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Band-like electron transport in 2D quantum dot
periodic lattices: the effect of realistic
size distributions

E. S. Skibinsky-Gitlin, a S. Rodrı́guez-Bolı́var, †a M. Califano b and
F. M. Gómez-Campos †*a

Electron mobility in nanocrystal films has been a controversial topic in the last few years. Theoretical

and experimental studies evidencing carrier transport by hopping or showing band-like features have

been reported in the past. A relevant factor to analyze transport results is the progressive improvement

in quantum dot superlattice fabrication, leading to better regimented structures for which band-like

transport would be more relevant. This work presents an efficient model to compute temperature-

dependent band-like electronic mobilities in 2D quantum dot arrays when a realistic quantum dot size

distribution is considered. Comparisons with experimental results are used to estimate these size

distributions, in good agreement with data of the samples.

1 Introduction

Quantum dot solar cells are new devices that have attracted
much attention in the last few years.1–4 The improvement of the
energy conversion efficiency in this kind of device is evidenced
in the recently published report by NREL.5 Quantum dots (QDs)
can be used in several configurations to constitute the active
part of a solar cell.2,6 In particular, colloidal quantum dots can be
assembled into 2D arrays where photons can be absorbed.7–15 As
improvements in their synthesis are enabling narrower size
distribution, complete surface passivation and better system
assembly, building better quality 2D quantum dot arrays is
becoming easier.4,16–18 This opens up new possibilities in
materials engineering as quantum dots are highly configurable
systems.15,19,20

In order to obtain a good performance in a solar cell, one of
the main factors that needs to be investigated is the mechanism
for carrier transport, as it is essential to have suitable mobility
values to allow fast carrier collection, reducing recombination
processes.

In solar cells containing 2D quantum dot arrays the dominant
carrier transport mechanism is still controversial. In the past, the
authors have modelled carrier mobility as a hopping process.21–26

However, the much improved quality of recently synthesized

quantum dot superlattices could, in principle, enable the presence
of extended electronic states and the consequent formation of
energy miniband structures. A model to describe band-like
transport is therefore required, and the relation between mini-
band structure features and predicted carrier mobilities should
be investigated.27–29

A recent work assumes the mobility in a band-like transport
regime to be limited by the defects in the periodic arrangement,
mainly size variation due to size dispersion in the quantum dot
ensembles.30 Fermi’s golden rule is used to evaluate carrier
scattering rates in the motion process when an electric field is
applied. In previous works31 we have calculated mobilities in
these systems under the assumption that the array contained a
fraction of quantum dots with a single specific size smaller
than the average ensemble size. Within that approach we were
able to calculate the mobility’s temperature dependence for
different kinds of quantum dot arrays achieving good agree-
ment with experimental results.

However, that was a somewhat simplified model, as real
samples contain dots of several different sizes at the same time,
which should follow a size distribution function in the array.

In this paper we account precisely for that situation. In
Section 2 we develop the theoretical model based on the semi-
empirical pseudopotential method (to compute electronic
states in isolated quantum dots), the tight binding approach
(to solve the Schrödinger equation in the 2D array), and Fermi’s
golden rule (to compute the carrier scattering rates). In Section 3.1
we show the results obtained for a 2D square array made of
nominally 13 Å radius InSb QDs. The different sizes considered in
the sample are r = 11.94 Å and r = 11.2 Å in addition to vacancies
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(i.e., QDs with a radius of 0 Å). In Section 3.2 we present the results
of a simplified model, which results in enormous computational
time savings and, at the same time, helps better understand the
whole transport process. Later on, in Section 3.3 we use the
simplification to include in the system the Gaussian size distribu-
tion for the different-sized quantum dots. Finally results obtained
with the presented model are shown in Section 3.4 for InSb and
CdSe QD arrays. In Section 4 we summarize our conclusions.

2 Theoretical method

To obtain the mobility dependence with temperature for a
periodic lattice of quantum dots with small percentages of
different-sized QDs (henceforth referred to as ‘impurity QDs’),
the theoretical method was divided into several stages. Firstly
the semi-empirical pseudopotential method32 has been used to
calculate the isolated QD potentials (for both the ‘periodic’ and
the ‘impurity’ QDs), and to solve the Schrödinger equation to
obtain eigenvalues and eigenfunctions for states in the conduction
band of the QDs whose repetition gives rise to the periodic array.

