IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 30, 2019, accepted July 17, 2019, date of publication July 22, 2019, date of current version August 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930355

KSUFS: A Novel Unsupervised Feature Selection
Method Based on Statistical Tests for
Standard and Big Data Problems

JOSE A. SAEZ” AND EMILIO CORCHADO

Department of Computer Science and Automatics, University of Salamanca, 37008 Salamanca, Spain

Corresponding author: José A. Sdez (joseasaezm @usal.es)

ABSTRACT The typical inaccuracy of data gathering and preparation procedures makes erroneous and
unnecessary information to be a common issue in real-world applications. In this context, feature selection
methods are used in order to reduce the harmful impact of such information in data analysis by removing
irrelevant features from datasets. This research presents a novel feature selection method in the field
of unsupervised learning, in which the complexity arises from the fact that the class labels cannot be
used to select the most discriminative features as it is traditionally performed in supervised learning.
The technique designed, which is called Kolmogorov-Smirnov test-based Unsupervised Feature Selection
(KSUFS), is based on the computation of estimated feature distributions that are later compared to the original
ones using non-parametric statistical tests to provide the most representative input variables. Two versions
of the KSUF'S are presented in this study: one of them is particularly designed to deal with standard data,
in which the accuracy of the method prevalences over other of its aspects; the other version is designed to
treat with big data problems, in which the computational complexity is improved due to the characteristics
of this type of datasets. The KSUF'S is successfully compared to other state-of-the-art unsupervised feature
selection techniques in a thorough experimental study, which considers both standard and big data problems.
The results obtained show that the method proposed is able to outperform the rest of reference unsupervised
feature selection methods considered in the comparisons, selecting the first most influential features for

standard datasets and particularly highlighting when big data problems are treated.

INDEX TERMS Big data, clustering, feature selection, statistical tests, unsupervised learning.

I. INTRODUCTION
The complexity of data preparation processes in real-world
applications, such as those related to medicine [26] or big
data processing [4], usually produces datasets containing
unnecessary and erroneous information [30], [39], [45]. Fea-
tures incorporating such harmful information may imply
important drawbacks in data analysis [27]. These problems
include, among others, the increase of the computational and
memory requirements of learning algorithms, as well as the
deterioration of their performance and, therefore, the inter-
pretability of the models built from the data [31], [35].

In order to overcome the aforementioned problems, dimen-
sional reduction methods [7], [34] are used to preprocess
datasets aiming to find a subset of relevant features to
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reduce their dimensionality. Two types of dimensional reduc-
tion techniques are distinguished [6], [36]: feature extraction
and feature selection. Feature extraction methods [7], [43]
transform the original variable space to perform dimen-
sional reduction. Feature selection [6], [34] chooses a sub-
set of features from a given dataset removing its irrelevant
and noisy features in order to represent the original data.
Between these two approaches, this research focuses on fea-
ture selection methods because many applications require
of building highly-interpretable models [26], [35] and, there-
fore, the meaning of the original variables in the data must be
retained.

In supervised problems [27], [44], in which each one of
the observations in the dataset has an associated class label,
feature selection methods usually evaluate the importance of
variables according to the discriminant information encoded
in the classes [8], [15]. On the other hand, unsupervised
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feature selection [10], [38], [46] is generally a more difficult
problem due to the lack of class labels in the dimensionality
reduction process. Since supervised feature selection is not
directly applicable to these data, the design of new feature
selection approaches for unsupervised datasets is of a great
interest. Among them, filter methods [24], [28] highlight by
using different criteria to perform feature selection in a
time-efficient way and without using any learning algorithm
to estimate the quality of the features.

The study of unsupervised feature selection methods pro-
posed in the literature shows that, even though there are
methods that do not need to be aware of the number of
clusters in a dataset to provide a final solution [17], [46]
(which are called non-cluster-aware methods hereinafter),
other techniques do require of a user parameter specifying the
number of clusters in the problem [28], [37] (which are called
cluster-aware methods). Note that cluster-aware methods do
not need the exact number of clusters in which the data are
grouped to work, but their performance is optimized when
it is provided [37]. This information, approximate though,
may imply an advantage in favor of cluster-aware approaches.
However it is usually unknown, especially in early stages of
data analysis when preprocessing methods, such as feature
selection, are applied.

Due to the aforementioned facts, this research proposes
a novel technique for unsupervised feature selection that
does not use the information of cluster cardinality in the
data and it is based on the potential of statistical tests to
best identify the most influential features. First, the pro-
posal is based on estimating a value distribution for each
feature in the dataset using the rest of the data available
employing the well-known k-Nearest Neighbors Imputation
(KNN1I) [3], which analyzes the relationships among features
to determine such estimations. Then, non-parametric statis-
tical tests [32] are employed to set the significance of each
variable for unsupervised learning by comparing its original
and estimated distributions, which posibilites the final feature
selection. The main aim of this comparison is to detect and
remove those features having the highest changes between
their estimated and original distributions, which are those
variables more likely to contain unnecessary and erroneous
information since they are not predictable using the rest of
the data. The Kolmogorov-Smirnov statistical test [33], which
is used to evaluate such comparison between distributions,
gives name to the proposal: Kolmogorov-Smirnov test-based
Unsupervised Feature Selection (KSUFS).

The idea of using non-parametric statistical tests to evalu-
ate feature importance in datasets was previously researched
in other works [29]. However, unlike this study that focuses
on unsupervised problems, the aforementioned research was
oriented to deal with classification problems, in which class
label information was available for the computations and
methods employed. Furthermore, the approach of [29] was
designed to work as a feature weighting scheme to be
included as a part of the distance function in the Nearest
Neighbor (NN) [23] classifier. Therefore, instead of finding a
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subset of features as the approach of this research does, all the
features were simultaneously considered and weighted inside
the distance function of NN in [29]. Thus, KSUF'S selects a
subset of features in unsupervised problems using internal
operations that do not consider the class information and
being independent of the learning algorithm used later.

Difference from existing works in the specialized litera-
ture on unsupervised feature selection, this research deeply
analyzes in a novelty way two different scenarios in which
datasets with a very differentiated dimensionality in terms
of the number of features are considered. Thus, Section VI
focuses on the application of feature selection in standard
unsupervised problems, which are commonly used in the
data mining literature and in which the number of fea-
tures can be handled by learning algorithms in a moder-
ate time. On the other hand, Section VII studies feature
selection with big data [16] unsupervised problems, having
a high-dimensionality, which represents an interesting sce-
nario to apply unsupervised feature selection since it may
help to reduce the higher time and storage computational
requirements of learning algorithms used later. Accordingly,
this research proposes two alternative versions of KSUFS,
depending on the characteristics of the problem addressed:
one of these versions is designed to work with standard
data (Section III), whereas the other version is specially
designed to work with high-dimensional big data problems
(Section IV). The study of unsupervised feature selection
divided into two different scenarios (standard and big data),
let us to check whether the necessities of problems with
different sizes are the same from the point of view of feature
selection and whether the behavior of the feature selection
methods studied changes when considering each type of
data.

A thorough empirical study will be developed com-
paring 8 representative unsupervised feature selection
techniques [24], both non-cluster-aware and cluster-aware,
to KSUFS. All of them will be used to preprocess 20 stan-
dard real-world datasets and 20 big data real-world prob-
lems (having more than 250 features) taken from the UCI
repository [9]. Such preprocessing will consider 6 differ-
ent percentages of features to be selected, from 15% to
90% by increments of 15%. Finally, following other related
works [17], [46], the well-known k-means [41] clustering
algorithm will be used to estimate the quality of the fea-
ture selection performed in each preprocessed dataset. Such
outcomes, which will imply more than 44000 performance
results, will serve as a solid basis to establish a compar-
ison among the different feature selection methods con-
sidered, not applying any preprocessing and the proposal
of this work. The conclusions reached will be based on
the usage of the appropriate statistical tests [12], [40] in
order to check the significance of the differences found.
The main lessons learned in this research, including inter-
esting findings and conclusions related to the experi-
mentation performed and its analysis are summarized in
Section VIII. Full results and details of the experimentations
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are available in the web-page associated to this research at
https://joseasaezm.github.io/ksufs/.

The rest of this study is organized as follows. Section II
introduces feature selection in unsupervised problems.
Section III presents the details of KSUFS when working
with standard datasets, whereas Section IV focuses on the
peculiarities of the method dealing with big data. Section V
describes the experimental framework. Then, Section VI
analyzes the results obtained from the comparison with
other models considering standard data, whereas Section VII
focuses on the results with big data problems. Section VIII
summarizes the lessons learned. Finally, Section IX enumer-
ates some concluding remarks and future research lines.

