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Abstract—To address learning problems in which many ex-
amples and variables are involved, the use of algorithms that
are capable of processing the data using simple and efficient
techniques is required. The Wang and Mendel algorithm applied
to classification (also known as the Chi algorithm) satisfies these
properties in many cases. However, in particularly complex
problems, such as those provided by Big Data, it has become
necessary to use architectures for parallel processing, such as
MapReduce, whose base algorithm is just this algorithm. The
use of these architectures is necessary because the bottleneck
of the algorithm is the calculation of the weight of the rules.
This calculation requires, for each selected rule, to consider
the adaptation of all the examples with this rule. Although this
calculation is polynomial-order, in problems with many examples
and where many rules are generated, it is very time consuming.
In this paper, we propose QChi, a new algorithm based on the
Wang-Mendel algorithm that uses, among other changes to make
it efficient, a new way of calculating the weights of the rules
that is much less computationally expensive. The reduction in
learning time is so significant that it allows the algorithm to
tackle Big Data problems without parallel processing structures.
In addition to the description of the algorithm, this paper checks
experimentally on a wide variety of problems, including those
that other authors have used as Big Data problems, that this
algorithm drastically reduces the learning time while maintaining
the classification performance.

Index Terms—Fuzzy Rule-Based Classification Systems, Fuzzy
rule learning, Wang—Mendel method, Fast Fuzzy Inference, Big
Data.

I. INTRODUCTION

The first fuzzy rule learning algorithms appeared in the
1990s with proposals such as the Wang-Mendel algorithm
(WM) [1], or the ANFIS [2] and SLAVE [3], [4] algorithms.

Among them, the WM algorithm cannot be qualified as the
best from many points of view compared to other algorithms
such as NSLV [5] or FURIA [6], basically for two reasons,
the first one is that it is not the best in the classification
capacity, and the second one is that, since it does not have
a feature selection mechanism, the rules it obtains are not
interpretable in many cases, and also for the same reason it
generally obtains a very high number of rules. However, it
has been frequently used in several applications such as [7]-
[10] or multiple versions of it have been proposed or used to
compare with new proposals [11]-[16]. Among the reasons for
this frequent use, we can highlight its simplicity (it is basically
an assignment of examples to fuzzy regions) and its efficiency
(since by its description, using an efficient implementation, the
time to learn is linear in the number of examples).
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An interesting review of the WM algorithm applied to
classification can be found in [17] where both the positive
and negative aspects of the algorithm are analyzed. However,
its behavior when working with massive data and its possible
improvement has not been analyzed in the same way.

Thus, despite the efficiency of the algorithm in many
situations, it is also true that when the complexity of the
problem increases, either the number of examples, the number
of variables, or both, the algorithm is also affected, and the
complexity of the calculations increases.

A model based on the use of a hierarchical structure [18]
that extends the WM algorithm with the idea of solving prob-
lems with massive data has been proposed in [19]. However,
in their proposal they use a different rule model (TSK rule)
and do not use weight, which is the key aspect in our proposal.

One of the versions of the WM algorithm for classification
problems, called the Chs algorithm [20], has been used to
solve Big Data problems [21]-[24], but it has been necessary
to use a parallel architecture, such as MapReduce [25], [26],
to cope with all the necessary calculations.

With the idea of checking whether it is necessary to use
parallel architectures based on the WM algorithm to solve
certain problems or simply to improve the performance of this
algorithm to solve complex problems, in this paper we analyze
the complexity of this algorithm and, in particular, we will
focus on the most important aspect that generates it, which is
precisely the calculation of the weight of each rule.

The weight used in this algorithm has varied over time, from
the simplest model used in the original version [1], which
is not operational because it does not take into account the
number of examples supported by each rule, to models based
on the use of frequencies [12], [20]. On the latter, there are
different variations such as the one proposed in [23]. Finally,
models that estimate a posteriori with weight optimization
algorithms [27] have also been proposed.

In any case, all the models that have been used so far have
the same thing in common, they represent a bottleneck for
the WM algorithm (or its versions) to solve more complex
problems.

In our opinion this complexity when using massive data
sets is precisely centered on the need to use the entire set of
examples in the weight calculation (irrespective of the weight
model chosen).

For this purpose, we study the complexity of the algorithm
by analyzing each of its component parts, and from this study
we effectively verified that the bottleneck is the calculation
of the weight of each rule. Thus, we focus on the possible
relevance of the weight in the WM algorithm, and our ob-
jective is to check to what extent accurate calculation of the



weight affects the final results. In this way we propose a new
algorithm which uses a new definition of the elements involved
in the computation of the weight based mainly on a heuristic
reduction of the examples required for the calculation of the
weight of each rule and also the new algorithm is structured in
a way that makes more efficient all calculations. The proposal
is valid with the different weight models proposed [12], [20],
[23].

This new algorithm, which we call QChi (Quick Chi),
produces results in a more efficient and faster way, that is,
it significantly reduces the execution time and with the same
level of classification performance as the original version, so
that for certain problems it is not necessary to use parallel
calculation structures.

The organization of this paper is as follows. In the next
section, we describe the preliminary concepts necessary to
formulate our proposal, such as the rule model, the types
of weight, and the rest of the details of the WM algorithm,
as well as the complexity of each of its steps or stages.
Section III describes the details of the QChi algorithm and
discusses the time improvements it brings. Finally, Section IV
shows extensive experimentation in which it is proven that
the classification performance of QChi is similar to that of
the original WM algorithm, but, however, the former requires
significantly less learning time. It is also shown that this time
reduction is very important in Big Data problems, even better
than the proposals that have been made using techniques such
as MapReduce.

II. PRELIMINARIES

In this section we describe those concepts necessary to
understand our proposal such as the type of fuzzy rule, the
types of weights used in the rule, the description of the
different elements involved in the WM algorithm and an
analysis of the complexity of the different steps or stages of
the algorithm.

The type of rule with which we develop our proposal is the
one originally used in [20], that is,

R: IF X; is A;l and X is A?Q and ... and X, is A;Pn
THEN Y is B with weight w(R)

1
where X;, ¢+ = 1...n are the antecedent linguistic variables
and each of these variables has a fuzzy domain D; composed
of L; = |Dy| linguistic labels D; = {Af, A5,..., A} },
being A;i a domain value D;. Each linguistic label A;i
has an associated membership function p4: . Moreover, the
consequent variable Y is a discrete variable, \J’&ith an associated
domain Dy representing the class to be learned, B is a
particular value of this domain, and w(R) is a the weight
associated with the rule R.

The antecedent of the rule R is noted as

ANT(R) = (A}, A3,,... A} ). )

The rules extracted by an inductive learning algorithm are
obtained from a data set E. Each example e in E has the
form e = (e1,ea,...,en,class(e)), where class(e) is the
class associated with the example.