In a second step we computed the miniband structure for
the periodic array using the tight-binding method as presented
elsewhere.33 The superlattice wave functions are Bloch functions

|qi = eiq�ruq(r) (1)

uq rð Þ ¼
X
m

X
Rn

bm;qe
iq Rn�rð Þfmðr� RnÞ; (2)

where q is a reciprocal space vector, uq(r) is the Bloch function,
Rn is the superlattice site, bm,q is the coefficient in the linear
series expansion using the isolated QD wave functions as a
basis within the tight-binding formalism, and fm(r) are these
isolated QD wave functions obtained with the semi-empirical
pseudopotential method.

For computational purposes the first Brillouin zone of the
superlattice reciprocal space is sampled by a set of Qs discrete q
vectors. As an example, Fig. 1 shows miniband structures for
two arrays studied in this work: a 2D square superlattice of InSb
dots with R = 13 Å and a 2D hexagonal superlattice of CdSe dots with
R = 19.2 Å. The effective masses around the G point in the lowest
miniband have been computed in both the systems as m* E 0.37m0

for the InSb array and m* E 0.23m0 for the CdSe array.
In a third step the impurity QDs are introduced as a

perturbation to the periodic potential, and a scattering rate is
obtained for transitions within the lowest energy miniband,
from an initial i superlattice state to a final f superlattice state,
using Fermi’s golden rule:

Gi;f ¼
2p
�h

fjDVjih ij j2rðeÞd ef � eið Þ (3)

where DV = V0 � Vd stands for the perturbed potential (V0 is the
potential of the isolated QDs whose periodicity gives rise to the
array and Vd is the impurity QD potential), ef and ei are the final
and initial carrier energies, and r(E) is the density of states per
unit of energy. In this work we studied arrays in which the QDs
are separated by one bond length, as shown in Fig. 2. For that

reason, in order not to introduce strain in the system, we
focused on impurities with a radius smaller than the periodic
QDs. Impurities with a larger radius could also be considered in
this model, without introducing strain, by considering arrays
with larger inter-dot separations. This, however, would affect
the mobility, as the latter decreases with increasing the interdot
separation. However, due to the quadratic dependence of the
scattering rate eqn (3) on the perturbed potential DV, the con-
tribution of both types of impurities (larger and smaller than the
periodic dots) would be of the same order of magnitude.

Fig. 2(a) represents the detail of the studied InSb QD array
with a missing QD (semitransparent) in its centre. In the same
figure (panels (b), (c) and (d)) we also show three representative
impurity QDs with different sizes, compared to the periodic
one, together with the potential variations (Vd � V0) due to their
presence (panels (e), (f), and (g), respectively), plotted across a
plane through the middle of the QDs. Red/violet (cyan/blue)

Fig. 1 Miniband structures of 2D QD arrays made of (a) InSb dots with R = 13 Å
and (b) CdSe dots with R = 19.2 Å. The lowest energy miniband (blue) is the one
used to compute electron transport. Energies are referred to the vacuum level.
Superlattice Brillouin zone boundaries are indicated for the sake of clarity.
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regions correspond to higher (lower) potentials, compared to
the periodic dot case. The potential of a vacancy is modelled as
the vacuum energy. Therefore the potential variation shown in
Fig. 2g is the negative of the periodic quantum dot potential.

The impurity QD scattering mechanism is an energy-
conserving process, thus ef = ei. Using these scattering rates
for a given fraction of impurity quantum dot in the array, and
within the transport model for QD arrays presented in a
previous work,31 we can compute the mobility for electrons in
the lowest energy miniband (which is the most important in
terms of population, for usual Fermi level positions in these
systems), and obtain its dependence on temperature. In parti-
cular, in this paper a Fermi energy (EF) 100 meV below the
lowest energy miniband minimum is considered, corres-
ponding to a moderate doping level. The main aim of the
present study is to include the effect of a realistic size distribu-
tion of quantum dots in the same array.

