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Abstract In this paper, we propose a domain learning process build on a machine
learning-based process that, starting from plan traces with (partially known) inter-
mediate states, returns a planning domain with numeric predicates, and expressive
logical/arithmetic relations between domain predicates written in the planning
domain definition language (PDDL). The novelty of our approach is that it can
discover relations with little information about the ontology of the target domain
to be learned. This is achieved by applying a selection of preprocessing, regres-
sion, and classification techniques to infer information from the input plan traces.
These techniques are used to prepare the planning data, discover relational/nu-
meric expressions, or extract the preconditions and effects of the domain’s ac-
tions. Our solution was evaluated using several metrics from the literature, taking
as experimental data plan traces obtained from several domains from the Inter-
national Planning Competition. The experiments demonstrate that our proposal
–even with high levels of incompleteness–correctly learns a wide variety of domains
discovering relational/arithmetic expressions, showing F-Score values above 0.85
and obtaining valid domains in most of the experiments.
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1 Introduction

Planning domains are the core element of any automated planning (AP) problem.
When using AP, the quality of the plans obtained for a given problem is directly
related to the quality of the domain used to generate them. Planning domains are
formal specifications of the planning problem, usually hand-coded by knowledge
engineers. Designing a planning domain is a cumbersome task that requires exten-
sive knowledge about the problem to be modeled. A solution to lessen this issue
is to use domain learning techniques. Domain learners can extract domain models
from scratch using the information from previously solved planning problems. Ac-
tual state-of-the-art domain learners show deficiencies with the expressivity of the
planning domains learned, showing problems when learning domains with relations
between the elements of the domain.

In order to address this issue, we present the PlanMiner domain learning algo-
rithm. PlanMiner takes a set of observations as input (in the form of plan traces)
and extracts a set of numeric action models from them. PlanMiner is able to learn
arithmetic and relational expressions between the numeric variables of the plan-
ning domain. Then, these expressions can be used to define the preconditions and
effects of the action models. PlanMiner implements a hybrid learning method that
combines hierarchically classification and techniques to achieve this. Expressions
are learned using symbolic regression during a preprocessing step of the infor-
mation contained in the input data. Once preprocessed the data, a classification
algorithm is used in order to get PDDL numerical action models from them. Plan-
Miner has been tested using a variety of benchmark domains extracted from the
International Planning Competition (IPC). The learned action models were not
only measured with a series of literature metrics but their problem-solving ability
was also tested.

To the best of our knowledge, the main contribution of this paper to the domain
learning area is the definition of a new domain learning technique with the ability
to discover relations between numeric variables in a PDDL [10] planning domain.
Another contribution of our work is that PlanMiner is designed to learn from
partially-known plan traces. PlanMiner was tested using data with uncertainty
to prove its resistance to low-quality data. Results showed that the algorithm
presented in this paper is able to learn under high levels of data incompleteness.

The rest of the paper is organized as follows. Section 2 will cover previous works
related to the one here presented. In section 3 we will explain every background
concept needed to understand how our solution works and how we pose the domain
learning problem. Section 4 presents and explains the description of our domain
learner algorithm. Section 5 contains the experimental setup and the results of our
domain learning solution. Finally, section 6 presents future work and conclusions.

2 Related Work

Domain learning is an open problem widely addressed by several approaches [17]
in the field of automated planning [26]. These approaches can be sorted by the
requirements of the domains that are trying to learn (such as domains with contin-
uous numerical variables or temporal constraints), the source, type, and quality of
the input data, or the representation language of the planning models (like PDDL,
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PDDL+ [8] or OCL [3]). Comparing different approaches is difficult, as the data
requirements for each one may hugely differ and also because some metrics can not
be applied to measure its results. As this work is based on the learning determin-
istic domains from plan traces with partially-known information, we will discuss
in the next lines only similar approaches.

ARMS [32] learns STRIPS planning domains from partially-known intermedi-
ate states. ARMS generates a set of logic formulas and defines a weighted propo-
sitional satisfiability problem. Then using a MAX-SAT [12] solver ARMS obtains
the best subset of logic formulas that define the action models of the domain to be
learned. LAMP [34] contemplates a similar approach, but instead of a MAX-SAT
solver uses Markov logic networks to find the most suitable formulas to define the
action models. AMAN [33] finds a domain model that best explains a set of plan
traces by fitting a collection of models to each one. Using a different set of traces
to evaluate the models by calculating a predefined reward function that updates
the weight of the learned models. In the end, the model with the highest weight
is selected as the final model.

Opmaker [24] is a solution to induce operators from action sequences, domain
knowledge and user interaction. For each action to be learned, it asks to input, if
needed, the target state that would be achieved after the action execution, thus
creating its operator schema step-by-step. It is implemented inside a graphic tool
called Graphical Interface for Planning with Objects (GIPO), which facilitates user
interaction [16]. Opmaker2 [23] improves Opmaker by eliminating the necessity
for intermediate state information. Opmaker2 is able to automatically infer the
information provided by the user, and then it proceeds in the same fashion as
Opmaker. Opmaker2 computes the intermediate states by using a combination of
heuristics and inference from the partial domain model and input data.

LOCM [6] reduces the input needed to learn planning domains to only a set of
plans without information about the intermediate states of the execution. LOCM
uses finite state machines to learn static relations between the objects of the ac-
tions’ headers of the input plans. These statics relations are used to create the
action models. NLOCM [11] improves the LOCM algorithm by including a series
of procedures to learn action costs. This is achieved by pairing a plan cost to every
input plan and using constraint programming to infer the cost of each action.

FAMA [1] implements a new approach that makes flexible the needed input to
learn planning domains. The input needed to learn domains using this algorithm
ranges from a set of plans, with its initial and goal states, to only a pair of initial
and goal states without any actions. The learning is achieved by creating a hybrid
process to learn incomplete actions and simulate intermediate states to feed the
plan traces on the fly.

Finally, Suárez-Hernández et al. [29] presents STRIPS-based compilation to
learn action signatures from minimal information with an SAT-based [5] planning
system.

Each of these approaches focuses on learning STRIPS-like action models but
put aside the expressivity of the learned domains. Domain learners able to deal
with expressions (either relational or arithmetic) are scarce in the state of the art.
E.g. Jiménez et al. [20] addresses this issue with a domain learner able to fit a
regression tree for each numerical function. These trees are converted into condi-
tional structures by assigning values to the numerical attributes of the domain’s
actions (called fluents) according to the values of the rest of attributes. The main
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issue of this approach is that it can not generalize the numeric expressions learned,
creating a conditional clause for each possible value a numeric fluent can take.

3 Background

In this section, we will introduce the background knowledge needed to fully un-
derstand this paper. This background knowledge will cover concepts about action
schemes and plan traces used in the learning process. Finally, we will define how
we address the learning problem.