Il. UNSUPERVISED FEATURE SELECTION

Feature selection [6], [34], [47] is a preprocessing technique
whose main aim is to determine a subset of variables from
a given dataset removing its irrelevant and noisy features.
Such dimensionality reduction eases the subsequent discov-
ering of meaningful patterns hidden in the data [20]. In unsu-
pervised feature selection, where there are not class labels
available, different criteria to remove those variables that are
not interesting for data analysis are used [19], [46]. As it
was previously mentioned, unsupervised feature selection can
be broadly divided into cluster-aware and non-cluster-aware
methods [17], [37], depending on they use or not the number
of clusters in the data as a parameter.

Within non-cluster-aware methods, some algorithms solve
the feature selection problem calculating a score for each fea-
ture and selecting those with the best value of such measure.
Laplacian Score Feature Selection (LSFS) [14] and Maxi-
mum Variance-based Feature Selection (MVF S) [24] are two
well-known methods following this scheme. LSF'S evaluates
the importance of each feature according to the Laplacian
score. This method aims at preserving the similarity to the
original data space selecting those features that retain sample
locality, which is determined by an affinity matrix. MVEFS
ranks the features in the dataset based on their variances and
selects the top K features corresponding to the maximum
values in order to obtain the best expressive power.

Closely related to LSES, Spectral Feature Selection
(SPEC) [17] considers the interactions among features in
order to select a subset of variables preserving the manifold
structure of the original data. SPEC establishes comparisons
to the eigenvectors of a normalized Laplacian matrix to
select features that assign similar values to instances that
are related according to the affinity matrix. Other methods,
such as Similarity Preserving Feature Selection (SPF'S) [46],
also address the intrinsic relationships among variables for
a feature selection preserving the similarity to the original
data sample but, moreover, include a sparse multiple-output
regression formulation to improve the effectiveness in the
optimization problem to find the final solution.

On the other hand, cluster-aware methods try to ben-
efit from knowing the number of clusters and explor-
ing the discriminative information in the data to perform
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TABLE 1. Feature selection methods used in experiments.

Non-cluster-aware unsupervised feature selection

[14] Affinity matrix: binary weights; k = 5 neighbors

[24] Optimization function: variance maximization

[17] Optimization function: (51; Affinity matrix: binary weights; k = 5
[46] Optimization function: SFS

Cluster-aware unsupervised feature selection

[37] Affinity matrix: binary weights; & = 5 neighbors
[19] v = 10E8; a = 1; 8 = 1; Affinity matrix: binary weights; k = 5
[28] Affinity matrix: binary weights; k = 5 neighbors

[42] ~ = 0.1; Affinity matrix: binary weights; k = 5 neighbors

a more accurate feature selection. For example, Multi-
Cluster Feature Selection (MCF S) [37] selects features using
a spectral regression with /j-norm regularization trying
to capture the multi-cluster structure of the data, focus-
ing on the correlations between different features. There
are cluster-aware methods that simultaneously exploit the
discriminative information and consider the interactions
between features [19], [42]. For example, Unsupervised Dis-
criminative Feature Selection (UDFS) [42] selects features
computing an score based on local discriminative information
and the manifold structure of the data. Nonnegative Discrim-
inative Feature Selection (NDFS) [19] selects features by a
joint framework which considers the usage of an /; | regu-
larized regression and a nonnegative spectral analysis [19],
which reduces the effect of noisy features. Other techniques
also focus on performing a feature selection robust to noisy
variables, such as Robust Unsupervised Feature Selection
(RUFS) [28], which simultaneously uses an [ regularized
regression and an /> 1 norm-based nonnegative matrix factor-
ization with local learning in the feature selection process.
Thus, some of these works show the relevance of reducing
the effect of noisy features to perform a more accurate feature
selection [19], [28].

Table 1 summarizes the unsupervised feature selection
methods considered in the experiments of this research along
with the configuration of their main parameters. These tech-
niques have been chosen because they are well-known repre-
sentatives and are usually considered as reference methods in
the field of unsupervised feature selection applying different
strategies to select the most relevant variables. Note that,
even though almost all of the parameters are the default ones
considered by the authors of such methods, an affinity matrix
with binary weights and k = 5 neighbors is used for those
methods that require it (LSFS, SPEC, MCFS, NDF'S, RUF'S
and UDF'S) to establish a fair comparison among them.

From the two aforementioned groups of feature selection,
non-cluster-aware and cluster-aware methods, the method
presented in this research, KSUFS, belongs to the for-
mer group. It gets closer to real-world scenarios in which
the number of clusters in the data is unknown. Further-
more, those important aspects treated in the literature on
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unsupervised feature selection, such as considering the
interactions between variables to determine the quality
of features [17], [46] and reduce the importance of noisy
features [19], [28], are also included in the proposal. All
the details about the working of KSUF'S and how it addresses
the above issues are detailed in Sections III-IV, presenting the
peculiarities of the approach to treat with standard datasets
and the modifications necessary to adapt KSUF' S for big data,
respectively.

1Il. A NOVEL UNSUPERVISED FEATURE SELECTION
BASED ON THE KOLMOGOROV-SMIRNOV STATISTIC

This section describes the main foundations of the pro-
posed feature selection method for unsupervised prob-
lems, called Kolmogorov-Smirnov test-based Unsupervised
Feature Selection (KSUFS). KSUFS, which has been pro-
grammed under Java, can be used with data of any dimen-
sionality, both standard datasets and big data problems.

The working of the method with standard data, which do
not have a very large number of features and can be addressed
by learning algorithms in a reasonable time, is explained
in this section. Considering standard data, exact computa-
tions (with independence of their computational cost) are
used in KSUFS to ensure the maximum accuracy of the
method.

Big data [5], [16] is defined as high volume, velocity
and/or variety data requiring of new processing techniques
to be addressed. Thus, big data problems are not identified by
specific size measures, but by the fact that traditional methods
are not able to work with them due to their volume, velocity or
variety. In order to take advantage of the knowledge contained
in big data, the developing of techniques capable of handling
such data is of a great interest. Thus, when dealing with
high-dimensional big data, the computational complexity,
i.e. the velocity, of the methods is as important than their
performance [18]. Therefore, it is particularly interesting to
adapt KSUF'S to improve its computational cost dealing with
big data with respect to the version to deal with standard data.

KSUFS in either of its versions, for standard and big data,
is based in three main steps (see Figure 1). Additionally, these
steps are reflected in the pseudocode shown in Algorithm 1.
Let o1, ..., 0m (l@il = n,Vi € {1,...,m}) be the features
belonging to an unsupervised dataset with n examples and m
variables, the steps of KSUF'S are:

1) Step I - Creation of estimated feature distributions. The
first step of KSUF'S computes, for each feature ¢; in the
input dataset D, an estimated distribution of values <plf
(l¢;| = n) conforming an estimated data D'.

2) Step 2 - Comparison of real and estimated feature
distributions. This step uses a non-parametrical statisti-
cal test, the Kolmogorov-Smirnov test [33], to compare
the distribution of the values for each feature ¢; of D
and the corresponding estimated feature ¢! of D'. This
enables the computation of the D!, statistic for each
feature ¢;, which ranks each feature according to its
importance in the unsupervised problem.
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3) Step 3 - Feature selection according to statistic values.
The original features ¢; are ordered from the lowest
value (the most representative variables) to the highest
value of their D!, statistic computed in the previous step.
This procedure leads to a new set of ordered features
denoted as ¢! (l¢| = n/j = 1,...,m). Finally,

the K(K < m) most representative features are selected

to be part of the final output dataset D”.
The steps of KSUF'S to deal with standard data are detailed
from Section III-A to III-C, whereas Section IV describes the
modifications to work with big data problems.

Algorithm 1 Pseudocode of the KSUF'S Method

Input: original dataset D, selected features K.
Output: processed dataset D”.

Step 1 - Creation of estimated feature distributions

Set the estimated dataset D' = @;
for each feature ¢; € D do
for each example 5; € D do
Suppose the feature value ¢; j as missing;
901{,]' <— Estimate ¢; ; using the rest of D;

end
D' «— D' U{g};
end

W N A N R W N =

Step 2 - Comparison of real and estimated distributions

9 for each feature ; € D and ¢; € D' do

10 Dﬁl <— Compute the Kolmogorov-Smirnov
statistic using ¢; and ¢;

11 end

Step 3 - Feature selection according to statistic values

12 L <— Sort features ¢; in increasing order of Dil;
13 Set ¢, ..., ¢, with (pjf/ = ¢;/D}, in j-th place of L;
14 D" «<— Select the first K features gojf’;

A. STEP 1 - CREATION OF ESTIMATED FEATURE
DISTRIBUTIONS FROM THE ORIGINAL DATA
In order to build the distribution ¢ for each feature
¢; in the data, KNNI [3] is used. This is an imputation
method [11], [13], [25] used to analyze the relationships
among features and set a missing value in the data. Impu-
tation methods have shown a good performance estimat-
ing missing values from the rest of the data, so they are
also suitable for use in KSUFS. Furthermore, they are
independent of the learning algorithms used later, so one
may choose the most adequate imputation method that,
in our case, is adapted to the characteristics of unsupervised
problems.