2.1 Calculation of mobility due to scattering by impurity QDs
of different sizes

The mobility tensor in a two-dimensional QD array is the
relation between the electric field and the average velocity of
the carriers as follows.

hvxi

hvyi

 !
¼

mxx mxy

myx myy

 !
Ex

Ey

 !
(4)

In order to obtain this tensor we compute successively the
average carrier velocity for two orthogonal electric fields (E1 = (E0,0)
and E2 = (0,E0)). After these two calculations the mobility tensor
in the energy interval Ei is obtained as:

m̂Ei
¼

vxðE1Þh i=E0 hvxðE2Þi=E0

hvyðE1Þi=E0 hvyðE2Þi
�
E0

 !
(5)

The average velocity can be computed as the result of a large
sequence of scattering events and carrier flights drifted by the
applied electric field. The first step in our approach requires the
calculation of the average time of flight (TOF) between scattering
events, starting from a certain initial state. Within the electron
transport formalism presented in a previous work,31 the average
TOF is obtained using Fermi’s golden rule scattering rates
obtained from the periodic potential perturbations due to the
presence of impurity QDs, htii. This is obtained from eqn (3):

GðrÞi;f ¼
2pnðrÞ

Qs�hDE
f jDV jih ij j2 (6)

where G(r)
i,f is the scattering ratio from state i to state f due to

impurity QDs of radius r, n(r) is the concentration of a particular
impurity QD in the array, Qs is the number of states taken into
account for the simulation (in this work Qs = 51 � 51), and DE is
the energy interval width of the discrete distribution in which the
miniband states are arranged, and it is related to the energy
conservation in this discrete system (in this work the lowest
miniband is divided into 100 equally spaced energy intervals,
thus DE is one hundredth of the miniband width. For com-
putational purposes all the states contained within each energy
interval are assumed to be mutually accessible via impurity QD
scattering mechanisms).

The average TOF is the inverse of the summation of the
scattering rates on the whole set of possible final states, f, and
for all the impurity QDs in the array with radius r:

htii ¼
1P

r

P
f

GðrÞi;f
(7)

In this theoretical framework the final wave vector after the
TOF, qf, is computed as:

qf ¼ qi �
eEhtii

�h
; (8)

and is univocally determined once the initial state is indicated
(in contrast, a Monte Carlo transport picture would provide a
distribution of final qf because of their stochastic nature). The
final electron velocity can be computed from

vðqfÞ ¼
1

�h
rqeðqÞ

����
qf

(9)

where e(q) is the miniband dispersion relation.
Once the calculation of the flight drifted by the electric field

has been completed, the transport model deals with the scattering
process. Several different final states could be accessible from a
particular initial state after the scattering event, all of them
contained within the same energy interval as indicated above.

Fig. 2 Schematic representation of the InSb array (a), where the impurity
location is shown as a semitransparent QD. Three impurities with different
sizes are also depicted: (b) r = 10 Å, (c) r = 6 Å and (d) vacancy (empty
space, r = 0 Å QD). The corresponding potential difference in the unit cell
between the impurity and the periodic dots, plotted across a plane through
the middle of the QDs, is represented under each impurity. The colour
scale (bottom) represents the energies in Hartrees.
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In addition, each transition has an associated probability that
takes into account all the different scattering rates considering
the distribution of impurity QDs. Within this approach the
probability of reaching a particular final state, j, from a
particular initial state, i, is computed as:

Pi;j ¼

P
r

GðrÞi;jP
r

P
i

GðrÞi;j
(10)

Once the scattering mechanism has statistically determined the
final state, a TOF takes place and a new scattering process is
considered. It is possible to chain the scattering probabilities
using the Markovian chain formalism34 by building a transition
matrix M as follows:

M ¼

P11 P21 � � � Pn1

P12 P22 � � � Pn2

..

. ..
. . .

. ..
.

P1n Pn2 � � � Pnn

0
BBBBBBB@

1
CCCCCCCA

(11)

By multiplying M by itself N times we obtain the transition
probability matrix after N scattering events. For a sufficiently
large N, lim

N!1
MN ¼W . W is a matrix having identical columns,

each element of which provides the probability pi of starting a
flight from a particular initial state i within the Markovian
process theory. This probability can be used to calculate the
average velocity in each energy interval:

hvi ¼
X
i

pivi; (12)

where vi stands for the velocity after the TOF, which implicitly
depends on the applied electric field and on the scattering rates
G(r)

i,f. It is interesting to remark that the latter quantity includes a
summation containing all the concentrations of each impurity
QD in the periodic array.

