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A B S T R A C T

Digital Pathology (DP) has experienced a significant growth in recent years and has become an essential tool
for diagnosing and prognosis of tumors. The availability of Whole Slide Images (WSIs) and the implementation
of Deep Learning (DL) algorithms have paved the way for the appearance of Artificial Intelligence (AI) systems
that support the diagnosis process. These systems require extensive and varied data for their training to
be successful. However, creating labeled datasets in histopathology is laborious and time-consuming. We
have developed a crowdsourcing-multiple instance labeling/learning protocol that is applied to the creation
and use of the CR-AI4SkIN dataset.2 CR-AI4SkIN contains 271 WSIs of 7 Cutaneous Spindle Cell (CSC)
neoplasms with expert and non-expert labels at region and WSI levels. It is the first dataset of these types
of neoplasms made available. The regions selected by the experts are used to learn an automatic extractor
of Regions of Interest (ROIs) from WSIs. To produce the embedding of each WSI, the representations of
patches within the ROIs are obtained using a contrastive learning method, and then combined. Finally, they
are fed to a Gaussian process-based crowdsourcing classifier, which utilizes the noisy non-expert WSI labels.
We validate our crowdsourcing-multiple instance learning method in the CR-AI4SkIN dataset, addressing a
binary classification problem (malign vs. benign). The proposed method obtains an F1 score of 0.7911 on
the test set, outperforming three widely used aggregation methods for crowdsourcing tasks. Furthermore, our
crowdsourcing method also outperforms the supervised model with expert labels on the test set (F1-score
= 0.6035). The promising results support the proposed crowdsourcing multiple instance learning annotation
protocol. It also validates the automatic extraction of interest regions and the use of contrastive embedding
and Gaussian process classification to perform crowdsourcing classification tasks.
1. Introduction

Digital Pathology (DP) has experienced a significant growth in
recent years, becoming essential for the diagnosis and prognosis of
tumors. DP involves capturing, storing, and analyzing high-resolution
digital images of tissues, known as Whole Slide Images (WSIs). WSIs
are vital in the pathological diagnosis process because they allow
easy data sharing, storing, and analysis on the computer [1]. WSI
analysis provides pathologists with a comprehensive understanding of
the data, leading to more accurate diagnoses of tumors and various
cancer subtypes. Furthermore, the availability of WSIs has facilitated
the implementation of novel computer vision techniques based on deep
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learning, which allow the automatic identification of new biomarkers
and innovative features in the images to enhance the diagnostic pro-
cess [2]. Unfortunately, for these deep learning techniques to perform
effectively, they require large and diverse datasets [3].

Generating large-scale labeled histology datasets is a time-con
suming and error-prone task. Recently, crowdsourcing has emerged as
an appealing procedure to labeling histopathological datasets. Crowd-
sourcing distributes the effort among a large number of annotators
who may have varying degrees of expertise. In medical image-based
diagnostic studies, crowdsourcing has produced accurate results in
microtasks, e.g. nuclei detection [4] or identification of cancer cells [5].
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In more specialized tasks, e.g. tissue classification, annotators with
less expertise may introduce noisy labels [6,7]. To address this issue,
a common strategy is to aggregate the different labels to generate a
more accurate label set [8]. Then, a regular classification method can
be applied to this noise-free set of labels. However, recent research
suggests that this strategy may not be optimal, as it typically leads to
poorer performance compared to models that consider each annotator’s
confusion as part of the training process [9]. To address this issue,
several methods have been developed to learn from noisy non-expert
crowdsourcing labels, being their performance comparable to that of
supervised methods that use expert labels in histopathological tissue
classification [10–12].

Obtaining fine-grained WSI annotations through crowdsourcing re-
mains a challenging task, as it requires a significant amount of effort
and time from the annotators. They have to delineate and annotate
the structures present in the WSIs. Multiple Instance Learning (MIL)
is a promising solution to tackle the problem of detailed labeling.
MIL considers samples to be grouped in bags. Then, the labels are
collected per bag, and there is no need for (fine-grained) individual
labels. In the case of MIL in WSI analysis, a bag represents a WSI,
and the instances represent smaller regions within that slide. Therefore,
the labels are only collected at WSI level, and there is no need for
pixel or region labels, which streamlines the labeling process [13]. MIL
methods have been applied to histopathological images with promising
results [14,15].

