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Abstract 12 

The snow dynamics in alpine systems play a significant role in the hydrosphere, 13 

biosphere, and anthroposphere interfaces of these regions. The storage of water 14 

resources as snow is essential for ecosystems, human consumption, tourism, and 15 

hydropower in many areas.  However, snow data are usually scarce due to poor 16 

accessibility, difficulties to maintain monitoring system under harsh climatic conditions 17 

and limited economic funds. Most of the scientific studies aimed to quantify water 18 

stored as snow are carried out at small or medium spatial scales, but few analyses are 19 

done for the whole mountain ranges. The main goal of this work is to propose a general 20 

parsimonious methodology to estimate snow water equivalent under data scarcity for 21 

the Sierra Nevada mountain range (Spain). The methodology is easily transferable to 22 

any other study areas. It combines a dynamic regression approach of snow depth from 23 

punctual data, snow cover area data from the MODIS satellite and simulations of snow 24 

density from a coupled mass and energy balance model. The regression model includes 25 

two kinds of explanatory variables (steady and non-steady) to assess the snow depth 26 

dynamics. The dynamic of the snow density in the mountain range has been obtained 27 

using a physically based simulation driven by climate model data for the Iberian 28 

Peninsula. These three variables (snow depth, snow cover area and snow density) have 29 

been used to obtain spatially distributed series of snow water equivalent for the whole 30 

mountain range. The proposed solution allows to study the snow water equivalent 31 

distribution, duration of the snow cover and number of accumulation and melting days 32 
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for different snow seasons. The mean accumulated snow water equivalent per season in 33 

the historical period is 330 Hm3 and the maximum of 480 Hm3, which is a significant 34 

amount of resources in an area characterized by limited water availability. 35 

Keywords: water resources, snow depth, snow cover area, snow density, alpine 36 

systems, Sierra Nevada (Spain) 37 

List of abbreviations 38 

SWE  Snow water equivalent 39 

SD  Snow depth 40 

SCA  Snow cover area 41 

ASCA  Accumulated snow cover area 42 

SDEN  Snow density 43 

P  Precipitation 44 

1. Introduction 45 

Water stored in snowpack is essential for understanding the amount of water and its 46 

seasonal distribution in alpine regions and their surrounding areas (Zappa et al., 2019). 47 

It represents a natural storage system that, in general, accumulates snow during winter 48 

and releases water during the summer period. The assessment of the spatiotemporal 49 

distribution of these resources is a topic of interest for scientists, water policy managers 50 

and society (Viviroli et al., 2011; Sturm et al., 2017). Snow water equivalent (SWE), 51 

which is the amount of water contained within the snowpack, can be assessed as the 52 

product of three variables: snow depth (SD), snow cover area (SCA), and snow density 53 

(SDEN). The assessment of the spatiotemporal variability of SWE is a key issue to plan 54 

and management human water consumption and renewable energy production, such as 55 

hydropower in many mountains areas around the world (Mankin et al., 2015; Kuriqi et 56 

al., 2019). The assessment of snow variables is a non-trivial problem and requires snow 57 

measurements (e.g. Salomonson and Appel, 2004; López‐Moreno and Nogués‐Bravo, 58 

2006; López-Moreno et al., 2013, Bormann et al., 2013). 59 

Nevertheless, snow data in most of alpine regions are usually scarce. The poor 60 

accessibility to mountains ranges due to the high elevation, rough topography, 61 

climatology, and the presence of ice and snow makes the monitoring of snow in alpine 62 
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regions complicated (Zhang et al., 2014; Ren et al., 2018). Sometimes it can be 63 

overcomed by using automatic weather stations (Fassnacht et al., 2017) or airborne 64 

LIDAR (Light Detection and Ranging) (Harpold et al., 2014; Skaugen and Melvold, 65 

2019), but, such options are expensive to implement making them unfeasible in many 66 

areas.  67 

Another alternative is the use of SWE products derived from satellite microwave 68 

radiometer-based measurements. For example, the Global Snow Monitoring for Climate 69 

Research (GlobSnow) product of the European Space Agency (ESA) (Luojus et al., 70 

2010; Metsämäki et al, 2015) provides SWE retrievals of 25-km resolution for the 71 

Northern Hemisphere; The Microwave Surface and Precipitation Products System 72 

(MSPPS) product of the National Oceanic and Atmospheric Administration (NOAA) 73 

(Ferraro et al., 2002; Ferraro et al., 2005) provides global 16-km resolution SWE 74 

retrievals. However, the spatial resolution of these products cannot be adequate for 75 

some distributed hydrological applications where snow accumulation and melting 76 

processes are approached in small catchments or mountain range studied (Pardo-77 

Iguzquiza et al., 2017; Jimeno-Saez et al., 2020). Finer spatial resolutions are also 78 

recommended due to the complex topography of alpine regions (Dong et al., 2005), 79 

otherwise, these products should be evaluated and combined with high-resolution digital 80 

elevation information such as the Shuttle Radar Topography Mission (SRTM) (Molotch 81 

et al., 2005). 82 

In cases where finer spatial resolutions are needed and a relative abundance of snow and 83 

meteorological information are available it is possible to have good approximations of 84 

SWE by using physically based simulations. They can be applied directly to SWE 85 

(Langlois et al., 2009) or to the secondary variables [SD (Liston and Elder, 2006); SCA 86 