KNNT is based on computing the k-nearest neighbors of
a sample of a dataset characterized with a missing value
and, then, averaging the values of the feature with the miss-
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FIGURE 1. Unsupervised feature selection proposed.

ing value for these neighbors to compute the final solution.
Thus, KNNI does not require of a complex initialization
of parameters to work properly. In the experiments of this
research, KNNI uses the Euclidean distance as a similarity
function and & 10, such as it is normally used in the
literature [3]. This technique offers several advantages for
unsupervised feature selection compared to other imputation
methods:

1) Need of class labels to make estimations. Due to
limitations of working with unsupervised problems,
the imputation method cannot use information from
class labels. Difference from other well-known meth-
ods, such as Support Vector Machine Imputation
(SVMI) [11] or Concept Most Common (CMC) [13],
KNNI does not need class labels to estimate missing
values.

Consideration of feature interactions to make estima-
tions. The imputation of KNNI for a feature value
considers its interactions with the rest of features.
Thus, the distribution of imputed values for each fea-
ture ¢! is conditioned to all other features. Some
methods, such as Global Most Common (GMC) [13]
or CMC, do not take advantage from the interac-
tions among variables to estimate feature values. Note
that this issue, that is, considering the relationships
among variables, it is important in unsupervised feature
selection [42].

2)

The Step 1 of KSUFS (lines 1-8 in Algorithm 1) creates
a new estimated dataset D’ from the original one D using
KNNI. If the original data D is composed of the features
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@1, 02, ..., Y, the imputed data D" will be formed by the
features ¢, ¢, ..., ¢, whose values are obtained by KNNT.

The procedure to obtain D’ from D is represented in Fig-
ure 2. This is based on assuming iteratively that each feature
value ¢; j of each example §; of the dataset D is missing and
estimating a new value (plf’ i for it using KNNI. Thus, after
selecting the target feature ¢; and its corresponding target
feature value @; ; to be estimated (tasks 1-2 in Figure 2), this
value is supposed to be missing. KNNT is then used to predict
a new value for that feature value (task 3). KNNI computes
the k-nearest neighbors §,,, ..., 8, of the example §; using
all the features except ¢;, i.e. using ¢;/j # i. The new value
(plf’ ; associated to ¢; j is computed as the average of the feature
values in ¢; of these neighbors (task 4):

ZI;=1 (pi”?q
k

The new estimated dataset D’ is obtained by repeating this
process for each feature value ¢; j, until the whole original
dataset D has been processed. Carrying out this process, it is
possible to estimate a distribution of values for each feature,
which is conditioned to the rest of the features. In this way,
KSUF'S considers the interactions between variables to later
determine the quality of each feature, as it is recommended
in the specialized literature [17], [46]. The new dataset D’
will contain these conditioned distributions for each feature.
This will allow us to check those features that are the most
difficult to predict using the rest of the variables and, there-
fore, they are likely to contain unnecessary and erroneous
information making them less important to the unsupervised
task.

A
$ij=
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FIGURE 2. Creation of estimated feature distributions from the original ones using xKNNT.

to estimate

B. STEP 2 - COMPARISON OF REAL AND ESTIMATED
FEATURE DISTRIBUTIONS USING STATISTICAL TESTS

After the Step 1, a new estimated conditioned distribution
¢! is obtained for each original feature ¢;. The Step 2
(lines 9-11 in Algorithm 1) consists of comparing, for each
feature, their distributions ¢; and ¢;, checking in this way
the degree of change in each one of the features after the
application of the imputation method. Some features may
present small changes between their distributions of values ¢;
and ¢, being usually more easily predictable using the rest of
the data, whereas other features may have a greater degree of
change between their two distributions.

In order to quantify the degree of the changes between ¢;
and (plf , the Kolmogorov-Smirnov test [33] is used. This test
computes a statistic D,,, which can be regarded as a measure
of how different two samples are. One of its main advantages
is that it let us to quantify the distance between the empir-
ical distribution functions of two samples, concretely those
implying ¢; and ¢/ and, furthermore, without making any
assumption about the probability distributions of the variables
since it is a non-parametric test. The null distribution of its
statistic, Dy, is computed under the null hypothesis that the
samples are drawn from the same distribution.

For our purpose consisting of measuring the similarity of
two given distributions, shape metrics, such as D,, are more
appropriate than other simpler statistics used to compare
distributions. Let us consider, for example, the case of the
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Estimated dataset D’

Pi

Nearest neighbors

°Compute estimated value
k
- Yq=1Ping

ij = k
t
P
Pi,

i

Compute k nearest neighbors of §;
using features ¢@; (j # i)

variance as an instance of dispersion metrics. Variance mea-
sures how the feature values are grouped around the mean.
However, this represents only one of the characteristics to
analyze when comparing distributions. D,, contains structural
information describing the changes in the distribution and
identifying the parts of the feature domain with higher or
lower concentrations of values. This fact shows the potential
of the D, statistic against other simpler metrics, such as the
variance, to capture changes in feature distributions.

Thus, let X and Y two samples and Fx and Fy their
empirical distribution functions:

1 ¢ 1 ¢
Fx()=~3 Iyze. Fr@) =3 Iy
h=1 h=1

where Ix, <, is the indicator function, equal to 1 if X;, < x
and equal to 0 otherwise. The Kolmogorov-Smirnov statistic
is shown in Equation 1:

Dy, = sup |Fx — Fy| € [0, 1] ey
X

Table 2 shows an example of the computation of the
Kolmogorov-Smirnov statistic D,, from two distributions X =
{X1,.... Xptand Y = {Yq, ..., Y,} withn = 5.

The Dj; statistic is, therefore, computed for each pair of dis-
tributions X = ¢; and ¥ = ¢, Vi € {1, ..., m}. By quantify-
ing the distance between the empirical distribution functions
of the two samples involved in each comparison (¢; and ¢,),
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TABLE 2. Example of computation of the kolmogorov-smirnov statistic
Dp, in two samples X and Y of size n = 5. In this case,
Dp = sup, |[Fy — Fy| =0.6.

X = {0.12,0.29, 0.44, 0.68, 0.94}

Y = {0.02,0.11,0.18, 0.26, 0.63}

0 0 0
0 0.2 0.2
0 0.4 0.4
0.2 0.4 0.2
0.2 0.6 0.4
02 o5 |
0.4 0.8 0.4
0.6 0.8 0.2
0.6 1 0.4
0.8 1 0.2

each of these statistics can be interpreted as a measure of how
different the two samples are.

We must remark that the Kolmogorov-Smirnov test is used
in KSUF'S to compute its D!, statistic, which let us compare
the real and estimated value distributions for each one of
the features. This statistic will serve to rank the features
according to their importance for the unsupervised task and
make the final feature selection in Step 3. Note that the
computation of the D!, statistic is one of the stages used by
the Kolmogorov-Smirnov test and it does not imply apply-
ing the full statistical test, which would finally produce a
p-value.

C. STEP 3 - UNSUPERVISED FEATURE SELECTION
ACCORDING TO STATISTIC VALUES
The values of D!, can be used to rank each feature ¢; according
to its importance for feature selection. Inspired by works
showing the benefits of reducing the relevance of unnecessary
and noisy variables [19], [28], KSUF'S reduces the effect that
changing features according to the estimations of KNNI have,
that is, those usually having a higher D

Before explaining the reasoning behind reducing the effect
of features with a high Di, let us clarify the relationship
between the quality of the estimations of KNNI (in Step 1) and
the obtained values of D!, (in Step 2). For each original feature
@i ={@i 1, , ¢in}, KNNI estimates a value for each one of
the n examples in the data, resulting in ¢, = {(plfgl, cee <plf’n}.
Thus, both ¢; and ¢] have an implicit association of their
values, that is, in their j-th value (plf’ ; is the estimation of ¢; ; for
the example §;. On the other hand, the Kolmogorov-Smirnov
test is used to compare ¢; and ¢; as distributions. In this case,
the aforementioned association between the galf) j and ¢; j is not
considered to compute Dfl, and the distributions ¢; and ¢ are
treated by themselves, without assuming any order in their
values. This results in two main situations when analyzing
the relationship between the estimations of KNNI and the
values D' :
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1) KNNI performs good approximations to the real val-
ues. If the estimated values galf,j by KNNI are close
to the real ones ¢; ; for each example §;, the real and
estimated distributions, ¢; and <plf , will be necessarily
quite similar. This situation will produce low D}, values.