3.1 Action schema

A PDDL action schema can be defined as a tuple < Header ,Pre,Eff > where
Header contains the name and parameters of the action, Pre are the precondi-
tions that must be true to allow the execution of the action –that is what elements
hold in the state to be able to apply the action–and Eff the effects of the action
in the world after being executed –namely, what elements change as a result of
applying that action.–Preconditions and effects are defined as a conjunction of
predicates. A predicate is a statement of the form p(arg1 , arg2 , ..., argn) where p

is the name of the predicate and argi an object of the world. Each predicate has
a value associated: True or False in the case of logical predicates, or a numerical
value in the case of numerical predicates.

PDDL codes the expressions (relational or arithmetic) following the mathemat-
ical prefix notation. While this notation can be cumbersome to read by a human,
it relieves the task of parsing the expression by a computer. Arithmetic/relational
expressions are constructed as (Op A B) where Op is a relational or arithmetic
operator and A and B the operands of the expressions. Relational operators con-
templated by PlanMiner are: =, <,≤, >,≥. On the other hand, PDDL uses the
basic arithmetic operators when defining arithmetic expressions. The operands
used in the expressions can be numeric fluents, constant values or other arithmetic
expressions. PDDL implements some operators to signal if a numerical predicate
A must be increased, decreased or assigned to a given value B.

3.2 Plan traces

A plan trace is an ordered set of grounded actions (plan) plus a collection of
associated states. A plan is the sequence of steps necessary to achieve a goal. The
associated states are snapshots of the world in a given point during the execution
of the plan. A world state is represented as a conjunction of predicates using first-
order logic. Each action has two associated states: one that represents the world at
the start point of the action (pre-state) and other for the end point of the action
(post-state). States’ observations can be partially taken. A partial observation of
a state can lack several predicates (even all) of the world at the moment of making
the observation.

Table 1 shows an example of a plan trace extracted from a plan obtained
from the Rovers [21] domain. Rovers is a planning domain presented in the IPC
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Start End Action

0 1 (goto rov1 wp1 wp2)
1 2 (goto rov1 wp2 wp3)

(a) Plan.

Index Predicates

0 (at rov1 wp1) ∧ (¬ (at rov1 wp2)) ∧ (¬ (at rov1 wp3)) ∧
(¬ (scanned wp3)) ∧ (= (bat usage rov1) 3) ∧ (= (energy rov1) 450) ∧
(= (dist wp1 wp2) 50) ∧ (= (dist wp2 wp3) 80)

1 (¬ (at rov1 wp1)) ∧ (at rov1 wp2) ∧ (¬ (at rov1 wp3)) ∧
(¬ (scanned wp3)) ∧ (= (bat usage rov1) 3) ∧ (= (energy rov1) 300) ∧
(= (dist wp1 wp2) 50) ∧ (= (dist wp2 wp3) 80)

2 (at rov1 wp3) ∧ (¬ (at rov1 wp1)) ∧ (¬ (at rov1 wp2)) ∧
(¬ (scanned wp3)) ∧ (= (bat usage rov1) 3) ∧ (= (energy rov1) 60) ∧
(= (dist wp1 wp2) 50) ∧ (= (dist wp2 wp3) 80)

(b) States list.

Table 1: Extract of a plan trace. The trace is an extract of a solution plan for a
specific problem in the Rovers domain. In this plan, a rover (rov1) moves from
wp1 to wp3, traversing wp2. Subtable (a) displays the plan (sequence of actions)
executed, Start and End columns display the index of associated states before and
after applying a given action. Subtable (b) shows the set of intermediate states
associated with each action of the plan during the execution. Index references a
state in the Start/End columns of Subtable (a). Note that the same state may
appear fulfilling different roles for different actions (pre-state or post-state).

where a group of rovers must traverse an alien planet taking samples in different
waypoints scattered around the planet. The actions defined in the domain include
travel between waypoints, scan a waypoint searching for samples, and use the
rover’s solar panels to recharge its batteries. Rovers consume battery whenever
they move or use its tools to scan a waypoint. Battery use when moving depends
on the distance between waypoints.

3.3 Problem definition

PlanMiner addresses the problem of action schema learning by transforming it to
a classification problem [18]. The idea behind this transformation is as follows:
In order to characterise an action we need to know (a) what elements hold in
the state to be able to apply the action (preconditions) and (b) what elements
that were in the state before applying the action change as a result of applying
that action (effects). (a) Obtaining the preconditions can be approached as a
classification problem since what we are looking for are what elements are common
to all the states where that action was applied, i.e., to all the pre-states. Therefore,
it consists of finding all features that characterize the pre-states of a given action.
(b) Obtaining the effects also poses a problem of classification since we want to find
which features belong to the post-states. But, unlike (a), here we will eliminate
from the description those features that did not change with respect to the pre-
states, since the effects are aimed to represent the world change produced by
the given action. In constrast to other techniques, classification techniques allow
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PlanMiner to deal with uncertainty in the input data, as well as, categorical and
numerical information. Classical statistical methods [22] would achieve the goal of
learning a set of features, but when facing uncertainty or big sets of data this kind
of techniques falls short. First-order inductive learning techniques [27] would let
PlanMiner fit STRIPS-like models but these techniques are not able to deal with
numerical information.

Summarizing the learning process, for each action, our solution groups the
information of the states and then displays them in an attribute-value matrix.
These matrices display as attributes the predicates of the states and as instances
the states themselves. Each instance has a class label given his role in the Plan
Trace (pre-state or post-state). Over these matrices, a pipeline of preprocessing
and regression techniques is applied in order to discover new knowledge. This
knowledge describes how the elements of the predicates of the states relate between
themselves and are included in the matrices as new attributes of the datasets.
At the end of the learning process, a classification algorithm extracts a set of
hypotheses that contains the key features that fit the states of the world included
in the datasets. Those hypotheses are finally used to fill the preconditions and
effects of the action’s schemes.

4 Methodology

The following section will describe the PlanMiner domain learning algorithm. First,
the general outline of the learning process will be described, presenting an il-
lustrative example using a well-known benchmark planning domain. Then, each
component of PlanMiner will be described in detail.

4.1 Overview

Our domain learner has been designed to learn action schemes with relational and
arithmetic relations from a set of input plan traces with partially-known states.
The learning process can be summarized in the following steps:

1. Dataset Extraction. Takes a set of input plan traces and outputs a collection
of datasets. Data structures used as input in typical machine learning algo-
rithms are different from the PDDL format, so a translation process must be
carried on to convert the input plan traces into datasets.

2. Discovery of new information. Taking the information contained in the
datasets generated in the previous step, PlanMiner applies symbolic regression
techniques to generate new knowledge and enrich them. This step is crucial, be-
cause to be able to learn arithmetic and relational expressions new knowledge
has to be explicitly encoded in the datasets.

3. Classification models acquisition. Using the datasets as input, PlanMiner
relies on the use of a classification algorithm to fit a classification model for
each one. The hypotheses contained in the classification models define the key
features to model a set of intermediate states.