(Zeinivand and De Smedt, 2009); SDEN (Brun et al., 2013)]. 87 

However, when limited data are available geostatistical techniques can be useful to 88 

interpolate the SWE (Carroll and Cressie, 1996) or the variables that define it. SCA has 89 

been analyzed using regression techniques (Richer et al., 2013; Mir et al., 2015). In the 90 

same way, SD and SDEN can be estimated using geostatistical techniques (López-91 

Moreno and Nogués‐Bravo, 2006, Collados-Lara et al., 2017; Prusova et al., 2012). 92 

Geostatistical techniques are useful to define the optimal location of snow poles too 93 

(Collados-Lara et al., 2020). The outputs of these techniques can be constrained by the 94 

SCA information derived from satellites. In the case of SCA, satellite products provide 95 
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good approximations at finer scales [e.g. MODIS at 500-m resolution (Hall et al., 2002); 96 

LANDSAT at 30-m resolution (Girona‐Mata et al., 2019); SENTINEL at 10-m 97 

resolution (Gascoin et al., 2018); PLEIADES at 0.5-m resolution (Shaw et al., 2020)] 98 

but the presence of clouds or the temporal resolution higher than daily (e.g. LANDSAT) 99 

make necessary techniques for gap filling the daily series. 100 

On the other hand mixed approaches that combine SD information using geostatistical 101 

methods or observation techniques such as airborne LIDAR and physical simulations of 102 

SDEN (with a lower range of uncertainty than SD) have been employed satisfactorily to 103 

estimate SWE (e.g. Painter et al., 2016). 104 

The main objectives of this work are: (1) to propose a novel approach to estimate daily 105 

spatial distribution of SWE at mountain range scale and (2) to assess the spatiotemporal 106 

dynamics of SWE in the Sierra Mountain Range (Southern Spain). The proposed 107 

methodology is a general approach specially indicated when the snow information is 108 

limited to sparse punctual and temporally discontinuous information on snow depth. An 109 

integrated modelling approach is proposed by combining a dynamic regression 110 

approach of SD, SCA data from remote sensing and simulations of SDEN from a 111 

coupled mass and an energy balance model. The SD model has been derived from the 112 

model developed by Collados-Lara et al. (2017) and the density simulations were 113 

performed by using the approach proposed by Alonso-González et al. (2018).Results 114 

from the proposed methodology permitted analyzing the SWE distribution, duration of 115 

the snow cover and, number of accumulation and melting days during the period 2000-116 

2014 for the case study. 117 

The rest of the manuscript is organized as follows: The study area (Sierra Nevada 118 

Mountain range) is described in Section 2, the employed data for the case study are 119 

included in Section 3.1 and the proposed methodology to estimate SWE is described in 120 

Section 3.2. Section 4 presents the results, and their discussion is included in Section 5. 121 

Lastly, Section 6 presents the main conclusions of this research. 122 

2. Study area 123 

The Sierra Nevada mountain range is located in southern Spain (see Figure 1). It has an 124 

extension of around 80 km in the west-east direction and between 15 and 30 km in the 125 

north-south direction. The highest peak of the Iberian Peninsula (Mulhacén Peak, 126 

3478.6 m a.s.l.) is located in Sierra Nevada.  It enjoys a high-mountain Mediterranean 127 
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climate (Collados-Lara et al., 2018). Summers are relatively dry and the winters are 128 

wetter with a high spatial and inter annual variability of precipitation (P) (Herrero et al., 129 

2011). In Sierra Nevada, from November to April the majority of P falls as snow, which 130 

is very important for the region from the tourism (it is the southernmost ski station in 131 

Europe), environmental and water resources perspective. It is also included in different 132 

figures of protection (Natural and National Park and Biosphere Reserve) that aim a 133 

good state of conservation of the environmental resources. The snowfall is essential to 134 

the availability of water resources in the Sierra Nevada catchments and the city of 135 

Granada (Herrero et al 2009). The study of the snow dynamics is a key issue for the 136 

region. 137 

3. Data and Methods 138 

3.1 Data 139 

The proposed methodology (explained in section 3.2) requires snow, climatic, and 140 

orographic information. For the case study we used SD information from 23 snow poles 141 

(see Figure 1) (Collados-Lara et al., 2020) from 10 surveys provided by the Spanish 142 

Ministry of Agriculture Food and Environment (within the framework of the ERHIN 143 

program (Assessment of Water Resources from Snow Accumulation). We also included 144 

daily SD data elaborated by Pimentel et al. (2017) for the period 2009-11-15 to 2013-145 

05-31 in Refugio Poqueira. They employed terrestrial photography over a plot study 146 

area to define local snow depth. The distribution of the SD data employed is this work 147 

has a positive skew (mean 56.6 and median 34.1 cm) and the majority of the data (84%) 148 

are lower than 100 cm. The minimum and maximum values are respectively 0 and 450 149 

cm. This information has been used to calibrate the SD regression models. We also used 150 

fractional SCA data from the MODIS satellite. We employed the MODIS/Terra Snow 151 