2) KNNTI performs bad approximations to the real values.
If the estimation (plf’ F for each example §; is quite differ-
ent from the real value ¢; j, two cases are distinguished:

a) Since %{,j is quite different from ¢;; for each
example d;, the first and most likely case is that the
real and estimated distributions, ¢; and ¢, to be
dissimilar enough too, which will produce high
values of Dil.

b) In the second case the estimated distribution (plf s
although it is composed by wrong predictions of
KNNTI, is by chance similar to the real distribution
;. This will produce low values of D’,. Note that
this case could occur because of the association
between the estimation <pl/ and the real value
¢;; for each example §; is not considered when
computing D},.

Thus, a feature ¢, with a low D¢ value due to this second
case b) could be confused with another feature ¢, with a
low DZ value corresponding to good estimations of KNNI.
However, note that this fact, although it is possible, is hard
to occur in practice and to affect significantly to the final
feature selection. First, for the confusion between ¢, and
@p in the feature selection process to have a notable impact
on results, it requires of much worse estimations for ¢, by
KNNI than those for ¢p. Then, by chance, the estimated
distribution ¢, must fit the real distribution ¢, better than the
¢,, distribution fits ¢;, (being ¢, and ¢}, by definition, similar
enough).

Therefore, in general terms from a practical point of view,
and considering the above exception of the second case b),
a relationship between good estimations of KNNI and low
values of D!, and worse estimations of KNNT and higher
values of D!, can be established.

In this way, due to the presence of larger amounts of errors
in noisy features and the absence of correlation with other
variables of unnecessary features, they are probably wrongly
predicted by KNNI. Because of this, as it was previously
stated, the distributions of values ¢; and @] are more likely
to be different, implying a higher D!, value. Under this con-
sideration, we aim to highlight the effect that features with a
small Df;, since they are more likely to conform a block of
key features describing the dataset.

In Step 3 (lines 12-14 in Algorithm 1), all the features
@; are finally ordered from lowest to highest of their corre-
sponding Dﬁl statistic. This results in a set of ordered features
o). 5, ..., ¢, being (pj/.’ = ¢;/Di is in the j-th position of
the ordered list of qu statistics. Then, similar to other unsu-
pervised feature selection methods [17], [28], [46], the top
first K (K < m) variables (p]f’ are selected to be part of the
final output dataset D”.
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IV. ADAPTING THE UNSUPERVISED FEATURE SELECTION
IN KSUFS FOR BIG DATA PURPOSES

This section proposes a series of adaptations to KSUF'S when
dealing with big data problems characterized by having large
qualities of features. The main aim of such adaptations is
maintaining the basics of the proposal described in Section III
reducing the computation costs implied without noticeably
affecting the performance of the method.

Section IV-A details the modifications of KSUFS to be
adapted to big data problems, whereas Section IV-B ana-
lyzes the improvements in its computational complexity with
respect to the version to treat with standard data.

A. MODIFICATIONS TO DEAL WITH BIG DATA

The version of KSUFS to treat with standard data described
in Section III is based on three main steps: 1) creation of
estimated feature distributions (Section I1I-A), 2) comparison
of real and estimated feature distributions (Section III-B) and
3) feature selection (Section III-C).

As it is shown in Section III, Steps 2 and 3 require no
complicated computations and, therefore, the most complex
step from the computational point of view is Step 1. Since the
last two steps do not strongly affect the complexity of KSUFS,
they are maintained without changes in the version of KSUF'S
for big data. Thus, the Steps 2 and 3 of the version of KSUF'S
proposed in this section are those presented in Section III-B
and III-C, respectively.

The adaptation of KSUF'S to big data is therefore focused
on improving the computational cost of Step 1 (the cre-
ation of estimated feature distributions), which is the most
time-consuming when working with this type of problems.
Two adaptations are made to this end:

1) Approximate computation of nearest neighbors. Deal-

ing with big data, the differences between the set of
exact k-nearest neighbors and other sets of approxi-
mate nearest neighbors are likely to be minimal. Note
that nearest neighbors are used by KSUFS to compute
averaged values of their variables to create the esti-
mated feature distributions, which are then compared
to the original feature distributions. The impact of com-
puting the exact nearest neighbors may be compen-
sated because all the estimated feature distributions are
affected in the same way when considering approx-
imate nearest neighbors and only the relative differ-
ences of estimated and original feature distributions are
determinant to establish the final ranking of features in
KSUF'S.
Thus, the Approximate Nearest Neighbors (ANN) [2]
method is used instead of KNN in KSUFS for big
data. The main idea behind ANN is to preprocess
the dataset in such a way that nearest neighbors
are computed efficiently. Data are organized using
Balanced Box-Decomposition (BBD) trees [2], which
divide the dimension space and distribute the examples
efficiently to save time when computing the nearest
neighbors.
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(a) Splitting. (b) Shrinking.

FIGURE 3. Examples of (a) multiple iterations of splitting and
(b) shrinking, with the dashed lines being the splitting operations and the
inner box highlighted.

In a BBD tree, each node is associated with a region in
the domain space. Each region is either an outer rect-
angular box or the set theoretic difference between an
outer rectangular box and an inner rectangular box [2].
The basic building of a BBD tree is done by a sequence
of two alternating operations (see Figure 3):

o Splitting: a region is bisected by a hyperplane
orthogonal to one of its longest sides. This opera-
tion highlights by its simplicity and speed of com-
putation.

o Shrinking: this partitions a region R, with a box
lying inside it, creating an inner subregion R;.
Although the shrinking process has some peculiar-
ities depending on whether the region R, already
has an inner box [1], [2], the essential procedure
finds the new inner box R; by recursively apply-
ing splitting operations on the subregion with the
larger number of samples. The process stops when
the subregion contains no more than 2/3 of the
samples of the initial region R,. The outer box of
this subregion is the inner partitioning box R; of the
shrinking operation.

As the domain space is being divided, each region is
associated with a node in the BBD tree. The root of tree
represents all the domain and, thus, all the data samples.
Each stage of the building algorithm determines how to
subdivide the current region, either through splitting or
shrinking, and then partitions the samples among the
corresponding child nodes of the tree [1], [2]. Finally,
nearest neighbors of a given sample are found travers-
ing the tree and looking for the closest nodes to that
containing the query sample as indicated in [2].

2) Missing values are not assumed when calculating the
nearest neighbors. To create the estimated distribution
¢!, each feature value ¢;; of each example §; in the
original feature ¢; is iteratively assumed to be missing
and a new value (plf’ j is estimated using KNNT (see Step
1 in Algorithm 1). To estimate ¢; j, KNNI computes the
k-nearest neighbors of §; using all the features except
@i, since its value ¢; ; is considered unknown. Under
such consideration, the distribution of each feature ¢;
is conditioned to the rest of the features, since all the
features except ¢; are used when computing the nearest
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TABLE 3. Comparison of computational complexity of KSUFs in its three
steps and corresponding subparts dealing with standard and big data
-being n the number of examples, m the number of features and k the
number of nearest neighbors computed to estimate feature distributions.

neighbors of §; to estimate ¢; ;. This has the advan-
tage that the feature ¢; does not interfere computing
the nearest neighbors determining its estimated values
conforming ¢;. However, the k-nearest neighbors of a
given sample §; may be different depending on the fea-
ture value ¢; ; assumed to be missing. Thus, this process
requires m - n computations of the nearest neighbors in
the version of KSUF'S for standard data (being n the
number of examples and m the number of features).
The second modification of KSUF'S in Step 1 for big
data is that none of the feature values ¢;; of ¢; is
considered being missing when computing the nearest
neighbors of each example §;. In this case, the own
feature ¢; interferes calculating the nearest neighbors
determining its estimated values of ¢;, since all the
features are considered to compute these nearest neigh-
bors. This modification could affect the fact that the
distribution of each feature ¢; is conditioned only to the
rest of the features as in the version of KSUF'S for stan-
dard data. However, the computational cost of KSUFS
is improved since, in this case, the nearest neighbors
for an example §; are only needed to be computed
once.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY

The details of the computational complexity of KSUFS for
its three steps in the version to deal with standard data
(Section III) and after the adaptations for big data explained
in Section IV-A are shown in Table 3.