4. Planning domain generation. Finally, the classification models are processed
to get a set of action models. In order to obtain an action schema, preconditions
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Action: (goto rov1 wp1 wp2)

– pre-state: (at rov1 wp1) ∧ (¬ (at rov1 wp2)) ∧
(¬ (at rov1 wp3)) ∧ (¬ (scanned wp3)) ∧
(= (bat usage rov1) 3) ∧ (= (energy rov1) 450) ∧
(= (dist wp1 wp2) 50) ∧ (= (dist wp2 wp3) 80)

– post-state: (¬ (at rov1 wp1)) ∧ (at rov1 wp2) ∧
(¬ (at rov1 wp3)) ∧ (¬ (scanned wp3)) ∧
(= (bat usage rov1) 3) ∧ (= (energy rov1) 300) ∧
(= (dist wp1 wp2) 50) ∧ (= (dist wp2 wp3) 80)

Fig. 1: State transition of the (goto rov1 wp1 wp2) extracted from Table 1 plan
trace.

and effects are extracted from each classification model. The final output of
PlanMiner is a PDDL domain obtained by joining the learned action models.

In order to illustrate the whole learning process, we will show various examples
based on Rovers domain (Table 1).

4.2 Dataset extraction

The format of the planning information contained in the input plan traces is not
usable by any standard classification or regression algorithm. In order to overcome
this, our approach takes the actions and states contained in each plan trace pro-
vided as input and adapts it to a typical classification input data structure. To
achieve this, first our procedure takes each action a contained in the input plan
traces and extracts a state transition (s1, a, s2). s1 is a snapshot of the world just
before executing the action (pre-state), while s2 is a observation of the world just
after executing the action (post-state). A given state can be the pre-state in a state
transition and a post-state in a different one. In Figure 1 we show an example a
state transitions for the action (goto rov1 wp1 wp2). In this example, we can see
how the states relate to the action of the example plan trace.

Once the state transitions for a given action have been extracted, the algorithm
proceeds to calculate the schema form [32] of every state. Schema forms are calcu-
lated by selecting a state transition and taking each instance of the parameters in
its action and substituting it by a given token every time it appears as an argument
in any of the predicates of its associated states. When every parameter has been
substituted by a token, irrelevant predicates are erased from the states. Irrelevant
predicates are predicates that have not undergone at least one substitution during
the translation to schema form. An exception of this rule are the predicates with
no arguments, which always are considered relevant. As will be explained in sec-
tion 4.4, the classification algorithm will select among the relevant predicates in
order to keep the ones needed to model the states. The example showed in Figure
2 displays the schema form of the states associated with the generic action (goto

?arg1 ?arg2 ?arg3) action. As can be seen, the actions have been equated with the
independence of their parameters.

For each different action in the plan traces, a dataset is created. Two actions
are different if its headers (the action’s name plus arguments after applying the
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Action: (goto ?arg1 ?arg2 ?arg3)

– pre-state: (at ?arg1 ?arg2) ∧ (¬ (at ?arg1 ?arg3)) ∧
(¬ (at ?arg1 wp3)) ∧ (¬ (scanned wp3)) ∧
(= (bat usage ?arg1) 3) ∧ (= (energy ?arg1) 450) ∧
(= (dist ?arg2 ?arg3) 50) ∧ (= (dist ?arg3 wp3) 80)

– post-state: (¬ (at ?arg1 ?arg2)) ∧ (at ?arg1 ?arg3) ∧
(¬ (at ?arg1 wp3)) ∧ (¬ (scanned wp3)) ∧
(= (bat usage ?arg1) 3) ∧ (= (energy ?arg1) 300) ∧
(= (dist ?arg2 ?arg3) 50) ∧ (= (dist ?arg3 wp3) 80)

Fig. 2: Schema form of a (goto ?arg1 ?arg2 ?arg3) action before erasing irrelevant
predicates (underlined).

(at ?arg1 ?arg2) (at ?arg1 ?arg3) (bat usage ?arg1) (energy ?arg1) (dist ?arg2 ?arg3) (scanned ?arg3) Class

True False 3 450 50 MV pre− state
False True 3 300 50 MV post− state
True False 3 300 80 False pre− state
False True 3 60 80 False post− state

Table 2: Dataset associated with the (goto ?arg1 ?arg2 ?arg3) action. Table shows
how the state transitions of the (goto ?arg1 ?arg2 ?arg3) actions defined in Table
1 are displayed as an attribute-value matrix. Each state in the state transitions
is included as an instance in the dataset, where its predicates are displayed as
attributes, and the class labels define its role in the state transition. Note that
state 1 (Table 1) appears twice in the dataset (instances 2 and 3) with different
values and different class label.

schematization process), are different. The datasets contain the information coded
in the states of the state transitions whose attributes are the predicates of the
states. Each instance of a dataset is a state, and its values are the values associated
with each predicate: a logical value if the predicate is a logic value or a number if
the predicate is numerical. The instances of the dataset are categorised by assigning
them a class’ label given by its relation with a given action (pre-state or post-state)
with the action whose dataset is being modelled, creating a binary classification
problem. In order to fill each dataset, the state transitions associated with a given
action are taken, and its states are displayed as instances of the dataset. These
instances are labelled given their role in a certain state transition, which may lead
to the same state to appear with slightly different information in several instances
of the dataset. In those cases where a predicate that is modelled as an attribute in
the dataset doesn’t appear in a given state, the value assigned in its instance is a
missing value (MV ) token. For example, the predicate (scanned ?x) is part of the
relevant predicates of the action (goto ?arg1 ?arg2 ?arg3), but is missing in many
of the concrete state transitions of such action in the plan traces. Therefore its
absence in such states is represented as an MV (see Table 2). This leads to interpret
the lack of a value in an instance by following the open world assumption [28],
meaning that if there is a missing value in an instance of a state, it is considered
as unknown instead of false, so it can not be evaluated.
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4.3 Discovery of new information

For a human with some expert knowledge about the Rovers planning problem,
extracting a model for the pre-states and the post-states presented in Table 2
would be trivial. For example, it is easy to detect that for the (goto ?arg1 ?arg2

?arg3) action its pre-states have to contain a predicate (at ?arg1 ?arg2) that must
be True (It appears in every pre-state and changes to false in it’s associated post-
states), that the predicate (scanned ?arg3) can be deprecated (It is missing in half of
the instances of the dataset and remains constant over the execution of the action
when it appears) or that (energy ?arg1) decreases whenever the action is executed.
With the information contained in the dataset, only the first two hypotheses can
be extracted as features of the examples using a classification algorithm. In order
to let a classification algorithm learn the rest of the hypothesis (I.E. how (energy

?arg1) changes) of the problem, new information must be discovered and explicitly
encoded.