Cover Daily Global 500 m Grid (Data Set ID: MOD10A1), which has a spatial 152 

resolution of approximately 460 m for the latitude of the study area and a temporal 153 

resolution of 1 day. We have approximated the SCA in cloudy dates without MODIS 154 

information by linear interpolation between the nearest previous and subsequent 155 

cloudless days. The SCA dynamic in Sierra Nevada has been previously assessed in 156 

other research papers (Pardo-Igúzquiza et al., 2017; Collados-Lara et al., 2019). These 157 

data have been employed to calculate the non-steady indices of SCA and for the final 158 

calculation of SWE. On the other hand, SDEN data were obtained by Alonso-González 159 

et al. (2018), further details in section 3.2. These data have been employed to estimate 160 



6 
 

SWE too. The elevation data was obtained from a digital elevation model of 5-meter 161 

resolution elaborated by Spanish National Geographic Institute. This elevation model 162 

was used to estimate the spatial explanatory variables. P and temperature data were 163 

employed to calculate additional non-steady indices. They were obtained from the 164 

Spain02 v04 project (Herrera et al. 2016). It includes daily estimates of P and 165 

temperature for Spain in the period 1971-2010 with a spatial resolution of 12.5 km. 166 

These data have been used to obtain SD and SWE in the area of interest which has been 167 

divided into a finite number of cells using the spatial resolution of the MODIS product. 168 

SD obtained from the dynamic regression model and SCA from MODIS uses the same 169 

spatial support (grid cell of about 460 x 460 m) and SDEN data are distributed in grid 170 

cells of 10 x 10 km. The daily density used for each 460 x 460 m pixel has been 171 

selected taking into account its location with respect the 10 x 10 km grid and the range 172 

of elevation where the pixel is located. Note that the SDEN data are distributed by cells 173 

and ranges of elevations. With respect elevation, mean values were calculated for the 174 

calculation grid. 175 

3.2. Estimation of distributed snow depth, density, and water equivalent 176 

The proposed methodology (summarized in Figure 2) aims to assess the SWE in a 177 

mountain range where very limited snow depth (23 observation sites in the whole range 178 

measured only once or twice every year) and density information is available. Two 179 

different models are applied in a sequential way: a dynamic regression model to 180 

estimate SD, and a physically based model driven by downscaled reanalysis data to 181 

estimate SDEN. The SWE is obtained by combining this information with SCA values 182 

obtained from satellite information. 183 

Three non-steady regression models have been considered to simulate the SD dynamics 184 

by using continuous steady (they do not vary in time) and non-steady variables (they 185 

vary in time). Their formulation was derived from an optimal steady regression model 186 

that produced the best approximation to the historical SD observations (Collados-Lara 187 

et al., 2017): 188 

𝑌 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑙𝑥𝑘      (1) 189 

where 𝑌 is the variable to be estimated (in this case SD), {𝑥𝑖 , 𝑥𝑗 , 𝑥𝑙 , 𝑥𝑘} are the steady  190 

explanatory variables and/or their mathematical transformations , and {𝛽0, 𝛽1, 𝛽2, 𝛽3} are 191 

unknown parameters estimated from experimental data. The sub-index 𝑖, 𝑗, 𝑙, 𝑘 indicates 192 
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that the variables and/or their transformations can be different. 193 

Three new solutions have been defined from this regression model by using different 194 

formulations where non-steady variables and/or their transformations  {𝑡𝑛, 𝑡𝑜, 𝑡𝑝} have 195 

been included (see Equations 2−4). The sub-index 𝑛, 𝑜, 𝑝 indicates that the variables 196 

and/or their transformations can be different. Note that {𝑡𝑛, 𝑡𝑜, 𝑡𝑝}  can also take the 197 

value 1 in cases in which the non-steady variables would not improve the accuracy of 198 

the results. 199 

𝑌1 = 𝛽0 + (𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛     (2)  200 

𝑌2 = (𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛      (3) 201 

𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜 + 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝      (4) 202 

Note that model 1 is a particular case of model 3 203 

Nine steady explanatory variables (elevation, slope, longitude, latitude, eastness, 204 

northness, maximum upwind slope, radiation, curvature) (Fassnacht et al., 2013; 205 

Collados-Lara et al., 2017) and its transformations (square, root square, inverse and 206 

logarithm) have been considered in this study to explain the spatial variability of SD. 207 

With respect to the temporal variability, two non-steady explanatory variables have 208 

been considered: the SCA and the solid P accumulated in a temporal window. In this 209 

study we have tested two different assumptions to identify when the P is solid: mean 210 

temperature < 0ºC, and minimum temperature < 0ºC. Two options have been considered 211 

to define the temporal windows to accumulate the non-steady variables: 212 

𝑡𝑣,𝜁
1 =

1

2𝜁+1
∑ 𝑡𝑤

𝑣+𝜁
𝑣−𝜁         (5) 213 

𝑡𝑣,𝜁
2 =

1

𝜁+1
∑ 𝑡𝑤

𝑣
𝑣−𝜁         (6) 214 

where 𝑡𝑣,𝜁
1  is the accumulation of the variable 𝑡𝑤 in the time 𝑣 considering the temporal 215 

window [𝑣 − 𝜁, 𝑣 + 𝜁] and 𝑡𝑣,𝜁
2  is the accumulation of the variable 𝑡𝑤 in the time 𝑣 216 

considering the temporal window [𝑣 − 𝜁, 𝑣]. 217 

We have also considered the square, root square, inverse and logarithm transformations 218 

for the non-steady variables. In the case of the non-steady explanatory variables the 219 

neutral element of multiplication has been considered too. It intends to consider the 220 

non-steady variables only when they improve the accuracy of the model. 221 



8 
 

In order to identify the best regression models, we assessed the goodness of fit for all 222 

the possible combinations of model structures (the three formulations defined in 223 