As it can be appreciated from Table 3, Steps 2 and 3 are
those involving a lower computational complexity in the
version of KSUFS to deal with standard data. In a dataset
containing n examples, Step 2 computes the Kolmogorov-
Smirnov statistic Dfz for each attribute ¢;/i = 1, ..., m. Since
the computation of D;'l requires a complexity of O(n - logn),
the overall complexity of this step is O(m - n - logn). Step
3 focuses on ordering the Di, values (implying a complexity
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O(m - logm) using the Quicksort algorithm) and selecting
the top first features, which is O(1). This results in an total
complexity for Step 3 of O(m - log m).

On the other hand, Step 1 of KSUFS presented in
Section III is that implying the highest computational cost.
This step aims at creating the estimated distribution of values
for each feature in the dataset. In order to perform this task
and compute each estimated value in such distributions, the
k-Nearest Neighbor (KNN) algorithm is employed within
KNNI. KNN has a complexity of k - O(m - n). Since each
attribute value of each example in the dataset is considered
to be independently estimated by computing its k-nearest
neighbors, KNN is applied m-n times. Finally, the computation
of each of the m - n estimated values requires calculating
an average value from the k-nearest neighbors, that is, O(k),
implying an additional cost of m - n - O(k). Thus, the overall
computational complexity of Step 1 is:

m-n-k-Om-n)+m-n-0k)=0m>-n?
+0(m - n) = O(m* - n?) )

The overall computational complexity of KSUFS consid-
ering its three steps is, therefore, determined by Step 1, i.e.
its complexity is O(m? - n*). The two adaptations of KSUF'S
to deal with big data detailed in Section IV-A imply a series
of improvements in the computational complexity of Step 1:

1) Approximate computation of nearest neighbors. The
usage of ANN over k-NN requires of creating the Bal-
anced Box-Decomposition structure. This structure is
built in O(m - n - log n). Then, in order to compute the
k-nearest neighbors of a given example, the computa-
tion cost required is k - O(m - logn). The reader may
consult the work of Aryaetal. [2] for a detailed analysis
of the computational complexity of ANN.

2) Missing values are not assumed when calculating the
nearest neighbors. Since nearest neighbors are com-
puted once for each example in the dataset, the com-
plexity associated to compute the k-nearest neighbors
using ANN for all the examples is n - k - O(m - log n).

Finally, the computation of each estimated value requires
to add a cost of m - n- O(k), which comes from computing the
average value of the k-nearest neighbors of the m - n feature
values in the dataset. Therefore, the computational cost of
Step 1 considering the changes described in Section IV-A is:

Om-n-logn)+n-k-O@m-logn)+m-n-0k)=2
-O(m-n-logn)+ O(m-n) = O@m-n-logn)
3

The computational complexity of Step 1 is, thus, improved
from O(m?-n?) in the version of KSUF'S for standard datasets,
to O(m - n - log n) in the version of KSUF'S for big data. This
computational-optimized version removes one of the term m
in the expression O(m? - n?) and changes another term n by
log n, which obviously implies a lower computational cost
and faster running times when working with large amounts
of features.
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TABLE 4. Description of the real-world datasets.

Standard datasets

690 6 2 552 71 8
365 19 2 768 8 2
1055 41 2 462 8 2
106 9 6 210 7 3
345 6 2 2584 11 2
540 18 2 208 60 2
1000 7 2 569 30 2
214 9 6 178 13 3
270 6 2 683 9 2
20000 16 26 4898 11 7
72 7129 2 400 1024 40
200 10000 2 100 10304 10
1993 4862 2 1943 3289 2
174 9182 11 100 10000 10
111 11340 3 102 5966 2
1440 1024 20 1427 4322 2
50 4434 4 187 19993 2
203 3312 5 171 5748 4
96 4026 9 9298 256 10
2600 500 2 165 1024 15

V. EXPERIMENTAL FRAMEWORK

This section presents the details of the experimental frame-
work of this research. Section V-A describes the real-world
datasets used in the experimentation. Then, Section V-B
explains the methodology for the analysis of the results.

A. REAL-WORLD DATASETS

The experimentation carried out considers 20 standard
real-world datasets and 20 high-dimensional big data prob-
lems taken from the UCI repository! [9]. The standard
datasets chosen cover a wide range of cardinalities regarding
to the number of examples (from 106 up to 20000), features
(from 6 up to 77) and classes (from 2 up to 26). The big
data problems selected are characterized by having more
than 250 features. They are also different with respect to the
number of examples (from 50 up to 9298), features (from
256 up to 19993) and classes (from 2 up to 40).

Table 4 shows a description of all these 40 datasets, along
with the number of examples (#exa), features (#fea) and
classes (#cla). Note that, even though the datasets employed
are supervised problems, class labels are only used to validate
the performance of the unsupervised feature selection meth-
ods —although the number of classes will be, in fact, used by
the cluster-aware methods studied in this research.

B. METHODOLOGY OF ANALYSIS

The unsupervised feature selection methods shown in Table 1
and KSUF'S are compared in an experimental study. Because
of the nature of all the feature selection methods studied,
which rank the variables in the dataset according to a score
value to make the final feature subset selection, it is necessary
to fix a parameter for the methods indicating the number of
features that are desired to be selected in the experiments.
In our analysis, 6 different number of features, which will

1 http://archive.ics.uci.edu/ml/
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be referred as control points, are chosen for each dataset to
analyze the effectiveness of each one of the feature selection
methods: these range from 15% to 90% of the total amount
of features in each dataset, by increments of 15%.

Even though the class labels in the datasets are not used
by the feature selection methods, these are employed to
estimate their performance using standard external criteria
of quality [22]. Thus, the accuracy (ACC) metric, which is
computed as the percentage of observations that are correctly
assigned by a clustering method to their corresponding true
class labels, is used to evaluate the performance of each
method.

As it is derived from the previous definition of accuracy,
clustering results are need to compute it by comparing the real
class label with the experimental cluster label of each exam-
ple in a dataset. In order to be able to use this performance
criterion, it is necessary to apply a clustering method once
the feature selection is performed over the data. Following
other related works found in the literature [17], [46], the well-
known k-means [41] clustering algorithm is used to cluster
each dataset with those features given by feature selection
techniques. This is an state-of-the-art reference clustering
algorithm which has proven to provide good results in a wide
variety of problem domains [41]. Finally, before the com-
putation of the performance metrics, the Kuhn-Munkres [21]
algorithm is used to assign each cluster label to the equivalent
label from the dataset.

For each dataset, 20 runs of k-means are executed and their
performance results are averaged to get stable results. The
analysis of results is divided into two different parts, each one
of them considering data of different dimensionality:

1) Study of unsupervised feature selection with stan-
dard datasets (Section VI). The 20 standard datasets
in Table 4 are used with all the feature selection meth-
ods of Table 1 and our proposal designed to deal with
standard datasets (see Section III), which considers the
exact computation of the k-nearest neighbors.

2) Study of unsupervised feature selection with big data
(Section VII). The 20 big data problems will be used
with all the feature selection methods and the version
of KSUF'S for big data (see Section I'V).

In the two aforementioned scenarios, the performance of
KSUFS is studied considering three different comparisons:

1) Comparison versus not applying feature selection. This
comparison aims at analyzing if the use of feature
selection methods poses an advantage regarding to not
preprocessing (denoted as None in the following).

2) Comparison with non-cluster-aware methods. This
comparison is established between KSUFS and other
unsupervised feature selection methods that neither use
the number of clusters in the data. These include the
methods LSFS, MVFS, SPEC and SPFS.

3) Comparison with cluster-aware methods. KSUFS is
also compared to other methods that need the number
of clusters as a user parameter (MCFS, NDF'S, RUFS
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and UDF'S). The main objective of this comparison is to
check if KSUF'S offers competitive results against these
methods without knowing the amount of clusters.

Any number of clusters may be given to cluster-aware
methods, but their performance is usually higher when the
real amount is provided [37]. However, although in many sit-
uations this number of clusters in unknown, the real number
of clusters is used in the experiments of this study with these
methods to ensure that they provide competitive results.

