1 In vitro acaricidal activity of several natural products against ibex-

2 derived Sarcoptes scabiei.

4	Jesús M. Pérez ^{a,*} .	Emiliano N.	Jesser ^b , Jorge	O. Werdin ^b	, Colin Berry	² . Mohamed A.
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	7

- 5 Gebely ^{c,d}, Raquel Crespo-Ginés ^{a,e}, José E. Granados ^f, Antonio J. López-Montoya ^g
- ^a Departamento de Biología Animal, Vegetal y Ecología, Universidad de Jaén, Campus
- 7 Las Lagunillas, s.n., E-23071, Jaén, Spain
- ^b Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San
- 9 Juan 670, Bahía Blanca, B 8000CPB, Argentina
- ^c School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
- ¹¹ ^d Department of Parasitology and Animal Diseases, Veterinary Research Institute,
- 12 National Research Centre, Dokki, Giza 12622, Egypt
- ^e Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM),
- 14 Ronda de Toledo 12, E-13071, Ciudad Real, Spain
- ¹⁵ ^f Centro Administrativo Parque Nacional y Parque Natural Sierra Nevada, Carretera
- 16 Antigua Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
- ^g Department of Statistics and Operational Research, Jaén University, Campus Las
- 18 Lagunillas, s.n., E-23071, Jaén, Spain
- 19 * author for correspondence: jperez@ujaen.es
- 20
- 21 ORCID codes

25	
24	9896; AJLM: 0000-0002-0453-7978; JMP: 0000-0001-9159-0365
23	MAG: 0000-0003-3127-2781; RC-G: 0000-0001-7901-7670; JEG: 0000-0002-9787-
22	ENJ: 0000-0002-4526-6449; JOW: 0000-0001-5152-3782; CB: 0000-0002-9943-548X;

26 ABSTRACT

27	In this study we analysed the effect of the temperature, diverse strains of Bacillus

28 thuringiensis, Lysinibacillus sphaericus and nanoformulations with essential plant oils

29 (EONP) on the survival of *Sarcoptes scabiei* mites derived from naturally-infested

30 Iberian ibex (*Capra pyrenaica*). In general, mites maintained at 12°C survived more

than those maintained at 35°C (40.7 hr and 31.2 hr, respectively). Mites with no

treatment survived 27.6 h on average. Mites treated with *B. thuringiensis* serovar.

33 *konkukian* and geranium EONP showed significant reduction in their survival. Despite

the fact that these agents seem to be promising candidates for controlling sarcoptic

mange in the field, further research is still needed to get stable, efficient and eco-

36 friendly acaricides.

37

38 Keywords: *Bacillus thuringiensis*, essential plant oils, nanoparticles, *Sarcoptes scabiei*,
39 survival

40

41 **1. Introduction**

Sarcoptes scabiei is an astigmatid mite causing a dermal disease, namely
sarcoptic mange, in domestic and wild mammalian hosts, including man, worldwide,
reaching high morbidity and mortality rates (Bornstein et al., 2001; Pence &

45	Ueckermann, 2002; Arlian & Morgan, 2017). Transmission of this mite between
46	susceptible hosts may be direct, indirect, or a combination of both (Browne et al., 2022).
47	Control of this disease in wild populations is a challenging task. Although
48	multiple doses of subcutaneous ivermectin (200-400 μ g/kg) is the treatment most
49	commonly used (Rowe et al., 2019), its implementation with free-ranging animals is
50	very difficult from a logistic viewpoint. Moreover, this approach may have undesirable
51	impact on non-target organisms and favours the development of resistance by the mite
52	(Walton et al., 2000), among other "secondary" effects (Moroni et al., 2020).
53	The development of resistance of S. scabiei against acaricidal compounds is
54	increasing (Currie et al., 2004; Mounsey et al., 2010; Andriantsoanirina et al., 2014).
55	Therefore, it is crucial to develop new drugs for treating scabies (Walton et al., 2004).
56	Bacillus thuringiensis is a Gram-positive bacterium which produces one or several
57	crystalline proteins referred to as δ -endotoxins (Hill & Pinnock, 1998). After being
58	ingested by susceptible arthropods, the <i>B. thuringiensis</i> δ -endotoxin crystals are
59	dissolved in the midgut with a consequent production of activated toxic polypeptides
60	commonly known as δ -endotoxin crystal proteins (Cry proteins) (Höfte & Whiteley,
61	1989), which may belong to a number of distinct structural families (Crickmore et al.,
62	2021). These toxins seem to disrupt the selective permeability of the cell membrane,
63	which ultimately causes the arthropod death from starvation and/or septicemia
64	(Knowles & Dow, 1993). Like <i>B. thuringiensis, Lysinibacillus sphaericus</i> is another
65	gram positive bacterium able to produce a range of insecticidal proteins and which
66	exerts its effects in a similar manner (Berry, 2012).
67	Essential oils (EO) are mixtures of diverse volatile compounds synthesized by
68	plants to protect themselves and are considered as new ecofriendly insecticides, since

69 they may show good biological activity against a number of insect pests, low toxicity to

humans and rapid degradation in the environment (Jesser et al., 2020a). However, EO
show some disadvantages such as instability, volatility, and low solubility in water,
which may limit their applications (Jesser et al., 2020b).

73 In recent years, the integration of nanotechnology in the field of biopesticides has garnered significant attention. An innovative method, the nanoformulation of EO, 74 75 has emerged as a solution to shield active compounds from environmental conditions 76 and prevent the gradual loss of EO (Kumar et al., 2020). Several materials, including proteins, synthetic emulsifiers, polysaccharides (such as starch and chitosan), and 77 78 polyethers (like polyethylene glycol and poly-ɛ-caprolactone), have been explored for 79 their effectiveness in nanoformulating EO or its constituents (Athanassiou et al., 2018; De Luca, et al., 2021). Polyethylene glycol 6000 (PEG 6000) has been extensively 80 investigated over the past few decades for medical, food industry, and pest control 81 applications. This material showed a broad range of solubility, lacks antigenicity and 82 immunotoxicity, and is easily excreted from living organisms without toxicity concerns. 83 84 PEG 6000 polymeric nanoparticles loaded with EO (EONP) are considered as one of the most important emerging trends in insect pest control (Campolo et al. 2018; Werdin 85 et al. 2014; 2017). 86

Nanoformulations of *B. thuringiensis* Cry proteins and EO contribute to increase
the activity period of such active compounds in the environment and allow reductions in
the amount to be used (De Oliveira et al., 2014; De Oliveira et al., 2021).

90 The aim of this study was to test the potential acaricide effect of several
91 treatments with *B. thuringiensis* and *Lysinibacillus sphaericus* Cry proteins and
92 essential oils nanoparticles formulations.

94 **2. Materials and methods**

95 *Preparation of* Bacillus thuringiensis *and* Lysinibacillus sphaericus

Bacillus thuringiensis and Lysinibacillus sphaericus spore/crystal preparations 96 were produced using a method previously described (Jones et al., 2008), by growing the 97 strains in Embrapa medium (Monnerat et al., 2007) until approximately 95% 98 sporulation (judged by phase contrast microscopy) after which spores and crystals were 99 harvested by centrifugation and washed in distilled water before lyophilisation and 100 101 storage at 4°C. Bacterial strains used were obtained as follows: Lysinibacillus sphaericus strain IAB59, Bacillus thuringiensis serovar. higo strain T44001, Bacillus 102 103 thuringiensis serovar. israelensis strain 4Q7, Bacillus thuringiensis serovar. kurstaki 104 strain HD1 from the Bacillus Genetic Stock Center: Bacillus thuringiensis GP 138, a 105 kind gift from Prof Alejandra Bravo, UNAM, Mexico; and Bacillus thuringiensis 106 serovar. konkukian strain 97-27 and Lysinibacillus sphaericus strain 2362 from the 107 collection of the Pasteur institute, France. 108 Preparation of nanoparticles

The EONP was synthesized using the melt-dispersion method, a procedure 109 110 previously outlined by Werdin González et al. (2014). Initially, 20g of PEG 6000 were 111 heated to 65°C on a hotplate stirrer. Subsequently, 2g of geranium (Geranium 112 maculatum) or peppermint (Mentha piperita) EO were added to the molten PEG 6000. Geranium and peppermint oils were purchased from Swiss-Just (Switzerland). PEG 113 6000 was acquired from Merck, Germany. Concurrently, the mixture of PEG 6000 and 114 115 EO was stirred with a D-500 Handheld Homogenizer (D-lab instrument limited) for 15 116 minutes at 15,000 rpm. The EONP spontaneously formed when the mixture was cooled to -4°C. After 45 minutes at that temperature, the resulting mixture was thoroughly 117

- ground in a refrigerated mortar box at 0° C, and the product was sifted through a
- stainless-steel sieve with a mesh size of 230. The EONP were stored in airtight
- 120 polyethylene pouches at $27 \pm 2^{\circ}$ C within desiccators containing calcium chloride for
- seven days before further experimentation.
- 122 EO and EOPN composition
- According to Yeguerman et al. (2022), the chemical composition of both pre-
- 124 and post-formulation essential oils (EOs) was analysed using gas chromatography-mass
- spectrometry (GC-MS) with an Agilent 7890B gas chromatograph coupled to an
- 126 Agilent 5977A mass spectrometer. A HP-5MS capillary column (30 m × 0.25 mm i.d. ×
- 127 0.25 μm film thickness) was utilized, with helium serving as the carrier gas at a flow
- 128 rate of 1.0 mL min-1. The oven temperature was initially set at 50 °C for 2 minutes,
- then ramped at 5 °C min-1 to 200 °C and held for 15 minutes. Injection block
- temperature was maintained at 280 °C, and 1 μL aliquots of samples were injected.
- 131 Ionization energy of 70 eV was used for mass spectrometry, scanning from 35 to 550
- 132 m/z. Retention indices (RI) of components were determined using a series of n-alkanes
- 133 (C8-C20). Further identification was accomplished using NIST 2.0 database. Relative
- 134 percentages of individual components were calculated by averaging gas
- 135 chromatography with flame ionization detection (GC-FID) peak areas obtained on a
- 136 DB-5 column under similar conditions. Key components like α -pinene, limonene,
- 137 menthol, pulegone, and geraniol were confirmed by comparing with their standard
- 138 samples (Sigma-Aldrich) via co-injection. Essential oils were extracted from polymeric
- 139 nanoparticles (EOPN) by dissolving 0.5 g of each sample in 5 mL of distilled water,
- 140 heating at 65 °C for 30 minutes with magnetic stirring. Upon melting of PEG 6000, 4
- 141 mL of petroleum ether was added, and the mixture was stirred for 2 hours. Afterward,
- 142 the ether phase containing the extracted EOs was collected, diluted to a concentration of

143 0.001 mg mL-1 (0.1% v/v), and subjected to GC-MS and GC analysis for component 144 identification.

145 EONP Size Measurement

A Malvern Nano ZS90 instrument was used to determine the size of the EONP. 146 147 The Polydispersity Index (PDI) was calculated as the square of the standard deviation divided by the square of the mean size, serving as an indicator of the homogeneity or 148 149 heterogeneity in the size distribution of the particles, following the method described by 150 Pascoli et al. (2018). Each sample, consisting of 0.2 g of EONP, was suspended in 10 mL of distilled water for 30 minutes. Subsequently, the dispersion was filtered using 151 Whatman N° 1 filter paper and allowed to equilibrate for 2 hours. Data were statistically 152 153 compared using one-way analysis of variance (ANOVA), followed by the LSD test (N 154 = 4).

155 EONP Encapsulation Efficiency

156 As outlined by Werdin González et al. (2014) the encapsulation efficiency was assessed using spectrophotometric methods. For this, 0.1 g of EONP were individually 157 dissolved in 2 mL of an absolute ethanol-water solution (75:25). The resulting mixture 158 159 was then centrifuged at 9000 rpm for 10 minutes. The supernatant was carefully 160 collected and subjected to analysis via UV-vis spectrophotometry, employing a 161 Shimadzu UV-1203 photometer with the Kinetics-2-Program Pack (P/N 206-62029-10; 162 Shimadzu Corp., Kyoto, Japan) at a wavelength of 290 nm. This process was repeated for four samples, and the quantity of EO was determined by referring to an appropriate 163 calibration curve for free EO in ethanol. 164

165 Encapsulation efficiency (EE) was determined from:

EE (%) =
$$\frac{\text{weight of loaded EO}}{\text{weight of initial EO}} \times 100$$

167 One way analysis of variance (ANOVA) and LSD were used in order to compare 168 the data (N = 4). The mean physical and chemical characteristics of the EONP 169 formulations are included in tables 2 and 3, respectively.