The weight of the rule has played a key role in the WM
algorithm. Initially, the WM algorithm used a very simple
weight model, where for each example the following was
calculated

w(R) = IeneanZ({MR(e) | class(e) = B} (3)

where F is the training set and pg(e) is the matching degree
between the example e and the antecedent of the rule R defined
by

pr(e) = Tlpar (1), paz (€2),...pay (en)).  (4)

where T is a T-norm representing the conjunction of the terms,
and in our case we use the product

The consequent providing the highest weight value was the
one selected for that antecedent.

This weight model is extremely simple and does not con-
sider how many examples support the weight of the rule, so
several alternatives were subsequently proposed, and all of
them are based on the following concepts.

The first is n* (R, E), that is, the cardinal of the fuzzy set
of the all examples of the B class in training set E' that have
a positive adaptation with the antecedent of the rule R, that
is:

nt(R,E) = Z ur(e) | class(e) = B. (5)
ecE

In a similar way, we define n~ (R, F) as the cardinal of
the fuzzy set of the all examples in training set that have a
positive adaptation with the antecedent of the rule and they
are not of the B class

n~(R,E) = ZMR(e) | class(e) # B. (6)
eeE

Finally, we define n(R, E) as the cardinal of the fuzzy set
of the all examples in training set that have adaptation with

the antecedent
n(R,E) = pur(e). (7)
ecE

Based on these concepts, different weight models have been
used, e.g. in [12], [20] a more traditional calculation of weight,
already proposed in [3] for fuzzy rules, was used

nt(R,E)

R)= ——""-.
wB) = R g

More recently it has been used [23] the heuristic method

known as the Penalized Certainty Factor (PCF) originally
proposed in [28]:

®)

nT(R,E)—n~ (R, E)
w(k) = n(R, E)

and a new version of the PCF, called PCF-CS [23], suitable for
imbalanced datasets includes in the formula a misclassification
cost associated with a particular class.

Other works have used proposals with the idea of reducing
the weight computation. Thus, CHI-BD-DRF [24] uses a
weight that is defined by the confidence of each particular

rule:
_ o(ANT(R),B)
w(B) = = ANT(R))

9

(10)



where 0(ANT(R), B) counts the number of examples that
trigger the rule R (both antecedent and consequent) with
any matching degree and o((ANT(R)) counts the number
of examples that trigger the antecedent of rule R with any
matching degree. This weighting of the rules not only reduces
the computation time, but is also an approximation of the
reliability of each rule.

Finally, there are other proposals based on estimates, rather
than calculations, of the weights of the rules, such as, for
example, [27].

Different versions of the WM algorithm have therefore
made use of different types of weights, but most are based
on the use of the n™ (R, F), n™ (R, E) and n(R, F) functions
on the whole set of examples and in the last case of an
optimization process to generate the weights a posteriori, in
all cases the calculation of the weight for massive datasets is
a problem due to the complexity of the calculations.

After reviewing some weights proposals used in different
versions of the WM algorithm, we analyze in more detail the
different steps of the algorithm, as well as its complexity.

The WM algorithm has been modified over time in different
aspects, such as adapting it for classification (it was initially
described for regression), the type of weight associated with
each rule and how to calculate it, or the conflict elimination
process, but in general terms its description follows the fol-
lowing steps regardless of the type of weight used:

Algorithm 1 WM algorithm

1: function WM_ALGORITHM(E, D, Rules)
Rules = {0}
3 for e € E do
4 r = BestAdaptationRule(e, D))
5 AddToRuleSet(r, Rules)
6: end for
7
8
9

for » € Rules do
Calculate(n™ (r, E), n™(r, E), n(r, E))
w = GetWeight(r, n*(r, E), n~(r, E), n(r, E))

10: PutWeight(r, w, Rules)

11: ConflictResolution(r, Rules)
12: end for

13: return Rules

14: end function

The algorithm 1 shows a description of the WM algorithm
applied to classification problems. The algorithm has as input a
set of examples E and a definition of the domains associated
with the variables D involved in the classification problem.
The definition of the domains also includes the number and
semantics of the linguistic labels. The algorithm generates as
output a set of weighted fuzzy rules, which we will note in
the description as Rules.

In this algorithm we can distinguish two different parts or
stages, a first stage of rule generation, located between steps
3 and 6 (the first cycle), and a second stage in charge of the
weight calculation and elimination of unrepresentative rules,
which would be between steps 7 and 14 (corresponding to the
second cycle).

In relation to the first stage, there are two processes that are
applied to each example. In the first of them, BestAdaptation-
Rule, given an example e and the domains of the variables D,
returns the rule r with better adaptation to the example. The
second of the processes AddToRuleSet adds the previous rule
r to the set of Rules.

Regarding the complexity of these processes, we can say
that if the rule set is modeled using a hash table, the time
to add a rule to that set, even verifying that it did not exist
before, is of constant order. The order of complexity associated
with obtaining the antecedent with the best adaptation of an
example is of order n x L, where n is the number of
antecedent variables and L is the maximum number of fuzzy
labels that compose the different domains of the variables, i.e.,
L = max;{L;}. Normally L is usually a value less than 9 and
consequently we can consider it constant, in which case we
could consider that the order of complexity of this process
depends exclusively on n. Since this process is repeated for
each example in the set £, the complexity order of the rule
generation part is O(n x |E|), where |E| is the number of
examples in the set E.

The second stage of the algorithm deals with the calculation
of the weight of each of the rules; it consists of 4 steps that
must be applied to each of the rules obtained in the previous
part. These steps are, Calculate function calculates the values
of n*(r), n™(r), n(r) that allow establishing the exact value
of the weight, given a weight model (any of those discussed
above) and the values calculated in the previous step, the
GetWeight function obtains the concrete value of the weight,
the PutWeight function sets that value in the concrete rule
(and removes the rule r from the set of rules if the weight
is negative), and ConflictResolution function resolves possible
conflicts between rules, i.e. if there are several rules with the
same antecedent but different consequent, only the rule with
the highest weight is included in Rules.

In summary, the complexity order of the last three steps
of the second part of the algorithm are constants if we use
appropriate data structures, but step 8, i.e. the computation of
the values to establish the weight, is the most computationally
expensive process. If we assume that L, the number of
fuzzy labels defined in the variable domain is constant, the
complexity order is n x |E| for a rule, n being the number
of variables involved in the antecedent of the rule. Since the
process is applied for each rule, the time consumed in this
process is O(|Rules| x n x |E|). In the worst case, |Rules| =
|E| and therefore the complexity order is O(n x |E|?).