The differences between KSUF' S and the non-cluster-aware
and cluster-aware methods is separately studied motivated by
the different nature of both groups. Due to the large amount
of results derived from the experimentation —i.e. more than
44000 performance results considering 9 feature selection
methods, 40 datasets, 6 control points, the results of None
and 20 runs of k-means per data— for the sake of brevity
only averaged results for the 20 standard and 20 big data
problems for each feature selection method and control point
are reported. Full results can be found in the web-page of
this research. Additionally, the number of datasets in which
each method obtains the best result is shown. Please, note that
our conclusions are based on the proper statistical analysis,
which considers all the results. The following statistical tests
are used to analyze the results obtained:

o Wilcoxon’s test [40]. Wilcoxon’s test is applied to study
the differences between KSUFS and not using prepro-
cessing (None). The p-values (pw;;) associated with the
comparison of the results of the two methods involved
over all the datasets will be obtained. They represent
the lowest level of significance of a hypothesis that
results in a rejection and allow one to know whether
two algorithms are significantly different and the degree
of their difference. In this research a difference will be
considered as significant if the p-value obtained is lower
than 0.1. Additionally, the sums of ranks in favor of
KSUFS (R™1) and in favor of None (R™) are shown.

o Aligned Friedman test [32] and Finner procedure [12].
Regarding the comparison between KSUFS and the
other feature selection methods, non-cluster-aware and
cluster-aware, the Aligned Friedman test [32] will be
used. This test will be used to compute the set of ranks
that represent the effectiveness associated with each
algorithm and the p-value (psr) of significance of the
differences found. In addition, the adjusted p-value pr;,
with the Finner procedure [12] will be computed.

Note that the above statistical tests are not applied to the
samples/features of each individual dataset shown in Table 4,
but to the final performance results obtained with k-means for
the 20 standard datasets or the 20 big data problems. Thus,
in each comparison carried out, the corresponding statistical
test considers the 20 performance results of the different
techniques involved in that comparison.

The aforementioned results, including performances and
statistical tests, will be shown in tables of numeric results,
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TABLE 5. Accuracy results of kSUFs versus not applying feature selection
(None) with standard datasets.

| 6038 6231 6160 6061 6054 5966 | 6381 |59.53

| 1 14 10 10 9 KT O
1210 1580 1120 955 905 1075 | 1780 | «x
800 520 780 945 995 1025 | 120 | «x

538E-01 4.84E-02 4.81E-01 9.68E-01 8.41E-01 9.11E-01 | 2.67E-04 | X

which let us represent such information organized properly,
being interpretable enough for the analysis of results.

VI. ANALYSIS OF RESULTS WITH STANDARD DATA

This section focuses on analyzing the performance of the
methods with standard datasets. First, Section VI-A considers
the application of KSUFS against not preprocessing. Then,
Section VI-B shows the comparison of KSUFS with other
non-cluster-aware methods, whereas Section VI-C analyzes
the results for cluster-aware methods.

A. COMPARISON OF USING FEATURE SELECTION AND
NOT PREPROCESSING WITH STANDARD DATASETS

Table 5 shows, for each control point established (15-90%),
the accuracy of KSUF' S versus not applying any feature selec-
tion (None). Note that the results of None are equivalent
to select 100% of the features. The column denoted with
Best considers, for each dataset, the best result obtained
among the 6 control points. Table 5 also shows the number of
datasets on which KSUFS obtains better results than None
(row bestyp) and the results of Wilcoxon’s test —the sums
of ranks for KSUFS (R™), for None (R™) and the p-values
(pwir) associated to the comparison of KSUF S versus None at
each control point. The best results at each control point and
those significant differences detected with Wilcoxon’s tests
are highlighted in boldface.

Table 5 shows that the accuracy results of KSUFS always
outperforms at each control point to not applying any prepro-
cessing to the datasets. Furthermore, the number of datasets
in which KSUFS obtains the best result (besty) is always
higher for our method at most of the control points —it is
only worse than None at the control point 75% and it is
tied at the control points 15%, 45% and 60%. The results
of Wilcoxon’s tests show that KSUFS always obtains more
ranks than None (except at the control point 75%) and the
associated p-values show that these differences are significant
only at the control point 30%. However, when considering
the results for the control point with the best performance for
each dataset (column Best), these clearly show the benefits
of feature selection in unsupervised problems, since KSUFS
obtains a higher performance than None in almost all the
datasets and the differences found are significant, as shown
the low p-value obtained (2.67E-04).

These results show the benefits of applying unsupervised
feature selection methods with respect to not preprocessing.
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TABLE 6. Accuracy results of xsurs against non-cluster-aware feature
selection methods with standard datasets.

60.38 62.31 61.60 60.61 60.54 59.66
57.96 59.75 59.79 60.36 60.29 59.69
57.58 59.17 59.28 59.40 59.57 59.57
55.28 56.60 56.05 55.52 57.52 58.66
55.19 58.81 55.97 56.20 59.15 59.54

Y, = Y-}
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33.53 32.65 34.13 36.23 42.23 46.70
50.48 48.10  44.30 37.98 43.80 45.03
52.80 53.55 47.73 46.05 45.93 48.93
58.23 62.68 60.98 69.85 67.35 58.33
57.48 55.53 65.38 62.40 53.20 53.53
1.84E-03 1.88E-03 1.94E-03 2.06E-03 2.18E-03 2.06E-03

X X X X X 8.55E-01
6.47E-02 9.22E-02 2.67E-01 8.49E-01 8.64E-01 X
4.72E-02 3.02E-02 1.80E-01 3.60E-01 7.87E-01 7.73E-01
2.81E-02 4.25E-03 6.84E-03 9.88E-04 2.45E-02 4.71E-01
2.81E-02 2.51E-02 2.63E-03 8.64E-03 4.10E-01 5.83E-01

As it is derived from the above analysis of results, KSUF'S
particularly out-stands over None at the control point 30%,
in which Wilcoxon’s p-values show significant differences
with respect to not preprocessing. The results of the approach
Best should be also remarked, which are very superior to
those of None. This approach obtains the best results because
it combines the best result for each dataset considering those
obtained among all the control points. These results are in
favor of Best for almost all the datasets (18 out of 20). This
fact implies that, for almost all the datasets studied, there
exists a percentage of features to be selected, which may vary
from one dataset to another, providing a superior performance
than not preprocessing and, therefore, feature selection is an
useful tool in data analysis processes.

B. COMPARISON WITH NON-CLUSTER-AWARE METHODS
USING STANDARD DATASETS

This section analyzes the differences among KSUF'S and the
rest of the non-cluster-aware methods considered (LSF'S,
MVFE'S, SPEC and SPFS). Table 6 shows the accuracy of these
techniques. The number of datasets in which each method
obtains the best result is also shown (rows bestyg). The results
of the Aligned Friedman [32] statistical test are depicted in
the rows Ranks (which represents the sum of ranks in favor
of each method) and the row par, which represents the p-
value associated. The best algorithm according to the Aligned
Friedman test, that is, that with the lowest sum of ranks,
is chosen as the control algorithm and compared with the
rest of the methods using the Finner [12] post hoc procedure,
providing the p-value associated to each comparison (pgi,)-
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Analyzing the results in Table 6, one can observe that the
accuracy of KSUF'S is better than that of the other non-cluster-
aware methods, except at the maximum control point 90% in
which LSFS gets the best accuracy. The second best method
is LSFS, followed by MVFS. Finally, the SPEC and SPFS
techniques, with varying results depending on the control
point, are found. Regarding to the number of datasets with
best result, KSUF'S is the best in 4 out of the 6 control points,
those with the lowest and the highest percentages of features,
although it is competitive at the intermediate control points
with the best results of the other methods.

The statistical analysis using the Aligned Friedman test
provides similar conclusions to the aforementioned ones,
being KSUF'S the best method for each control point (except
at the control point 90%). The very low p-values par indi-
cate that post-hoc statistical tests can be safely applied to
check the significance of the differences found. The post hoc
procedure of Finner shows that the differences found among
the algorithms are significant in favor of KSUF'S up to the
control point 30%. From this point onwards, the differences
detected are only significant with SPEC (up to the control
point 75%) and with SPFS (up to the control point 60%)
—in the rest of control points and comparisons significant
statistical differences are not found.

The above results show the good performance of KSUF'S
with respect to the rest of non-aware-cluster methods, which
are in their same conditions regarding to the knowledge of
the number of clusters in the datasets. The good working of
KSUFS is especially remarkable in the first control points
(up to the control point 30-45%). The differences between
KSUF'S and some of the other models are smaller from these
percentages onwards. This behavior of the feature selection
methods could be the expected one dealing with standard
datasets. When higher percentages of features are selected,
the performance of the different methods is progressively
getting close, until all of them reach the same results when
100% of the features are considered. Due to the lower amount
of variables in standard data, once a considerable percentage
of them have been selected by feature selection methods, i.e.
at the intermediate-high control points, it is very likely that
most of these techniques share the same features as selected,
being their performance more similar. Thus, the most impor-
tant decisions of feature selection methods on which features
to choose dealing with standard data are when determining
the quality and order of the first variables. For the afore-
mentioned reasons, those feature selection methods able to
out-stand when working with low-medium percentages of
features selected in standard data, such as it is the case of
KSUFS, are preferable since they show a better behavior
selecting the first most influential features.