170 *Mite collection*

171 Ibex (*Capra pyrenaica*) with severe mange in the consolidation and chronic 172 stages (Espinosa et al., 2017), with lesions affecting \geq 50% of the host skin surface were 173 selected as mite donors (Fig. 1a). The ibex were chemically immobilized with a mixture 174 of ketamine (3 mg/kg) and xylazine (3 mg/kg) (Casas-Díaz et al., 2011), and then 175 euthanized with T-61 Intervet® (combination of embutramide and mebezonium iodide) 176 at a dose of 1ml/1.5 kg.

For mite extraction we painted glass Petri dishes black (14 cm diameter), except 177 in a central circle at the bottom (5.5. cm diameter). Then, a 25 W lamp was placed 7-8 178 179 cm below the central circle and several skin pieces from the donor ibex were placed around this circle (Figure 1b). In this way, a temperature gradient was created allowing 180 the mites to concentrate in the central area of the dish (Andrews, 1981) after overnight 181 182 exposure to the lamp (Fig. 1c). Once the mites left the host skin, the skin pieces were 183 removed (Fig. 1d). The aim of this method was to obtain live mites without 184 manipulating them, therefore, avoiding mechanical damage to mites which could affect 185 their survival.

The first assay (including mite extraction and following counts) was carried out at 12°C and 70% relative humidity (RH). During the remaining assays the plates were maintained in an incubator at 35°C and 45% RH. The number of control plates and treatments of each assay are included in Table 1. After an initial count (including both live and dead mites), live mites (those showing some kind of movement) were countedtwice a day until the death of all the mites.

192	The acaricidal activity of geranium EONP and peppermint EONP was evaluated
193	at 35 μ g cm ⁻² and 70 μ g cm ⁻² , respectively. The decision to use the concentration of
194	peppermint for this nanoparticle was based on research by Jesser et al. (2020a), which
195	indicated that the bioactivity of geranium EONP was higher than that of peppermint
196	EONP against Plodia interpunctella (Lepidoptera: Pyralidae). The nanoparticles were
197	dispersed in the central circle at the bottom base of glass Petri dish.
198	Statistical analysis
199	Survival of mites subjected to the different treatments was analysed using the
200	non-parametric Kaplan-Meier estimate via survival curves (Kaplan and Meier, 1958).
201	The Log-rank test (Kleinbaum and Klein, 2012) with Bonferroni correction allowed for
202	multiple pairwise comparisons between the survival curves of each treatment in order to
203	determine significant differences between them.
204	All statistical analyses were performed using R version 4.3.1 (R Core Team,
205	2023). We used the survfit() function to conduct the Kaplan-Meier estimations with the
206	survival package (Therneau, 2023). The survival curves were drawn using ggsurvplot()
207	function of the survminer package (Kassambara et al., 2020). The log-rank test was
208	carried out using survdiff() function of the survival package. Multiple pairwise
209	comparisons were conducted with the pairwise_survdiff() function of the survminer
210	package. The statistical significance level set in all statistical analyses was 0.05.
211	

3. Results and discussion

- 213 First, the chemical analysis of EOPN revealed that β -citronellol and geraniol
- 214 were the predominant compounds in geranium EOPN (Table 3). Moreover, components
- such as linalool, menthone, citronellyl formate, and geranyl formate, which, in the pre-
- 216 formulation sample, were between 8 and 11%, had a significant reduction after
- 217 formulation (<1.7%). Additionally, minor components present in the original sample
- 218 (<3%) were undetectable after formulation. In contrast, menthol emerged as the primary
- compound in peppermint oil and its nanoparticles, as indicated in Table 3. After
- 220 formulation, a slight decrease was noted in the concentrations of isomenthone, p-
- 221 menthen-3-one, and menthol acetate. Furthermore, minor components present in the
- initial sample (<6%) were not detected after formulation.

Mites in control plates survived, on average, 27.6 h. Mean and median survival times are shown in Table 3. We must take into account that this time measurement started with mite extraction, but, on average, ibex death to laboratory mite extraction took around 10.9 ± 6.1 h. As expected, average survival of mites maintained at low temperature (12 °C) reached the highest values: 40.7 h, compared with that at 35°C: 31.2 hr.

Kaplan-Meier survival analysis is depicted in figures 2 and 3. The overall 229 230 survival function can be seen in Fig. 2a. Log-rank test (Fig. 2b) showed statistically significant differences in the mean survival time for most of the treatments (χ^2 = 231 232 38309, p < 0.0001). In particular, B. thuringiensis serovar. konkukian 97-27 and geranium EONP reduced mite survival significantly. Conversely, mites treated with B. 233 234 thuringiensis GP 138, B. thuringiensis higo T44001, Ls IAB59 and peppermint EONP 235 survived more than those maintained in the control plates (Table 4; Fig. 3). The remaining treatments did not show significant differences in mite survival compared 236 237 with controls.

Treatment

- Bt GP 138 (0.072 g)
- Bt higo T44001 (0.033 g)
- Bt israelensis 4Q2 (0.0234 g)
- Bt konkukian 97–27 (0.0156 g)
- Bt kurstaki HD1 (0.044 g)
- CONTROL
- Geranium EONP (35 μg/cm2)
- Ls 2362 (0.0106 g)
- ---- Ls IAB59 (0.0023 g)
- Peppermint EONP (70 μg/cm2)

Table 1

1 -							
2 3		Assay 1 (19 Nov 2018)	Assay 2 (19 Apr 2021)	Assay 3 (28 Apr 2021)	Assay 4 (12 May 2021)	Assay 5 (19 May 2021)	Assay 6 (21 Jun 2021)
4 -							
5	CONTROL	1	2	2	2	2	2
6	Ls 2362 (0.0106 g)	1					
7	Ls IAB59 (0.0023 g)				4		
8	Bt israelensis 4Q2 (0.0234 g)	1					
9	Bt higo T44001 (0.033 g)	1	2				
10	Bt kurstaki HD1 (0.044 g)		2				
11	Bt GP 138 (0.072 g)			2			
12	Bt konkukian 97-27 (0.0156 g)			2			
13	Geranium EONP (35 µg/cm ²)			2		2	
14	Peppermint EONP (70 µg/cm ²)						3
15							

	AS	PDI	EE (%)
GERANIUM EOPN	259 ± 12 a	0.228 ± 0.007 a	90.5 ± 2.32 a
PEPPERMINT EOPN	381 ± 29 b	0.532 ± 0.013 b	72.25 ± 1.6 b

^a Different letters within the same row indicate statistical differences (LSD; p < 0.05).

Treatment	n	mean	se	median
Bt GP 138 (0.072 g)	8829	48.8	0.1339	47
Bt higo T44001 (0.033 g)	1147	28.8	0.2713	26.2
Bt israelensis 4Q2 (0.0234 g)	488	26.4	0.1388	26.2
Bt konkukian 97-27 (0.0156 g)	2001	14.8	0.0690	13.8
Bt kurstaki HD1 (0.044 g)	91	34.8	0.8064	29
CONTROL	11211	27.6	0.1077	26.2
Ls 2362 (0.0106 g)	2564	26.3	0.0504	26.2
Ls IAB59 (0.0023 g)	278	33	0.4005	29.8
Geranium EONP (35 µg/cm2)	8603	18.1	0.0826	13.8
Peppermint EONP (70 µg/cm2)	3744	40.5	0.1285	47

Table 3

RT	COMPOUNDS	GERAN	IUM EO	PEPPERMINT EO		
(MIN)		Preformulation	Postformulation	Preformulation	Postformulation	
7.16	α- pinene	-	-	1.92	-	
8.36	β - pinene	-	-	1.85	-	
9.87	Limonene	-	-	3.36	-	
9.93	1-8 cineol	-	-	5.88	-	
13.06	Linalool	12.67	9.95	-	-	
13.55	Isomenthone	-	-	16.90	6.95	
13.85	Menthone	11.14	1.38	-	-	
14.10	Menthol	-	-	52.51	81.37	
14.35	p-menten-3-ona	-	-	10.43	7.57	
16.14	β-citronellol	26.14	38.12	-	-	
16.48	Geraniol	23.19	47.89	-	-	
16.98	Citronellyl Formate	10.37	1.71	-	-	
17.70	Geranyl Formate	7.94	0.95	-	-	
18.04	Menthol acetate	-	-	7.15	4.11	
20.85	Geranyl Acetate	2.01	-	-	-	
20.86	Caryophyllene	2.58	-	-	-	
23.70	Neryl Acetate	2.98	-	-	-	

4. Discussion

240	The B. thuringiensis serovar. konkukian and geranium EONP formulation gave
241	promising results in our assays, and could be effective in reducing mite survival time.
242	Different encapsulation strategies (for bacteria, Cry proteins and single spores) aimed to
243	increase ingestion of <i>B. thuringiensis</i> Cry proteins, need to be tested. Moreover, host
244	contact time and the effect of the temperature and UV radiation on the persistence of $\frac{B}{B}$.
245	thuringiensis in the field must be addressed before performing in vivo assays (de
246	Oliveira et al., 2021). The MXPA patent 02008705 (Ramírez, 2004) is a
247	nanoencapsulation technique of a mixture of B. thuringiensis Cry proteins and spores
248	with high residual activity. On the other hand, Ureña-Saborío et al. (2017) performed
249	chitosan/TPP nanoparticles containing bacterial metabolic infiltrates of the strain B.
250	thuringiensis SER-217, and achieved their efficient release in an aqueous medium,
251	together with increasing protection and stability of such compounds.
252	B. thuringiensis strain GP 138, which has previously shown activity against the
253	tick Rhipicephalus microplus (Fernández-Ruvalcaba et al., 2010), did not show any
254	reduction in Sarcoptes scabiei survival in this study. B. thuringiensis konkukian strain
255	97-27, however, did show activity. This is a genome-sequenced strain of B .
256	thuringiensis (Han et al., 2006) that, in contrast to other B. thuringiensis strains tested,
257	is not recorded as producing known delta endotoxins or invertebrate-active toxins
258	produced during the vegetative stage of growth. The genome does encode toxins with
259	reported roles in mammalian food poisoning such as CytK, and the tripartite toxins Hbl
260	and Nhe (in common with several strains of <i>B. thuringiensis</i>). The activity of these
261	proteins against invertebrates has not been reported and it is possible that these or other,
262	as yet uncharacterised, proteins or small molecule toxins are responsible for its activity

against *S. scabiei* in this study. This possibility warrants further investigation to identifythe agent responsible for the activity observed.

This study used geranium and peppermint essential oils (EO) to formulate PEG-265 6000 nanoparticles, due to their bioactivity against various tick species (An and Tak, 266 2022; Awad et al., 2022; Klafke et al., 2021; Voronova et al., 2022). In the case of 267 268 geranium oil, citronellol and geraniol are the important constituents that responsible for the acaricidal activity in Rhipicephalus annulatus (Ibrahium, et al., 2022). Similarly, the 269 bioactivity of peppermint EO, attributed to menthol and isomenthone, has been 270 observed against Tetranychus cinnabarinus and Tetranychus urticae (Abd-Allah et al., 271 272 2022). Enan (2001) suggested that the toxicity of constituents of essential oils against 273 insect pests might be related to the octopaminergic nervous system of insects, while de Olivera et al. (1997) proposed that certain monoterpenes inhibit cytochrome P450-274 dependent monooxygenases. Moreover, Ryan and Byrne (1988) identified a connection 275 276 between the toxicity of monoterpenes, their capacity to inhibit acetylcholinesterase (AChE), and their effectiveness against insects or ticks. 277 278 Regarding the bioactivity of nanoparticles, it was observed that geranium EONP 279 exhibited greater efficacy compared to peppermint EOPN. This result could be 280 attributed to the physicochemical characteristics of the nanoparticles. Peppermint EONP had size of 390 nm and were polydisperse these values are higher than geranium EONP. 281 282 It is well-known that nanoparticle size plays a crucial role in the penetration of bioactive compounds through the cuticle. Hashem et al. (2018) demonstrated that EO 283 284 nanoformulations enhance cuticle penetration, allowing products to penetrate insects 285 more easily. Furthermore, the nanoscale size of EONP could extend the exposure time 286 of bioactive compounds to insect pests, covering larger areas of the insect cuticle. 287 Additionally, nanoparticles can alter the delivery pattern of EO active ingredients,

thereby enhancing their efficacy (Iavicoli et al., 2017). Moreover, the encapsulation
efficiency (EE) of peppermint EONP was 72%, which is lower than that of geranium
EONP. It will probably be necessary to use a higher amount of peppermint EONP for an
effective pest management program.