Based on these observations, in this work, we design and develop
a crowdsourcing-MIL protocol to alleviate and distribute the burden
of WSI labeling. This protocol combines two methods, (i) MIL: the
global annotations are collected at the WSI level to alleviate the burden
of detailed labeling, and (ii) crowdsourcing: the annotation effort is
distributed among several non-expert annotators. We apply this pro-
tocol to create the CRowdsourcing - Artificial Intelligence for cutaneouS
pindle cell neoplasm hIstopathological diagNosis (CR-AI4SkIN) dataset.
R-AI4SkIN comprises 271 WSIs of Cutaneous Spindle Cell (CSC) neo-
lasms with expert and non-expert WSI annotations. To the best of our
nowledge, this is the first available dataset of CSC neoplasms and the
irst dataset of medical images with crowdsourcing-MIL annotations.
econdly, in this work we also propose a new crowdsourced classifier
or histological image analysis that utilizes these noisy global labels.
he method is named Contrastive Learning Representations-Gaussian Pro-
esses for CRowdsourcing (CLR-GPCR). It combines embedded-based MIL
nd crowdsourcing classification. We first learn to automatically select
egions of Interest (ROIs) from a reduced set of expertly annotated
SIs. Using a contrastive learning paradigm, we extract features from

he patches of those ROIs. Then, we aggregate the embeddings to obtain
global latent representation of each WSI. Finally, we utilize Gaussian
rocesses for crowdsourcing classification with this global embedding
nd the noisy global WSI labels provided by the non-experts for each
SI. The overview of our proposed method is depicted in Fig. 1.

pecifically, the main contributions of our work are:

• A new procedure for high-quality crowdsourcing dataset cre-
ation and a publicly-available histological dataset of 271 WSIs.
They correspond to seven different types of spindle cell neo-
plasms diagnosed by two expert pathologists and 10 in-training
pathologists.

• We propose CLR-GPCR, a novel formulation based on self-super
vised learning and MIL combined with crowdsourcing Gaussian
processes for the tumor classification task. We use the noisy WSI
labels provided by non-expert pathologists. To the best of our
knowledge, this is the first method that formulates and tackles
crowdsourcing with global labels.

• Comprehensive experiments demonstrate the promising perfor-
mance of our crowdsourcing method. With this method, we found
averaged improvements of nearly ∼ 9.0% in averaged F1-score
2

compared to majority voting and expert labeling.
The remainder of the paper is organized as follows. Section 2
describes the related work. Section 3 introduces and details the new
publicly available CR-AI4SkIN dataset. Section 4 details the proposed
method for crowdsourcing-MIL, named (CLR-GPCR). This section is
composed of Section 4.1, where the WSI embedding construction us-
ing self-supervised learning is explained, and Section 4.2, where the
Gaussian Process-based method is presented for crowdsourcing classi-
fication. The experiments and results, as well as a discussion of them,
are described in Section 5. Section 6 includes conclusions and future
work. Finally, Appendix includes further details on the CSC neoplasms
that compose the CR-AI4SkIN dataset.

2. Related work

2.1. Digital pathology for skin cancer

According to the World Health Organization, nearly one out of
three diagnosed cancers worldwide is a skin cancer [16]. Different
techniques, such as dermoscopic, wood lamp, CT scan and histopathol-
ogy, are utilized to diagnose this disease. However, the gold standard
for skin cancer detection is histological image analysis. Traditionally,
histological slides were viewed with a light microscope which is a
highly time-consuming task. The digitization of biopsies has created
opportunities for WSIs automated analysis using machine learning-
based methods. Applying deep-learning models to computer vision
problems shows excellent potential in skin cancer detection. However,
researches are based on the analysis of dermoscopic images [17–23]
and few studies have been focused on the analysis of WSIs [24–32].
Hekler et al. [24] used transfer learning on a pre-trained ResNet50 con-
volutional neural network (CNN) to differentiate between two classes,
benign and melanoma tissues. The main limitation of this work is
that they cannot analyze entire WSIs but only a characteristic tumor
sub-region. In De Logu et al. [25], a pre-trained Inception-ResNet-
v2 network was then used to distinguish cutaneous melanoma areas
from healthy tissues. In [26], authors developed a deep learning sys-
tem to automatically detect malignant melanoma in the eyelid from
histopathological sections. The authors used the VGG16 model to assign
patch-level classification. The patches were embedded back into each
WSI using the malignant probability from the CNN to generate a
visualization heatmap. They utilized a random forest model to establish
a WSI-level diagnosis between malignant and benign samples. Current
methods based on MIL have been successfully applied to basal carci-
noma (BCC) [29] or melanoma [27,28], reducing the time required
to perform precise annotations. However, many types of challenging
skin cancer have not been explored yet. These include CSC neoplasms,
predominantly composed of spindle-shaped neoplastic cells arranged in
sheets and fascicles [33]. CSC neoplasms are complex to diagnose due
to the considerable morphological overlap between the different tumor
types that compose this group [34], which poses a particular problem
for less experienced pathologists. To the best of our knowledge, there
only can be found one study in which deep learning techniques have
been applied to automatically analyze this type of lesion [35]. In
this case, techniques based on self-training were used to detect tumor
regions. In line with that study, in this paper, we develop the first
deep learning-based classifier to identify the malignancy or benignity
of different types of CSC lesions.