Using eqn (5) and (12) we obtain the mobility tensors for carriers
in each energy interval when the scattering processes due to the
distribution of impurity QDs are included. In transport models for
QD arrays, the scattering rates due to the presence of impurity QDs
are generally assumed to be much greater than those of other
scattering mechanisms, in particular those due to phonons.30

Nevertheless, in order to obtain a temperature-dependent mobility,
the effect of phonons in the carrier dynamics should be accounted
for. In our model phonons are responsible for the thermalization of
the electron ensemble in the miniband, i.e. causing the carrier
population following the Fermi–Dirac statistics when close to
equilibrium, and for the different population of each miniband
energy interval. Taking into consideration that the number of
electron flights in each interval is proportional to the electron
population (using the ergodicity condition) we obtain:

m̂ EF;Tð Þ ¼

P
j

nintðEjÞf Ej;EF;T
� �

m̂EjP
j

nintðEjÞf Ej;EF;T
� � (13)

where m̂(EF,T) is the ensemble mobility tensor as a function of
temperature T and Fermi level EF, nint(Ej) is the number of states
in the energy interval Ej from the reciprocal space sampling
Qs, f (Ej,EF,T) is the Fermi–Dirac statistics in the energy interval
Ej, and m̂Ej

is the mobility tensor for carriers in the energy
interval Ej.

3 Results

In this section we analyze the effect on transport of the presence
in the sample at the same time of impurity QDs of different
sizes. This results section is structured as follows: in Section 3.1
we present simulation results for a periodic array consisting of a
square two-dimensional superlattice obtained from the period-
ical repetition of InSb quantum dots with R = 13 Å separated by
one bond length. We modify the periodicity by replacing some
of these QDs by others having three different sizes: r1 = 11.94 Å,
r2 = 11.2 Å, and r3 = 0 Å (i.e., vacancies). From this analysis we
obtain an insight into details such as the relation of mobility
with impurity QD concentration and the mobilities in samples
containing impurity QDs. From this, in Section 3.2 we present a
simplified model showing the key features of the full model. In
Section 3.3 we show a procedure to study the realistic Gaussian
size distributions using this transport model. Finally in Section 3.4
we compare the results of the transport model with available
mobility experimental data in a real system, i.e., a hexagonal two-
dimensional superlattice of CdSe quantum dots with R = 19.2 Å
separated by one bond length.

3.1 InSb

We investigated electron transport in a two-dimensional super-
lattice of InSb dots, when the periodicity is broken by impurity
QDs with a single specific size, i.e., either r1 = 11.94 Å or
r2 = 11.2 Å or r3 = 0 Å (vacancies). For all of them we have
considered four different concentrations: n = 0.01, n = 0.02,
n = 0.04 and n = 0.08. The aim is to find the relation between
these perturbations acting separately and when they are mixed
in the same system. Fig. 3 shows the mobility eigenvalues in
each energy interval (eigenvalues of eqn (3)) for the three
studied impurity dots. Negative eigenvalues are obtained in
the lowest energy intervals, meaning an electron-like character
for which carrier velocity and electric field have opposite directions.
Eigenvalues change sign in the highest energy intervals, showing a
hole-like behavior. The most apparent feature of this figure is the
fact that the transport model yields eigenvalues in each energy
interval fulfilling the following relations:

mEi
/ 1

n
; (14)

highlighting that TOF is proportional to n in this transport
model as could be inferred from the above theory, but, more
interestingly, that

mðriÞEi

m
ðrjÞ
Ei

¼ constant; (15)
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where ri and rj are two sizes of impurity QDs in the array. The
above observations highlight the implicit effect of a miniband
curvature on the presented transport model. Regardless of the
impurity QD and its concentration, the miniband remains the
same, and its curvature is implicitly used in eqn (9), leading to
this model converging to Drude’s transport model when
applied to parabolic bands.

In terms of mobility values, greater mobilities are found in
systems in which the impurity QD size is closer to that of the
periodic QDs, as expected.

Fig. 4 shows the mobility as a function of temperature for a
set of studied cases where the impurity QD concentrations have
been modified using the formalism presented in the previous
section. The mobilities are a combination of the effects of each
single impurity QD concentration. The results show that the
presence of vacancies in the system is crucial to limit the mobility.

The problem of the presence of impurity QDs of several
different sizes in the same array is that the parameter space to

investigate becomes multidimensional. In this case there are
three different concentrations that could be freely modified in
order to study their effect on the mobility. We always used a low
value for the total concentration of impurity QDs in order for
both perturbation theory and Fermi’s golden rule to be applicable.
The real situation is much more complex, because there are many
different possibilities for the impurity QDs. However, the size
dispersion in experimental samples usually follows a Gaussian
distribution, characterized by only two parameters: QD mean
radius and its standard deviation. While the former is related to
the periodic array properties discussed so far, the effect of the
latter will be considered in the next section, where we develop a
simplified transport model to calculate electron mobilities
accounting for the sample standard deviation.