C. COMPARISON WITH CLUSTER-AWARE METHODS
USING STANDARD DATASETS

Table 7 shows the results of comparing KSUFS against the
cluster-aware methods, which receive as one of their param-
eters the exact number of classes in each problem.
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TABLE 7. Accuracy results of KSUFs against cluster-aware feature
selection methods with standard datasets.

60.38 62.31 61.60 60.61 60.54 59.66
57.17 59.93 59.69 58.94 60.45 59.67
57.12 59.73 59.97 59.82 59.93 59.83
56.25 58.19 58.17 59.27 60.66 58.74
56.36 56.75 57.73 58.36 60.13 61.12
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32.70 32.08  36.58 44.35 51.38 48.63
56.88 4830  46.53 50.75 46.88 56.55
51.58 48.83 47.43 47.98 53.20 45.40
55.98 58.08 59.03 52.23 45.88 62.35
55.38 65.23 62.95 57.20 55.18 39.58
1.86E-03 1.87E-03 1.99E-03 2.08E-03 2.21E-03 2.18E-03

X X X X 7.74E-01 4.07E-01
3.32E-02 8.95E-02 3.03E-01 6.29E-01 9.13E-01 1.24E-01
3.96E-02 8.95E-02 3.03E-01 6.93E-01 7.74E-01 5.25E-01
3.32E-02 9.17E-03 2.86E-02 6.29E-01 X 5.12E-02
3.32E-02 1.21E-03 1.61E-02 5.05E-01 7.74E-01 X

The accuracies rank as the three best methods to KSUF'S,
RUF'S and UDF'S. KSUFS is best technique up to 60% of fea-
tures, RUF S at the control point 75% and UDF'S at 90%. MCF S
and NDF'S provide similar performance results. Regarding the
number of datasets, KSUF'S clearly provides the best result
at the control point 15% (being the best in 9 out of the
20 datasets). For the rest of the control points, these results
are similarly distributed across all the methods —the result of
MCF'S at the control point 75% is also remarkable.

The Aligned Friedman tests shows that KSUF'S obtains the
best position up to the control point 60% of features selected
and it is far away from the other methods up to that level.
The control algorithm at the control point 75%, with a lower
sum of ranks, is RUFS, whereas UDF'S is the best at the
control point 90%. The low psr indicate that the Finner test
can be applied to estimate the significance of the differences
found. Thus, the pF;, values show that there are significant
differences in favor of KSUF'S up to 30% in all comparisons
with the other methods and at the control point 45% compared
to the RUF'S and UDF'S methods. At the control points 75%
and 90%, although KSUF'S is not the control method, none
of the control algorithms according to the sum of ranks of
the Aligned Friedman tests are able to obtain significant
differences against it.

The previous accuracy results show that KSUF S out-stands
over the rest of cluster-aware methods selecting features in
the first set of control points (up to the control point 30-45%),
as it occurs in the case of non-cluster-aware methods. From
these percentages of selected features, methods tend to obtain
similar performance results —there are even some algorithms
that obtain a better position than KSUFS according to the
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TABLE 8. Accuracy results of kSUFs versus not applying feature selection
(None) with big data problems.

| 5907 5949 6028 6051 60.06 6033 | 6185 |50.18

BRE 12 13 17 16 7| o | ox
1015 1055 1485 1715 1475 1740 | 1815 | X
885 845 615 185 425 360 8.5 X

7.78E-01 6.58E-01 1.10E-01 1.07E-03 3.42E-02 8.31E-03 | LI1E-04 | X

Aligned Friedman test. However, in these cases, no statistical
differences are found against KSUF'S. Therefore, if KSUF'S
properly works when lower amounts of attributes are chosen
to be selected and it obtains equivalent results to the rest
of the feature selection methods when higher amounts of
features are going to be selected, its general usage can be
recommended for feature selection with standard data.

VII. ANALYSIS OF RESULTS WITH BIG DATA

This section focuses on the analysis of the results of the
unsupervised feature selection methods and the version of
KSUFS designed to work with big data (Section IV). Sim-
ilar to the study with standard data, three comparisons
are considered in this section: comparison of KSUFS and
not preprocessing (Section VII-A), the non-cluster-aware
methods (Section VII-B) and the cluster-aware methods
(Section VII-C).

A. COMPARISON OF USING FEATURE SELECTION AND
NOT PREPROCESSING WITH BIG DATA

Table 8 shows the performance of KSUF' S versus not applying
feature selection (None). The results of KSUF'S that outper-
form those of None are highlighted in bold.

The accuracy results with big data show the good behavior
of KSUF'S versus None: they are better at each control point
than those of None with the exception of the control point
15%, which is slightly worse. The number of datasets in
which each method obtains the best results is always higher
for KSUF'S at all the control points. These results particularly
out-stand for the intermediate-high control points (60-90%),
in which KSUF'S is the best in almost all the big data problems
considered (16-17 datasets out of 20).

The results of Wilcoxon’s tests show that KSUFS obtains
more ranks than None at each control point, being better
as the control point increases. The associated p-values show
that the differences found also follows this criterion and
they are more representative as the control point increases —
these are significant when more than 60% of the features are
selected.

Considering the results of each dataset in the control
point with the best performance for KSUFS (column Best),
the results clearly shows the better performance of applying
feature selection, since it obtains a higher performance than
None in almost all the datasets (18 out of 20) and the differ-
ences found are significant (pw;; =1.11E-04).
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These results show the suitability of KSUFS working with
big data that, in addition to have less computational complex-
ity than the version to treat standard data, it also allows to
improve the performance of not preprocessing in the datasets
considered. The analysis of results shows that KSUFS
out-stands with respect to None in the intermediate-high
control points (upper 60% of features selected), in which
Wilcoxon’s p-values shows significant differences. This con-
clusion is the opposite to that obtained for standard data,
in which KSUFS particularly out-stands for low-intermediate
control points. This fact may be explained because consid-
ering data with less features, a lower amount of them are
necessary to check the differences among KSUF S and None,
because these variables are likely to contain a larger amount
of structural information of the dataset. However, when con-
sidering hundreds or thousands of features, since they are
likely to contain a lower amount of structural information to
describe the data, a larger amount of variables are necessary to
show an advantage of KSUF'S in performance. Finally, similar
to the case of standard datasets, the results of the approach
Best considering big data are also superior to those of None.
Thus, the existence of a percentage of features to be selected
providing a better performance for feature selection than not
applying preprocessing is shown.

B. COMPARISON WITH NON-CLUSTER-AWARE METHODS
USING BIG DATA PROBLEMS

The accuracy of the non-cluster-aware techniques for big
data at each control point are shown in Table 9. This table
presents the performance of each feature selection method
(rows ACC), the number of datasets in which each method
obtains the best result (rows bestyg), the results of the Aligned
Friedman test (rows Ranks and p4r) and the p-values associ-
ated to each comparison with the Finner test (rows prip).

Analyzing these results, the performance of KSUFS is
better than that of the other non-cluster-aware methods at
each control point. Two clear tendencies are appreciated for
the behavior of the rest of the methods. Below the control
point 45%, LSFS is the second best method, whereas SPEC
and SPF'S usually obtain lower performances. MVFE' S obtains
intermediate performances compared to the rest of tech-
niques. However, once the control point 45% is passed, SPFS
starts to change its behavior, being the second best method
for the highest control points. Regarding to the number of
datasets with best results, KSUF'S is the best at all the control
points, obtaining the largest amounts of datasets with the best
results at intermediate-high control points (upper 45%).

The statistical analysis using the Aligned Friedman test
provides similar conclusions, being KSUF'S the best method
highly differentiated from the rest. The low p-values par
indicate that the Finner test can be applied to check the signif-
icance of these differences. Thus, the Finner test shows that
the differences found among these algorithms are significant
in favor of KSUF' S against all the non-cluster aware methods
considered. Some exceptions are observed at the lowest con-
trol points: no statistical differences are found with respect
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TABLE 9. Accuracy results of xsurs against non-cluster-aware feature
selection methods with big data.