The only information about the ontology of the problem accessible to Plan-
Miner is the actions’ headers contained in the plan traces, which presents a big
handicap when discovering new information. Creating new information using brute
force is not a viable option because there is a risk of increase without control the
size of the learning problem. Also, when trying to learn relations between the
elements of the dataset (and hence the predicates of the planning problem) an
excessive creation of knowledge will lead to the emergence of spurious relations.
Spurious relations contain useless information that makes the resolution of the
learning problem very difficult. To overcome this, we divide the process of discov-
ering new information in 3 steps:

1. Calculation of the difference between the numerical attributes of the dataset
before and after executing an action. This step will produce new synthetic
attributes (containing information about how a variable changes throughout
the execution of a plan) that will be added to the dataset.

2. Fitting of arithmetic expressions that model the differences of the numerical
attributes.

3. Discovery of the relational expressions that link the different elements of the
problem.

Before advancing to the next step the new information is filtered to detect useless
or redundant information. This helps to keep under control the over-information
produced in every step.

4.3.1 Numerical attributes changing.

As a beginning step prior to being able to learn complex information, we calcu-
late the set of ∆ values associated with each numerical attribute of the dataset.
∆(attribute) is defined as

δi ∈ ∆ : δi = xpre,attribute − xpost,attribute

where pre and post are the instances of the states associated with the ith state
transition. If xpre,attribute or xpost,attribute is missing, δi can not be calculated and
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∆(bat usage?arg1) ∆(energy?arg1) ∆(dist?arg2 ?arg3)

3− 3 = 0 450− 300 = 150 50− 50 = 0
3− 3 = 0 300− 60 = 240 80− 80 = 0

Table 3: ∆ values extract of Table 2 dataset.

is substituted by a missing value token. Table 3 shows an example of the calculation
of ∆ values.

Once the ∆ values have been obtained, we can discriminate those attributes
that contain helpful information and are worthy of further exploration during the
information discovery process. A ∆(attribute) is irrelevant to the learning process if
each δi is equal to 0. An irrelevant ∆(attribute) means that its associated attribute
is not affected by a given action and are discarded before beginning with the next
step. Relevant ∆ values are included in the dataset as a new attribute.

4.3.2 Arithmetic expressions fitting.

∆ values provide information about how an attribute changes when applying an
action, but only when this information changes on a fixed value (linear functions).
Dealing with more complex changes in the attributes (those that, for example,
require algebraic functions to be explained) require new (more complex) solutions.
The idea behind our solution goes through taking a ∆ value and, using regres-
sion techniques, try to fit an arithmetic expression using the rest of attributes
of the problem as predictive variables of the formula fitted. Among the multiple
fields of machine learning, regression analysis [4] is the field in charge of predict-
ing a continuous-valued output from a set of continuous variables. Our solution is
interested in those regression algorithms that output the most interpretable mod-
els possible. Standard regression techniques generate regression models based on
linear regression expressions and, in many cases, the relationships established in
planning domains between numerical predicates are not linear, which means that
this approach is not adequate for PlanMiner. This reason led us to develop our
work using symbolic regression techniques.

Symbolic regression (SR) is a type of regression analysis [30] which searches
the space of arithmetic expressions trying to find a suitable formula that fits a goal
set of values. Genetic programming [19] (GP) is the de facto technique used to
solve SR problems, but GP algorithms tend to find alternative formulas far from
the original. Plus, the random component of the genetic algorithms used in the
learning process hinder the replay of the results. These issues led us to check other
SR approaches [31].

PlanMiner implements an SR algorithm using an informed graph search algo-
rithm [13] with the objective of incrementally building a valid expression that fits
the problem’s goal. An overview of the SR algorithm implemented can be seen in
Algorithm 1. Summarizing, the algorithm takes as the root node an empty expres-
sion (Ø) and a set of numerical attributes (dataset dat), and adding new operators
and operands to existing nodes, creates new states that represent new formulas.
New formulas are added to a pool of created formulas. The algorithm selects a new
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Algorithm 1 Symbolic regression algorithm

Input: Ø formula, Dataset dat
Output: Best Formula Found

1: open set := {}
2: successors := {}
3: open set := generate formulas(Ø, dat).
4: end := False.
5: while ¬ end do
6: current := best(open set) .
7: if h(current, dat) < stop value then
8: best sol := current.
9: end := True.

10: else
11: successors := generate formulas(current, dat).
12: open set := open set ∪ successors.
13: end if
14: end while
15: return best sol

formula from the pool and repeats the process until meeting a suitable formula for
the set of goal values.

In order to guide the search, for a state that represents the arithmetic expres-
sion x, the algorithm uses an heuristic function

h(x,Goal) = 100% ∗MAPE(pred(x), Goal) ∗ |x|

MAPE (mean absolute percentage error) is a measure of difference between two
continuous variables (pred(x) and Goal) and is calculated as

MAPE(pred(x), Goal) =

∑|Goal|
i=1 |pred(x)i − goali|

Goali

where pred(x) are the forecasted values obtained with the arithmetic expression
x paired with the Goal set of values. Finally, |x | is the size of the arithmetic
expression (the number of operands and operators in the expression).

New states are created from a parent state by adding an operand paired with
an operator to the arithmetic expression defined in it. Arithmetic operators used
by the regression algorithm are +,-,*,/, while operands may be a constant integer
or an attribute from the dataset. For each iteration of the algorithm, every possible
combination of operators and operands is used to create new successor states. The
search ends when a state with a heuristic value close zero is found or a certain
amount of time has passed. During the experimentation of this work, the authors
set the algorithm stop values as 0.02 for the heuristic and 300 seconds until timeout.

If the search algorithm does not find suitable expression in the given time the
∆ value associated is erased from the dataset. This is due to the supposition that
if the search algorithm is incapable of finding a viable pattern in the elements of
the ∆ value, then it is full of arbitrary values and no useful information can be
obtained from it. If a suitable formula is found, the ∆ value used as the goal is
updated with it in the dataset. Figure 3 presents a brief example of ∆(energy?arg1 )
formula’s search process.
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State Expression h(node)

S0 Ø ∞
S1 1 298.375
S2 2 296.75
S3 3 295.125
... ... ...
S12 (distance?arg1?arg2 ) 200

S13 (distance?arg1?arg2 ) + 1 198.375
S14 (distance?arg1?arg2 ) + 2 196.75
... ... ...
S31 (distance?arg1?arg2 )− 9 214.625
S32 (distance?arg1?arg2 ) ∗ 2 100
... ... ...
S42 (distance?arg1?arg2 ) ∗ (bat usage?arg1 ) 0

Fig. 3: Example graph for the search process of the ∆(energy?arg1 ) (Table 3)
expression. Visited nodes (orange), expanded nodes (blue) and goal nodes (red) are
shown in the figure. Formulas created in each node are displayed in the right table
of the figure. The heuristic values are calculated using the information contained
in Table 2.

4.3.3 Relational expressions creation.

Before finalizing the knowledge discovering process, the relational expressions are
created following a straightforward procedure. This procedure takes two numerical
attributes of the dataset and creates a new one by pairing them with a relational
operator. The relational operators used by our algorithm are =, < and >.