292 In our study, temperature and relative humidity (RH) were maintained during the 293 different assays. When off the host, Sarcoptes mites are unable to use water vapor 294 actively from unsaturated ambient air (Arlian and Veselica, 1979) and, therefore, their survival time is strongly affected by ambient RH (Arlian et al., 1984). Mellanby et al. 295 296 (1942) found that S. scabiei (obtained from human scrapings) did not move when 297 temperature was below 15-16°C, but did so rapidly above 20°C; and heating at 50°C for 298 10 minutes was enough to exterminate the mite. At cooler temperatures (e.g., 4 °C) 299 black bear-derived mites survived over a week (Niedringhaus et al., 2019). Moreover, at 300 low temperatures, survival of S. scabiei increases with relative humidity (Davis & Moon, 1987; Arlian et al., 1989). Thus, environmental conditions (mainly temperature 301 302 and relative humidity) will strongly affect mite survival when off the host and, therefore, its ability to be transmitted indirectly, to spread, to establish and to persist 303 304 (Castro et al., 2016; Montecino-Latorre et al., 2019; Loredo et al., 2020; Browne et al., 305 2021).

306

307 **5. Conclusion**

In conclusion, the acaricidal activity of NP formulations of *B. thuringiensis konkukian* strain 97-27, of other *B. thuringiensis* strains and of other plant essential oils at different concentrations deserve to be studied in more detail, before considering *in vivo* assays. In a complementary way, the effect of both temperature and RH on the

312	survival of ibex-derived mites (when off the host) need to be analysed in depth by
313	maintaining mites in vitro at a wider range of such conditions.
314	
315	Acknowledgements
316	Authors are indebted to Antonio Rodríguez, José López and Isidro Puga for their
317	help in obtaining biological samples for our study.
318	
319	Funding
320	Research activities of JEG and JMP are partially supported by the Junta de
321	Andalucía Government (RNM-118 group of the PAIDI), and by the Jaén University
322	(Action 1b). The AUIP (Asociación Universitaria Iberoamericana de Postgrado)
323	scholarship facilitated EJ's mobility between the National University of the South
324	(Argentina) and the Jaén University (Spain) to conduct this research.
325	CRediT authorship contribution statement
326	All the coauthors conceived the work; MAG and CB prepared Bacillus
327	thuringiensis and Lysinibacillus sphaericus crystal proteins; EJ and JOW prepared
328	nanoparticles containing essential oils, JEG searched and captured donor scabietic ibex;
329	EJ, RC and JMP obtained live mites and performed the assays; EJ, JMP and AJLM
330	analysed the data obtained; all the authors contributed to writing this manuscript.
331	Declaration of Competing Interest

332 The authors declare that the research was conducted in the absence of any333 commercial or financial relationships.

335	Original data are available upon reasonable request.
336	Ethics approval
337	Procedures carried out in this work were approved by the regional government
338	(Junta de Andalucía): Project 15/12/2018/163, and also by the Ethics Committee of the
339	Jaén University.
340	
341	References
342	Abd-Allah, G.E., Habashy, M.G., Shalaby, M.M., 2022. Efficacy of mint derivatives,
343	Mentha spicata L., against two species of Tetranychus spp. (Acari:
344	Tetranychidae) and the predator, <i>Neoseiulus</i> sp. Egypt. Acad. J. Biol. Sci. A
345	Entomol., 15, 63–70. DOI: 10.21608/EAJBSA.2022.224349.
346	An, H., Tak, J.H., 2022. Miticidal and repellent activity of thirty essential oils and their
347	synergistic interaction with vanillin against Tetranychus urticae Koch (Acari:
348	Tetranychidae). Ind. Crops Prod., 182, 114872.
349	https://doi.org/10.1016/j.indcrop.2022.114872.
350	Andrews, J.R., 1981. The extraction of Sarcoptes scabiei from mammalian hosts. J.
351	Parasitol. 67, 753–754.
352	Andriantsoanirina, V., Izri, A., Botterel, F., Foulet, F., Chosidow, O., Durand, R., 2014.
353	Molecular survey of knockdown resistance to pyrethroids in human scabies mites.
354	Clin. Microbiol. Infect. 20, O139-O141. https://doi.org/10.1111/1469-

355 0691.12334.

Data Availability

- Arlian, L.G., Morgan, M.S., 2017. A review of *Sarcoptes scabiei*: past, present and
 future. Parasites Vectors 10, 297. DOI: 10.1186/s13071-017-2234-1.
- Arlian, L.G., Runyan, R.A., Achar, S., Estes, S.A., 1984. Survival and infestivity of
- 359 Sarcoptes scabiei var. canis and var. hominis. J. Am. Acad. Dermatol. 11, 210-
- 360 215. https://doi.org/10.1016/S0190-9622(84)70151-4.
- Arlian, L.G., Veselica, M.M., 1979. Water balance in insects and mites. Comp.
- Biochem. Physiol. 64, 191-200. https://doi.org/10.1016/0300-9629(79)90650-9.
- 363 Arlian, L.G., Vyszenski-Moher, D.L., Pole, M.J., 1989. Survival of adults and
- development stages of *Sarcoptes scabiei* var. *canis* when off the host. Exp. Appl.
- 365 Acarol. 6, 181-187. DOI:10.1007/BF01193978.
- 366 Athanassiou, C.G., Kavallieratos, N.G., Benelli, G., Losic, D., Usha Rani. P., Desneux.
- 367 N., 2018. Nanoparticles for pest control: Current status and future perspectives. J.

368 Pest Sci. 91, 1–15. https://doi.org/10.1007/s10340-017-0898-0.

- 369 Awad, S.E., Salah, K.B.H., Jghef, M.M., Alkhaibari, A.M., Shami, A.A., Alghamdi,
- 370 R.A., Awad, A.E., 2022. Chemical characterization of clove, basil and peppermint
- 371 essential oils; evaluating their toxicity on the development stages of two-spotted
- 372 spider mites grown on cucumber leaves. Life 12, 1751.
- 373 https://doi.org/10.3390/life12111751.
- Berry, C., 2012. The bacterium, *Lysinibacillus sphaericus*, as an insect pathogen. J.
- 375 Invert. Pathol. 109, 1-10. https://doi.org/10.1016/j.jip.2011.11.008.
- Bornstein, S., Mörner, T., Samuel, W.M., 2001. Sarcopes scabiei and sarcoptic mange.
- In: Samuel WM, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals,
- ³⁷⁸ 2nd edn. Iowa State University Press, Ames, pp 107-119.

379	Browne, E., Diressen, M.M., Ross, R., Roach, M., Carver, S., 2021. Environmental
380	suitability of bare-nosed wombat burrows for Sarcoptes scabiei. Int. J. Parasitol.
381	Parasites Wildl. 16, 37-47. https://doi.org/10.1016/j.ijppaw.2021.08.003.
382	Campolo, O., Cherif, A., Ricupero, M., Siscaro, G., Grissa-Lebdi, K., Russo, A., Cucci,
383	L.M., Di Pietro, P., Satriano, C., Desneux, N., Biondi, A., Zappalà, L., Palmeri,
384	V., 2017. Citrus peel essential oil nanoformulations to control the tomato borer,
385	Tuta absoluta: Chemical properties and biological activity. Sci. Rep. 7, 13036.
386	https://doi.org/10.1038/s41598-017-13413-0.
387	Casas-Díaz, E., Marco, I., López-Olvera, J.R., Mentaberre, G., Lavín, S., 2011.
388	Comparison of xylazine-ketamine and medetomidine-ketamine anaesthesia in the
389	Iberian ibex (Capra pyrenaica). Eur. J. Wildl. Res. 57, 887-893. DOI:
390	https://doi.org/10.1007/s10344-011-0500-7.
391	Castro, I., de la Fuente, A., Fandos, P., Cano-Manuel, F.J., Granados, J.E., Soriguer,
392	R.C., Alasaad, S., Pérez, J.M., 2017. On the population biology of Sarcoptes
393	scabiei infesting Iberian ibex (Capra pyrenaica). Int. J. Acarol. 42, 7-11.
394	http://dx.doi.org/10.1080/01647954.2015.1109710.
395	Crickmore, N., Berry, C., Panneerselvam, S., Mishra, R., Connor, T.R., Bonning, B.C.,
396	2021. A structure-based nomenclature for Bacillus thuringiensis and other
397	bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 186, 107438.
398	https://doi.org/10.1016/j.jip.2020.107438.
399	Currie, B.J., Harumal, P., McKinnon, M., Walton, S.F., 2004. First documentation of in
400	vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin. Infect. Dis. 39,

401 e8-e12. https://doi.org/10.1086/421776.

- 402 Davis, D.P., Moon, R.D., 1987. Survival of *Sarcoptes scabiei* (De Geer) stored in three
 403 media at three temperatures. J. Parasitol. 73, 661-662.
- 404 De Luca, I., Pedram, P., Moeini, A., Cerruti, P., Peluso, G., Di Salle, A., Germann, N.,
- 405 2021. Nanotechnology development for formulating essential oils in wound
- 406 dressing materials to promote the wound-healing process: a review. Appl. Sci. 11,
- 407 1713. https://doi.org/10.3390/app11041713.
- 408 De Oliveira, A.C., Ribeiro-Pinto, L.F., Paumgartten, F.J., 1997. In vitro inhibition of

409 CYP2B1 monooxygenase by β -myrcene and other monoterpenoid compounds.

410 Toxicol. Lett., 92, 39-46. DOI: 10.1016/s0378-4274(97)00034-9.

- de Oliveira, J.L., Campos, E.V.R., Bakshi, M., Abhilash, P.C., Fraceto, L.F., 2014.
- 412 Application of nanotechnology for the encapsulation of botanical insecticides for
- sustainable agriculture: prospects and promises. Biotechnol. Adv. 32, 1550–1561.

414 https://doi.org/10.1016/j.biotechadv.2014.10.010.

- de Oliveira, J.L., Fernandes Fraceto, L., Bravo, A., Polanczyk, R.A., 2021.
- 416 Encapsulation strategies for *Bacillus thuringiensis*: from now to the future. J.
- 417 Agric. Food Chem. 69, 4564–4577. https://doi.org/10.1021/acs.jafc.0c07118.
- 418 Enan, E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action.

419 Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 130, 325-337.

- 420 https://doi.org/10.1016/S1532-0456(01)00255-1.
- 421 Espinosa, J., Ráez-Bravo, A., López-Olvera, J.R., Pérez, J.M., Lavín, S.,
- 422 Tvarijonaviciute, A., Cano-Manuel, F.J., Fandos, P., Soriguer, R.C., Granados,
- 423 J.E., Romero, D., Velarde, R., 2017. Histopathology, microbiology and the
- 424 inflammatory process associated with *Sarcoptes scabiei* infection in the Iberian

425	ibex, Capra pyrenaica. Parasites Vectors 10, 596. DOI: 10.1186/s13071-017-
426	2542-5.

427	Fernández-Ruvalcaba, M., Peña-Chora, G., Romo-Martínez, A., Hernández-Velázquez,
428	V., Bravo de la Parra, A., Pérez De La Rosa, D., 2010. Evaluation of Bacillus
429	thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus,
430	resistant to chemical pesticides. J. Insect Sci. 10, 186. DOI:
431	10.1673/031.010.14146.
432	Han, C.S., Xie, G., Challacombe, J.F., Altherr, M.R., Bhotika, S.S., Bruce, D.,
433	Campbell, C.S., Campbell, M.L., Chen, J., Chertkov, O., Cleland, C.,
434	Dimitrijevic, M., Doggett, N.A., Fawcett, J.J., Glavina, T., Goodwin, L.A., Hill,
435	K.K., Hitchcock, P., Jackson, P.J., Keim, P., Kewalramani, A.R., Longmire, J.,
436	Malfatti, L.S., McMurry, K., Meincke, L.J., Misra, M., Moseman, B.L., Mundt,
437	M., Munk, C., Okinaka, R.T., Parson-Quintana, B., Reilly, L.P., Richardson, P.,
438	Robinson, D.L., Rubin, E., Saunders, E., Tapia, R., Tesmer, J.G., Thayer, N.,
439	Thompson, L.S., Tice, H., Ticknor, L.O., Wills, P.L., Brettin, T.S., Gilna, P.,
440	2006. Pathogenomic sequence analysis of Bacillus cereus and Bacillus
441	thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 188, 3382-
442	3390. DOI:10.1128/JB.188.9.3382–3390.2006.
443	Hashem, A.S., Awadalla, S.S., Zayed, G.M., Maggi, F., Benelli, G., 2018. Pimpinella
444	anisum essential oil nanoemulsions against Tribolium castaneum - insecticidal
445	activity and mode of action. Environ. Sci. Pollut. Res. 25, 18802–18812.