Equations 2−4) and the 65 combinations of variables (including steady and non-steady 224 

explanatory variables and its transformations and accumulations). The parameters of the 225 

three considered structures (Equations 1-3) have been calibrated by solving an 226 

optimization problem by applying maximum likelihood normal regression. Different 227 

indices were used to assess the goodness of fit: the coefficient of determination (R²), the 228 

adjusted R² (𝑅𝑎𝑑𝑗
2 ), the negative of the logarithm of likelihood function (NLLF), the 229 

Akaike information criterion (AIC), the Bayesian information criterion (BIC), and the 230 

Kashyap information criterion (KIC). 231 

The selected model allowed us to estimate daily SD in each pixel in our case study. In 232 

order to reduce the uncertainty in the estimation, SCA data are used to define the pixels 233 

that are covered by snow. In this study we have considered a pixel covered by snow if 234 

its SCA is higher than 50%. 235 

The daily dynamics of the SDEN in the mountain range has been taken from the 236 

simulation with a physically based model with a coarse resolution. Thus, an energy 237 

mass and energy snowpack model (Factorial Snow Model 1.0, FSM) (Essery, 2015) 238 

driven by the regional atmospheric model the Weather Research and Forecasting (WRF) 239 

(Skamarock et al., 2008) was used following the methodology proposed by Alonso-240 

González et al. (2018).  They used a pre-existing WRF simulation as meteorological 241 

forcing of FSM. The WRF simulation had a 10km cell size with a 3h time step covering 242 

the whole Iberian Peninsula. The boundary and initial conditions of WRF were provided 243 

by the ERA-Interim global reanalyses and the WRF parametrization was tested using 244 

observations over the whole Iberian Peninsula. The complete description of the WRF 245 

configuration can be found in García-Valdecasas Ojeda et al. (2017). Then, the WRF 246 

outputs where reprojected to different elevation bands at 100m steps (from 1500 to 2900 247 

m a.s.l.) to simulate the snowpack at all the elevations inside each WRF cell using an 248 

array of psychrometric and radiative formulae and lapse rates. FSM was setup in its 249 

most physically based configuration. Thus albedo decrease as snow aged, and increases 250 

with new snowfalls. The compaction rate was calculated from the thermal 251 

metamorphism and overburden (Verseghy, 1991), allowing the retention and refreezing 252 

of water in the snowpack. Finally the turbulent exchange coefficient was corrected 253 

based on the bulk Richardson number and the thermal conductivity was calculated 254 
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based on snow density. The snow series were validated using data from gapfilled 255 

MODIS satellite sensor (Gascoin et al., 2015) and ground observations. A complete 256 

description of the methodology and its validation using in situ snow measurements and 257 

MODIS SCA can be found in Alonso-González et al. (2018). 258 

This information has been incorporated to our dynamic model of SD along with SCA 259 

from satellite to calculate SWE. The spatially distributed daily series of SWE allowed 260 

us to characterize the snow dynamics of the case study for different snow seasons using 261 

different statistics: distribution of SWE by elevation ranges, duration of the snow 262 

season, number of accumulation and melting days. 263 

4. Results 264 

The dynamic regression models of SD (Eq. 2, 3, and 4) have been calibrated for the 265 

whole Sierra Nevada Mountain range and compared in terms of different indices (see 266 

section 3.2.). Nine steady explanatory variables and its transformations (see Figure 2) 267 

have been considered combining them with non-steady explanatory variables defined as 268 

(1) the accumulated SCA and (2) the accumulated P within a period. The different 269 

models studied are showed in Table 1. They differ in the model structures (Equations 2-270 

4), non-steady variables (SCA and P accumulated when mean or minimum temperature 271 

is below zero), and options of accumulations (Equations 5 and 6).  272 

Figure 3 shows the accuracy of the different models using the accumulated SCA within 273 

different temporal windows of accumulation (𝜁 from 0 to 330 days). In general, better 274 

approximations are provided by the model structure 3 (see Equation 4). We have also 275 

tested a model whose non-steady variable is the accumulated P when the temperature is 276 

above a threshold. Two different thresholds have been tested: mean temperature below 0 277 

ᵒC, and minimum temperature below 0 ᵒC. The R² values from these experiments 278 

considering different temporal windows of accumulation (𝜁 from 0 to 330 days) are 279 

showed in Figure 4. In the approach with SCA the maximum R² obtained is 0.64 for the 280 

model m3_v2_SCA and the optimal temporal accumulation 𝑡𝑣,𝜁
2  with 𝜁 = 25 days. Using 281 

the temporal accumulation 𝑡𝑣,𝜁
1 ,  𝜁 = 30, and model m3_v2_SCA similar accuracy is 282 

obtained (R² 0.63).  When P is used, the maximum R² obtained is 0.61 for the model 283 

m3_v2_P(Tmin), for the temporal accumulation 𝑡𝑣,𝜁
2  with 𝜁 = 120 days, being the 284 

temperature threshold set by using the minimum temperature.  In both approaches 285 