59.07 59.49 60.28 60.51 60.06 60.33
57.82 58.36 58.83 59.07 57.84 58.83
57.11 57.86 57.77 58.52 57.66 58.77
52.26 55.49 56.57 57.85 57.80 58.30
54.91 56.30 58.40 59.75 59.18 58.17

8 9 12 9 10 13
6 3 2 3 3 5
4 5 4 4 4 5
1 1 4 4 4 4
3 4 3 5 5 5

31.38 32.00  30.75 2948  33.18 23.48
43.18 44.93 47.35 57.45 58.03 53.05
47.20 49.73 55.48 57.88 58.10 51.78
70.90 66.55 68.40 61.75 60.18 64.78
59.85 59.30 50.53 45.95 43.03 59.43
2.06E-03 1.92E-03 2.04E-03 1.98E-03 2.09E-03 2.06E-03

X X X X X X
1.98E-01 1.59E-01 7.04E-02 3.92E-03 1.31E-02 1.69E-03
1.11E-01 7.05E-02 1.40E-02 3.92E-03 1.31E-02 2.04E-03
6.60E-05 6.63E-04 1.62E-04 1.74E-03 1.29E-02 2.70E-05
3.82E-03 5.84E-03 4.13E-02 7.25E-02 2.83E-01 1.78E-04

to LSFS and MVFS at 15% and the same occurs for LSFS
at 30%. The better behavior of SPF'S at the highest control
points is reflected by the fact that no statistical differences
are found in its comparison with KSUF'S at 75%.

The analysis of the previous results shows that KSUFS is
able to obtain the best result in many of the datasets and
control points with respect to the rest of non-aware-cluster
methods, especially when considering medium and high con-
trol points (those higher than a 45%). The good working of
KSUFS is especially remarkable in the last control points.
This fact is in accordance with those results of KSUF'S versus
None (Section VII-A). Contrary to the case of standard data,
when higher percentages of features are selected in big data,
there is still a large number of features to be selected in the last
control points that may influence in the performance results.
This fact also influences to find differences among feature
selection methods, since larger amounts of features may be
necessary and, thus, differences are more clearly appreciated
at intermediate-high control points.

C. COMPARISON WITH CLUSTER-AWARE METHODS
USING BIG DATA PROBLEMS

Table 10 shows the results of cluster-aware methods (MCF'S,
NDF'S, RUFS and UDFS) versus KSUFS with big data. The
performances show that the best method is KSUF S. MCF' S and
NDF'S usually share the second and third position, depending
on the control point, whereas RUF'S and UDFS are generally
in the last positions. These two methods (RUFS and UDF'S)
obtaining the worst results with big data are those usually
placed in second and third place with standard data, whereas
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TABLE 10. Accuracy results of xsuFs against cluster-aware feature
selection methods with big data.

59.07 59.49 60.28 60.51 60.06 60.33
58.49 57.36 58.44 57.81 58.00 57.85
57.02 58.35 57.56 58.19 58.08 58.06
57.21 57.29 57.58 58.03 57.38 58.51

54.55 55.83 57.09 58.11 57.72 57.63
7 6 10 11 14 14
5 2 4 4 7 3
6 7 4 3 2 5
6 8 4 3 3 5
3 2 3 2 5 4

36.93 28.73 27.00 28.80 26.95 24.13
43.28 57.80 50.83 60.13 59.28 59.83
54.10 48.55 57.20 5480  47.73 49.45
49.98 54.10 56.15 56.48 56.80 51.80
68.23 63.33 61.33 52.30 61.75 67.30
1.95E-03 1.88E-03 1.94E-03 1.86E-03 2.14E-03 2.10E-03

X X X X X X
4.89E-01 3.06E-03 9.41E-03 2.55E-03 8.52E-04 1.99E-04
1.19E-01 3.07E-02 1.99E-03 6.12E-03 2.35E-02 5.77E-03
2.01E-01 7.56E-03 1.99E-03 5.11E-03 1.52E-03 3.41E-03
2.58E-03 6.49E-04 7.32E-04 1.04E-02 5.95E-04 1.00E-05

the best methods with big data (MCF'S and NDF'S) are posi-
tioned in the worst positions with standard data.

Regarding the number of datasets, KSUFS provides the
best result at all the control points, with the exception of 30%
in which RUFS is the method with more datasets with the best
result. At the first control points (15-30%), the best results are
distributed among several methods (mainly KSUFS, RUFS
and NDF'S). However, from 45% onwards, KSUF'S is clearly
the method obtaining the best results in a larger number of
datasets (14 out of 20 at the control points 75-90%).

The Aligned Friedman tests shows that KSUF' S obtains the
best position at all the control points. The pr;, values show
that there are significant differences in favor of KSUFS at
all the comparisons performed, with the exceptions of MCF'S,
NDFS and RUFS at the control point 15%. This fact shows
again that KSUFS works better with big data when higher
amounts of features are selected.

From the aforementioned analysis of results, it can be
appreciated that the performance of KSUFS using the big
data problems studied are better than those of the other
cluster-aware feature selection methods. Thus, even though
in some isolated control points the results of KSUFS are
not statistically better than those of other feature selection
methods, it offers good performance results in most of the
cases, even though it does not know the number of clusters in
the datasets like the other cluster-aware methods.

VIII. LESSONS LEARNED
In this research a novel unsupervised feature selection method
based on non-parametric statistical tests, denoted as KSUF'S,
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has been proposed and a thorough empirical study has been
performed to check its behavior against other well-known and
representative unsupervised feature selection techniques con-
sidering both standard and big data. From the results shown
in the previous sections and their corresponding analysis,
several lessons can be learned:

1) On the utility of applying feature selection in
unsupervised problems. The performance results of
Tables 5 and 8 show that KSUFS is generally bet-
ter than not applying preprocessing for some of the
control points studied. Furthermore, these results also
show that for almost all the datasets studied, there is
at least one control point in which KSUF'S provides a
higher performance than not preprocessing. These facts
clearly reflect the benefits in terms of performance of
applying feature selection with respect to not prepro-
cessing, which are added to the obvious reduction of
memory requirements to store the dataset and the lower
processing time of data analysis algorithms used later.

2) On the connection between unsupervised feature
selection and data dimensionality. In data with lower
amounts of features, each of them is more likely to con-
tain a higher charge of structural information. On the
contrary, larger amount of features may imply that the
description of data conformations is distributed among
many of them. Thus, it may be relevant for feature
selection methods being exact selecting the first most
influential features in standard data, since each of them
may contain important information to describe the data,
whereas more features may be necessary to appreciate
the effect of feature selection with big data.

3) On the working of unsupervised feature selection
methods. In non-cluster-aware methods, LSFS and
MVF'S are usually followed by SPEC and SPF'S dealing
with standard data. However, with big data, LSF'S and
SPF'S are exchanged, outstanding SPF'S for the highest
control points. In cluster-aware methods with standard
data, RUF'S and UDFS are usually followed by MCFS
and NDF'S, but these two generally out-stand with big
data. Note how methods working better and worse with
standard data exchange positions when considering big
data. Therefore, these method seems to be particularly
adapted to deal with data of a specific dimensionality.

4) On the working of KSUFS with standard and
big data. Tables 5 and 8 show that KSUF'S outper-
forms not preprocessing with significant differences
for the control point 30% with standard data and for
the intermediate-high control points 60-90% with big
data. On the other hand, the results in Tables 6-7
and Tables 9-10 show that KSUFS is generally bet-
ter than the other non-cluster-aware and cluster-aware
methods. With standard datasets, KSUFS particularly
out-stands in the first control points (up to 30-45%),
whereas with big data KSUF'S out-stands when con-
sidering medium-high control points (higher than
30-45%). Thus, difference from the other methods
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studied, KSUF'S is able to highlight with both types of
data dimensionality.

IX. CONCLUDING REMARKS

In this research, we have proposed a novel unsupervised
feature selection method, known as KSUFS, based on the
computation of estimated feature distributions and the usage
of statistical tests to select the most representative features
in an unsupervised dataset. An adaptation for KSUFS to
work with big data has been also proposed. Our method has
been compared to other well-known non-cluster-aware and
cluster-aware unsupervised feature selection techniques in an
experimental study that considers both standard and big data.

The results obtained show the benefits of applying our
proposal with respect to not preprocessing. Furthermore,
KSUFS 1is able to outperform the rest of non-cluster-
aware and cluster-aware methods considered. With standard
datasets, KSUF'S works particularly well when feature selec-
tion involves low and intermediate percentages of variables
to be chosen. Therefore, since KSUFS performs well when
low-intermediate amounts of attributes are chosen to be
selected and it obtains equivalent results to the rest of the
methods when the highest amounts of features are selected,
its usage can be recommended for feature selection with
standard data. With big data, in which feature selection may
show a higher impact, the behavior of KSUFS particularly
highlights. It is usually better than other non-cluster-aware
and cluster-aware methods at all the control points. However,
difference from standard datasets, the advantages in favor of
KSUF'S are more noticeable when larger amounts of features
are selected.

In future works we plan to study the influence of the k
value when creating the estimated features in KSUF'S, check
the inclusion of other statistical tests and develop new unsu-
pervised feature selection methods by incorporating evolu-
tionary algorithms to select the most influential variables and
automatically determine the optimal number features to be
chosen.
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