Although the order of complexity of the whole process is
polynomial, for Big Data problems where we work with a
massive amount of data and a very high number of rules are
generated, the exact calculation of the weight slows down the
rule extraction process significantly. In fact, in works such as
[21]-[24] use is made of the Map-Reduce model [25], [26],
a parallel processing technique whose objective is to reduce
this rule extraction time.

Since the main bottleneck of the algorithm is weight cal-
culation, we want to know the importance of accurate weight
calculation and whether a faster and simpler weight estimation
allows us a similar prediction capability, but with a much




shorter calculation time. The answer lies in a new algorithm
that we describe in the next section.

ITII. THE QCHI ALGORITHM

With the idea of proposing a faster algorithm than the orig-
inal WM algorithm, we propose to accelerate the calculation
of the rule weight by reducing the set of examples on which
it is calculated. The types of weights to be used are the same
as those described above, but the calculation of n™ (R, E),
n~ (R, E) and n(R, E) now will be done on a subset of E.

We first define the concept of the central rule to an example
e, as the rule with the best matching degree between each
component of the example and each component of the rule,
and will be denoted as C'(e). The central rule is just the rule
that associates the WM algorithm to each example in step 4
of Algorithm 1.

Now, given a rule R, first we select the subset of examples
of E that have in their central rule the same antecedent as the
rule R, i.e.

Ef ={ec E| ANT(C(e)) = ANT(R)} a1

and secondly in the calculation of the weight we use
nt (R, E®), n= (R, E®) and n(R, E®) instead of n™ (R, E),
n~ (R, E) and n(R, E) respectively.

Obviously, in most cases

|Ef| << |E| (12)

and therefore, the effective time needed to calculate
nt(R,E®), n=(R,Ef) and n(R,ET), and therefore the
weight of the rule, is very significantly reduced.

With this change we associate to each rule an estimation
of its exact weight based on taking into account only those
examples that present the maximum compatibility with that
rule, leaving out of that calculation the rest of the examples
of the training set. So, in Algorithm 2 we present a fuzzy
rule learning algorithm for classification based on the WM
algorithm but using E subsets for obtaining the weight
estimations. In addition, the new algorithm is structured dif-
ferently from the original one to efficiently and incrementally
perform the calculations necessary to obtain the estimated
weights.

Algorithm 2 QChi algorithm
1: function QCHI(E, D, Rules)

2. AntSet = {0}, Rules = { 0}

3: for e € E do

4: a = BestAdaptAntedecent (e, D))
5: UpdateAntSet (a, AntSet)

6: end for

7: for a € AntSet do

8: r = BuildRule(a, &w)

9: if (w > 0) then

10: AddToRuleSet(r, w, Rules)
11: end if

12: end for

13: return Rules

14: end function

The inputs of the algorithm are an example set £ and a
description of the domain of each variable involved in the
problem D. The output is a fuzzy rule set based on the same
rule model that is used by the WM algorithm.

As with the WM algorithm, we can also distinguish two
stages: the first one with the generation of the potential rules
that could be selected (from step 2 to 6) and the second one
with the final choice of the rules.

The main difference is now the place where the “most
expensive” process of weight calculation is performed. In this
new algorithm that process is performed in the first part,
specifically in the procedure UpdateAntSet. Thus, in step 4,
the function BestAdaptAntecedent, takes an example e and
returns the antecedent a that has the best adaptation with
that example. The sequence of antecedents generated in this
step is stored in the set AntSet. During the execution of the
algorithm, it is UpdateAntSet the one in charge of keeping the
base of generated antecedents updated. This means that for
each antecedent, the accumulated values of the adaptations of
the examples that have already been processed for each of the
potential values of the class are stored. Since the calculation of
the weight will be done taking into account only the examples
that considered that antecedent as the best fit, this updating
process has a constant order of complexity when a hash table
type structure is used for its implementation.

It is easy to see how the order of complexity of this first
stage of the algorithm coincides with the order of complexity
of the first stage of the algorithm 1. In both cases it is
O(n x |E|), where |E| is the number of examples in the set
E and n the number of variables involved in the classification
problem.

Following the steps of the algorithm, at the end of the
first cycle, just before step 7, in the set AntSet we have
all the antecedents that are generated from the central rule
of each example using the complete set of training examples
E (just as the original version would do). In step 7, the
BuildRule function is responsible for giving the final rule for
each antecedent considered in the previous process. That is,
given an antecedent a, it completes the rule r by adding what
its consequent will be and what weight it will be assigned.
To determine these values, the weight value is calculated for
each possible consequent value, and the one that obtains the
highest weight value w (It is marked with an &’ to indicate
that it is an output parameter) and its associate consequent
are returned. The order of complexity associated with this
procedure is constant.

In steps 9 and 10 only those rules that have weight values
strictly greater than O will be included in the final set of
Rules (by means of the function AddToRuleSet). If an efficient
data structure is used for insertion, the order of complexity is
constant. Finally, the algorithm ends up returning Rules.

The complexity order of the algorithm, as a whole, is that
of the computationally most expensive part of the algorithm,
which corresponds to the first part, is O(n x |E|). This is a
better complexity order than that of the original algorithm
which would be O(n x |E|?) and this difference is due,
as mentioned above, to the different form of the weight
calculation.



Dataset Var | CVar Ex Dataset Var | CVar Ex Dataset Var | CVar Ex

abalone 8 7 4174 adult 14 6 45222 australian 14 7 690
banana 2 2 5300 bands 19 19 365 bupa 6 6 345
coil2000 85 2 9822 crx 15 6 653 iris 4 4 150
letter 16 16 20000 magic 10 10 19020 mammogr 5 1 830
newthyroid 5 5 215 page-blocks 10 10 5472 penbased 16 16 10992
phoneme 5 5 5404 pima 8 8 768 ring 20 20 7400
saheart 9 8 462 satimage 50 36 6435 segment 19 19 2310
shuttle 9 9 57999 spambase 57 57 4597 texture 40 40 5500
thyroid 21 6 7200 twonorm 20 20 7400 vehicle 18 18 846
vowel 13 11 990 wineq-red 11 11 1599 wineq-white 11 11 4898

TABLE I

DATASETS USED TO COMPARE THE QCHI AND WM ALGORITHMS.

IV. EXPERIMENTS

In this work we have proposed a new classification al-
gorithm, called QChi, which proposes an alternative imple-
mentation to the well-known WM algorithm for classification
and whose main difference lies in the weight estimation. In
this section, we experimentally prove that the use of the
proposed weight estimation not only produces a very important
reduction in the time needed for learning, but it is also able
to maintain the prediction capacity obtained when using the
weight used in the original version and based on an exhaustive
calculation on all the examples.