Finally, the new logical attributes must be checked if they are relevant. The
relevance of a logical attribute is calculated by testing if every value in the new
attribute is different. If the truth value of the relational expression remains con-
stant, i.e. all rows in the attribute have the same value (either true or false), the
attribute can be discarded, as there’s no useful information included in it. Relevant
attributes are included in the dataset (Table 4).

4.4 Classification models acquisition

The datasets extracted from the plan traces, enriched with the new information
discovered and added to them, contain information about the examples that rep-
resent states of the world. These examples can be generalized into a collection of
features with the information needed to represent all of them. Classification tech-
niques allow PlanMiner to retrieve every shared feature from each state and fully
recreate an essential state that models all.

Classification is the subfield of machine learning focused on the search of fea-
tures that define a collection of instances of a given class. Classification is a prolific
field with several different techniques [18]. We are more interested in the inter-
pretability of the classification models rather than its performance, so classifiers
that create models easy to interpret by humans are very valuable to our solu-
tion. This discards the use of complex black-box models in favour of other types
of machine learning classification models. A highly interpretable model eases the
translation process of classification models to planning models in the later stages
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(energy ?arg1) ∆(energy?arg1) (>(energy ?arg1) ∆(energy?arg1))

450 150 True
300 150 True
300 240 True
60 240 False

Table 4: New attribute (>(energy ?arg1) ∆(energy?arg1)) created from the data
contained in the dataset of Table 2.

IF
( at ? arg1 ? arg2 ) = True ∧ ( at ? arg1 ? arg3 ) = False ∧
( bat usage ? arg1 ) = 3 ∧
(> ( energy ? arg1 ) ∆( energy ? arg1 ) ) = True
THEN pre-state

IF
( at ? arg1 ? arg2 ) = False ∧ ( at ? arg1 ? arg3 ) = True ∧
( bat usage ? arg1 ) = 3 ∧
∆( energy ? arg1 ) =

( d i s t ? arg2 ? arg3 ) ∗ ( bat usage ? arg1 )
THEN post-state

Fig. 4: Classification models of the (goto ?arg1 ?arg2 ?arg3) action shown in Table
2 plus the information added in the different processes of Section 4.3.

of the learning process. Finally, we are interested in classification models that con-
tain the maximum information possible. Among the different type of classification
models, white-box [7] descriptive models best fits our requirements. Descriptive
models contain all key features of the examples, rather than the minimum number
of features that form other kinds of models, and white-box models are easy to
interpret.

The domain learning process presented in this paper is independent of the
classification algorithm used to extract the models. The only requisite set by our
approach is that the classification algorithms must accept attribute-value matrices.
To test this work we selected NSLV [9]. NSLV is a classification algorithm based
on inductive rule learning [25]. Inductive rule learning is mainly used in problems
where a single rule cannot model the whole problem. Given how we define the
learning problem (a binary classification problem with two classes: pre-state and
post-state) in this paper NSLV would output two rules for each dataset: One to
model the pre-states and another one to model the post-states.

The rules learned by NSLV follow the structure detailed below:

IF C1 and C2 and . . . and Cm THEN Class is B

with weight w

where Ci is a sentence “Xn is A”, with A a label (or a set of labels) of the domain of
the variable Xn . Each Ci is a feature of the examples extracted to model the class
B . Xn is an attribute of the problem. The labels A of each variable depends on the
type of attribute: True or False for logical attributes or a number for numerical
attributes. The rules are weighted by counting the percentage of instances of the
dataset covered by it.
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Parameter Value
Size of genetic population 40

Number of iterations 500
Mutation probability 0.01
Crossover probability 1

Table 5: NSLV parameter setting.

IF
(at ?arg1 ?arg2) = True ∧
(at ?arg1 ?arg3) = False ∧
(bat usage ?arg1) = 3 ∧
(>(energy ?arg1) ∆(energy ?arg1)) = True
THEN pre-state

→
(at ?arg1 ?arg2) ∧
(¬ (at ?arg1 ?arg3)) ∧
(= (bat usage ?arg1) 3) ∧
(>(energy ?arg1)
(* (distance ?arg1 ?arg2)(bat usage ?arg1)))

IF
(at ?arg1 ?arg2) = False ∧
(at ?arg1 ?arg3) = True ∧
(bat usage ?arg1) = 3 ∧
∆ (energy ?arg1) =
(dist ?arg2 ?arg3) * (bat usage ?arg1)
THEN post-state

→
(¬ (at ?arg1 ?arg2)) ∧
(at ?arg1 ?arg3) ∧
(= (bat usage ?arg1) 3) ∧
(decrease (energy ?arg1)
(* (distance ?arg1 ?arg2)(bat usage ?arg1)))

Fig. 5: Pre-state and post-state meta-model from the rules of Figure 4.

Starting from an empty ruleset and a training set of instances, a new rule that
covers a subset of these instances is generated and added to the ruleset iteratively.
NSLV uses a steady-state genetic algorithm (GA) to select which selection of tuples
<Xi, A> define the antecedent of the rule that fits the highest number of instances
of the training set. The instances covered by this new rule are penalized by erasing
them from the training set of instances. This penalization mechanism helps NSLV
to guide the GA to learn new rules that explain uncovered instances of the dataset.
Table 5 shows the parameters of NSLV during the rule learning process.

4.5 Planning domain generation

The final phase of the learning process consists of the conversion of the classifica-
tion models (Figure 4) into planning actions. The implementation of this process
is an ad-hoc procedure that depends on the classification algorithm used and the
desired format of the output planning models. In our particular case, we want to
translate a classification rule into a world’s description written in PDDL. Given
the similarities of both models (recall Section 3.1), this process is trivial. On the
one hand, NSLV rule’s antecedent contains a set of tuples <X, A> joined by a
conjunction operator. Each tuple represents the value A of the problem’s attribute
X. On the other hand, PDDL displays world states as a set of predicates linked
by a conjunction operator(Figure 5).

As said earlier, tuples <X, A> represent the essential predicates that define
a state of the world. Those states contain the minimum essential information to
model all the pre- or post-states for every appearance of the action of the plan
traces. From these states, the preconditions and effects of the action are extracted.
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Preconditions:
(at ?arg1 ?arg2)) ∧
(¬ (at ?arg1 ?arg3)) ∧
(=(bat usage ?arg1) 3) ∧
(>(energy ?arg1)

(* (distance ?arg1 ?arg2) (bat usage ?arg1)))

Effects:
(¬ (at ?arg1 ?arg2)) ∧
(at ?arg1 ?arg3) ∧
(decrease (energy ?arg1)

(* (distance ?arg1 ?arg2) (bat usage ?arg1)))

Fig. 6: Preconditions and effects learned from the models of Figure 5. As can be
noted, preconditions are created directly from the pre-state model, while effects
are the steps necessary to obtain the post-state model from it.