3.2 Simplified model

In order to simplify the model, without neglecting the greater
importance of the miniband structure of the periodic array
compared with both the radius and the concentration of the
impurity quantum dots, we will focus on eqn (14) and (15). We
define, for an impurity QD of a given size (r), the scattering rate

~GðrÞ ¼
GðrÞi;f
nðrÞ

* +
(16)

This average is performed over all the possible initial and
final states in the miniband, not only for a given energy
interval, using the scattering rates given by eqn (6). It is worth
remarking that this new quantity, defined in this manner, is an
averaged scattering rate, independent of the impurity QD
concentration. It represents the averaged scattering rate for all the
possible transitions in the unphysical situation when n = 1. As such,
it depends exclusively on the difference between the periodic
quantum dot and the particular impurity quantum dot potentials.

Theoretically it is possible to simulate the system and obtain

the mobility tensors, M̂
ðrÞ
Ei

, in each energy interval when the

scattering rate is ~GðrÞ. This result could be either obtained
straightforwardly from a simulation with n = 1 or by extrapolation
using eqn (14). Introducing the tensors in eqn (13), we finally
obtain a new tensor for each impurity QD accounting for the
effect of Fermi energy and temperature, when n = 1, which only
depends on the particular impurity quantum dot used to com-
pute the scattering rates. In order to remove this last dependence,

we define a new tensor by multiplying the latter by ~GðrÞ:

ŶðEF;TÞ ¼
~GðrÞ

P
j

nintðEjÞf Ej;EF;T
� �

M̂
ðrÞ
EiP

j

nintðEjÞf ðEj;EF;TÞ
(17)

In our line of reasoning this new tensor is not dependent on
the particular impurity quantum dot scattering rate nor on its

concentration in the array. Therefore, Ŷ(EF,T) depends only on

the array miniband structure. This would make Ŷ a tensor that
retains the whole transport model features and which is crucial
for predicting carrier mobilities for all possible sizes and

Fig. 3 Mobility eigenvalues for different impurity quantum dot concen-
trations. The vertical axis is multiplied by a different factor depending on
the particular impurity quantum dot in the sample. f = 1 for impurity
quantum dots with r = 11.94 Å; f = 1.60 for r = 11.2 Å; and f = 8.00 for
r = 0 Å (vacancies).

Fig. 4 Mobility eigenvalues vs. temperature for several sizes and concen-
trations of impurity QDs.
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concentrations of impurity QDs in the array (within the con-
straints of perturbation theory). In addition, this tensor has no
fitting parameters, once the miniband structure is obtained.
This general result could be particularized for a real system by

replacing ~GðrÞ in eqn (17) with the summation
P
r

nðrÞ~GðrÞ,

resulting in

m̂ðEF;TÞ ¼
Ŷ EF;Tð ÞP
r

nðrÞ~GðrÞ
(18)

3.3 Application to real systems

Eqn (18) is useful to understand electron transport according to
this model. The influence of miniband structure, Fermi energy
and temperature are exclusively contained in Ŷ. Its eigenvalues,
W1(EF,T) and W2(EF,T) are, therefore, of paramount importance.
Fig. 3 could be now understood as the representation of the
mobility eigenvalues, m1,2(EF,T) obtained as:

m1;2ðEF;TÞ ¼
W1;2ðEF;TÞP
r

nðrÞ~GðrÞ
(19)

As a consequence, for a given miniband structure of a given

QD array, the Ŷ tensor eigenvalues could be computed, and,
comparing them with experimental mobility values, theP
r

nðrÞ~GðrÞ could be inferred. As it has been already mentioned,

this procedure does not univocally determine the concentration
and scattering rates, as a large combination of values could
yield similar results. Nevertheless, in this section we propose a
particular application of the theoretical method to compare
with available experimental results for two-dimensional hexagonal
arrays of wurtzite CdSe QDs with R = 19 Å in a realistic way.