This experimental section is divided into two parts. In the
first part (subsection A) we try to experimentally show the
behavior of the QChi algorithm versus the original version of
the WM algorithm for classification, or Chi algorithm as it is
also called, and for this purpose we make use of 30 datasets
from the UCI repository [29]. The 30 selected datasets are
those we can consider “small” in the sense that neither by
the number of examples they contain, nor by the number
of variables involved, nor by the number of rules that are
generated, the exhaustive calculation of the weight is not really
seen as a real drawback, since compared to other classification
algorithms their learning times are very fast.

In the second part (subsection B) of this experimental
section we will use datasets that have usually been considered,
by experts in this field, as very time-consuming for the original
version of WM and for which parallel computing versions
have been proposed using the WM algorithm as the base
algorithm. In particular, we will focus on proposals using the
MapReduce paradigm, which were proposed to speed up the
weight computation in time.

A. Comparing the QChi and WM algorithms

In the first part of this study, we use 30 datasets for
classification that are described in Table I, all of which are
extracted from the UCI machine learning repository [29]. For
each of them is shown the global number of variables (Var),
the number of continuous variables (CVar), and the number
of examples (Ex). All the selected datasets are well known,
frequently used and represent a wide spectrum of different
situations to be considered in machine learning such as binary
problems, multiclass problems, multiclass problems with a
large number of classes, problems with few or many variables,
problems for which a small or large number of rules are
obtained, problems with few or many examples, etc.

All experiments have been performed on a computer Intel
Core i7-9750H CPU @ 2.60GHz and 16 Gb memory running
on Ubuntu 20.04.3 LTS x86 64 operating system'.

In [30] an efficient mechanism is proposed to perform infer-
ence. It has an algorithmic complexity that does not depend on
the number of rules. This fact, makes the response time very
fast compared to that offered by the usual implementation of
the inference. The results obtained in the different tables have
been obtained using this new inference method.

In relation to the weight in this experimentation, we use
the PCF model described above in Equation 9, and in relation
to the domains, all continuous variables have been discretized
using a set of three uniformly distributed fuzzy labels.

In this first part of the experimentation, all the results
consigned are obtained using 10-fold cross-validation, and
we study three parameters: accuracy (Test), number of rules
obtained by the algorithms (#Rules) and time (in seconds)
needed for the algorithms for extracting the fuzzy rule set
(Training Time). In Table II the obtained results are showed. In
this table we can see the columns have been grouped for each
one of the previous parameters and for each group, there is a
column with the results of QChi and other with the results of
WM. In the case of the Training Time parameter, an additional
column is included indicating how many times faster QChi is
than WM. The best results for each dataset and for each of
the parameters studied are highlighted in bold.

Analyzing the data in Table II, we can see that in all cases
QChi obtains a similar or slightly higher number of rules than
WM. Specifically, on average, the number of rules obtained
by QChi is 6% higher than that obtained by WM. The cause
lies in the resolution of the conflict and is due to the weight
model used in QChi, which does not allow us to eliminate all
the rules that WM eliminates. The study of Figure 1 will help
us to understand the reason for the increase in QChi rules.

The table included in the upper part of Figure 1 shows
some data that can help us to understand how the final
value of the weight changes for each rule when we use our
proposal. Specifically, the mean and standard deviation of the
30 databases studied in Table II of the following three data
are described in columns A to C. Column A indicates the

!'The algorithms described here have been implemented in C++ and can be
accessed through the web page https://github.com/Raul-PerezR/QChi.

2A document with the whole results for each dataset of this study can
be found at https://github.com/Raul-PerezR/QChi in Additionallnformation-
PaperTFS folder.



Test #Rules Training Time (seconds)
Dataset QChi WM QChi WM QChi Faster
abalone 11.48 0.02 26.6 1.2 0.038691 0.092450 2.39
adult 67.54 | 67.97 14577.8 | 14577.8 0.621978 | 115.650221 185.94
australian 69.86 | 71.45 350.0 350.0 0.008228 0.053709 6.53
banana 60.11 | 60.21 79 79 0.020787 0.034530 1.66
bands 65.75 | 64.93 2924 292.4 0.009184 0.058442 6.36
bupa 58.55 | 57.97 45.7 45.7 0.003249 0.011463 3.53
coil2000 2432 | 24.32 7392 7392 0.959500 12.142169 12.65
crx 53.29 | 53.75 435.2 435.2 0.007456 0.059354 7.96
iris 94.67 | 92.67 14.7 14.7 0.000737 0.001083 1.47
letter 50.22 | 34.07 1320.9 381.8 0.304632 11.143852 36.58
magic 80.64 | 76.75 354.1 354.1 0.182082 2.224813 12.22
mammogr 79.28 | 78.92 120.4 120.4 0.005345 0.018071 3.38
newthyroid 89.77 | 84.65 20.5 20.5 0.001017 0.001867 1.84
page-blocks | 92.54 | 91.89 53.3 51.6 0.055508 0.154406 2.78
penbased 97.35 | 97.67 3333.8 3303.5 0.153424 7.068353 46.07
phoneme 7235 | 71.82 584 58.4 0.034246 0.088160 2.57
pima 71.88 | 72.79 110.7 110.7 0.010259 0.033721 3.29
ring 88.24 | 55.19 1080.0 1080.0 0.121407 3.822583 31.49
saheart 69.48 | 72.29 190.9 190.9 0.003201 0.034588 10.81
satimage 74.37 | 47.47 1458.6 1228.7 0.234403 12.964517 55.31
segment 86.62 | 86.06 318.3 282.8 0.037196 0.281023 7.56
shuttle 82.47 | 80.16 28.8 26.7 0.597692 0.984147 1.65
spambase 7292 | 71.50 372.1 372.1 0.256961 1.638114 6.37
texture 77.38 | 70.80 1187.7 907.2 0.223541 6.355889 28.43
thyroid 92.35 | 92.03 463.0 461.9 0.130387 0.785351 6.02
twonorm 88.84 | 90.54 1539.6 1539.6 0.160099 5.414788 33.82
vehicle 58.63 | 59.69 405.6 262.6 0.014785 0.177454 12.00
vowel 64.24 | 49.60 279.6 153.8 0.015012 0.066303 4.42
wineq-red 52.03 | 51.84 219.7 129.2 0.019048 0.156741 8.23
wineq-white | 41.26 | 48.43 260.9 76.6 0.064612 0.678111 10.50
Average 69.61 | 6591 1210.6 1141.0 0.14 6.07 42.42
TABLE I

RESULTS OBTAINED BY QCHI VS WM ALGORITHMS USING UNIFORMLY DISTRIBUTED DOMAIN WITH 3 LABELS ON ALL CONTINUOUS VARIABLES

percentage of rules that satisfy the requirement to have exactly
the same weight value with both ways of calculating the
weight. It indicates that there is a 20 percent, but with a very
high deviation, which shows that there is a large variability, in
fact, on the banana or letter data set there is no match at all,
and on co0il2000 the match is 100 percent. Column B indicates
in how many cases the weight, although not exactly the same
in both calculations, the difference between the one obtained
by the QChi algorithm is not more than 10% different from
the one obtained by the WM algorithm. An average result of
38.94% is obtained, but also with a fairly high deviation of
31.04, again showing that the results in the weights obtained
in both cases are substantially different. Finally, column C
shows the percentage in which the value obtained by the QChi
algorithm is greater than or equal to that obtained by the WM
algorithm for the same rule. In this case, the value of 91.58%
clearly indicates that the calculation proposed here tends to
obtain larger weight values than those obtained by exhaustive
calculation. In this case, the standard deviation shows much
less variability in this parameter. A diagram in the Figure 1
shows the conclusions of this study more clearly.