2.2. Multiple instance learning in digital pathology

In the MIL framework, instances are grouped in bags and the only
available labels are at the bag level. The standard MIL assumption
considers that a bag is labeled as positive if, at least, one instance
belongs to the positive class. Among other tasks, it has been used
to detect breast cancer [36] and to grade local patterns in prostate
cancer [37]. This assumption makes sense when the labels at the

pixel/region label directly affect the WSI label. However, in some cases,
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Fig. 1. Overview of the proposed CLR-GPCR model. In this work, we address (weakly supervised) histology image classification on skin WSIs using noisy global labels provided
by several non-expert annotators. Our method consists of two steps: (1) self-supervised feature extraction based on Contrastive Learning detailed in Section 4.1; (2) Crowdsourcing
classification using Gaussian processes, explained in Section 4.2.
it might be not true. Regarding CSC neoplasms, the WSI outcome is
a combination of features among the different patches [27], which
is called the bag-embedding MIL [15]. The most common technique
is to obtain the bag-level representation by instance-level aggrega-
tion of features extracted from each instance by a CNN backbone.
The feature extraction is frequently performed with pretrained net-
works [38], transfer learning [39], and more interestingly, following
a contrastive learning method [40]. The contrastive learning repre-
sentations do not need instance features, being useful to obtain bag
descriptors. It is a self-supervised method, imposing similarity among
analogous patches (from the same WSI) by means of a contrastive
loss [41]. Then, the aggregation of the patch features results in the bag
embedding. The most straightforward and non-trainable aggregation
techniques are batch global average (BGAP) [42] and batch global max
pooling (BGMP) [36]. Other aggregation techniques include trainable
parameters, such as weighted embeddings based on attention [43] or
recurrent neural networks (RNN) [14]. Recently, authors in [44] pro-
posed a Transformed based correlated MIL (TransMIL) that considers
the morphological and spatial correlation between instances.

2.3. Crowdsourcing in digital pathology

The concept of learning from crowds was first introduced in the
biomedical domain in 2016 [45]. The authors involved non-experts in
an online system to label mitosis in breast cancer histological images.
They adapted a CNN to learn from noisy observations. Since then, more
sophisticated crowdsourcing labeling strategies have been developed
for more complex tasks. Amgad et al. [6] labeled a triple negative breast
cancer dataset with a panel composed of twenty medical students, three
junior pathologists, and two senior pathologists. They designed a struc-
tured protocol where medical students segmented most of the WSIs.
Junior and senior pathologists annotated the most challenging ones.
In this protocol, medical students and junior pathologists obtained
feedback and reviews from senior pathologists. Later, the same authors
in [7] further annotated these images for nuclei classification. The
protocol was similar and employed a collaborative effort of the different
3

participants. They also utilized non-supervised segmentation methods
and region labels to suggest delineations with associated classes.

Other recent works avoided label curation and directly utilized the
crowdsourcing labels. The most straightforward way to utilize these
noisy labels is to aggregate them by Majority Voting. More elaborated
methods considered the biases of the different annotators, yielding a
better-calibrated set of training labels, see [8,46–49]. The quality of the
labels can be further improved by considering correlations with related
samples, i.e., their nearest neighbors [50,51]. However, a recent work
found that when labels from multiple annotators are available, methods
that model observer confusion as part of the training process generally
perform better than methods that aggregate the labels in a separate step
prior to training [9]. In this vein, Nir et al. [10] used the Gleason2019
challenge 3 data to exploit the multiple opinions for Gleason grading.
The authors jointly estimated a latent classifier (logistic regression) and
the reliability of each participant during the learning process. They
obtained an overall agreement with the pathologists consistent with the
agreement levels reported in the literature. Following a similar method,
López-Pérez et al. [11] applied crowdsourcing Gaussian Processes (GP)
to breast cancer images labeled by several medical students. Crowd-
sourcing GPs trained with noisy labels were competitive with the ones
trained with expert labels. They automatically estimated the reliability
of each participant and a latent GP classifier for predicting the actual
class.

These results suggested the feasibility of using data labeled by non-
experts without the need for expert review to feed machine learning
systems. Following this strategy, we propose a crowdsourcing method
for CSC neoplasm classification under a multiple instance learning
paradigm using WSI labels. To the best of our knowledge, this work
is the first on crowdsourcing classification with (global) WSI labels in
general and specifically applied and studied in CSC neoplasm classifi-
cation.