Experimental systems have a distribution in sizes with a
given standard deviation around the mean value of the radius.
This distribution can be described as the Gaussian, and it can
be related to the impurity QD concentration as follows:

n(r)
p e�((r�R)/s)2

(20)

where s is the standard deviation of the sample. It is our
assumption that the impurity QDs in the array have r o R,
avoiding bigger quantum dots which would result in tensions
in the structure. Considering the Gaussian size distribution,
the impurity QD concentrations fulfill:

nðriÞ

nðrjÞ
/ e�ððri�RÞ=sÞ

2

e�ððrj�RÞ=sÞ
2 (21)

Using the normalization condition
P
i

nðrÞ ¼ 1, we can write:

X
r

nðrÞ~GðrÞ ¼

P
ri

e�ððri�RÞ=sÞ
2 ~GðriÞ

1þ
P
ri

e�ððri�RÞ=sÞ2
(22)

Once the quantities ~GðriÞ have been calculated for each
impurity QD size, eqn (22) shows that s could be used as a
single fitting parameter to compare simulation with experi-
mental results.

We have computed ~GðrÞ for several impurity QDs. The results
are presented in Fig. 5 (top) for InSb. In Fig. 5 (bottom) the
same quantity is represented for a hexagonal two-dimensional
superlattice of CdSe quantum dots with R = 19.2 Å, separated by
one bond length. Fitting curves are included in the figures, which
could be used to study other size distributions in these systems.

The proposed fitting is ~GðrÞ ¼ a� ðR� rÞ2 þ b� ðR� rÞ. For
InSb a = �2.48 � 10�2 Å�2 and b = 1.041 Å�1 and for CdSe
a = 0.046 Å�2 and b = 0.0147 Å�1. This fitting is a good
approximation for quantum dot radii around R. Vacancies
(represented, in the figure, by the largest values of Dr) do not
fit this trend, but they are included for completeness.

3.4 CdSe dot arrays and comparison with experimental results

Fig. 6 compares our calculated band-like mobilities for 2D
arrays of CdSe QDs with R = 19 Å with those of experiments,35–37

and the theoretical results obtained assuming hopping-like
transport38 (the results of our theoretical model are represented
by pairs of curves corresponding to the two different eigenvalues).
The reported value for the size distribution in the experimental
samples, where available,35 is o5%. In our study the miniband-
transport mobility eigenvalues are represented for several values
of s, corresponding to 1.76% (s = 0.338), 1.79% (s = 0.344) and

Fig. 5 ~GðrÞ values vs. Dr, i.e. the difference between R, the quantum dot of
the periodic superlattice, and r, the impurity QD radius in (top) InSb and
(bottom) CdSe systems. Vacancies are represented by the largest values of
Dr. Fitting curves are also included (see text).
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1.85% (s = 0.356) standard deviation in the Gaussian size
distribution. The greater the value of s, the lower the mobility
because of the increased scattering produced when greater size
variations are considered. The theoretical model uses s as the
only fitting parameter and suitable values for the size dispersion
are found in correspondence with experimental results. The
slopes of the experimental results are in good agreement with
our theoretical model. This should be emphasized because, as
indicated in eqn (19), our calculated mobilities are obtained from
the eigenvalues W1,2(EF,T), which, in turn, are obtained from the
miniband structure. These eigenvalues are the only temperature-
dependent parameters in the model, and they are not fitting
parameters. As a consequence the similarities in the slopes of
experimental and theoretical results are more important than
they could seem at first sight, for the model validation.

For the comparison with the experimental results by Kagan’s
group,36 we report two different curves (relative to two different
values of s), as each of them fits, respectively, the lowest and
highest values for the measured mobility vs. T curve. Interestingly,
the mobility measured in saturation and linear regimes by
Talapin’s group,35 lay (up to room temperature) on the curves
corresponding to the two mobility eigenvalues calculated for the
same value of s. This is consistent with the two regimes
exhibiting different mobility eigenvalues for the same system,
in accordance with the presented model.

4 Conclusions

We presented a transport model for carriers in quantum dot arrays
in which mobility is limited by quantum dot size fluctuations. We
included the effects of temperature and position of the Fermi
level as a result of the thermalization process when close to
equilibrium. Most importantly, the model accounts for a realistic
size distribution in the array. A full model was initially developed
and applied to InSb quantum dot films, and was then simplified
to obtain considerable computational time savings, leading at the
same time to an improved understanding of the main features of

the transport mechanism in these systems. Finally the model was
applied to calculate the electron mobility in films of CdSe dots
with R = 19 Å for which experimental results are also available.
We obtain a very good agreement with experiments up to room
temperature for a theoretical size dispersion of about 2%,
consistent with the reported experimental estimate.
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