Higher weight values make it more likely that rules tend to
be considered more viable and therefore are less affected by
both the conflict resolution mechanism and the specific weight
model used. This justifies the increase in the overall number
of rules obtained by the QChi algorithm as compared with
WM.

In relation to learning time, it is very evident that QChi
is significantly faster than WM for all the problems studied,

A=) [B(<I10%]) | C(>)
Mean | 20.00% 38.94% 91.58%
Std 28.92 31.04 9.65
) 5 c
Fig. 1. Comparative between both rule weight models

reaching 185 times faster for datasets with many examples and
that generate many rules, as in the case of adult. On average,
for all the datasets studied, it is more than 40 times faster.
With respect to predictive capacity, the conclusion is not so
simple. We can see in Table II that in some cases QChi is better
and in others WM is better. If we go into more detail, we can



WM vs QChi | W/T/L p-value

3 labels 10/1/19 | 0.03995

5 labels 14/3/13 | 0.69180

7 labels 21/3/6 | 0.01125
TABLE III

STATISTICAL TESTS COMPARING THE RESULTS OBTAINED BY QCHI AND
‘WM FOR DIFFERENT NUMBER OF FUZZY LABELS IN THE DOMAINS
ASSOCIATED WITH CONTINUOUS VARIABLES.

observe that in the case of the data set iris, for example, both
algorithms have the same number of rules; in fact, they obtain
exactly the same rules but with different weights. However,
the accuracy result is better in QChi than in WM. Something
similar happens in other datasets, such as magic or newthyroid,
among others. However, we can see the opposite effect in
datasets such as australian, saheart, or twonorm.

To determine if there are significant differences between
the two algorithms in predictive capability a Wilcoxon Signed
Rank Test [31] is applied. The results of this test, for different
number of fuzzy labels in the domains, are shown in table III,
which represents the results obtained in these comparisons,
indicating the wins (W), draws (T) and losses (L) of WM
against QChi along with the calculated p-value.

In the case of domains with three labels, if we formulate the
null hypothesis that the predictive capacity of both algorithms
is equal, the test returns a p-value less than 0.05, therefore
rejecting the hypothesis with confidence of 95%. By discarding
the equality, we can assume that the values obtained by QChi
are higher than those obtained by WM. Therefore, it can be
inferred that QChi is significantly better in predictive capacity
than WM in these datasets when using 3 labels.

In order to consolidate these conclusions we extend the
experimentation using uniformly distributed domains with 5
and 7 fuzzy labels. The new results regarding the number of
rules and learning time reinforce the previous conclusions. In
the case of 5 labels, QChi generates on average a 5% larger
number of rules and is 25 times faster, and with 7 labels, it
generates a 1% larger number of rules and is 60 times faster.

In relation to the learning capacity it is convenient to extend
the study to a larger number of fuzzy labels of the domains to
verify the result. When we use 5 fuzzy labels, both algorithms
generate exactly the same rules for the iris dataset (the same
as for 3 labels) but in this case WM obtains an accuracy of
95.33 and QChi of 94.66 (just the opposite of what happened
for 3 fuzzy labels). However in magic or newthyroid, QChi
still shows better results and it still holds that both have the
same rules.

Thus we performed a Wilcoxon Signed Rank Tests for the
accuracy parameter whose results are shown in the rows with
value 5 and 7 of the Table III. It can be seen that for 5 labels
it is accepted that the test results of both algorithms are equal.
For 7 labels, however, the hypothesis of equality is rejected
and we can assume that the predictive capability of WM is
better than that of QChi is accepted.

3Tables with the whole results on 5 and 7 labels for each dataset can be
found at https://github.com/Raul-PerezR/QChi in the Additionallnformation-
PaperTFS folder.

In short, it cannot be concluded that the exhaustive calcu-
lation of the weight value used in the WM algorithm leads to
a significant improvement in the predictive capability results
and therefore, a simpler and more selective calculation model
that provides a quick estimation of these values, such as the
one proposed here, can significantly reduce the learning time
and produce good predictive capability.

B. QChi versus MapReduce proposals

Some authors have seen the possibility of using the WM
algorithm to address Big Data problems. In the section IV-A
we show the learning time of the WM algorithm for datasets
containing less than 60 thousand examples and we can see that
its times, compared to those of other well-known classifiers are
really low, although in more complex problems where many
rules are generated, the learning time increases significantly.

If we look at the table II, we can see that the dataset shuttle,
which contains 57,999 examples, has a learning time of less
than one second (0.9841 on average). The time is very low
and the reason is that it generates on average only 26.7 rules.
However, other datasets, such as adult, with 45,222 examples,
generates 14,578 rules and that makes the learning time close
to two minutes. Obviously, these time results increase for
datasets with many more examples and generating many more
rules.

With the idea of tackling more complex problems using
the WM algorithm some authors have proposed to insert
this algorithm in a parallel processing scheme known as
MapReduce [25] and the idea of this experimental part is to
know the relationship between QChi and these methods.

As already described in the Algorithm 1 the bottleneck of
the WM algorithm is in the calculation of the weight whose
order of complexity depends on the product of the number of
examples by the number of rules. The proposed versions using
this scheme aim to alleviate this calculation by using parallel
processing.