(using SCA or P), the minimum R² obtained is 0.59, which correspond to the models 286 
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that includes only steady variables. For some temporal windows of accumulation (𝜁) the 287 

best model is the steady one. Note that the steady option has been also included between 288 

the models tested. The value of the rest of the indices of goodness of fit calculated for 289 

these models is included in Table 2. 290 

 The explanatory variables and their relationship with the parameters for the steady 291 

model and the best non-steady models for SCA and P (m3_v2_SCA with 𝜻 = 25 or 30 292 

and m3_v2_P(Tmin) with 𝜻 =120) are showed in Equations 7, 8, and 9 respectively. 293 

𝑆𝐷 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑆² + 𝛽3𝑀²𝐶²     (7) 294 

𝑆𝐷 = 𝛽0 + 𝛽1
𝐸

𝑆𝐶𝐴
+ 𝛽2

𝐸²

𝑆𝐶𝐴
+ 𝛽3𝑆²√𝐶     (8) 295 

𝑆𝐷 = 𝛽0 + 𝛽1
√𝑃

𝑆
+ 𝛽2𝐸² + 𝛽3𝑆²√𝐶     (9) 296 

Where 𝑆𝐷 is snow depth, 𝐸 is elevation, 𝑆 is slope, 𝑀 is maximum upwind slope, 𝐶 is 297 

curvature, 𝑆𝐶𝐴 is snow cover area, 𝑃 is precipitation, and {𝛽0, 𝛽1, 𝛽2, 𝛽3} are estimated 298 

parameters. 299 

Note that the model structure of Equation 8 is obtained for both m3_v2_SCA using 𝜁 = 300 

25 and 𝜁 = 30. Both options present similar indices of goodness of fit (see Table 2). The 301 

mean SD obtained for the mountain range vs. accumulated SCA (ASCA) is represented 302 

for these models in Figure 5a and 5b respectively. Note that, for low values of ASCA, 303 

high values of mean SD with low correlations with ASCA (especially for m3_v2_SCA 304 

with 𝜁 = 25) (see Figure 5d) are obtained. It is due to there is not SD observations for 305 

high ASCA values, and, therefore, a dynamic coefficient to improve the estimation in 306 

this range could not be obtained. For this reason, we propose a piecewise function in 307 

which the steady model (Equation 7) is employed for ASCA lower than or equal to 10% 308 

and the model m3_v1_SCA with 𝜁 = 30 for ASCA higher than 10%. This combination 309 

has been called m3_v1_SCA*. The mean SD obtained for the mountain range vs. 310 

ASCA  for m3_v1_SCA* is showed in Figure 5c and the correlation coefficient of the 311 

relationship between mean SD and ASC for different thresholds of ASCA in Figure 5d. 312 

This piecewise function model provides good results for all the ranges of ASCA and has 313 

been employed for the subsequent assessment of SD and SWE. 314 

 Figure 6a shows the spatial distribution of the mean SD in the whole Sierra Nevada 315 

mountain range for the snow season (October to May). We obtained values of mean SD 316 

higher than zero for elevation above1400 m.a.s.l. being the mean value higher than 35 317 
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cm for elevation higher than 2200 m.a.s.l. The standard deviation of SD is showed in 318 

Figure 6b. Higher standard deviation is obtained for higher elevation. Note that higher 319 

SD is obtained for higher elevation and during the summer SD is zero for the whole 320 

mountain range. The intra- and inter-season variability can be observed in Figure 7a, 321 

where temporal series of the estimated mean SD within the historical period 2000-2014. 322 

An example of the significant differences between seasons is shown in Figure 7b, where 323 

the mean SD for the seasons 2007-2008 and 2008-2009 is represented.   324 

 Distributed density in a grid of 10 x 10 km has been estimated for Sierra Nevada 325 

Mountain by using the simulations of SD and SWE obtained by Alonso-González et al. 326 

(2018) as explained in section 3.2. The mean daily density for the mountain range is 327 

showed in Figure 8a for the different elevation ranges considered. Unlike mean SD 328 

dynamic, which experiment the maximum values around the half of the snow season 329 

(see Figures 7a and 7b), mean SDEN show the maximum values at the end of the snow 330 

season for all the elevation ranges (see Figure 8b). Mean SDEN varies from around 100 331 

kg mˉ³ in October to 500 kg mˉ³ in May without significant differences between 332 

elevation ranges. 333 

The distributed values of SDEN have been combined with the SD model and SCA data 334 

to estimate SWE. The spatial distribution of the mean SWE for the whole mountain 335 

range during the snow season is showed in Figure 9a. In accordance with the SD results, 336 

we obtain values of mean SWE higher than zero for elevation above1400 m.a.s.l. The 337 

mean value of SWE is higher than 9 cm when the elevation is above 2200 m.a.s.l. The 338 

spatial (see Figure 9b) and temporal (inter and intra-season) (see Figure 10) variability 339 

of SWE is high, as was also observed for SD. However, the maximum values of SWE 340 

are not always localized in the middle of the season, due to the influence of the SDEN 341 

which is higher at the end of the season. If we focus on the mean year at monthly scale 342 

(Figure 11) the maximum mean value of SWE for the mountain range is reached in 343 

March and it is around of 60 Hm³ but the global maximum is around 90 Hm³ and it was 344 

reached in February 2009. For the case study, one season (2011-2012) has the maximum 345 

monthly mean SWE in November, five seasons (2003-2004, 2005-2006, 2007-2008, 346 

2008-2009, and 2012-2013) in February, five seasons (2000-2001, 2001-2002, 2004-347 