Action’s preconditions (Figure 6) are the set of features of the world that must
hold in order to apply the action, so it can be obtained directly by displaying
the information of the pre-state model as a conjunction of predicates. Action’s
effects represent how the action changes the world after applying it, so they must
be obtained by calculating the steps necessary to transform the pre-state into the
post-state. These steps are the addition and deletion list of logical predicates and
the assignment/increment/decrement of continuous values of numerical predicates.
By comparing the pre-state and post-state we can check which logical predicates
must be added (were false in pre-state and true in post-state) and deleted (were
true in pre-state and false in post-state). Including increments and decrements of
numerical fluents is a straightforward process as ∆ values contain explicitly this
information, so it only needs to translate them into the PDDL format.

5 Experiments and Results

This section is directed to present the results obtained from carrying out different
experiments with the aim to prove the performance of the method presented in this
work. To achieve so, this section is divided into two blocks: The first part explains
in-depth the experimental setup and the metrics used during the experimental
process, and the second part shows the results of these experiments and analyses
the performance of PlanMiner in them.

5.1 Experimental Setup

A wide range of domains from the IPC was selected as the source of experimental
input data. For each domain, a collection of 100 random-generated problems were
solved. Then, these problems were used to obtain the input plan traces used in
the experimental process. Problems were solved with Metric-FF planner [14]. To
test the capabilities of our solution dealing with partially-known information, input
plan traces were modified by including incompleteness in them. Incompleteness was
included by randomly selecting a certain percentage of predicates from every state
in every plan trace used as input and erasing them. In order to avoid randomness to
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Table 6: Input domains characteristics. The first table shows the STRIPS domains
used in the first part of the experimentation, the second table shows the numerical
domains used in the second part of the experimentation. Domains characteristics
(from left to right) are the number of actions of the domains, the number of param-
eters of the actions, the number of logic predicates and the number of parameters
of the predicates. In the particular case of the numerical domains, the number of
numerical fluents is included in the table.

Domain |Actions| max action arity |logical predicates| max predicate arity

BlocksWorld 4 2 5 2
Depots 5 4 6 6

DriverLog 6 4 6 2
ZenoTravel 5 6 4 2

Domain |Actions| max action arity |logical predicates| |numerical predicates| max predicate arity

Depots 5 4 6 4 2
DriverLog 6 4 6 4 1

Rovers 10 6 26 2 3
Satellite 5 4 8 6 2

ZenoTravel 5 3 2 8 2

affect the results, a 5 folds cross-validation is used in the learning process. The set
of input problems were separated into 5 disjoint subsets (folds). 4 folds were used
for learning a planning domain, while the remaining fold was reserved to be used
with the VAL [15] tool during the validity measure. Experiments were run 5 times,
changing the validation fold in every run. For a set of input problems, the result
of the experimentation was the mean value of the measures for every run. In these
experiments, The parameters of FF-Metric, VAL and the reference algorithms are
set as default as noted by its authors during the whole experimentation process.

5.1.1 Evaluation criteria

The metrics used in the experimentation process are precision, recall, F-Score and,
in the second battery of experiments, validity. Precision and recall [2] are defined
as:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

where tp is is the number of true positives (predicates that correctly appear in the
action schema), fn is the number of false negatives (number of missing predicates),
and fp is the number of false positives (number of extra predicates). Precision
quantifies how many learned elements of the domain surplus. On the other hand,
recall gauges the number of missing elements in the learned domain. Both precision
and recall measures range from 1 (best) to 0 (worst).

F-Score is a measure of the domain’s general performance. F-Score is the har-
monic mean between precision and recall and is calculated as

F -Score = 2 ∗ Precision ∗Recall
Precision+Recall

Overall, F-Score is a grade about how good is the learned domain on average.
F-Score was used as opposed as domain’s error rate in this experimentation. Error



Title Suppressed Due to Excessive Length 17

Table 7: Precision, recall and F-Score experimental results. For each experiment
mean and standard deviation of the 5 folds metrics values are shown.

Domain Incompleteness µPrecision σPrecision µRecall σRecall µF-Score σF-Score

Depots

0% 0.949 0.00 1.00 0.00 0.963 0.00
10% 0.962 0.01 1.00 0.00 0.970 0.005
50% 0.953 0.022 0.996 0.010 0.962 0.015
90% 0.884 0.024 0.969 0.021 0.912 0.014

DriverLog

0% 0.918 0.017 0.980 0.018 0.948 0.017
10% 0.907 0.036 0.973 0.027 0.939 0.032
50% 0.895 0.032 0.966 0.023 0.929 0.026
90% 0.784 0.050 0.960 0.027 0.862 0.036

Rovers

0% 0.775 0.000 1.000 0.000 0.873 0.000
10% 0.774 0.003 1.000 0.000 0.872 0.002
50% 0.458 0.045 0.867 0.022 0.599 0.039
90% 0.350 0.031 0.809 0.036 0.488 0.027

Satellite

0% 1.000 0.000 1.000 0.000 1.000 0.000
10% 0.993 0.014 0.993 0.014 0.993 0.009
50% 0.857 0.036 0.853 0.033 0.852 0.024
90% 0.852 0.079 0.833 0.086 0.844 0.082

ZenoTravel

0% 0.812 0.000 1.000 0.000 0.896 0.000
10% 0.703 0.026 1.000 0.000 0.825 0.018
50% 0.620 0.075 0.715 0.021 0.662 0.042
90% 0.521 0.097 0.676 0.021 0.585 0.065

rate as defined in [34] is calculated by counting the number of wrongly learned
predicates (extra or missing predicates) and dividing them by the total number
of possible predicates in a given action. When taking into account arithmetic
expressions the total number of possible predicates is infinite (as there is an infinite
combination of operators and operands to create arithmetic expressions), making
it unfit to measure our experimentation. Precision, recall and F-Score were chosen
because they were the metrics that better fit our goal of measuring the learned
domains and test its quality by comparing them with the original domains used
to create the input data.

Validity is a metric that checks the learned domain’s problem-solving capabil-
ities. Validity is calculated by taking a plan obtained with a handmade domain
and trying to replay it with a learned domain. A successful recreation of the plan
(final state of the recreation equal to problem’s goal state) means that the domain
is valid. Validity is measured using the automatic plan validation tool VAL [15]
from the IPC.

5.2 Results and Discussion

5.2.1 Comparison with reference algorithms

The reference algorithms selected to analyze the performance of PlanMiner are
ARMS [32], AMAN [33], OpMaker2 [23] and FAMA [1]. Those are some of the
most spread domain learning systems in the literature. These are approaches able
to learn deterministic planning domains from certain levels of uncertainty in the
input data, but they are able to only learn STRIPS-like actions. Thus we selected a
set of domains of this type to compare the approaches. Table 6 shows the domains
used during this step of the experimental process as well as its characteristics, and
Figure 7 compares ARMS, AMAN, OpMaker2, FAMA and PlanMiner in terms of
F-Score.
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Fig. 7: F-Score comparison charts between PlanMiner and the reference algorithms.
From top to bottom and left to right, results are shown of BlocksWorld, Depots,
DriverLog and ZenoTravel domains.