446 https://doi.org/10.1007/s11356-018-2068-1.

- Hill, C.A., Pinnock, D.E., 1998. Histopathological effects of *Bacillus thuringiensis* on
 the alimentary canal of the sheep louse, *Bovicola ovis*. J. Invert. Pathol. 72, 9-20.
 DOI: 10.1006/jipa.1998.4761.
- 450 Höfte, H., Whiteley, H.R., 1989. Insecticidal crystal proteins of *Bacillus thuringiensis*.
- 451 Microbiol. Rev. 53, 242–255. DOI: 10.1128/mr.53.2.242-255.1989.
- Hu, J., Wang, X., Xiao, Z., Bi, W., 2015. Effect of chitosan nanoparticles loaded with
 cinnamon essential oil on the quality of chilled pork. LWT Food Sci. Technol.
 63, 519–526. https://doi.org/10.1016/j.lwt.2015.03.049.
- 455 Iavicoli, I., Leso, V., Beezhold, D.H., Shvedova, A.A., 2017. Nanotechnology in
- 456 agriculture: Opportunities, toxicological implications, and occupational risks.
- 457 Toxicol. Appl. Pharmacol. 329, 96–111.
- 458 https://doi.org/10.1016/j.taap.2017.05.025.
- 459 Ibrahium, S.M., Aboelhadid, S.M., Wahba, A.A., Farghali, A.A., Miller, R.J., Abdel-
- 460 Baki, A.A.S., Al-Quraishy, S., 2022. Preparation of geranium oil formulations
- 461 effective for control of phenotypic resistant cattle tick *Rhipicephalus annulatus*.
- 462 Sci. Rep., 12, 11693. https://doi.org/10.1038/s41598-022-14661-5.
- 463 Jesser, E., Yeguerman, C., Stefanazzi, N., Gomez, R., Murray, A.P., Ferrero, A.A.,
- 464 Werdin-Gonzalez, J.O., 2020a. Ecofriendly approach for the control of a common
- insect pest in the food industry, combining polymeric nanoparticles and post-
- 466 application temperature. J. Agric. Food Chem. 68, 5951-5958.
- 467 https://dx.doi.org/10.1021/acs.jafc.9b06604.
- 468 Jesser, E., Yeguerman, C., Gili, V., Santillan, G., Murray, A.P., Domini, C., Werdin-
- 469 González, J.O., 2020b. Optimization and characterization of essential oil

- 470 nanoemulsions using ultrasound for new ecofriendly insecticides. ACS Sustain.
- 471 Chem. Eng. 8, 7981-7992. https://dx.doi.org/10.1021/acssuschemeng.0c02224.
- 472 Jones, G.W., Wirth, M.C., Monnerat, R.G., Berry, C., 2008. The Cry48Aa-Cry49Aa
- binary toxin from *Bacillus sphaericus* exhibits highly restricted target specificity.
- 474 Environ. Microbiol. 10, 2418-2424. https://doi.org/10.1111/j.1462-
- 475 2920.2008.01667.x.
- 476 Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observations.
- 477 J. Am. Stat. Assoc. 53, 457-481. https://doi.org/10.2307/2281868.
- 478 Kassambara, A., Kosinski, M., Biecek, P., 2020. Survminer: drawing survival curves
- 479 using 'ggplot2'. R package version 0.4.8. https://CRAN.R-
- 480 project.org/package=survminer.
- 481 Klafke, G.M., Thomas, D.B., Miller, R.J., de León, A.A.P., 2021. Efficacy of a water-
- 482 based botanical acaricide formulation applied in portable spray box against the
- 483 southern cattle tick, *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae),
- 484 infesting cattle. Ticks Tick Borne Dis., 12, 101721. DOI:
- 485 **10.1016/j.ttbdis.2021.101721.**
- 486 Kleinbaum, D.G., Klein, M., 2012. Kaplan-Meier survival curves and the Log-Rank

487 test. In: Survival Analysis. Statistics for Biology and Health. Springer, New York.

- 488 https://doi.org/10.1007/978-1-4419-6646-9_2.
- 489 Knowles, B.H., Dow, J.A.T., 1993. The crystal d-endotoxins of *Bacillus thuringiensis*:
- 490 Models for their mechanism of action in the insect gut. BioEssays 15, 469–476.
- 491 DOI: 10.1016/j.toxicon.2006.11.022.

492	Kumar, A., Singh, P., Gupta, V., Prakash, B., 2020. Application of nanotechnology to
493	boost the functional and preservative properties of essential oils. In: Prakash B
494	(ed) Functional and preservative properties of phytochemicals. Academic Press,
495	London, pp 241-267. https://doi.org/10.1016/B978-0-12-818593-3.00008-7.
496	Loredo, A.I., Rudd, J.L., Foley, J.E., Clifford, D.L., Cypher, B.L., 2020. Climatic
497	suitability of San Joaquin kit fox (Vulpes macrotis mutica) dens for sarcoptic
498	mange (Sarcoptes scabiei) transmission. J. Wildl. Dis. 56, 126-133. DOI:
499	10.7589/2019-02-035.
500	Mellanby, K., Johnson, C.G., Bartley, W.C., Brown, P., 1942. Experiments on the
501	survival and behaviour of the itch mite, Sarcoptes scabiei DeG. var. hominis.
502	Bull. Ent. Res. 33, 267-271. https://doi.org/10.1017/S0007485300026584.
503	Monnerat, R., Cardoso Batista, A., Telles de Medeiros, P., Soares Martins, É., Melatti,
504	V.M., Botelho Praça, L., Fiúza Dumas, V., Morinaga, C., Demo, C., Menezes
505	Gomes, A.C., Falcão, R., Brod Siqueira, C., Oliveira Silva-Werneck, J., Berry, C.,
506	2007. Screening of Brazilian Bacillus thuringiensis isolates active against
507	Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol.
508	Control 41, 291-295. https://doi.org/10.1016/j.biocontrol.2006.11.008.
509	Montecino-Latorre, D., Cypher, B.L., Rudd, J.L., Clifford, D.L., Mazet, J.A.K., Foley,
510	J.E., 2019. Assessing the role of dens in the spread, establishment and persistence
511	of sarcoptic mange in an endangered canid. Epidemics 27, 28-40.
512	https://doi.org/10.1016/j.epidem.2019.01.001.
513	Moroni, B., Valldeperes, M., Serrano, E., López-Olvera, J.R., Lavín, S., Rossi, L., 2020.
514	Comment on: "The treatment of sarcoptic mange in wildlife: a systematic review"
515	Parasites Vectors 13, 471. https://doi.org/10.1186/s13071-020-04347-0.

516	Mounsey, K.E., Pasay, C.J., Arlian, L.G., Morgan, M.S., Holt, D.C., Currie, B.J.,
517	Walton, S.F., McCarthy, J.S., 2010. Increased transcription of glutathione s-
518	transferases in acaricide exposed scabies mites. Parasites Vectors 3, 43.
519	https://doi.org/10.1186/1756-3305-3-43.
520	Niedringhaus, K.D., Brown, J.D., Ternent, M.A., Peltier, S.K., Yabsley, M.J., 2019.
521	Effects of temperature on the survival of Sarcoptes scabiei of black bear (Ursus
522	americanus) origin. Parasitol. Res. 118, 2767-2772.
523	https://doi.org/10.1007/s00436-019-06387-7.
524	Pascoli, M., Lopes-Oliveira, P.J., Fraceto, L.F., Seabra, A.B., Oliveira, H.C., 2018.
525	State of the art of polymeric nanoparticles as carrier systems with agricultural
526	applications: a minireview. Energ. Ecol. Environ. 3, 137–148.
527	https://doi.org/10.1007/s40974-018-0090-2.
528	Pence, D.B., Ueckermann, E., 2002. Sarcoptic mange in wildlife. Rev. Sci. Tech. Off.
529	Int. Epiz. 21, 385-398.
530	R Core Team, 2023. R: a language and environment for statistical computing. R
531	Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
532	Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of Bacillus
533	thuringiensis of the israelensis variety for extending the activity thereof on
534	mosquitoes larvae. MXPA Patent 02008705 A, Dec 6, 2004.
535	Rowe, M.L., Whiteley, P.L., Carver, S., 2019. The treatment of sarcoptic mange in
536	wildlife: a systematic review. Parasites Vectors 12, 99.
537	https://doi.org/10.1186/s13071-019-3340-z.

- 538 Ryan, M.F., Byrne, O., 1988. Plant-insect coevolution and inhibition of
- 539 acetylcholinesterase. J. Chem. Ecol., 14, 1965-1975.

540 https://doi.org/10.1007/BF01013489.

- 541 Therneau, T., 2023. A package for survival analysis in R. R package version 3.5-5,
- 542 https://CRAN.R-project.org/package=survival.
- 543 Ureña-Saborío, H., Madrigal-Carballo, S., Sandoval, J., Vega-Baudrit, J.R., Rodríguez-
- 544 Morales, A., 2017. Encapsulation of bacterial metabolic infiltrates isolated from
- 545 different *Bacillus* strains in chitosan nanoparticles as potential green chemistry-
- based biocontrol agents against *Radopholus similis*. J. Renew. Mater. 5, 290–299.
- 547 https://doi.org/10.7569/JRM.2017.634119.
- 548 Voronova, N., Horban, V., Bohatkina, V., 2022. The effectiveness of acaricidic drugs
- 549 based on herbal raw material. Ecol. Quest., 33, 55-71.

550 https://doi.org/10.12775/EQ.2022.003.

- 551 Walton, S.F., McKinnon, M., Pizzutto, S., Dougall, A., Williams, E., Currie, B.J., 2004.
- 552 Acaricidal activity of *Melaleuca alternifolia* (tea tree) oil. In vitro sensitivity of
- 553 *Sarcoptes scabiei* var *hominis* to terpinen-4-ol. Arch. Dermatol. 140, 563-566.
- 554 DOI: 10.1001/archderm.140.5.563.
- 555 Walton, S.F., Myerscough, M.R., Currie, B.J., 2000. Studies in vitro on the relative
- efficacy of current acaricides for *Sarcoptes scabiei* var. *hominis*. Trans. R. Soc.
 Trop. Med. Hyg. 94, 92-96. DOI: 10.1016/s0035-9203(00)90454-1.
- 558 Werdin-González, J.O., Jesser, E.N., Yeguerman, C.A., Ferrero, A.A., Fernández Band,
- 559 B., 2017. Polymer nanoparticles containing essential oils: New options for
- 560 mosquito control. Environ. Sci. Pollut. Res. 24, 17006–17015. DOI:
- 561 10.1007/s11356-017-9327-4.

562	Werdin-González, J.O., Gutiérrez, M.M., Ferrero, A.A., Fernández Band, B., 2014.
563	Essential oils nanoformulations for stored product pest control: Characterization
564	and biological properties. Chemosphere 100, 130-138.
565	https://doi.org/10.1016/j.chemosphere.2013.11.056.
566	Yeguerman, C.A., Urrutia, R.I., Jesser, E.N., Massiris, M., Delrieux, C.A., Murray,
567	A.P., Werdin-González, J.O., 2022. Essential oils loaded on polymeric

- 568 nanoparticles: bioefficacy against economic and medical insect pests and risk
- 569 evaluation on terrestrial and aquatic non-target organisms. Envirom. Sci. Pollution
- 570 Res., 29, 71412-71426. https://doi.org/10.1007/s11356-022-20848-0.

571 Tables

Table 1. Dates of assays for analyse mite survival and the treatments tested.