3 https://gleason2019.grand-challenge.org/

https://gleason2019.grand-challenge.org/
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3. CR-AI4SkIN: Data acquisition and annotation protocol

3.1. Dataset description

For this study, we used a scaled-down version of the CR-AI4SkIN
dataset consisting of WSIs provided by the University Clinic Hospital
of Valencia (HCUV) and San Cecilio University Hospital in Granada
(HUSC) of skin tissue biopsies containing CSC neoplasms. A complete
description of the CR-AI4SkIN dataset is included in Appendix. For
the purpose of this study, 227 images were used. In total, 123 were
diagnosed as benign and 104 as malignant.

3.2. Methodology Part 1: Extraction of expert and automatically selected
ROIs

Since WSIs are high-resolution images, not all the information is
relevant for the final diagnosis. Aiming at pre-processing the biopsies
and reducing the noisy patches, a mask indicating the presence of tissue
in the patches was obtained by applying the Otsu threshold method
over the magenta channel. Subsequently, the patches with less than
20% of tissue were excluded from the dataset. Additionally, expert
pathologists annotated the regions of interest (ROIs), i.e. the tumoral
areas that have a clinical impact on the outcome, in 15% of the slides
using in-house software based on the OpenSeadragon library [52].
These expert annotations were then used to train an automatic ROI pre-
diction algorithm, designed as a teacher–student network and trained
on a few WSIs labeled by the expert pathologists. For further details of
the methodology employed, see [35]. Note that in this case, 10% was
used to train the ROI extraction method and the rest to validate the
automatic ROI extraction process. Finally, all WSIs in the database were
automatically analyzed by the ROI prediction algorithm, obtaining the
ROIs of each WSI. The final dataset is composed of 512 × 512 patches
(with 50% of overlap) from the ROIs at a magnification of 10×.

The purpose of the ROI extraction was twofold. First, it aimed at
uiding non-expert participants through the labeling process. Second,
ince the images did not fit in computer memory, only the ROIs were
assed to the classification method.

.3. Methodology Part 2: Non-expert annotation protocol

Ten non-expert pathologists participated in the annotation of the
hole dataset: four resident pathologists from HCUV and six from
USC. 70% of non-expert pathologists were in their third and fourth
ear of residency, while the remaining 30% were first and second-year
edical residents. We designed the following annotation protocol for

he annotation process. First, to simplify the task of analyzing WSIs for
on-expert participants, we provided them with the ROI generated by
he automatic algorithm trained on expert annotations, see Section 3.2.
uring the examination of the WSIs, the non-experts performed two

asks: (i) first, they indicated whether they agreed with the ROI propos-
ls or wished to manually annotate additional regions. If they disagreed
ith every ROI proposal, they were compelled to manually delineate at

east one ROI. An ROI proposed by the model is correct if at least 50%
f the area contains tumoral tissue; (ii) secondly, they also assigned a
lobal label to the WSI from the set of the seven classes.

To mitigate individual biases and test the concordance among an-
otators, from the 271 WSIs that compose the CR-AI4SkIN dataset,
e gathered 106 of them, referred to as the ‘‘dense set’’, that were
nnotated by all non-expert participants. The remaining images were
nly annotated by a subset of non-expert pathologists. Table 1 displays
he images annotated by each non-expert pathologist for training,
alidation, and testing of the models. To ensure fair comparisons, the
alidation and test images were chosen from the dense set.
4

Table 1
Number of images used for training, validating, and testing the models of each non-
expert annotator. Note that for the validation and test set, the same samples labeled
by all non-experts were used.

1 2 3 4 5 6 7 8 9 10

Train 148 142 151 143 154 145 155 149 152 150

Val 22

Test 44

4. Classification framework for multiple instance learning with
crowdsourcing labels

In our medical problem, we observe the training data  = {(𝐗𝑏, 𝐲𝑎𝑏 ) ∶
𝑏 = 1,… , 𝐵; 𝑎 ∈ 𝐴𝑏}, where 𝐗𝑏 is the 𝑏th WSI and 𝐲𝑎𝑏 is the label
provided by the 𝑎th non-expert annotator for the 𝑏th WSI. There are
𝐴 different annotators and we note by 𝐴𝑏 the set of annotators who
provided a label to the 𝑏th WSI. In this work, we address a binary
classification problem. For this purpose, we group the malignant and
the benign classes. We left out from this study the afx lesions as the
distinction between benign and malignant is unclear. The WSI labels
for each annotator are 𝐲𝑎𝑏 ∈ {0, 1}, denoting 1 the positive (malign)
class. Under the MIL paradigm, each WSI is a bag composed of patches,
i.e., 𝐗𝑏 = {𝐱𝑖|𝑖 ∈ bag 𝑏}. These patches do not have an associated
label that could determine the WSI label, but rather the combination
of features of the different patches determines the label of the WSI.
In this case, we aim to train a model capable of predicting bag-level
labels using a combination of features extracted at the instance level.
This learning strategy falls under the embedding-based MIL paradigm.4
The following sections explain the feature extraction process to obtain
bag embeddings and the crowdsourcing classifier.