At worst cases, PlanMiner equals the performance of the reference algorithms,
but the differences between PlanMiner and the reference algorithms increase with
higher levels of incompleteness. Results show that learning STRIPS-like domains,
PlanMiner presents high resilience to incompleteness, maintaining stable F-Score
values, in contraposition with the performance of some of the algorithms used.

Inspecting the results by domains we can observe that:

– In Blocksworld domain F-score above 0.9 points with every algorithm, with
higher levels of incompleteness, only OpMaker2 drops below that threshold.
PlanMiner presents perfect scores except for 90% incompleteness. FAMA, the
closest algorithm in terms of performance, presents similar issues but shows
the worst performance at 90% incompleteness (around 0.1 points of F-Score).

– In Depots domain PlanMiner presents a non-perfect F-Score rating. This is
caused by the inclusion of bidirectional matrices that represent the problem’s
world, as PlanMiner learns some redundant information. An in-depth study of
this issue will be discussed later in the next subsection, as well as a solution
for it. Overlooking these errors, PlanMiner maintains a stable performance
facing incompleteness, presenting problems only in the experiments with the
highest number of missing data. Comparing with other approaches PlanMiner
dominates them in every experiment, with FAMA presenting the narrowest
gap between results (0.1 points at 90% incompleteness). ARMS, OpMaker2
and AMAN present an overall performance around 0.9 F-Score with important
drops in the most complex experiments.
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– In Driverlog domain PlanMiner shows a similar behaviour as the one viewed
with the Depots domain, both in terms of performance and resilience to in-
completeness. Driverlog domains use the similar bidirectional matrices that
Depots, hindering the overall performance of PlanMiner. Reference algorithms
present a worse performance than PlanMiner over the experimentation, with
some algorithms presenting 0.2 or more points difference of F-Score at 90%
incompleteness.

– In Zenotravel domain PlanMiner shows a clear dominance over the rest of ref-
erence algorithms. The closest algorithms in terms of performance are ARMS
and FAMA, that show results 0.08 points below PlanMiner’s results. This dif-
ference widens to 0.2 points in the most complex experiments. AMAN and
OpMaker2 algorithms start with worse results, but they don’t show falls so
sharp.

5.2.2 Numeric planning domains learning

Results showed in tables 7 and 8 exhibit the overall performance of PlanMiner
learning numerical domains. The domains used in this experimentation are the
numeric versions of the Depots, DriverLog, Rovers, Satellite and ZenoTravel do-
mains (table 6). Roughly, as can be seen, PlanMiner presents good results until
levels of 50% of incompleteness. PlanMiner maintains F-Score levels above 0.8 even
in the worst cases. Beginning with 50% of incompleteness these results worsen in
the Rovers and ZenoTravel domains. Even so, PlanMiner shows recall levels almost
flawless in most situations. The Precision results are, on average, lower than the
recall results and then the F-Score results resent. PlanMiner is able to obtain valid
domains with some levels of incompleteness in 4 out of 5 domains. Validity is the
hardest metric to meet, as a single missing or extra effect in an action, can make
the whole domain unable the reproduce the test plans.

For each domain used in the experimentation process, we will discuss its results
separately in a proper subsection. Each subsection includes an example of an action
learned. These examples highlight (Bolded predicates) the most common errors
of the solution presented in this paper. These errors can be classified into two
types: over-information errors and bias errors. Over-information errors arise when
PlanMiner creates pointless expressions that relate various predicates during the
information discovery steps. Bias errors occur when there is a lack in the variety
of input data that causes to take as true very restrictive clauses. Over-information
errors can be avoided by restricting the creation of some expressions by including
expert information as input data. While increasing the variety of the data and
including several different examples as input would eliminate bias errors.



20 José Á. Segura-Muros et al.

5.2.3 Depots

Action :
LIFT (? arg 0 − h o i s t ? arg 1 − c r a t e ? arg 2 − s u r f a c e

? arg 3 − p lace )
Precond i t ion :

(at ?arg 2 ?arg 3)
( c l e a r ? arg 1 )
( at ? arg 0 ? arg 3 )
( a v a i l a b l e ? arg 0 )
( at ? arg 1 ? arg 3 )
( on ? arg 1 ? arg 2 )

E f f e c t s :
(¬( a v a i l a b l e ? arg 0 ) )
( l i f t i n g ? arg 0 ? arg 1 )
( i n c r e a s e ( fu e l−co s t ) 1)

Depots’ results show flawless recall scores. The errors found in the Depots
domains are over-information errors. The predicates marked can be inferred from
other predicates of the preconditions so it is not necessary to explicitly include
them. For example, with the predicates (at?arg 1?arg 3 ) and (on?arg 1?arg 2 )
we would infer the predicate (at?arg 2?arg 3 ), making it redundant and therefore
erroneous. Although these errors are scattered in the whole domain and they
reduce the precision of the domains and hence lower the F-Score of the domains,
they do not affect domains’ validity in any situation (even with the highest levels
of incompleteness).

5.2.4 DriverLog

Action :
DRIVE−TRUCK (? arg 0 − truck ? arg 1 − l o c a t i o n ? arg 2 − l o c a t i o n

? arg 3 − d r i v e r )
Precond i t ion :

( at ? arg 0 ? arg 1 )
(link ?arg 2 ?arg 1)
( l i n k ? arg 1 ? arg 2 )
( d r i v i n g ? arg 3 ? arg 0 )

E f f e c t s :
(¬ ( at ? arg 0 ? arg 1 ) )
( at ? arg 0 ? arg 2 )
( i n c r e a s e ( dr iven ) ( time−to−dr iv e ? arg 2 ? arg 1 ) )

Like Depots, DriverLog domains present a light widespread problem with do-
mains’ precision. The source of these problems is how the connectivity in the world
map is defined. To create a connectivity network between locations the domain
uses the (link?arg 1?arg 2 ) predicates. Given that this network is usually defined
bidirectionally, for each pair of locations there are two symmetric predicates and
PlanMiner can not discern that only one of these two predicates is needed to define
the actions. This issue occurs to a lesser extent in the Depots domain and is the
cause of the flaws in the STRIPS Depots and Driverlog domains. The addition of
a single non-bidirectional connection between two locations would eliminate this
problem from the learned domains. These errors do not invalidate the learned do-
mains to reproduce the original plans used as input and therefore they are valid.
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At 90% incompleteness, these errors and some recall errors invalidate the learned
domains, even that the F-Score maintains above 0.86 points.