Dataset Var | CVar Ex (Prnaj:Pmin)

kddcup* 41 26 4,856,151 | (3,883,370 : 972,791)

poker* 10 10 946,799 (513,702 : 433,097)

covtype* | 54 10 495,141 (283,301 : 211,840)

census 41 13 142,521 (134,359 : 8,162)

fars* 29 5 62,123 (42,116 : 20,007)
TABLE IV

DATASETS USED IN THE EXPERIMENTAL STUDY OF [22]

In [21] appear the first proposals that combine the WM
algorithm (specifically, the version for classification known as
the Chi algorithm) and MapReduce, and result in an algorithm
called Chi-FRBCS-BigData. This algorithm divides the set of
training examples into as many subsets as parallel processing
is to be performed. On each subset, the WM algorithm is
applied and a set of rules is obtained. In the final process,
each set of rules obtained from each subset of examples is
taken and the final set of rules is constructed by merging
them all. In this merging process, there may be rules with
the same antecedent and different consequent whose conflict
is resolved by including the rule with the consequent with the
highest associated weight and rules with the same antecedent



Accuracy (on Test) Runtine (seconds)
Chi-FRBCS-BigData Chi-FRBCS-BigData

Dataset #Labels 32 maps | 512 maps QChi 32 maps | 512 maps QChi Faster
kddcup* 3 99.92498 | 99.94120 99.95502 7890.87 9602.99 | 161.32 48.9
poker* 3 58.92973 | 56.79368 61.42863 2210.13 4492.45 10.35 213.5
covtype* 3 74.61723 | 73.65237 77.13470 391.40 3880.21 20.02 19.5
census 3 93.48355 | 92.66282 95.96784 388.64 714.42 5.20 74.7
fars* 3 94.25642 | 93.56599 | 100.00000 141.92 377.25 1.71 83.0

Average 84.24 83.32 86.90 2204.60 3813.5 39.72 55.5
kddcup* 5 99.95345 | 99.95085 99.95745 18710.18 15784.56 | 167.11 94.5
poker* 5 56.87383 | 56.79511 57.88643 8675.26 4475.27 12.06 371.1
covtype* 5 83.24885 | 81.34559 85.24857 4663.55 4910.73 20.06 2325
census 5 94.68176 | 94.18538 96.33379 650.44 762.38 5,66 114.9
fars* 5 99.86419 | 99.84249 | 100.00000 180.77 376.45 191 94.6

Average 86.92 86.42 87.88 6576.04 5261.88 45.27 116.2
kddcup* 7 99.95500 | 99.95425 99.95809 25638.19 22540.5 | 180.76 1247
poker* 7 59.98018 | 59.92133 60.35220 8286.67 4387.05 12.24 358.4
covtype* 7 87.43990 | 86.15001 88.91371 6891.16 5571.43 20.94 266.1
census 7 95.54433 | 95.36667 96.59426 658.55 760.92 541 121.7
fars* 7 99.94522 | 99.94522 | 100.00000 182.27 376.11 1.96 92.9

Average 88.57 88.27 89.16 8331.37 6727.20 44.26 152.0

TABLE V

QCHI VERSUS CHI-FRBCS-BIGDATA

and the same consequent but different weights. In these cases,
two different versions are defined: Chi-FRBCS-BigData-Max
which takes the weight of the rule with the highest weight
and Chi-FRBCS-BigData-Ave which includes the rule with
the average weight among the rules involved.

The results obtained with these two versions are not exactly
the same as those obtained by Chi on the same datasets, but the
authors conclude in this respect with ”In terms of the accuracy
achieved by the algorithims considered in the study we can see
that, in general, the Chi-FRBCS-BigData versions are able to
provide better classification results than the serial version”,
which shows that the exact calculation of the weight does not
ensure better predictive capacity.

In [22] the study of the behavior of Chi-FRBCS-BigData-
Max is extended by changing the granularity of the fuzzy
partitions used. For such study, the 5 datasets described in
Table IV are used, where kddcup* is a binary version of the
dataset KDDCup1999 taking only examples of the denial-of-
service (DOS) class vs. normal class, poker is a binary version
of the dataset poker* taking only classes 0 and 1, covtype* is
a binary version of the dataset CoveType taking only classes 2
and 1, and fars * is a binary version of the dataset Fars taking
only classes Fatal_Injury and No_Injury.

Table V shows a summary of the results obtained by
Chi-FRBCS-BigData (corresponding to Chi-FRBCS-BigData-
Max) and offered by its authors in [22] to which are added
the results obtained by QChi in which we have reproduced the
same conditions used by the former and for the same datasets.

Two parameters are studied: the predictive ability on the test
set, using the standard measure of accuracy, and the learning
time. The results shown in the table correspond to the mean of
a 10-fold cross-validation. The weight model used is the PCF
(equation 9) and the reasoning method is the winning rule.
An important parameter for the Chi-FRBCS-BigData version
is the number of maps used in the MapReduce scheme. In the
table, we have taken the extreme values that were considered
in the experiment proposed by the authors in [22], which
correspond to 32 and 512 maps. The infrastructure used to

obtain the results was a cluster with 16 nodes connected
with a 40Gb/s Infiniband. Each node is equipped with two
Intel E5-2620 microprocessors (at 2 GHz, 15 MB cache) and
64GB of main memory running under Linux CentOS 6.6. The
head node of the cluster is equipped with two Intel E5645
microprocessors (at 2.4 GHz, 12 MB cache) and 96 GB of
main memory. Furthermore, the cluster works with Hadoop
2.6.0 (Cloudera CDH5.4.0), where the head node is configured
as name-node and job-tracker, and the rest are data-nodes and
task-trackers.

The results of QChi were performed on an Intel Core i7-
9750H CPU @ 2.60GHz and 16 Gb memory running on
Ubuntu 20.04.3 LTS x86 64 operating system.

In Table V the best results for each of the two param-
eters studied are highlighted in bold. It can be seen that
for all datasets and all different granularities, the learning
time offered by QChi is much lower than those offered by
the Chi-FRBCS-BigData versions, regardless of the number
of maps used. The last column indicates how many times
faster QChi is than the fastest version of Chi-FRBCS-BigData
(between 32 and 512 maps). It can be seen that QChi becomes
comparatively more efficient as the granularity increases.

In relation to the prediction capacity, we can observe
that our proposal obtains the best results in all the studied
granularities. These results show that the Chi-FRBCS-BigData
approach is not better in accuracy and is largely outperformed
by the learning times obtained by QChi.

In [23], an alternative algorithm to Chi-FRBCS-BigData is
proposed. The new proposal, called CHI-BD, takes Chi as
the base algorithm and also uses a MapReduce architecture.
Although the two approaches are very similar in the way they
approach the classification problem using parallel processing,
they do have two important differences. The first one is that
CHI-DB reproduces the same result that would be obtained
by applying the original CHI algorithm, since it faithfully
reproduces the weight that the original algorithm would as-
sociate to each of the rules provided as output. The second
difference is that a weight preprocessing method is included