4.1. Self-supervised feature extraction: SimCLR

To obtain a low-dimensional representation for each instance from
the predicted ROIs (see Section 3.1), we use a self-supervised method.
Typically, self-supervised methods are trained so that similar images
have embeddings that are close and dissimilar images have embeddings
far away from each other. More concretely, we have chosen to use
the SimCLR method [41]. Under this framework, the notion of simi-
larity is built around a set of predefined transformations  . These are
commonly augmentation transformations, e.g., rotations, translations,
etc. Then, two images are considered similar if there exists a transfor-
mation 𝑡 ∈  that converts one into another. To learn the weights,
SimCLR utilizes the normalized temperature-scaled cross-entropy loss
(NT-Xent) [53–55] defined as follows:

𝓁𝑖,𝑗 = − log
exp(sim(𝐡𝑖,𝐡𝑗 )∕𝜏)

∑2𝑆
𝑘=1 1𝑘≠𝑖 exp(sim(𝐡𝑖,𝐡𝑘)∕𝜏)

(1)

where (𝐡𝑖,𝐡𝑗 ) are the embeddings (i.e., the output of the encoder
network) of two augmented patches (�̃�𝑖, �̃�′𝑖 ) from the same patch 𝐱𝑖 ∈ 𝑏.
ach augmented patch is obtained by applying a different augmen-
ation 𝑡, 𝑡′ ∈  so that 𝐡𝑖 = 𝑔𝜱(�̃�𝑖) = 𝑔𝜱(𝑡(𝐱)) and 𝐡𝑗 = 𝑔𝜱(�̃�′𝑖 ) =
𝜱(𝑡′(𝐱)). In total, 𝑆 different patches are selected, being 𝑆 the batch
ize. 𝜏 is the temperature that controls how smooth the function is and
im ∶ R𝑛 × R𝑛 → R is any similarity function between vectors. We
se the cosine similarity function, which is normally used [40,41]. The
ther embeddings 𝐡𝑘 correspond to augmentations of other images in
he batch, that is, they are dissimilar samples. This loss function (𝑙𝑖,𝑗)
s low if the similar pair has resembling embeddings, however, the
esemblance of 𝐡𝑖 with respect to other dissimilar samples in the batch
s taken into account in the denominator. This way 𝐡𝑖 not only must be
lose to 𝐡𝑗 but also far from the other 𝐡𝑘.

4 Based on the denomination proposed in [43].
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Fig. 2. Probabilistic graphical model of our CLR-GPCR model. Dark circles stand for
observed variables, while light circles stand for latent variables. We project the patches
𝐱𝑖 onto a latent embedding space to obtain their low-dimensional representations 𝐡𝑖,
sing a neural network parametrized by the set of weights 𝜱 with contrastive learning.
hen, the low-dimensional representations are aggregated using the average to obtain
global embedding of the whole ROI, �̂�𝑏. Gaussian Processes for Crowdsourcing model

he latent real label of the ROIs, 𝐳𝑏. Then, the observed (noisy) labels 𝐲𝑎𝑏 are obtained
sing the latent real 𝐳𝑏 and the reliability matrix 𝐑𝑎 for each annotator. We introduce
he sparse approximation for inference, i.e., we summarize the GP with a set of 𝑀
nducing points 𝐮𝑚 with inducing locations �̃�𝑚.

Once we have obtained a feature descriptor for each patch of the re-
ion of interest, we aggregate them using the average. If we have a bag
f patches {𝐱𝑖}

𝑁𝑏
𝑖=1, then the embedding of the bag is �̂�𝑏 =

1
𝑁𝑏

∑𝑁𝑏
𝑖=1 𝑔𝜱(𝐱𝑖).

here 𝑔𝜱 is the nonlinear projection learned by minimizing the loss
efined in Eq. (1).