573 **Table 2**. Average Size (AS), in nanometers, polydispersity (PDI), and Encapsulation

574 Efficiency (EE) of geranium and peppermint EOPN, after 7 Days Post-formulation.

575 Figures represent mean value \pm standard error.

Table 3. Chemical analysis of pre / post-formulation of the oils from geranium and peppermint.

577 **Table 4**. Parameters estimated by treatment via Kaplan-Meier analysis. From left to right:

type of treatment, number of mites subjected to this treatment, mean survival time,
standard error of the mean and median survival time. Mean and median are measured in
hours; se: standard error.

581

582 Figure Captions

Figure 1. A: Skin of the scabietic donor ibex. **B:** Several ibex skin pieces were placed

584 into a painted glass Petri dish; note that the center of the plate remains transparent. C:

the light applied to the bottom of the plate generated a temperature gradient into the

plate. This gradient favoured mite migration from the skin to the centre of the plate. **D**:

587 protective wear was needed for skin and plates manipulation.

Figure 2. Kaplan-Meier survival curves. Left graph (A) shows the overall survival

589 curve without considering any treatments. Right graph (B) shows the survival curves by

treatment, the p-value of the log-rank test and the pairwise multiple comparisons with

591 Bonferroni correction. Significant differences were indicated by different lowercase

592 letters (p<0.05).

593 Figure 3. Kaplan-Meier survival curves separated for better visualization.

1 In vitro acaricidal activity of several natural products against ibex-

2 derived Sarcoptes scabiei.

4 Jesús M. Pérez ⁴ , Emiliano N. Jesser ⁶ , Jorge O. Werdin ⁶ , Colin Berry ⁶ , Mohai	imed A.	
---	---------	--

- 5 Gebely ^{c,d}, Raquel Crespo-Ginés ^{a,e}, José E. Granados ^f, Antonio J. López-Montoya ^g
- ^a Departamento de Biología Animal, Vegetal y Ecología, Universidad de Jaén, Campus
- 7 Las Lagunillas, s.n., E-23071, Jaén, Spain
- ^b Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San
- 9 Juan 670, Bahía Blanca, B 8000CPB, Argentina
- ^c School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
- ¹¹ ^d Department of Parasitology and Animal Diseases, Veterinary Research Institute,
- 12 National Research Centre, Dokki, Giza 12622, Egypt
- ^e Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM),
- 14 Ronda de Toledo 12, E-13071, Ciudad Real, Spain
- ¹⁵ ^f Centro Administrativo Parque Nacional y Parque Natural Sierra Nevada, Carretera
- 16 Antigua Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
- ^g Department of Statistics and Operational Research, Jaén University, Campus Las
- 18 Lagunillas, s.n., E-23071, Jaén, Spain
- 19 * author for correspondence: jperez@ujaen.es
- 20
- 21 ORCID codes

25	
24	9896; AJLM: 0000-0002-0453-7978; JMP: 0000-0001-9159-0365
23	MAG: 0000-0003-3127-2781; RC-G: 0000-0001-7901-7670; JEG: 0000-0002-9787-
22	ENJ: 0000-0002-4526-6449; JOW: 0000-0001-5152-3782; CB: 0000-0002-9943-548X;

26 ABSTRACT

27	In this study we analysed the effect of the temperature, diverse strains of Bacillus

28 thuringiensis, Lysinibacillus sphaericus and nanoformulations with essential plant oils

29 (EONP) on the survival of *Sarcoptes scabiei* mites derived from naturally-infested

30 Iberian ibex (*Capra pyrenaica*). In general, mites maintained at 12°C survived more

than those maintained at 35°C (40.7 hr and 31.2 hr, respectively). Mites with no

treatment survived 27.6 h on average. Mites treated with *B. thuringiensis* serovar.

33 *konkukian* and geranium EONP showed significant reduction in their survival. Despite

the fact that these agents seem to be promising candidates for controlling sarcoptic

mange in the field, further research is still needed to get stable, efficient and eco-

36 friendly acaricides.

37

38 Keywords: *Bacillus thuringiensis*, essential plant oils, nanoparticles, *Sarcoptes scabiei*,
39 survival

40

41 **1. Introduction**

Sarcoptes scabiei is an astigmatid mite causing a dermal disease, namely
sarcoptic mange, in domestic and wild mammalian hosts, including man, worldwide,
reaching high morbidity and mortality rates (Bornstein et al., 2001; Pence &

45	Ueckermann, 2002; Arlian & Morgan, 2017). Transmission of this mite between
46	susceptible hosts may be direct, indirect, or a combination of both (Browne et al., 2022).
47	Control of this disease in wild populations is a challenging task. Although
48	multiple doses of subcutaneous ivermectin (200-400 μ g/kg) is the treatment most
49	commonly used (Rowe et al., 2019), its implementation with free-ranging animals is
50	very difficult from a logistic viewpoint. Moreover, this approach may have undesirable
51	impact on non-target organisms and favours the development of resistance by the mite
52	(Walton et al., 2000), among other "secondary" effects (Moroni et al., 2020).
53	The development of resistance of S. scabiei against acaricidal compounds is
54	increasing (Currie et al., 2004; Mounsey et al., 2010; Andriantsoanirina et al., 2014).
55	Therefore, it is crucial to develop new drugs for treating scabies (Walton et al., 2004).
56	Bacillus thuringiensis is a Gram-positive bacterium which produces one or several
57	crystalline proteins referred to as δ -endotoxins (Hill & Pinnock, 1998). After being
58	ingested by susceptible arthropods, the <i>B</i> thuringiensis δ -endotoxin crystals are
59	dissolved in the midgut with a consequent production of activated toxic polypeptides
60	commonly known as δ -endotoxin crystal proteins (Cry proteins) (Höfte & Whiteley,
61	1989), which may belong to a number of distinct structural families (Crickmore et al.,
62	2021). These toxins seem to disrupt the selective permeability of the cell membrane,
63	which ultimately causes the arthropod death from starvation and/or septicemia
64	(Knowles & Dow, 1993). Like B. thuringiensis, Lysinibacillus sphaericus is another
65	gram positive bacterium able to produce a range of insecticidal proteins and which
66	exerts its effects in a similar manner (Berry, 2012).
67	Essential oils (EO) are mixtures of diverse volatile compounds synthesized by
68	plants to protect themselves and are considered as new ecofriendly insecticides, since

they may show good biological activity against a number of insect pests, low toxicity to

humans and rapid degradation in the environment (Jesser et al., 2020a). However, EO
show some disadvantages such as instability, volatility, and low solubility in water,
which may limit their applications (Jesser et al., 2020b).

73 In recent years, the integration of nanotechnology in the field of biopesticides 74 has garnered significant attention. An innovative method, the nanoformulation of EO, 75 has emerged as a solution to shield active compounds from environmental conditions 76 and prevent the gradual loss of EO (Kumar et al., 2020). Several materials, including proteins, synthetic emulsifiers, polysaccharides (such as starch and chitosan), and 77 78 polyethers (like polyethylene glycol and poly-ɛ-caprolactone), have been explored for 79 their effectiveness in nanoformulating EO or its constituents (Athanassiou et al., 2018; De Luca, et al., 2021). Polyethylene glycol 6000 (PEG 6000) has been extensively 80 investigated over the past few decades for medical, food industry, and pest control 81 applications. This material showed a broad range of solubility, lacks antigenicity and 82 immunotoxicity, and is easily excreted from living organisms without toxicity concerns. 83 84 PEG 6000 polymeric nanoparticles loaded with EO (EONP) are considered as one of the most important emerging trends in insect pest control (Campolo et al. 2018; Werdin 85 et al. 2014; 2017). 86

Nanoformulations of *B. thuringiensis* Cry proteins and EO contribute to increase
the activity period of such active compounds in the environment and allow reductions in
the amount to be used (De Oliveira et al., 2014; De Oliveira et al., 2021).

90 The aim of this study was to test the potential acaricide effect of several
91 treatments with *B. thuringiensis* and *Lysinibacillus sphaericus* Cry proteins and
92 essential oils nanoparticles formulations.

94 **2. Materials and methods**

95 *Preparation of* Bacillus thuringiensis *and* Lysinibacillus sphaericus

Bacillus thuringiensis and Lysinibacillus sphaericus spore/crystal preparations 96 were produced using a method previously described (Jones et al., 2008), by growing the 97 strains in Embrapa medium (Monnerat et al., 2007) until approximately 95% 98 sporulation (judged by phase contrast microscopy) after which spores and crystals were 99 harvested by centrifugation and washed in distilled water before lyophilisation and 100 101 storage at 4°C. Bacterial strains used were obtained as follows: Lysinibacillus sphaericus strain IAB59, Bacillus thuringiensis serovar. higo strain T44001, Bacillus 102 103 thuringiensis serovar. israelensis strain 4Q7, Bacillus thuringiensis serovar. kurstaki 104 strain HD1 from the Bacillus Genetic Stock Center: Bacillus thuringiensis GP 138, a 105 kind gift from Prof Alejandra Bravo, UNAM, Mexico; and Bacillus thuringiensis 106 serovar. konkukian strain 97-27 and Lysinibacillus sphaericus strain 2362 from the 107 collection of the Pasteur institute, France. 108 Preparation of nanoparticles

The EONP was synthesized using the melt-dispersion method, a procedure 109 110 previously outlined by Werdin González et al. (2014). Initially, 20g of PEG 6000 were 111 heated to 65°C on a hotplate stirrer. Subsequently, 2g of geranium (Geranium 112 maculatum) or peppermint (Mentha piperita) EO were added to the molten PEG 6000. Geranium and peppermint oils were purchased from Swiss-Just (Switzerland). PEG 113 6000 was acquired from Merck, Germany. Concurrently, the mixture of PEG 6000 and 114 115 EO was stirred with a D-500 Handheld Homogenizer (D-lab instrument limited) for 15 116 minutes at 15,000 rpm. The EONP spontaneously formed when the mixture was cooled to -4°C. After 45 minutes at that temperature, the resulting mixture was thoroughly 117

118	ground in a refrigerated mortar box at 0°C, and the product was sifted through a
119	stainless-steel sieve with a mesh size of 230. The EONP were stored in airtight
120	polyethylene pouches at $27 \pm 2^{\circ}C$ within desiccators containing calcium chloride for
121	seven days before further experimentation.

122 EO and EOPN composition

According to Yeguerman et al. (2022), the chemical composition of both pre-123 124 and post-formulation essential oils (EOs) was analysed using gas chromatography-mass 125 spectrometry (GC-MS) with an Agilent 7890B gas chromatograph coupled to an 126 Agilent 5977A mass spectrometer. A HP-5MS capillary column (30 m \times 0.25 mm i.d. \times 127 0.25 µm film thickness) was utilized, with helium serving as the carrier gas at a flow rate of 1.0 mL min-1. The oven temperature was initially set at 50 °C for 2 minutes, 128 129 then ramped at 5 °C min-1 to 200 °C and held for 15 minutes. Injection block temperature was maintained at 280 °C, and 1 µL aliquots of samples were injected. 130 131 Ionization energy of 70 eV was used for mass spectrometry, scanning from 35 to 550 132 m/z. Retention indices (RI) of components were determined using a series of n-alkanes (C8-C20). Further identification was accomplished using NIST 2.0 database. Relative 133 134 percentages of individual components were calculated by averaging gas 135 chromatography with flame ionization detection (GC-FID) peak areas obtained on a DB-5 column under similar conditions. Key components like α-pinene, limonene, 136 137 menthol, pulegone, and geraniol were confirmed by comparing with their standard 138 samples (Sigma-Aldrich) via co-injection. Essential oils were extracted from polymeric nanoparticles (EOPN) by dissolving 0.5 g of each sample in 5 mL of distilled water, 139 140 heating at 65 °C for 30 minutes with magnetic stirring. Upon melting of PEG 6000, 4 mL of petroleum ether was added, and the mixture was stirred for 2 hours. Afterward, 141 142 the ether phase containing the extracted EOs was collected, diluted to a concentration of 143 0.001 mg mL-1 (0.1% v/v), and subjected to GC-MS and GC analysis for component
144 identification.

