41.17
Average 0.23 0.68 3.95 315.41 23859.57

Table 10: Time consumed in microseconds (mus) by the execution of the inference of an
example for the set of distance values 0,1,2,3 and 5.

4.6. A hybrid approach to inference in problems with many continuous vari-
ables and many rules

In the previous section, the results offered by the Algorithm 5 have been
presented with the objective of discovering the behavior of the Algorithm 4
when the neighborhood for searching rules is reduced. The results show that
the proposed algorithm is not a solution for any problem defined in group
D in general, but that it could be a component of a more complex inference
algorithm since it allows to find rules with good accuracy for the classification
in an efficient way.

The main drawback of the previous algorithm is that the percentage of
examples that are not triggered by any rule tends to be very high due to the
restricted search space of the rule. In this case, Algorithm 4 has been shown
to offer a high level of accuracy on the examples that trigger any rule, while
also offering a reduced time to find such a rule.

In the same way as Algorithm 5 (called previously Heuristic Nearby-
Neighborhood Inference) when we select a low d value, Algorithm 4
(also called previously Heuristic Neighborhood Inference) tends to
have a high percentage of examples not triggered by any rule. This arises on
many occasions when the number of continuous variables is high in relation
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to the value given to the MaxRules parameter. This percentage is high, but
lower than the percentage offered by Algorithm 4, and therefore we use it
when Algorithm 5 does not trigger any rule. On the other hand, for those
examples that are not triggered by either Algorithm 4 or Algorithm 5, we will
use the sequential approach inference (Algorithm 2 or also called previously
Standard Inference Prunned).

An algorithmic description of this process is shown in Algorithm 6.

Algorithm 6 A hybrid inference algorithm that combines heuristic and stan-
dard inferences

1: function Hybrid Inference(e, RI , d, MaxRules)
2: class = Heuristic Nearby-Neighborhood Inference(e, RI , d)
3: if (class != ∅) then
4: return class
5: end if
6: class = Heuristic Neighborhood Inference(e, RI , MaxRules)
7: if (class != ∅) then
8: return class
9: end if

10: class = Standard Inference Prunned(e, RI)
11: return class
12: end function

On the datasets of group D, an experimental study has been performed
under the same conditions as in the previous studies, setting the value of d
= 2 in algorithm 5 and MaxRules = 1024 in algorithm 4.

The results obtained are reported in Table 11. Comparing them with
those obtained with the standard inference (see results of Algorithm 2 in
Tables 7 and 8) we can highlight that:

� In both versions the percentage of examples that do not trigger any
rule coincide (column %NC ), and not only in the mean value 1.43 but
it coincides in all the datasets. This indicates that the same examples
are triggered in both versions and consequently, the hybrid inference
algorithm does not trigger any example different from the one triggered
by the sequential approach.

� The accuracy over the total of the examples (the column Test), offers
on average a very similar result, even a little bit higher for the new
hybrid proposal. If we analyze this value for each dataset, we can see
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dataset Test Test* %NC Time (µs)

hepmass0.1% 75.89 77.77 2.42 2151904.76
higgs0.1% 58.60 58.65 0.08 404635.45
kddcup* 99.95 99.95 0.00 29.57
letter 77.65 77.66 0.02 59.91
penbased 95.52 98.80 3.31 136.37
ring 68.76 72.01 4.51 787.38
satimage 65.25 65.25 0.00 1455.80
segment 91.69 93.18 1.60 67.18
spambase 81.31 84.70 4.00 138.78
susy 73.84 73.84 0.00 71.31
texture 92.44 92.50 0.07 2695.45
twonorm 89.15 91.88 2.97 1775.08
vehicle 61.94 63.44 2.36 264.18
vowel 93.54 93.63 0.10 20.61
wineq-red 56.66 57.34 1.19 29.09
wineq-white 50.08 50.17 0.18 24.32
Average 77.02 78.17 1.43 160255.95

Table 11: Results obtained on the Group D of datasets (high number of rules and continu-
ous variables)in the hybrid inference algorithm. There are four columns associated to the
name of the dataset: Test and Test* are the percentage of examples correctly classified
on the total examples and only on the covered examples respectively, %NC percentage of
examples do not triggered by any rules and Time(µs) the average time consumed in the
inference of a example. The last row shows the average result of each column.

that the differences are much lower than 0.5 points except for the case of
vehicle where the difference is 1.66 points in favor of the new proposal.
Unlike all the previous versions of inference, this is the only one whose
results are comparable (even better, although not significantly better)
than the sequential approach on this parameter.

� The accuracy on the examples that are triggered is very similar between
the two versions and even similar with the values of the Test column,
since the percentage of examples not triggered by any rule is low.

� As for the time used by the inference, the hybrid version obtains the
best result on 14 of the 16 databases. The maximum time reduction
occurs on the susy database where the hybrid version is 1400 times
faster than the algorithm of the sequential approach. In any case, this
result is an abnormality, since it is not normal to obtain such a high
increase. If we remove this database in the average calculation, the
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speed gain is more than 8 times faster.

In conclusion, and from the previous analysis, it is clear that this hybrid
inference algorithm is a very good alternative to the standard inference in
situations where there are many rules and many continuous variables, since
it obtains results very similar to what the original one would return with a
significant gain in time.

5. Conclusions

In this paper we have addressed the problem of efficiency in reasoning
methods that make use of fuzzy rules. In particular, we have analyzed differ-
ent implementations of the inference method known as the winning rule used
for classification problems. The implementations described in this paper can
be grouped into two approaches: those that, given an example, search over
the set of rules for the rule that best fits that example (which we have called
sequential approach) and those that search among the rules in the neigh-
borhood of the example and check if any of them is a rule that is in the
set of rules (which we have called recursive approach). We have studied the
behavior of these alternatives in four different situations affecting the two
relevant parameters in the calculation of the complexity orders of these two
approaches: the number of rules and the number of continuous variables.
The experimental study has shown that the version known as standard and
which solves the problem using the sequential approach is significantly better
when the number of rules is low and the number of continuous variables is
high. For the cases where the number of rules is low, the recursive approach
obtains the best results. In the group of problems where there is a large num-
ber of both rules and continuous variables, neither approach was adequate.
For the latter case, by integrating the methods, the standard and two of the
neighborhood exploration algorithms into a hybrid inference algorithm, we
have managed to define an inference method suitable for problems with a
high number of rules and a high number of continuous variables.
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