.2. Crowdsourcing classification: Sparse Gaussian processes

SVGPCR predicts the observed noisy WSI label 𝐲𝑎𝑏 for each WSI
mbedding �̂�𝑏 using a (latent) Gaussian Process (GP) 𝐟 and a global
eliability matrix {𝐑𝑎}𝐴𝑎=1 for each non-expert annotator. The reliability
atrix of each annotator is governed by two parameters {𝛼𝑎, 𝛽𝑎}. This
atrix is expressed as follows:

𝑎 =
(

𝛼𝑎 1 − 𝛽𝑎
1 − 𝛼𝑎 𝛽𝑎

)

(2)

here the parameters are the specificity and sensitivity of each anno-
ator, i.e., p(𝑦𝑎𝑏 = 0|𝑧𝑏 = 0) = 𝛼𝑎 and p(𝑦𝑎𝑏 = 1|𝑧𝑏 = 1) = 𝛽𝑎. Then, the
robability of the observed (noisy) label for each non-expert annotator
s given by the following Bernoulli distribution:

(𝑦𝑎𝑏|𝑧𝑏,𝐑
𝑎) =

𝐴
∏

𝑎=1

[

𝛼
𝑦𝑎𝑏
𝑎 (1 − 𝛼𝑎)

1−𝑦𝑎𝑏
]𝑧𝑏

∗
[

𝛽
1−𝑦𝑎𝑏
𝑎 (1 − 𝛽𝑎)

𝑦𝑎𝑏
]1−𝑧𝑏

(3)

e assume that the annotators label the different samples indepen-
ently,

(𝐲|𝐳,𝐑) =
𝐵
∏

𝑏=1

∏

𝑎∈𝐴𝑛

p(𝑦𝑎𝑏|𝑧𝑏,𝐑
𝑎). (4)

he prior distribution for the annotator behavior is modeled with a
eta distribution on the parameters 𝛼 and 𝛽 which is conjugated with
he Bernoulli distribution of Eq. (3). This prior distribution introduces
he prior beliefs on the annotators’ expertise. In this work, we use
non-informative prior since this information is unavailable. Finally,

he latent (real) label 𝐳 is estimated using a latent variable, 𝐟 . The
ikelihood p(𝐳|𝐟 ) model for this problem is a Bernoulli distribution,
hose parameter is obtained by applying a sigmoid function to 𝐟 .
VGPCR imposes a GP prior on 𝐟 , i.e., 𝐟 |�̂� follows a multivariate
aussian distribution.

SVGPCR also introduces 𝑀 inducing points for scalability {𝐮𝑚}𝑀𝑚=1,
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hich summarizes the information of the GP 𝐟 . These inducing points
re the realizations of the GP in the inducing locations {�̃�𝑚}𝑀𝑚=1, i.e., 𝐮 =
(�̃�). The probabilistic model is given by

(𝐲, 𝐳, 𝐟 ,𝐮,𝐑|𝜣) = p(𝐲|𝐳,𝐑)p(𝐑)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

CR modeling

p(𝐳|𝐟 )
⏟⏟⏟

GP likelihood

p(𝐟 |𝐮,𝜣)p(𝐮|𝜣)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

GP prior

. (5)

An overview of the graphical probabilistic model is depicted in
ig. 2. The goal here is to obtain the posterior p(𝐳, 𝐟 ,𝐮,𝐑|𝐲,𝜣). To fulfill

this, we perform stochastic variational inference [56]. We aim to find
an approximate posterior q(𝐳, 𝐟 ,𝐮,𝐑) by maximizing the Evidence Lower
BOund (ELBO), see [57] for further details on the inference process.

Once we learn the posterior distribution q, we predict new WSIs
with the following process. First, we extract features using the fine-
tuned neural network (detailed in Section 4.1) and aggregate them
using the average pooling to obtain a global vector for this new WSI,
𝐡∗. Then, we use the trained SVGPCR model on these features, �̂�∗,
to predict p(𝑧∗) via Monte Carlo sampling. The whole training and
inference procedures are summarized in Algorithm 1 and 2.

Algorithm 1: CLR-GPCR High-level description of the training
loop
Data: A set of WSIs with crowdsourced labels
Result: A trained encoder network 𝜱 and SVGP for WSI

classification
Initialize encoder network 𝜱
Initialize temperature 𝜏
dataset ← All the images (without labels)
for epoch in range(num_epochs) do

for batch in DataLoader(dataset) do
images ← augment(batch)
embeddings ← 𝜱(images)
loss ← NT-XENT(embeddings, 𝜏)
update_parameters(loss, 𝜱)

embeddings ← 𝜱(dataset)
dataset ← aggregate_by_patient(embeddings) ∪ crowdsourced
labels

Initialize SVGP
for epoch in range(num_epochs) do

likelihood ← compute_likelihood(dataset, SVGP)
update_parameters(likelihood, SVGP)

Algorithm 2: CLR-GPCR High-level description of one inference
step
Data: A batch of WSIs, a trained encoder network 𝜱 and a

trained SVGP
Result: The probabilities of each WSI of being malignant
predictions ← ∅
for WSI in batch do

patches ← extract_patches(WSI)
embeddings ← 𝜱(patches)
global_embedding ← average(embeddings)
mean, variance ← SVGP(global_embedding)
predictions ← predictions ∪ mean