2005, 2006-2007, and 2013-2014) in March, and three seasons (2002-2003, 2009-2010, 348 

and 2010-2011) in April. Figure 11 shows that the accumulation of snow in Sierra 349 

Nevada Mountain occurs from November to March while the majority of snow melts 350 
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appear in April. We have also studied the variability of the SWE in different elevation 351 

ranges (see Figure 12). In absolute terms (SWE equivalent measured in volume) the 352 

majority of water related to snow is accumulated in the range of elevation from 2700 to 353 

3100 m.a.s.l. (see Figure 12a). However the SWE measured in length (without 354 

considering the area covered by snow) systematically increases from lower to higher 355 

elevation (see Figure 12b). The maximum mean monthly value of SWE is around 96 cm 356 

and it is obtained for the elevation range 3300-3500 m.a.s.l. 357 

 The temporal dynamic of SWE in Sierra Nevada (Figure 10a) shows different periods of 358 

accumulation and melting during the snow seasons. The total water resources coming 359 

from snow can be estimated by integrating the SWE values along the snow season 360 

(Figure 13a). All seasons show more or less similar slope in the accumulation of snow. 361 

Nevertheless, we observe different starting of seasons which, beside the differences in 362 

the accumulation slope, produces different total accumulated SWE. Seasons 2001-2002 363 

and 2008-2009 show the most significant accumulated SWE (higher than 400 Hm³), 364 

which are associated to higher slopes of accumulated SWE and early starting of the 365 

snow seasons. The length of the snow period, number of snow accumulation and 366 

melting days, and total SWE accumulated for each snow season is showed in Figure 367 

13b.  368 

5. Discussion 369 

In this study we have generated distributed daily data of SWE for the whole Sierra 370 

Nevada Mountain using one or two SD measurements per snow season taken from 2000 371 

to 2014 by the ERHIN program in only 23 points. This information very limited 372 

compared to other mountain regions of the world (e.g. the information provided by 373 

Natural Resources Conservation Service (NRCS) for the USA Mountains through the 374 

SNOTEL system (Natural Resources Conservation Service, 2016) but it is very useful 375 

for monitoring the snow dynamic of the region. The limited information available in 376 

some mountain ranges makes necessary to develop specific methodologies for 377 

estimating SWE as presented here. The presence of snow in alpine systems influences 378 

on the dynamic within different interfaces (hydrosphere, biosphere, and anthroposphere) 379 

of the regions where these systems are located. The reduction of snow resources will 380 

change pattern of the streamflow hydrograph [e.g. due to climate change (Collados-Lara 381 

et al., 2019)] and may affect significantly toin this work ecosystems (Löffler, 2007), 382 
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human water consumption (Mankin et al., 2015), tourism (Soboll, A., Dingeldey, A. 383 

2012), and hydropower (Kuriqi et al., 2019) in alpine areas.  384 

We used an integrated modelling approach by combining a dynamic regression 385 

approach of SD, SCA data from remote sensing and simulations of SDEN from a 386 

coupled mass and an energy balance model.  The combination of statistical and 387 

physically based methodologies has been usually employed satisfactorily in geosciences 388 

to simulate land surface processes [e.g. streamflow (Rosenberg et al., 2011); SWE 389 

(Bavera et al., 2014)]. In this case, the regression model to estimate SD is calibrated 390 

with a few distributed observations associated to snow poles. It also has lower 391 

computational requirements than completely physically based approaches. 392 

The estimation of snow variables by using regression or interpolation models has been 393 

widely applied in previous works.. For example,  López‐Moreno and Nogués‐Bravo 394 

(2006) evaluated a number of interpolation methods for mapping snow depth; Mir et al.  395 

(2015) used a simple linear regression to analyse the relationship between the variation 396 

in SCA and snowfall; Fassnacht et al., 2003 evaluated inverse weighted distance and 397 

regression techniques to estimate SWE. In this work we use a dynamic regression 398 

model to estimate SD, in which hydrological non-steady variables (P and SCA) are used 399 

as explanatory variables of SD. It allows to propagate to the snowpack the impacts of 400 

potential climate change on SCA or P (Collados-Lara et al., 2019). 401 

The proposed methodology has proven to be an efficient approach to estimate SWE for 402 

the whole mountain range with the limited information available. Despite Sierra Nevada 403 

Mountain (Spain) is a small mountain range compared to others around the world, such 404 

as the Pyrenees (Sanmiguel-Vallelado et al., 2017), Alps (Marty et al., 2017), Rocky 405 

Mountains (Fassnacht et al., 2018) and Sierra Nevada (USA, Wrzesien et al., 2017) the 406 

methodology can be applied to those larger mountain ranges too. 407 

We estimated daily SD and SWE spatially distributed at 460-m resolution.  Previous 408 

works estimated these variables for the whole mountain range of Sierra Nevada but the 409 

spatial and temporal resolution were limited [e.g. Collados-Lara et al. (2017) estimated 410 