Dataset | Var | CVar Ex (Prmaj:Pmin) Dataset Var | CVar Ex (Pmaj:Pmin)
census 41 13 142,521 (134,359 : 8,162) KDD_dos 41 26 4,898,431 | (3,883,370 : 1,015,061)
cov_1 54 10 581,012 (369,172 : 211,840) KDD_nor 41 26 4,898,431 (3,925,650 : 972,781)
cov_2 54 10 581,012 (297,711 : 283,301) KDD_prb 41 26 4,898,431 (4,857,329 : 41,102)
cov_3 54 10 581,012 (545,258 : 35,754) KDD_r21 41 26 4,898,431 (4,897,305 : 1,126)
cov_7 54 10 581,012 (560,502 : 20,510) pok_0 10 10 1,025,009 (513,701 : 511,308)
far_Fat 29 5 100,968 (58,852 : 42,116) pok_1 10 10 1,025,009 (591,912 : 433,097)
far_Inc 29 5 100,968 (85,896 : 15,072) pok_2 10 10 1,025,009 (976,181 : 48,828)
far_No 29 5 100,968 (80,961 : 20,007) pok_3 10 10 1,025,009 (1,003,375 : 21,634)
far_Nin 29 5 100,968 (87,078 : 13,890) skin 3 3 245,057 (194,198 : 50,859)
higgs 28 28 11,000,000 | (5,829,123 :5,170,877) susy 18 18 5,000,000 | (2,712,173 : 2,287,827)
TABLE VI

DATASETS USED IN THE EXPERIMENTAL STUDY OF [23].

during the learning process, which speeds up and accelerates
the calculation of the weight.

The experimental study proposed in [23] makes use of 20
binary classification datasets that were generated from eight
datasets from the UCI repository. Table VI shows the datasets
considered for experimentation. The table collects various data
such as the total number of examples (Ex), the number of
examples of the majority and minority class ((Py,q;:Pmin),
the total number of variables involved in the problem (Var)
and how many of them are continuous (CVar).

The datasets census, higgs, skin and susy are binary and
were therefore used in their original version. The rest are
multiclass and were transformed to binary by considering the
examples of one of the classes as the positive class and the
rest as the negative class. The abbreviations in the name of
the datasets are as follows: cov (Covtype), rar (Fars), KDD,
(KDDCup1999), and pok (Poker). For multiclass datasets, the
positive class identifier has been appended to the dataset name.
For data sets where the values associated with the class are
numerical, they are identified with the number associated with
the class that is considered as positive. For the other datasets,
the following association was performed: for Far, Fat is the
class Fatal_Injury, Inc is Incapaciting_Injury, No is No_Injury
and Nin is Nonincapaciting_Evident_Injury. In the case of
KDD, the four datasets considered are Two, Nor, prb and r21.

This study sets the following conditions:

o A 5-fold cross-validation is used.

o A configuration of the CHI algorithm used as the base
algorithm uses a 3-label discretization of the continuous
variables, the winning rule inference method, and the
PCF-CS as the weight model.

o Because most of the datasets used are strongly un-
balanced, the Area Under the ROC Curve (AUC) and
the Geometric Mean (GM) are used as a measure of
classification quality.

« All the parallel methods have been executed in an 8 nodes
cluster connected via 1Gb/s Ethernet LAN network. For
more details, please refer to the paper.

Table VII shows the results obtained by Chi-FRBCS-
BigData (in Table CHIf(?Cal), Chi-BD (in Table CHIgl’zbal)
and QChi for the predictive capability parameters (measured
using geometric mean and AUC) and learning time. For both

CHIZD and CHIZP, . we take the values provided in [23]

for the case of 32 mappers since as the authors themselves
indicate it is the maximum that can be executed in parallel

in their cluster. The results related to QChi shown in the
table have been obtained using the same configuration as those
obtained in that work but in this case it was executed on an
Intel Core i7-9750H CPU @ 2.60GHz and 16 Gb memory
running on Ubuntu 20.04.3 LTS x86 64 operating system, the
same used in the previous studies.

The table highlights in bold the best results obtained for
each of the parameters. Also included is a row with the average
of those datasets that have been used to generate more than
one problem. It should also be noted that the higgs dataset has
not been considered in the calculation of the mean because its
high execution time (even more so in the case of models using
MapReduce) distorted its value.

It can be observed that the number of rules obtained by
QChi in most cases is higher than those obtained by the other
two approaches, being CHIngobal the one that tends to obtain
the lowest value. A similar behavior (more accentuated in
databases with many examples) in relation to the number of
rules can be observed with the results obtained in Table II.
As already shown in the conclusions of Table 1, this behavior
of obtaining a higher number of rules is due to the tendency
that the new weight estimation has to have a higher value than
the one that the version with an exhaustive calculation would

offer, which is the case in this experimentation of CHIZ2, ..

Regarding learning time, we observe that QChi obtains
the best results on 16 of the 20 problems, only surpassed
by CHIZP, . for the problems related to the KDD data set.
Looking at the average times, it can be seen that it is on the
order of twice as fast as CHIngobal and more than 23 times as
fast as CHIZL . In the special case of the higgs dataset these

differences are even larger, being more than 35 and 50 times
faster than them.

Regarding the test performance using Geometric Mean, the
best results are obtained mostly by QChi (10 out of 20) and
CHIZP, ., (9 out of 20), while CHIZD  is only the best in
higgs. Looking more closely at these results on groups of
datasets that were generated from the same dataset, we can
see that for the Poker dataset, CHIgl[gbal clearly obtains the
best results, for the Fars dataset, QChi is overall better, while
the results obtained by both approaches on KDDCup1999 and
covtype datasets are very similar.

In relation to the test performance using AUC. Unlike the
previous one, the best results are obtained by CHIZR, ., (14
out of 20), while CHIZ? . equals as best with CHIgl’zbal in

Local

2 of those 16. For this measure, QChi is the best only in 6.