5. Experiments and results

5.1. Implementation

(1) Dataset (CR-AI4SKIN): We used the binary version of the CR-
AI4SKIN database described in Section 3 to assess the efficacy of our
proposed crowdsourcing-MIL method (CLR-GPCR). The dataset was
divided into three splits (training, validation and testing) containing
70%, 10% and 20% of the global dataset, respectively. Several slides
can belong to the same patient. We ensured a strict separation of
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Fig. 3. Kappa values for agreement among annotators. (a) The kappa values for each pair of non-expert annotations; (b) the kappa value for each non-expert annotator and either
the expert annotation or the MV.
Table 2
Number of images used for training, validating and testing the models. B: benign
lesions; M: malignant lesion; MV: majority voting of labels provided by non-experts; %
Dis: % discrepancy between expert pathologists and majority voting of non-experts.

Experts MV % Dis

B M B M

Train 95 55 107 44 12%
Val 9 13 16 6 31.81%
Test 19 25 26 18 15.90%

patients among the three sets. Table 2 displays the difference in labeling
provided by experts and the majority vote (MV) of non-experts for the
training, validation and test sets in terms of accuracy. Additionally,
we report the kappa agreement value for the non-expert annotators.
The kappa value ranges between −1 and 1, where −1 represents
total disagreement, 0 represents randomness, and 1 represents total
agreement. The kappa is an insightful metric to assess agreement
among annotators as it considers the possibility of concurrence due
to randomness. We calculate this metric for the test images, which all
participants annotated, and these values are displayed in Fig. 3. The
non-expert annotators show a low-moderate level of agreement among
them, as shown in Fig. 3(a). While some pairs exhibit strong agreement
with values over 0.8, others show weak agreement with values near
0.5. Furthermore, the annotators tend to agree more frequently with
the MV labeling than with the expert labeling, recall Fig. 3(b). While
some have a strong agreement with the expert labeling, others display a
weak agreement. From this figure, we can conclude that the annotators
have varying levels of expertise.

(2) Model hyperparameters: CLR-GPCR consists of two modules:
a self-supervised feature extractor pretrained with all the images (Sim-
CLR) and a Gaussian process-based classifier using crowdsourcing la-
bels (SVGPCR). We used RESNET18 with an output dimension of
256 features as the backbone for the feature extractor. Note that the
inputs for the feature extractor are the ROIs extracted from each WSI
automatically by the ROI prediction algorithm [35]. We optimized
the feature extractor with Adam, a learning rate of 10−5 and weight
decay of 10−6, which remained fixed for all experiments. Additionally,
we used the cosine similarity with a temperature value of 0.5 in
the loss function. In the case of the Gaussian process classifier, the
only fixed hyperparameter was the Adam optimizer. The remaining
hyperparameters were tuned using the validation set, i.e., the learning
rate and the number of inducing points. The number of epochs was
adapted to the experiment performed. Regarding the labels used for
the training, we consider three different:

• Expert labels. They are the labels provided by expert pathologists.
They are considered the ground truth for this task. These labels
may also contain some noise due to the high inherent subjectivity
in this field.
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• Aggregated labels. They are the result of combining non-expert
annotations. In this work, we employ three distinct methods:
Majority Voting, Dawid–Skene [46] and MACE [47]. Majority
Voting offers a simple aggregation method that does not consider
annotators’ biases. In contrast, Dawid–Skene explicitly computes
and integrates annotators’ biases using confusion matrices, similar
to our method. MACE adopts a distinctive approach by utiliz-
ing annotators’ biases selectively, particularly when detecting
potential spamming behavior. Furthermore, MACE assumes that
annotators’ biases remain consistent across instances, regardless
of the true underlying labels.

• Crowdsourcing labels. They are the noisy labels the non-expert
annotators provide without any aggregation or processing. Our
proposed CLR-GPCR uses these labels.

(3) Evaluation: The quantitative comparison of the different
methodologies was handled using different figures of merit for binary
classification, such as accuracy (ACC), F1-score (F1S), and area under
ROC Curve (AUC). Note that in the different experiments carried out,
these metrics represent the average of 10 executions to obtain more
precise estimations. Results for each model were presented based on
the type of label used during training, and expert labels were always
used for evaluation.

5.2. Ablation experiments

(1) The role of SimCLR: This section examines the self-supervised
feature extraction process. The great advantage of this procedure is
that it does not need labels. Three configurations for feature extraction
using a RESNET18 [58] as the backbone were analyzed, and their
performance was evaluated based on how well the subsequent classifi-
cation model performed. The first configuration utilized the pre-trained
weights reported by Bin Li et al. [40] for WSI lung tumor detection.
The other two configurations obtained the weights through fine-tuning
the SimCLR framework [41] on our data. Since SimCLR is known to be
sensitive to batch size [40,41], two models were trained with batch
sizes of 256 and 512. To compare the performance of the different
feature extractors, we used SVGPCR classifier first proposed in [57].
Fig. 4 depicts the results of the three configurations. Note that SVGPCR
was trained using noisy annotations from each non-expert annotator.