5.2.5 Rovers

Action :
SAMPLE SOIL (? arg 0 − rover ? arg 1 − s t o r e ? arg 2 − waypoint )

Precond i t ion :
( a t s o i l s a m p l e ? arg 2 )
(available ?arg 0)
( s t o r e o f ? arg 1 ? arg 0 )
( empty ? arg 1 )
( e q u i p p e d f o r s o i l a n a l y s i s ? arg 0 )
(equipped for soil analysis ?arg 0)
( at ? arg 0 ? arg 2 )
(>= ( energy ? arg 0 ) 3)

E f f e c t s :
(¬ ( a t s o i l s a m p l e ? arg 2 ) )
(¬ ( empty ? arg 1 ) )
( f u l l ? arg 1 )
( h a v e s o i l a n a l y s i s ? arg 0 ? arg 2 )
( dec r ea s e ( energy ? arg 0 ) 3)

The high number of predicates defined in the Rovers domain generates a high
quantity of bias and over information errors in the learned domains. For example
(available?arg 0 ) for a given rover is always true except when transmitting informa-
tion to the rover’s dock, and PlanMiner is not able to delete them. The predicate
(equipped for soil analysis?arg 0 ) is a bias error produced by the lack of different
configurations of rovers in the input data. As every rover is equipped to execute
every action, PlanMiner learns some spurious relations that lower the precision
scores. In contraposition, we can see that recall scores maintain above 0.8 points
even at 90% incompleteness. The low precision scores make F-Score resents and
hinders the validity of the domains.

5.2.6 Satellite

Action :
TURN TO (? arg 0 − s a t e l l i t e ? arg 1 − d i r e c t i o n ? arg 2 − d i r e c t i o n )

Precond i t ion :
( po in t ing ? arg 0 ? arg 2 )
(> ( f u e l ? arg 0 ) ( slew−time ? arg 1 ? arg 2 ) )
(> (fuel-used) (slew-time ?arg 1 ?arg 2))
(> ( f u e l ? arg 0 ) ( slew−time ? arg 1 ? arg 2 ) ) }∗)

E f f e c t s :
(¬( po in t ing ? arg 0 ? arg 2 ) )
( po in t ing ? arg 0 ? arg 1 )
( dec r ea s e ( f u e l ? arg 0 ) ( slew−time ? arg 1 ? arg 2 ) )
( i n c r e a s e ( fu e l−used ) ( slew−time ? arg 1 ? arg 2 ) )

Satellite starts with flawless results both in precision and recall, but they lower
evenly in the absence of information. Action showed as an example is taken from a
domain learned using input information with a 10% missing predicates. The lack
of information leads PlanMiner to create relations that offer no knowledge, this is
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not caused by the characteristics of the domain but is a deficiency of the learning
process. These issues do not hinder the capabilities of PlanMiner to learn valid
planning domains even at 50% of missing data. Finally, the results show that our
approach achieves 0.84 points F-Score at the highest levels of incompleteness.

5.2.7 ZenoTravel

Action :
FLY (? arg 0 − s a t e l l i t e ? arg 1 − d i r e c t i o n ? arg 2 − instrument

? arg 3 − mode)
Precond i t ion :

( at ? arg 0 ? arg 1 )
(> ( f u e l ? arg 0 ) (*( d i s t ance ? arg 1 ? arg 2 ) ( slow−burn ? arg 0 ) ) )
(> (fuel ?arg 0) (distance ?arg 1 ?arg 2))
(> (fuel ?arg 0) (distance ?arg 2 ?arg 1))
(> (fuel ?arg 0) (fast-burn ?arg 0))
(> (fuel ?arg 0) (slow-burn ?arg 0))

E f f e c t s :
(¬( at ? arg 0 ? arg 1 ) )
( at ? arg 0 ? arg 2 )
( dec r ea s e ( f u e l ? arg 0 )

(*( d i s t ance ? arg 1 ? arg 2 ) ( slow−burn ? arg 0 ) ) )
( i n c r e a s e ( to ta l−f u e l−used )

(*( d i s t ance ? arg 1 ? arg 2 ) ( slow−burn ? arg 0 ) ) )

PlanMiner presents some problems with spurious arithmetic and logic relations
when learning ZenoTravel domains. These errors appear with the existence of pred-
icates that represent bidirectional connectivity networks (in this particular case
(distance?arg 1?arg 2 )), the main difference between the issues found in Driverlog
is that these predicates are numerical predicates rather than logical predicates.
This leads to PlanMiner to adjust twice the number of arithmetic and relational
expressions. These expressions are virtually equal, but our approach can not dis-
criminate between them. ZenoTravel presents another characteristic that hinders
the performance of PlanMiner. This characteristic is the existence of equivalent
predicates like (slow − burn?arg 0 ) and (fast − burn?arg 0 ). Although these predi-
cates do not have the same information, they represent the same matter. This leads
PlanMiner to create more spurious relations. This situation lowers the overall pre-
cision score of the learned domains, but do not affect recall scores. PlanMiner is
able to obtain flawless recall scores, even in the presence of missing information.
This leads to PlanMiner able to maintain the validity of the learned domains even
when the number of spurious relations is higher.

6 Conclusions and Future Work

In this paper, we have developed a new planning domain learner, named Plan-
Miner, that uses several machine learning techniques to learn the planning do-
mains with relational and numerical expressions in the preconditions and effects
from plan traces with partially-known states. Our domain learner was measured
with a battery of experiments that tested the learned domain’s F-Score, precision,
recall, and validity by solving a set of problems from benchmark planning domains
and by comparing it with state-of-the-art domain learning algorithms. The results
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Table 8: Validity results. For each experiment mean and standard deviation of the
5 folds of the plans solved are shown. If at least 50% of the test plans are valid,
the domain is valid. Validity is calculated by majority vote between folds.

Domain Incompleteness µPlans solved σPlans solved Validity

Depots

0% 1.000 0.000 3
10% 1.000 0.000 3
50% 1.000 0.000 3
90% 0.910 0.124 3

DriverLog

0% 1.000 0.000 3
10% 0.933 0.149 3
50% 0.800 0.447 3
90% 0.000 0.000 7

Rovers

0% 0.966 0.0745 3
10% 0.000 0.000 3
50% 0.000 0.000 7
90% 0.000 0.000 7

Satellite

0% 1.000 0.000 3
10% 0.800 0.447 3
50% 0.75 0.426 3
90% 0.000 0.000 7

ZenoTravel

0% 1.000 0.000 3
10% 0.833 0.372 3
50% 0.333 0.447 7
90% 0.000 0.000 7

obtained show that our solution is able to learn valid planning domains, even with
high levels of incompleteness in the input states.

There’s a wide variety of work lines to improve our domain learning technique
in the future. First, we want the improve further the expressivity of the domains
learned. This will lead to exploring the possibility of learning planning domains
with durative actions. Durative actions are actions that take a certain time to be
completed, in contrast to the actions learned in this paper that are considered to be
instantaneous. Second, we are considering including noise in the plan traces. The
inclusion of noise is difficult, as there exist a wide variety of different techniques
in the learning process that have to be attuned in order to achieve satisfactory
results. Finally, we are aware of the weak points of our solution. The issue of the
spurious information included in the learned domains can hinder the results of
PlanMiner, and we are considering a series of techniques to lessen the problem.
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