145 EONP Size Measurement

A Malvern Nano ZS90 instrument was used to determine the size of the EONP. 146 147 The Polydispersity Index (PDI) was calculated as the square of the standard deviation divided by the square of the mean size, serving as an indicator of the homogeneity or 148 149 heterogeneity in the size distribution of the particles, following the method described by 150 Pascoli et al. (2018). Each sample, consisting of 0.2 g of EONP, was suspended in 10 mL of distilled water for 30 minutes. Subsequently, the dispersion was filtered using 151 Whatman N° 1 filter paper and allowed to equilibrate for 2 hours. Data were statistically 152 153 compared using one-way analysis of variance (ANOVA), followed by the LSD test (N 154 = 4).

155 EONP Encapsulation Efficiency

156 As outlined by Werdin González et al. (2014) the encapsulation efficiency was assessed using spectrophotometric methods. For this, 0.1 g of EONP were individually 157 dissolved in 2 mL of an absolute ethanol-water solution (75:25). The resulting mixture 158 159 was then centrifuged at 9000 rpm for 10 minutes. The supernatant was carefully 160 collected and subjected to analysis via UV-vis spectrophotometry, employing a Shimadzu UV-1203 photometer with the Kinetics-2-Program Pack (P/N 206-62029-10; 161 162 Shimadzu Corp., Kyoto, Japan) at a wavelength of 290 nm. This process was repeated for four samples, and the quantity of EO was determined by referring to an appropriate 163 164 calibration curve for free EO in ethanol.

165 Encapsulation efficiency (EE) was determined from:

EE (%) =
$$\frac{\text{weight of loaded EO}}{\text{weight of initial EO}} \times 100$$

167 One way analysis of variance (ANOVA) and LSD were used in order to compare 168 the data (N = 4). The mean physical and chemical characteristics of the EONP 169 formulations are included in tables 2 and 3, respectively.

170 *Mite collection*

171 Ibex (*Capra pyrenaica*) with severe mange in the consolidation and chronic 172 stages (Espinosa et al., 2017), with lesions affecting \geq 50% of the host skin surface were 173 selected as mite donors (Fig. 1a). The ibex were chemically immobilized with a mixture 174 of ketamine (3 mg/kg) and xylazine (3 mg/kg) (Casas-Díaz et al., 2011), and then 175 euthanized with T-61 Intervet® (combination of embutramide and mebezonium iodide) 176 at a dose of 1ml/1.5 kg.

For mite extraction we painted glass Petri dishes black (14 cm diameter), except 177 in a central circle at the bottom (5.5. cm diameter). Then, a 25 W lamp was placed 7-8 178 179 cm below the central circle and several skin pieces from the donor ibex were placed around this circle (Figure 1b). In this way, a temperature gradient was created allowing 180 the mites to concentrate in the central area of the dish (Andrews, 1981) after overnight 181 182 exposure to the lamp (Fig. 1c). Once the mites left the host skin, the skin pieces were 183 removed (Fig. 1d). The aim of this method was to obtain live mites without 184 manipulating them, therefore, avoiding mechanical damage to mites which could affect 185 their survival.

The first assay (including mite extraction and following counts) was carried out at 12°C and 70% relative humidity (RH). During the remaining assays the plates were maintained in an incubator at 35°C and 45% RH. The number of control plates and treatments of each assay are included in Table 1. After an initial count (including both live and dead mites), live mites (those showing some kind of movement) were countedtwice a day until the death of all the mites.

192	The acaricidal activity of geranium EONP and peppermint EONP was evaluated
193	at 35 $\mu g~cm^{\text{-2}}$ and 70 $\mu g~cm^{\text{-2}}$, respectively. The decision to use the concentration of
194	peppermint for this nanoparticle was based on research by Jesser et al. (2020a), which
195	indicated that the bioactivity of geranium EONP was higher than that of peppermint
196	EONP against Plodia interpunctella (Lepidoptera: Pyralidae). The nanoparticles were
197	dispersed in the central circle at the bottom base of glass Petri dish.
198	Statistical analysis
199	Survival of mites subjected to the different treatments was analysed using the
200	non-parametric Kaplan-Meier estimate via survival curves (Kaplan and Meier, 1958).
201	The Log-rank test (Kleinbaum and Klein, 2012) with Bonferroni correction allowed for
202	multiple pairwise comparisons between the survival curves of each treatment in order to
203	determine significant differences between them.
204	All statistical analyses were performed using R version 4.3.1 (R Core Team,
205	2023). We used the survfit() function to conduct the Kaplan-Meier estimations with the
206	survival package (Therneau, 2023). The survival curves were drawn using ggsurvplot()
207	function of the survminer package (Kassambara et al., 2020). The log-rank test was
208	carried out using survdiff() function of the survival package. Multiple pairwise
209	comparisons were conducted with the pairwise_survdiff() function of the survminer
210	package. The statistical significance level set in all statistical analyses was 0.05.
211	

3. Results and discussion

First, the chemical analysis of EOPN revealed that β -citronellol and geraniol 213 214 were the predominant compounds in geranium EOPN (Table 3). Moreover, components 215 such as linalool, menthone, citronellyl formate, and geranyl formate, which, in the pre-216 formulation sample, were between 8 and 11%, had a significant reduction after formulation (<1.7%). Additionally, minor components present in the original sample 217 218 (<3%) were undetectable after formulation. In contrast, menthol emerged as the primary 219 compound in peppermint oil and its nanoparticles, as indicated in Table 3. After 220 formulation, a slight decrease was noted in the concentrations of isomenthone, pmenthen-3-one, and menthol acetate. Furthermore, minor components present in the 221 222 initial sample (<6%) were not detected after formulation.

Mites in control plates survived, on average, 27.6 h. Mean and median survival times are shown in Table 3. We must take into account that this time measurement started with mite extraction, but, on average, ibex death to laboratory mite extraction took around 10.9 ± 6.1 h. As expected, average survival of mites maintained at low temperature (12 °C) reached the highest values: 40.7 h, compared with that at 35°C: 31.2 hr.

Kaplan-Meier survival analysis is depicted in figures 2 and 3. The overall 229 230 survival function can be seen in Fig. 2a. Log-rank test (Fig. 2b) showed statistically significant differences in the mean survival time for most of the treatments (χ^2 = 231 232 38309, p < 0.0001). In particular, B. thuringiensis serovar. konkukian 97-27 and geranium EONP reduced mite survival significantly. Conversely, mites treated with B. 233 234 thuringiensis GP 138, B. thuringiensis higo T44001, Ls IAB59 and peppermint EONP 235 survived more than those maintained in the control plates (Table 4; Fig. 3). The remaining treatments did not show significant differences in mite survival compared 236 237 with controls.

4. Discussion

240	The B. thuringiensis serovar. konkukian and geranium EONP formulation gave
241	promising results in our assays, and could be effective in reducing mite survival time.
242	Different encapsulation strategies (for bacteria, Cry proteins and single spores) aimed to
243	increase ingestion of B. thuringiensis Cry proteins, need to be tested. Moreover, host
244	contact time and the effect of the temperature and UV radiation on the persistence of B .
245	thuringiensis in the field must be addressed before performing in vivo assays (de
246	Oliveira et al., 2021). The MXPA patent 02008705 (Ramírez, 2004) is a
247	nanoencapsulation technique of a mixture of B. thuringiensis Cry proteins and spores
248	with high residual activity. On the other hand, Ureña-Saborío et al. (2017) performed
249	chitosan/TPP nanoparticles containing bacterial metabolic infiltrates of the strain B.
250	thuringiensis SER-217, and achieved their efficient release in an aqueous medium,
251	together with increasing protection and stability of such compounds.
252	B. thuringiensis strain GP 138, which has previously shown activity against the
253	tick Rhipicephalus microplus (Fernández-Ruvalcaba et al., 2010), did not show any
254	reduction in Sarcoptes scabiei survival in this study. B. thuringiensis konkukian strain
255	97-27, however, did show activity. This is a genome-sequenced strain of <i>B</i> .
256	thuringiensis (Han et al., 2006) that, in contrast to other B. thuringiensis strains tested,
257	is not recorded as producing known delta endotoxins or invertebrate-active toxins
258	produced during the vegetative stage of growth. The genome does encode toxins with
259	reported roles in mammalian food poisoning such as CytK, and the tripartite toxins Hbl
260	and Nhe (in common with several strains of <i>B. thuringiensis</i>). The activity of these
261	proteins against invertebrates has not been reported and it is possible that these or other,

against *S. scabiei* in this study. This possibility warrants further investigation to identifythe agent responsible for the activity observed.

265 This study used geranium and peppermint essential oils (EO) to formulate PEG-266 6000 nanoparticles, due to their bioactivity against various tick species (An and Tak, 2022; Awad et al., 2022; Klafke et al., 2021; Voronova et al., 2022). In the case of 267 268 geranium oil, citronellol and geraniol are the important constituents that responsible for 269 the acaricidal activity in Rhipicephalus annulatus (Ibrahium, et al., 2022). Similarly, the bioactivity of peppermint EO, attributed to menthol and isomenthone, has been 270 271 observed against Tetranychus cinnabarinus and Tetranychus urticae (Abd-Allah et al., 272 2022). Enan (2001) suggested that the toxicity of constituents of essential oils against 273 insect pests might be related to the octopaminergic nervous system of insects, while de 274 Olivera et al. (1997) proposed that certain monoterpenes inhibit cytochrome P450dependent monooxygenases. Moreover, Ryan and Byrne (1988) identified a connection 275 between the toxicity of monoterpenes, their capacity to inhibit acetylcholinesterase 276 277 (AChE), and their effectiveness against insects or ticks.

278 Regarding the bioactivity of nanoparticles, it was observed that geranium EONP 279 exhibited greater efficacy compared to peppermint EOPN. This result could be 280 attributed to the physicochemical characteristics of the nanoparticles. Peppermint EONP had size of 390 nm and were polydisperse these values are higher than geranium EONP. 281 282 It is well-known that nanoparticle size plays a crucial role in the penetration of bioactive 283 compounds through the cuticle. Hashem et al. (2018) demonstrated that EO 284 nanoformulations enhance cuticle penetration, allowing products to penetrate insects 285 more easily. Furthermore, the nanoscale size of EONP could extend the exposure time 286 of bioactive compounds to insect pests, covering larger areas of the insect cuticle. 287 Additionally, nanoparticles can alter the delivery pattern of EO active ingredients,

thereby enhancing their efficacy (Iavicoli et al., 2017). Moreover, the encapsulation
efficiency (EE) of peppermint EONP was 72%, which is lower than that of geranium
EONP. It will probably be necessary to use a higher amount of peppermint EONP for an
effective pest management program.

292 In our study, temperature and relative humidity (RH) were maintained during the 293 different assays. When off the host, Sarcoptes mites are unable to use water vapor 294 actively from unsaturated ambient air (Arlian and Veselica, 1979) and, therefore, their survival time is strongly affected by ambient RH (Arlian et al., 1984). Mellanby et al. 295 296 (1942) found that S. scabiei (obtained from human scrapings) did not move when 297 temperature was below 15-16°C, but did so rapidly above 20°C; and heating at 50°C for 298 10 minutes was enough to exterminate the mite. At cooler temperatures (e.g., 4 °C) 299 black bear-derived mites survived over a week (Niedringhaus et al., 2019). Moreover, at 300 low temperatures, survival of S. scabiei increases with relative humidity (Davis & Moon, 1987; Arlian et al., 1989). Thus, environmental conditions (mainly temperature 301 302 and relative humidity) will strongly affect mite survival when off the host and, therefore, its ability to be transmitted indirectly, to spread, to establish and to persist 303 304 (Castro et al., 2016; Montecino-Latorre et al., 2019; Loredo et al., 2020; Browne et al., 305 2021).