SD and a first approximation of SWE (considering a constant value of density) at 460-m 411 

resolution for eleven days; Alonso-González et al. (2018) estimated daily SD and SWE 412 

at 10-km spatial resolution (around 20 pixels in Sierra Nevada)]. 413 
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The snow of the Sierra Nevada mountain range plays a significant role in the water 414 

resources (among others) of the region. It constitutes a natural storage system of great 415 

value in semiarid zones located around the mountain. The mean total SWE accumulated 416 

in a snow season in the period 2000-2014 is around 330 Hm³ and the maximum around 417 

to 480 Hm³. Note that, the sum of the maximum capacity of the two reservoirs (Canales 418 

and Quentar) that supply water to the Granada city is around 84 Hm³ (Delgado-Ramos 419 

and Hervás-Gámez, 2018). 420 

5.1. Hypotheses, limitations and future works 421 

We presented a general method to estimate the spatiotemporal dynamic of SWE at 422 

mountain range that could be applied to any case study, even when the available data are 423 

scarce. Although it has proven to be an efficient approach to estimate SWE, we wanted 424 

to highlight some hypothesis assumed and the limitations of this application: 425 

- SWE is calculated by integrating estimated SD, SCA, and SDEN. While SD and SCA 426 

have the same spatial support (460-m resolution), SDEN is associated to a different 427 

spatial support (10-km resolution). For the assessment of SWE at 460-m resolution, we 428 

matched each 460-m pixel with the corresponding 10-km pixel. Despite SDEN has a 429 

lower range of variability than SD or SCA, and, probably, by using a more detailed 430 

resolution for SDEN we would obtain similar results. Nevertheless, it could be 431 

interesting to develop a methodology to estimate SDEN at the same resolution, although 432 

the very limited amount of SDEN data in Sierra Nevada made it unfeasible. 433 

- We estimated SCA of MODIS in cloudy days by linear interpolation between the 434 

nearest previous and subsequent cloudless days. Although this approximation is good 435 

enough when the number of cloudy days is small, as in Sierra Nevada (Collados-Lara et 436 

al., 2017), it cannot be accurate enough for other mountain ranges, where more 437 

elaborated physically based methods to interpolate the SCA would be required (Molotch 438 

et al., 2004). 439 

- SD is estimated by using a regression model without approaching any physical 440 

process. It is intended to be a parsimonious approach that may complement physical‐441 

based methodologies. 442 

- The methodology is applicable to any mountain range. In this work, we focused on a 443 

single case study, Sierra Nevada Mountain, but future research works could analyse 444 

other mountain ranges. 445 
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- The approach is also useful to assess climate changes impacts on SWE through the 446 

modification of the non-steady variables. This research line is open for future works.  447 

6. Conclusions 448 

In this work we proposed a general method to estimate spatially distributed daily fields 449 

of SWE in a mountain range. This methodology provides useful information to analyse 450 

water resources planning and management alternatives  and to assess climate change 451 

impacts in alpine systems (Goals 6 and 13 in the 2030 Agenda for Sustainable 452 

Development, adopted by all United Nations Member States in 2015).The approach is 453 

also useful when limited snow information is available. The proposed solution allows to 454 

study the historical dynamic of the snow in the mountain range, analyzing snow 455 

distribution for different snow seasons, duration of the snow seasons, number of 456 

accumulation and melting days, and distribution of SWE by elevation ranges. The 457 

approach, which combines a dynamic regression model of SD, SCA satellite data and 458 

simulations of SDEN, has been tested in Sierra Nevada (Southern Spain) and has been 459 

proved to be efficient to estimate SWE for the whole mountain range when limited 460 

information is available. The non-steady variables included in the dynamic regression 461 

model also allow to propagate impacts of climate change on SWE. For the case study 462 

the R² of the SD simulations obtained with the regression model defined with only 463 

steady variables is 0.59. When non-steady variables are incorporated the accuracy of the 464 

model is improved (R² 0.64). In elevations below 1400 m a.s.l. the mean simulated SD 465 

value during the snow season (October to May) is not negligible, being higher than 35 466 

cm for elevation higher than 2200 m a.s.l. Mean SDEN increases rapidly from around 467 

100 kg m-3 at the beginning of the snow season to 500 kg m-3 at the end of the snow 468 

season without significant differences between elevation ranges. Note that melting 469 

events occurs even in winter and probably the snow mantle in Sierra Nevada is mostly 470 

isothermal. The mean total SWE accumulated in a snow season is around 330 Hm³ and 471 

the maximum near to 480 Hm³, being these resources very important for the region from 472 

the point of view of human consumption, tourism and ecosystems. 473 
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Model name Model structure 