Test (using Geometric Mean) Test (using AUC) Runtine (in seconds) Rules
3 3 3 3 3 3 3 3
B SIS Q8 Q2 Q3 SIS Q3 Qs
E|E| 8 || 5|8 | |5 || 5 | &% | &
Dataset O O o O O o @} O o O O o
census 0.403 0.5231 0.36442 0.5757 | 0.6220 | 0.6541 26 96 53 64137 63598 64166.8
cov_1 0.7528 | 0.7531 0.7714 0.7530 | 0.7532 | 0.7592 68 76 24.8 8275 7940 8859.2
cov_2 0.7296 | 0.7291 0.7700 0.7379 | 0.7373 | 0.7730 70 75 25.7 8372 8108 8862.2
cov_3 0.9551 | 0.9565 0.9517 0.9553 | 0.9572 | 0.7926 69 74 22.2 8438 8249 8866
cov_7 0.9089 | 0.9281 0.9313 0.9109 | 0.9285 | 0.8225 70 75 22.5 8181 7917 8859.7
cov avg 0.8366 | 0.8417 0.8561 0.8393 | 0.8441 | 0.7868 69.3 75.0 23.8 8317 8053 8861.7
far_Fat 0.5871 0.5871 0.9123 0.6723 | 0.6722 | 0.9908 24 81 2.9 49707 49707 49727.4
far_Inc 0.5572 | 0.6919 0.7419 0.6370 | 0.7123 | 0.7037 24 80 2.9 49692 49130 49725.2
far_No 0.8336 | 0.8675 0.9049 0.8438 | 0.8728 | 0.9139 23 82 2.6 49700 49584 49720.6
far_Nin 0.5307 | 0.7139 0.7108 0.6195 | 0.7283 | 0.6728 24 81 2.8 49686 48984 49711.6
far avg. 0.6272 | 0.7151 0.8175 0.6931 | 0.7464 | 0.8203 23.8 81.0 2.8 49696 49351 49721.2
KDD_dos 0.9991 0.9991 0.9992 0.9991 | 0.9991 | 0.9989 4362 78 155.7 5753 5747 5387.4
KDD_nor 0.9992 | 0.9992 0.9993 0.9992 | 0.9992 | 0.9985 4317 76 154.1 5755 5734 5379.8
KDD_prb 0.9911 | 0.9924 0.9925 0.9911 | 0.9925 | 0.9587 4402 77 1534 5750 5701 5379.6
KDD_r21 0.9251 0.9840 0.9837 0.9279 | 0.9841 | 0.5529 4412 75 155.9 5744 5686 5381.8
KDD avg. | 09786 | 0.9937 0.9937 0.9793 | 0.9937 | 0.8773 4373.3 76.5 154.8 5751 5717 5382.1
pok_0 0.6183 | 0.6336 | 0.6224 || 0.6206 | 0.6360 | 0.6224 38 107 | 10.3 56023 | 54523 | 561815
pok_1 0.5616 | 0.5848 0.5679 0.5658 | 0.5859 | 0.5698 59 110 10.7 55986 54254 56181.5
pok_2 0.3713 | 0.6703 0.5411 0.5473 | 0.6709 | 0.5414 57 109 10.0 55408 46618 56177.4
pok_3 0.272 0.7387 0.5954 0.5302 | 0.7388 | 0.5349 59 106 11.0 55480 44632 56190
poker avg. | 0.4558 | 0.6569 0.5817 0.5660 | 0.6579 | 0.5671 58.3 108.0 10.5 55724 50007 56182.6
[ skin__ [ 09595 | 0.9597 | 0.9381 || 0.0604 | 0.9605 | 09246 || 22 | 53 | 13 || 23 | 23 [ 25 |
[ susy [ 05477 | 0.5524 | 0.6722 || 0.6210 | 0.6242 | 0.6860 | 2010 | 103 | 905 || 9675 | 9505 [ 105166 ]
[ AVG. [ 07117 | 0.7823 | 0.7879 || 0.7718 | 0.8085 | 0.7676 || 10613 | 849 | 45.5 || 29041 | 27665 | 293383 ]
[ higes [ 05772 | 0.5847 | 0.5639 || 0.5776 | 05848 | 0.5642 || 15115 | 9658 | 263.2 || 762443 | 666068 | 832577 ]
TABLE VII
RESULTS OBTAINED COMPARING QCHI VERSUS CHILocal AND CHIggbal
Study | CHIPZD , vs QChi | W/T/L | p-value AUC measure, in the second study no significant differences
1 Test GM 4/0/16 | 0.00679 are found between the two algorithms, since the hypothesis of
2 Test AUC 9/0/11 | 0.64766 equality cannot be rejected.
3 Time 20/0/0 0.00010
The third study also considers the same methods but in
Study | CHIBE,  'vs QChi | W/T/L | p-value terms of learning time. In this case, the equality hypothesis
) Test GM 1070710 T 0.89603 is again discarded, but the hypothesis that CHIZZ . requires
5 Test AUC 14/0/6 | 0.15365 significantly more time to learn is accepted.
6 Time 16/0/4 0.01687 . .. .
In the lastest three studies, QChi is compared with
TABLE VIIL

STATISTICAL TESTS COMPARING THE RESULTS OBTAINED BY QCHI,

CHIGlobal AND CHILocal

A statistical study is included in [23] which shows that there
are significant differences in favor of CHIZP, . in classifi-
cation performance. In order to find significant differences
among the classification performance and training time of
these three approximations, we have used the Wilcoxon Signed
Rank Tests to compare previous two MapReduce methods with
QChi.

Table VIII shows the 6 studies performed, which represents
the results obtained in these comparisons, indicating the wins
(W), draws (T) and losses (L) of CHI? Local against QChi
along with the calculated p-value. The first one studies the
classiﬁcation performance using the Geometric Mean between
CHIBD . and QChi, where the hypothesis of equality is
rejected at a confidence level of 95%. So we can assume that
the classification capacity is higher in QChi. Considering the

CHIZP, ;. In relation to predictive capability (with both,
Geometric Mean and AUC), the test accepts that both have
the same capability and therefore no significant differences
can be found between them. Although in the case of the AUC
measure the win/loss balance is very favorable to CHIglEbal,
the p-value returned by the test indicates that the differences
found between the algorithms are not sufficient to rule out the
hypothesis of equality. Finally, clearly QChi obtains a signif-
icantly lower learning time than CHIG’lobal for the databases
studied.

This fact again shows that performing an exact and exhaus-
tive weight calculation does not guarantee a reduction of the
error compared to the proposal made here of a computationally
inexpensive weight estimation.

Finally, and in relation to learning time, the tests show that
CHIZP, ., requires significantly more learning time. As an
example, to indicate that in the time that CHIZP, ., needed
to tackle the higgs problem using a cluster of 32 mappers,
QChi using a single computer could have solved a higgs but
with 400 million examples.



V. CONCLUSION

The WM algorithm, and in particular its version for classi-
fication, has been seen by some authors as a real option for
tackling Big Data problems. In real applications, it has been
observed that when the problems to which this algorithm is
applied return very large rule sets, it is no longer a useful
option. The difficulty encountered by the algorithm is with the
exact calculation of the weight of the rules. In the worst case,
this process can be of the order of the square of the number
of examples. Even being a polynomial problem, for massive
datasets, this time is also enormous. To solve this difficulty,
some authors have proposed the MapReduce architecture for
parallel processing. Indeed, this architecture allows one to
significantly reduce the time caused by the excess of rules, but
it requires the use of a cluster to deal with these problems.

The proposal presented by QChi is ultimately a modification
of the WM algorithm whose main difference with the original
is the modification in the calculation of the weights of the
rules and a restructuring of the algorithm that allows to obtain
the set of rules in a much more efficient way and with a
similar classification capacity. In the experimental part, the
results offered by QChi have been compared with the original
WM algorithm on problems with a non-massive number of
data. The results show that the new proposal significantly
reduces the learning time and that the calculation of the weight
using its exact values does not guarantee a better classification
capacity. The results of QChi have also been compared with
some of the algorithms using the MapReduce scheme. In this
case, it also shows that the learning time is significantly lower
while maintaining the predictive capability.
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