306

307 **5. Conclusion**

In conclusion, the acaricidal activity of NP formulations of *B. thuringiensis konkukian* strain 97-27, of other *B. thuringiensis* strains and of other plant essential oils at different concentrations deserve to be studied in more detail, before considering *in vivo* assays. In a complementary way, the effect of both temperature and RH on the

312	survival of ibex-derived mites (when off the host) need to be analysed in depth by
313	maintaining mites in vitro at a wider range of such conditions.
314	
315	Acknowledgements
316	Authors are indebted to Antonio Rodríguez, José López and Isidro Puga for their
317	help in obtaining biological samples for our study.
318	
319	Funding
320	Research activities of JEG and JMP are partially supported by the Junta de
321	Andalucía Government (RNM-118 group of the PAIDI), and by the Jaén University
322	(Action 1b). The AUIP (Asociación Universitaria Iberoamericana de Postgrado)
323	scholarship facilitated EJ's mobility between the National University of the South
324	(Argentina) and the Jaén University (Spain) to conduct this research.
325	CRediT authorship contribution statement
326	All the coauthors conceived the work; MAG and CB prepared Bacillus
327	thuringiensis and Lysinibacillus sphaericus crystal proteins; EJ and JOW prepared
328	nanoparticles containing essential oils, JEG searched and captured donor scabietic ibex;
329	EJ, RC and JMP obtained live mites and performed the assays; EJ, JMP and AJLM
330	analysed the data obtained; all the authors contributed to writing this manuscript.
331	Declaration of Competing Interest

332 The authors declare that the research was conducted in the absence of any333 commercial or financial relationships.

JJ- Data Manability

335 Original data are available upon reasonable request.

336 Ethics approval

337 Procedures carried out in this work were approved by the regional government
338 (Junta de Andalucía): Project 15/12/2018/163, and also by the Ethics Committee of the
339 Jaén University.

340

341	References

Abd-Allah, G.E., Habashy, M.G., Shalaby, M.M., 2022. Efficacy of mint derivatives,

343 *Mentha spicata* L., against two species of *Tetranychus* spp. (Acari:

344 Tetranychidae) and the predator, *Neoseiulus* sp. Egypt. Acad. J. Biol. Sci. A

345 Entomol., 15, 63–70. DOI: 10.21608/EAJBSA.2022.224349.

- An, H., Tak, J.H., 2022. Miticidal and repellent activity of thirty essential oils and their
- 347 synergistic interaction with vanillin against *Tetranychus urticae* Koch (Acari:
- 348 Tetranychidae). Ind. Crops Prod., 182, 114872.
- 349 https://doi.org/10.1016/j.indcrop.2022.114872.
- Andrews, J.R., 1981. The extraction of *Sarcoptes scabiei* from mammalian hosts. J.
- 351 Parasitol. 67, 753–754.
- Andriantsoanirina, V., Izri, A., Botterel, F., Foulet, F., Chosidow, O., Durand, R., 2014.
- 353 Molecular survey of knockdown resistance to pyrethroids in human scabies mites.

354 Clin. Microbiol. Infect. 20, O139-O141. https://doi.org/10.1111/1469-

355 0691.12334.

- Arlian, L.G., Morgan, M.S., 2017. A review of *Sarcoptes scabiei*: past, present and
 future. Parasites Vectors 10, 297. DOI: 10.1186/s13071-017-2234-1.
- Arlian, L.G., Runyan, R.A., Achar, S., Estes, S.A., 1984. Survival and infestivity of
- 359 Sarcoptes scabiei var. canis and var. hominis. J. Am. Acad. Dermatol. 11, 210-
- 360 215. https://doi.org/10.1016/S0190-9622(84)70151-4.
- Arlian, L.G., Veselica, M.M., 1979. Water balance in insects and mites. Comp.
- Biochem. Physiol. 64, 191-200. https://doi.org/10.1016/0300-9629(79)90650-9.
- 363 Arlian, L.G., Vyszenski-Moher, D.L., Pole, M.J., 1989. Survival of adults and
- development stages of *Sarcoptes scabiei* var. *canis* when off the host. Exp. Appl.
- 365 Acarol. 6, 181-187. DOI:10.1007/BF01193978.
- 366 Athanassiou, C.G., Kavallieratos, N.G., Benelli, G., Losic, D., Usha Rani. P., Desneux.

N., 2018. Nanoparticles for pest control: Current status and future perspectives. J.
Pest Sci. 91, 1–15. https://doi.org/10.1007/s10340-017-0898-0.

- 369 Awad, S.E., Salah, K.B.H., Jghef, M.M., Alkhaibari, A.M., Shami, A.A., Alghamdi,
- 370 R.A., Awad, A.E., 2022. Chemical characterization of clove, basil and peppermint
- essential oils; evaluating their toxicity on the development stages of two-spotted

spider mites grown on cucumber leaves. Life 12, 1751.

- 373 https://doi.org/10.3390/life12111751.
- Berry, C., 2012. The bacterium, *Lysinibacillus sphaericus*, as an insect pathogen. J.
- 375 Invert. Pathol. 109, 1-10. https://doi.org/10.1016/j.jip.2011.11.008.
- Bornstein, S., Mörner, T., Samuel, W.M., 2001. Sarcopes scabiei and sarcoptic mange.
- 377 In: Samuel WM, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals,
- ³⁷⁸ 2nd edn. Iowa State University Press, Ames, pp 107-119.

379	Browne, E., Diressen, M.M., Ross, R., Roach, M., Carver, S., 2021. Environmental
380	suitability of bare-nosed wombat burrows for Sarcoptes scabiei. Int. J. Parasitol.
381	Parasites Wildl. 16, 37-47. https://doi.org/10.1016/j.ijppaw.2021.08.003.
382	Campolo, O., Cherif, A., Ricupero, M., Siscaro, G., Grissa-Lebdi, K., Russo, A., Cucci,
383	L.M., Di Pietro, P., Satriano, C., Desneux, N., Biondi, A., Zappalà, L., Palmeri,
384	V., 2017. Citrus peel essential oil nanoformulations to control the tomato borer,
385	Tuta absoluta: Chemical properties and biological activity. Sci. Rep. 7, 13036.
386	https://doi.org/10.1038/s41598-017-13413-0.
387	Casas-Díaz, E., Marco, I., López-Olvera, J.R., Mentaberre, G., Lavín, S., 2011.
388	Comparison of xylazine-ketamine and medetomidine-ketamine anaesthesia in the
389	Iberian ibex (Capra pyrenaica). Eur. J. Wildl. Res. 57, 887-893. DOI:
390	https://doi.org/10.1007/s10344-011-0500-7.
391	Castro, I., de la Fuente, A., Fandos, P., Cano-Manuel, F.J., Granados, J.E., Soriguer,
392	R.C., Alasaad, S., Pérez, J.M., 2017. On the population biology of Sarcoptes
393	scabiei infesting Iberian ibex (Capra pyrenaica). Int. J. Acarol. 42, 7-11.
394	http://dx.doi.org/10.1080/01647954.2015.1109710.
395	Crickmore, N., Berry, C., Panneerselvam, S., Mishra, R., Connor, T.R., Bonning, B.C.,
396	2021. A structure-based nomenclature for Bacillus thuringiensis and other
397	bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 186, 107438.
398	https://doi.org/10.1016/j.jip.2020.107438.

400 vivo and in vitro ivermectin resistance in *Sarcoptes scabiei*. Clin. Infect. Dis. 39,

401 e8-e12. https://doi.org/10.1086/421776.

402	Davis, D.P., Moon, R.D., 1987. Survival of Sarcoptes scabiei (De Geer) stored in three
403	media at three temperatures. J. Parasitol. 73, 661-662.

- 404 De Luca, I., Pedram, P., Moeini, A., Cerruti, P., Peluso, G., Di Salle, A., Germann, N.,
- 405 2021. Nanotechnology development for formulating essential oils in wound
- dressing materials to promote the wound-healing process: a review. Appl. Sci. 11,
- 407 1713. https://doi.org/10.3390/app11041713.
- 408 De Oliveira, A.C., Ribeiro-Pinto, L.F., Paumgartten, F.J., 1997. In vitro inhibition of

409 CYP2B1 monooxygenase by β -myrcene and other monoterpenoid compounds.

410 Toxicol. Lett., 92, 39-46. DOI: 10.1016/s0378-4274(97)00034-9.

- de Oliveira, J.L., Campos, E.V.R., Bakshi, M., Abhilash, P.C., Fraceto, L.F., 2014.
- Application of nanotechnology for the encapsulation of botanical insecticides for
 sustainable agriculture: prospects and promises. Biotechnol. Adv. 32, 1550–1561.

414 https://doi.org/10.1016/j.biotechadv.2014.10.010.

- de Oliveira, J.L., Fernandes Fraceto, L., Bravo, A., Polanczyk, R.A., 2021.
- 416 Encapsulation strategies for *Bacillus thuringiensis*: from now to the future. J.
- 417 Agric. Food Chem. 69, 4564–4577. https://doi.org/10.1021/acs.jafc.0c07118.
- 418 Enan, E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action.

419 Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 130, 325-337.

- 420 https://doi.org/10.1016/S1532-0456(01)00255-1.
- 421 Espinosa, J., Ráez-Bravo, A., López-Olvera, J.R., Pérez, J.M., Lavín, S.,
- 422 Tvarijonaviciute, A., Cano-Manuel, F.J., Fandos, P., Soriguer, R.C., Granados,
- 423 J.E., Romero, D., Velarde, R., 2017. Histopathology, microbiology and the
- 424 inflammatory process associated with *Sarcoptes scabiei* infection in the Iberian

425	ibex, Capra pyrenaica. Parasites Vectors 10, 596. DOI: 10.1186/s13071-017-
426	2542-5.

427	Fernández-Ruvalcaba, M., Peña-Chora, G., Romo-Martínez, A., Hernández-Velázquez,
428	V., Bravo de la Parra, A., Pérez De La Rosa, D., 2010. Evaluation of Bacillus
429	thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus,
430	resistant to chemical pesticides. J. Insect Sci. 10, 186. DOI:
431	10.1673/031.010.14146.
432	Han, C.S., Xie, G., Challacombe, J.F., Altherr, M.R., Bhotika, S.S., Bruce, D.,
433	Campbell, C.S., Campbell, M.L., Chen, J., Chertkov, O., Cleland, C.,
434	Dimitrijevic, M., Doggett, N.A., Fawcett, J.J., Glavina, T., Goodwin, L.A., Hill,
435	K.K., Hitchcock, P., Jackson, P.J., Keim, P., Kewalramani, A.R., Longmire, J.,
436	Malfatti, L.S., McMurry, K., Meincke, L.J., Misra, M., Moseman, B.L., Mundt,
437	M., Munk, C., Okinaka, R.T., Parson-Quintana, B., Reilly, L.P., Richardson, P.,
438	Robinson, D.L., Rubin, E., Saunders, E., Tapia, R., Tesmer, J.G., Thayer, N.,
439	Thompson, L.S., Tice, H., Ticknor, L.O., Wills, P.L., Brettin, T.S., Gilna, P.,
440	2006. Pathogenomic sequence analysis of Bacillus cereus and Bacillus
441	thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 188, 3382-
442	3390. DOI:10.1128/JB.188.9.3382-3390.2006.
443	Hashem, A.S., Awadalla, S.S., Zayed, G.M., Maggi, F., Benelli, G., 2018. Pimpinella
444	anisum essential oil nanoemulsions against Tribolium castaneum - insecticidal
445	activity and mode of action. Environ. Sci. Pollut. Res. 25, 18802–18812.

446 https://doi.org/10.1007/s11356-018-2068-1.

- Hill, C.A., Pinnock, D.E., 1998. Histopathological effects of *Bacillus thuringiensis* on
 the alimentary canal of the sheep louse, *Bovicola ovis*. J. Invert. Pathol. 72, 9-20.
 DOI: 10.1006/jipa.1998.4761.
- Höfte, H., Whiteley, H.R., 1989. Insecticidal crystal proteins of *Bacillus thuringiensis*.
 Microbiol. Rev. 53, 242–255. DOI: 10.1128/mr.53.2.242-255.1989.
- Hu, J., Wang, X., Xiao, Z., Bi, W., 2015. Effect of chitosan nanoparticles loaded with
 cinnamon essential oil on the quality of chilled pork. LWT Food Sci. Technol.

454 63, 519–526. https://doi.org/10.1016/j.lwt.2015.03.049.