Temporal 

accumulation non-

steady variable 

Non-

steady 

variable 

Condition to 

accumulate 

m1_v1_SCA 
𝑌1 = 𝛽0 + (𝛽1𝑥𝑖 + 𝛽2𝑥𝑗

+ 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛 
𝑡𝑣,𝜁

1 =
1

2𝜁 + 1
∑ 𝑡𝑤

𝑣+𝜁

𝑣−𝜁

 SCA - 

m1_v2_SCA 
𝑌1 = 𝛽0 + (𝛽1𝑥𝑖 + 𝛽2𝑥𝑗

+ 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛 
𝑡𝑣,𝜁

2 =
1

𝜁 + 1
∑ 𝑡𝑤

𝑣

𝑣−𝜁

 SCA - 

m2_v1_SCA 
𝑌2 = (𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗

+ 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛 
𝑡𝑣,𝜁

1 =
1

2𝜁 + 1
∑ 𝑡𝑤

𝑣+𝜁

𝑣−𝜁

 SCA - 

m2_v2_SCA 
𝑌2 = (𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗

+ 𝛽3𝑥ℓ𝑥𝑘)𝑡𝑛 
𝑡𝑣,𝜁

2 =
1

𝜁 + 1
∑ 𝑡𝑤

𝑣

𝑣−𝜁

 SCA - 

m3_v1_SCA 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

1 =
1

2𝜁 + 1
∑ 𝑡𝑤

𝑣+𝜁

𝑣−𝜁

 SCA - 

m3_v2_SCA 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

2 =
1

𝜁 + 1
∑ 𝑡𝑤

𝑣

𝑣−𝜁

 SCA - 

m3_v1_P(Tmin) 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

1 =
1

2𝜁 + 1
∑ 𝑡𝑤

𝑣+𝜁

𝑣−𝜁

 P Min T<0 

m3_v2_P(Tmin) 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

2 =
1

𝜁 + 1
∑ 𝑡𝑤

𝑣

𝑣−𝜁

 P Min T<0 

m3_v1_P(Tmean) 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

1 =
1

2𝜁 + 1
∑ 𝑡𝑤

𝑣+𝜁

𝑣−𝜁

 P Mean T <0 

m3_v2_P(Tmean) 
𝑌3 = 𝛽0 + 𝛽1𝑥𝑖𝑡𝑛 + 𝛽2𝑥𝑗𝑡𝑜

+ 𝛽3𝑥ℓ𝑥𝑘𝑡𝑝 
𝑡𝑣,𝜁

2 =
1

𝜁 + 1
∑ 𝑡𝑤

𝑣

𝑣−𝜁

 P Mean T <0 

 718 

Table 1. Considered models depending on the model structure, non-steady variable, and 719 

option of accumulation of the non-steady variable. 720 

 721 

 722 
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Model 𝑹𝒂𝒅𝒋
𝟐  NLLF AIC BIC KIC 

Steady model 0.59 3534.06 7076.13 7094.17 7114.26 

m3_v2_SCA  𝜻 = 25 0.63 3491.90 6991.79 7009.84 7026.35 

m3_v1_SCA  𝜻 =30 0.63 3493.94 6995.89 7013.93 7029.80 

m3_v2_P(Tmin)  𝜻 =120 0.61 3509.74 7027.49 7045.53 7059.36 

 723 

Table 2. Goodness of fit of the steady approach and three non-steady models expressed 724 

in terms of the adjusted R² (𝑅𝑎𝑑𝑗
2 ), the negative of the logarithm of likelihood function 725 

(NLLF), the Akaike information criterion (AIC), the Bayesian information criterion 726 

(BIC), and the Kashyap information criterion (KIC). 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 



26 
 

 735 

Figure 1. Location of the case study and SD measurements points (yellow dots) and 736 

snow data of the Poqueira site (red cross). 737 

 738 
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 739 

Figure 2. Flow chart of the proposed methodology to assess SWE in a mountain range. 740 

 741 

 742 

 743 

 744 
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 745 

Figure 3. Coefficient of determination of the regression models using a SCA index 746 

(accumulated for different temporal windows) as non-steady explanatory variable. 747 

 748 

Figure 4. Coefficient of determination of the regression models using a P index 749 

(accumulated for different temporal windows) as non-steady explanatory variable. 750 
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 751 

Figure 5. Relationship between mean SD and accumulated SCA (ASCA) using model 752 

m3, the structure of accumulation of SCA v2 and  𝜁 = 25 (a), using model m3, the 753 

structure of accumulation of SCA v1 and  𝜁 = 30, using model m3, the structure of 754 

accumulation of SCA v1 and  𝜁 = 30 when ASCA is higher than 10% and the steady 755 

model when ASCA is lower than 10% (c), and correlation coefficient for different 756 

thresholds of ASCA for the model structures of (a), (b), and (c). 757 
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 758 

Figure 6. Maps of the spatial distribution of mean SD (a) and standard deviation of SD 759 

(b) for the snow season (October to May) in the period 2000−2015. 760 
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 761 

Figure 7. Temporal series of mean daily SD in the mountain range: for the period 762 

2000−2015 (a) and for the snow season 2007−2008 (season with the smallest 763 

accumulation of snow) and 2008−2009 (season with the largest accumulation of snow) 764 

(b). 765 
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 766 

Figure 8. Temporal series of the mean daily SDEN in the mountain range for different 767 

elevations within the period 2000-2014 (a) and SDEN for the mean daily snow season. 768 
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 769 

Figure 9. Maps of the spatial distribution of mean SWE (a) and standard deviation of 770 

SWE (b) for the snow season (October to May) in the period 2000−2014. 771 
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 772 

Figure 10. Temporal series of the SWE in the mountain range: for the period 773 

2000−2014 (a) and for the snow season 2007−2008 (season with the smallest 774 

accumulation of snow) and 2008−2009 (season with the largest accumulation of snow) 775 

(b). 776 
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 777 

Figure 11. Mean year at monthly scale for the SWE in the mountain range. 778 
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 779 

Figure 12. Mean year at monthly scale for the SWE in different elevation ranges 780 

measured in volume (a) and in depth of water (b). 781 
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 782 

Figure 13. Temporal series of the accumulated SWE in the mountain range for different 783 

snow seasons (a) and snow period length, number of snow accumulation and melting 784 

days, and total SWE accumulated for each snow season (b). 785 
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