- 455 Iavicoli, I., Leso, V., Beezhold, D.H., Shvedova, A.A., 2017. Nanotechnology in
- 456 agriculture: Opportunities, toxicological implications, and occupational risks.
- 457 Toxicol. Appl. Pharmacol. 329, 96–111.
- 458 https://doi.org/10.1016/j.taap.2017.05.025.
- 459 Ibrahium, S.M., Aboelhadid, S.M., Wahba, A.A., Farghali, A.A., Miller, R.J., Abdel-
- 460 Baki, A.A.S., Al-Quraishy, S., 2022. Preparation of geranium oil formulations
- 461 effective for control of phenotypic resistant cattle tick *Rhipicephalus annulatus*.
- 462 Sci. Rep., 12, 11693. https://doi.org/10.1038/s41598-022-14661-5.
- 463 Jesser, E., Yeguerman, C., Stefanazzi, N., Gomez, R., Murray, A.P., Ferrero, A.A.,
- 464 Werdin-Gonzalez, J.O., 2020a. Ecofriendly approach for the control of a common
- insect pest in the food industry, combining polymeric nanoparticles and post-
- 466 application temperature. J. Agric. Food Chem. 68, 5951-5958.
- 467 https://dx.doi.org/10.1021/acs.jafc.9b06604.
- 468 Jesser, E., Yeguerman, C., Gili, V., Santillan, G., Murray, A.P., Domini, C., Werdin-
- 469 González, J.O., 2020b. Optimization and characterization of essential oil

470	nanoemulsions	using	ultrasound	for new	ecofriendly	insecticides.	ACS Sustain.
-----	---------------	-------	------------	---------	-------------	---------------	--------------

- 471 Chem. Eng. 8, 7981-7992. https://dx.doi.org/10.1021/acssuschemeng.0c02224.
- 472 Jones, G.W., Wirth, M.C., Monnerat, R.G., Berry, C., 2008. The Cry48Aa-Cry49Aa
- binary toxin from *Bacillus sphaericus* exhibits highly restricted target specificity.
- 474 Environ. Microbiol. 10, 2418-2424. https://doi.org/10.1111/j.1462-
- 475 2920.2008.01667.x.
- Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observations.
 J. Am. Stat. Assoc. 53, 457-481. https://doi.org/10.2307/2281868.
- 478 Kassambara, A., Kosinski, M., Biecek, P., 2020. Survminer: drawing survival curves
- 479 using 'ggplot2'. R package version 0.4.8. https://CRAN.R-
- 480 project.org/package=survminer.
- 481 Klafke, G.M., Thomas, D.B., Miller, R.J., de León, A.A.P., 2021. Efficacy of a water-
- 482 based botanical acaricide formulation applied in portable spray box against the
- 483 southern cattle tick, *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae),
- 484 infesting cattle. Ticks Tick Borne Dis., 12, 101721. DOI:
- 485 10.1016/j.ttbdis.2021.101721.
- Kleinbaum, D.G., Klein, M., 2012. Kaplan-Meier survival curves and the Log-Rank
 test. In: Survival Analysis. Statistics for Biology and Health. Springer, New York.
- 488 https://doi.org/10.1007/978-1-4419-6646-9_2.
- 489 Knowles, B.H., Dow, J.A.T., 1993. The crystal d-endotoxins of *Bacillus thuringiensis*:
- 490 Models for their mechanism of action in the insect gut. BioEssays 15, 469–476.
- 491 DOI: 10.1016/j.toxicon.2006.11.022.

492	Kumar, A., Singh, P., Gupta, V., Prakash, B., 2020. Application of nanotechnology to
493	boost the functional and preservative properties of essential oils. In: Prakash B
494	(ed) Functional and preservative properties of phytochemicals. Academic Press,
495	London, pp 241-267. https://doi.org/10.1016/B978-0-12-818593-3.00008-7.
496	Loredo, A.I., Rudd, J.L., Foley, J.E., Clifford, D.L., Cypher, B.L., 2020. Climatic
497	suitability of San Joaquin kit fox (Vulpes macrotis mutica) dens for sarcoptic
498	mange (Sarcoptes scabiei) transmission. J. Wildl. Dis. 56, 126-133. DOI:
499	10.7589/2019-02-035.
500	Mellanby, K., Johnson, C.G., Bartley, W.C., Brown, P., 1942. Experiments on the
501	survival and behaviour of the itch mite, Sarcoptes scabiei DeG. var. hominis.
502	Bull. Ent. Res. 33, 267-271. https://doi.org/10.1017/S0007485300026584.
503	Monnerat, R., Cardoso Batista, A., Telles de Medeiros, P., Soares Martins, É., Melatti,
504	V.M., Botelho Praça, L., Fiúza Dumas, V., Morinaga, C., Demo, C., Menezes
505	Gomes, A.C., Falcão, R., Brod Siqueira, C., Oliveira Silva-Werneck, J., Berry, C.,
506	2007. Screening of Brazilian Bacillus thuringiensis isolates active against
507	Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol.
508	Control 41, 291-295. https://doi.org/10.1016/j.biocontrol.2006.11.008.
509	Montecino-Latorre, D., Cypher, B.L., Rudd, J.L., Clifford, D.L., Mazet, J.A.K., Foley,
510	J.E., 2019. Assessing the role of dens in the spread, establishment and persistence
511	of sarcoptic mange in an endangered canid. Epidemics 27, 28-40.
512	https://doi.org/10.1016/j.epidem.2019.01.001.
513	Moroni, B., Valldeperes, M., Serrano, E., López-Olvera, J.R., Lavín, S., Rossi, L., 2020.
514	Comment on: "The treatment of sarcoptic mange in wildlife: a systematic review"
515	Parasites Vectors 13, 471. https://doi.org/10.1186/s13071-020-04347-0.

516	Mounsey, K.E., Pasay, C.J., Arlian, L.G., Morgan, M.S., Holt, D.C., Currie, B.J.,
517	Walton, S.F., McCarthy, J.S., 2010. Increased transcription of glutathione s-
518	transferases in acaricide exposed scabies mites. Parasites Vectors 3, 43.
519	https://doi.org/10.1186/1756-3305-3-43.
520	Niedringhaus, K.D., Brown, J.D., Ternent, M.A., Peltier, S.K., Yabsley, M.J., 2019.
521	Effects of temperature on the survival of Sarcoptes scabiei of black bear (Ursus
522	americanus) origin. Parasitol. Res. 118, 2767-2772.
523	https://doi.org/10.1007/s00436-019-06387-7.
524	Pascoli, M., Lopes-Oliveira, P.J., Fraceto, L.F., Seabra, A.B., Oliveira, H.C., 2018.
525	State of the art of polymeric nanoparticles as carrier systems with agricultural
526	applications: a minireview. Energ. Ecol. Environ. 3, 137–148.
527	https://doi.org/10.1007/s40974-018-0090-2.
528	Pence, D.B., Ueckermann, E., 2002. Sarcoptic mange in wildlife. Rev. Sci. Tech. Off.
529	Int. Epiz. 21, 385-398.
530	R Core Team, 2023. R: a language and environment for statistical computing. R
531	Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
532	Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus</i>
532 533	Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus</i> <i>thuringiensis</i> of the <i>israelensis</i> variety for extending the activity thereof on
532 533 534	Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus</i> <i>thuringiensis</i> of the <i>israelensis</i> variety for extending the activity thereof on mosquitoes larvae. MXPA Patent 02008705 A, Dec 6, 2004.
532 533 534 535	 Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus thuringiensis</i> of the <i>israelensis</i> variety for extending the activity thereof on mosquitoes larvae. MXPA Patent 02008705 A, Dec 6, 2004. Rowe, M.L., Whiteley, P.L., Carver, S., 2019. The treatment of sarcoptic mange in
532 533 534 535 536	 Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus thuringiensis</i> of the <i>israelensis</i> variety for extending the activity thereof on mosquitoes larvae. MXPA Patent 02008705 A, Dec 6, 2004. Rowe, M.L., Whiteley, P.L., Carver, S., 2019. The treatment of sarcoptic mange in wildlife: a systematic review. Parasites Vectors 12, 99.
532 533 534 535 536 537	 Ramirez, L.M., 2004. Technology for encapsulating delta endotoxins of <i>Bacillus thuringiensis</i> of the <i>israelensis</i> variety for extending the activity thereof on mosquitoes larvae. MXPA Patent 02008705 A, Dec 6, 2004. Rowe, M.L., Whiteley, P.L., Carver, S., 2019. The treatment of sarcoptic mange in wildlife: a systematic review. Parasites Vectors 12, 99. https://doi.org/10.1186/s13071-019-3340-z.

- 538 Ryan, M.F., Byrne, O., 1988. Plant-insect coevolution and inhibition of
- acetylcholinesterase. J. Chem. Ecol., 14, 1965-1975.
- 540 https://doi.org/10.1007/BF01013489.
- 541 Therneau, T., 2023. A package for survival analysis in R. R package version 3.5-5,
- 542 https://CRAN.R-project.org/package=survival.
- 543 Ureña-Saborío, H., Madrigal-Carballo, S., Sandoval, J., Vega-Baudrit, J.R., Rodríguez-
- 544 Morales, A., 2017. Encapsulation of bacterial metabolic infiltrates isolated from
- 545 different *Bacillus* strains in chitosan nanoparticles as potential green chemistry-
- based biocontrol agents against *Radopholus similis*. J. Renew. Mater. 5, 290–299.
- 547 https://doi.org/10.7569/JRM.2017.634119.
- 548 Voronova, N., Horban, V., Bohatkina, V., 2022. The effectiveness of acaricidic drugs

based on herbal raw material. Ecol. Quest., 33, 55-71.

550 https://doi.org/10.12775/EQ.2022.003.

549

551 Walton, S.F., McKinnon, M., Pizzutto, S., Dougall, A., Williams, E., Currie, B.J., 2004.

- 552 Acaricidal activity of *Melaleuca alternifolia* (tea tree) oil. In vitro sensitivity of
- 553 *Sarcoptes scabiei* var *hominis* to terpinen-4-ol. Arch. Dermatol. 140, 563-566.
- 554 DOI: 10.1001/archderm.140.5.563.
- 555 Walton, S.F., Myerscough, M.R., Currie, B.J., 2000. Studies in vitro on the relative
- efficacy of current acaricides for *Sarcoptes scabiei* var. *hominis*. Trans. R. Soc.
 Trop. Med. Hyg. 94, 92-96. DOI: 10.1016/s0035-9203(00)90454-1.
- 558 Werdin-González, J.O., Jesser, E.N., Yeguerman, C.A., Ferrero, A.A., Fernández Band,
- 559 B., 2017. Polymer nanoparticles containing essential oils: New options for
- 560 mosquito control. Environ. Sci. Pollut. Res. 24, 17006–17015. DOI:
- 561 10.1007/s11356-017-9327-4.

562	Werdin-González, J.O., Gutiérrez, M.M., Ferrero, A.A., Fernández Band, B., 2014.
563	Essential oils nanoformulations for stored product pest control: Characterization
564	and biological properties. Chemosphere 100, 130-138.
565	https://doi.org/10.1016/j.chemosphere.2013.11.056.
566	Yeguerman, C.A., Urrutia, R.I., Jesser, E.N., Massiris, M., Delrieux, C.A., Murray,
567	A.P., Werdin-González, J.O., 2022. Essential oils loaded on polymeric
568	nanoparticles: bioefficacy against economic and medical insect pests and risk
569	evaluation on terrestrial and aquatic non-target organisms. Envirom. Sci. Pollution
570	Res., 29, 71412-71426. https://doi.org/10.1007/s11356-022-20848-0.

571 Tables

Table 1. Dates of assays for analyse mite survival and the treatments tested.

573 **Table 2**. Average Size (AS), in nanometers, polydispersity (PDI), and Encapsulation

574 Efficiency (EE) of geranium and peppermint EOPN, after 7 Days Post-formulation.

575 Figures represent mean value \pm standard error.

Table 3. Chemical analysis of pre / post-formulation of the oils from geranium and peppermint.

577 **Table 4**. Parameters estimated by treatment via Kaplan-Meier analysis. From left to right:

type of treatment, number of mites subjected to this treatment, mean survival time,
standard error of the mean and median survival time. Mean and median are measured in
hours; se: standard error.

581

582 Figure Captions

Figure 1. A: Skin of the scabietic donor ibex. **B:** Several ibex skin pieces were placed

584 into a painted glass Petri dish; note that the center of the plate remains transparent. C:

the light applied to the bottom of the plate generated a temperature gradient into the

plate. This gradient favoured mite migration from the skin to the centre of the plate. **D**:

587 protective wear was needed for skin and plates manipulation.

Figure 2. Kaplan-Meier survival curves. Left graph (A) shows the overall survival

589 curve without considering any treatments. Right graph (B) shows the survival curves by

treatment, the p-value of the log-rank test and the pairwise multiple comparisons with

591 Bonferroni correction. Significant differences were indicated by different lowercase

592 letters (p<0.05).

593 Figure 3. Kaplan-Meier survival curves separated for better visualization.