The model that was trained using a batch size of 256 consistently
performed better. Due to these findings, we used a batch size of 256
for further experiments. Additionally, these results demonstrate the ef-
fectiveness of retraining the feature extractor on our dataset compared
to simply using a network pre-trained on an external dataset. From this
section, we evaluate the global descriptor from the WSIs (in this case,
from their ROIs). This global descriptor does not depend on labels but
only visual features.
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Fig. 4. Influence of the SimCLR feature extractor on the classification stage. Metrics are averaged across ten trials. Each chart represents the result given a different backbone,
where BS refers to the batch size employed when fine-tuning. The pre-trained model is obtained from [41]. The values correspond to the combination of hyperparameters that
performed best in the validation set.
(2) Crowdsourcing study: The performance of the Sparse Gaussian
Processes model is largely influenced by two hyperparameters: the
learning rate and the number of inducing points. To study the effect of
the learning rate, we performed a grid search using 4 different learning
rates (10−4, 10−3, 10−2 and 10−1) with 4 different numbers of inducing
points (16, 32, 64, and 128). We evaluated each combination using the
same 3 binary classification metrics as in the previous section (F1 Score,
Accuracy and ROC AUC). The results are displayed in Fig. 5 with the
learning rate on the X-axis, separated by the number of inducing points.
It can be seen that a low learning rate results in poorer performance
compared to higher values. If the learning rate is too low, the model
can fail to converge. This is why using a learning rate of 10−4 or
10−3 yields worse results. For larger values, the model does converge.
It was observed that a learning rate of 10−2 allows the model to
generalize better when different inducing points are established. For
this reason, we set the value of the learning rate to 10−2 for the rest of
the experiments.

In Fig. 6, we examine the influence of inducing points while keeping
the learning rate fixed at 10−2. Since we have a limited number of
samples, we only use up to 128 inducing points. Although this hyperpa-
rameter affects the model’s performance, its impact is not as significant
as that of the learning rate. As shown in Fig. 6, increasing the number
of inducing points appears to worsen the results of our method. A small
number of inducing points seem to improve the performance because
it summarizes well the information and generalize better. Based on this
information, we conclude that the optimal number of inducing points
is 32.

5.3. Results

After performing the ablation study, we concluded that the best
result was obtained by retraining the SimCLR method with a batch
size of 256. For our classification method, the optimal hyperparameter
values were a learning rate of 0.01 and a number of inducing points
of 32. We compare our crowdsourcing method with the same classifier
trained with aggregated labels. We use three different aggregation
methods: Majority Voting, Dawid–Skene [46] and MACE [47]. We also
train the classifier with expert labels. Results are presented in Table 3.

Our proposed CLR-GPCR outperforms all the aggregation methods,
justifying the use of all the labels during classifier learning and not only
an aggregation of them. Furthermore, the remarkable performance of
our method and Dawid–Skene highlight the importance of explicitly
modeling the bias of each annotator (as highlights in Table 2).
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Table 3
Different metrics on the test set of the same model trained with five different types of
labels: expert, majority voting, David Skene and MACE aggregations of the non-expert
annotators, and the crowdsourcing method, which uses all the labels of the non-expert
annotators (without previous aggregation). Metrics are averaged across ten trials.

F1 Score Accuracy ROC AUC

Expert labels 0.6035 ± 0.0451 0.5721 ± 0.0326 0.5629 ± 0.0544
Majority Voting 0.7200 ± 0.0254 0.7186 ± 0.0240 0.7764 ± 0.0286
David Skene [46] 0.7734 ± 0.0141 0.7767 ± 0.0114 0.8873 ± 0.0072
MACE [47] 0.6797 ± 0.0667 0.6837 ± 0.0532 0.7222 ± 0.0704
CLR-GPCR 0.7911 ± 0.0177 0.7884 ± 0.0138 0.9007 ± 0.0063

Furthermore, our method also improves over the expert labels by
a relative improvement of 31%. Since histopathological analysis is an
error-prone task, we can benefit from a larger number of annotators.
A sufficiently large number of annotators may reduce the variance
in the labels. In this work, we built the dataset with 10 in-training
pathologists, we can suppose that the majority might be right in most
cases. For example, when one is wrong or is prone to make more
mistakes, we can rely on the rest. A single mistake should not ruin
or introduce a source of sensible noise to the classifier. Although the
expert labels are considered the ground truth for this data, our method
leverages crowdsourcing labels provided by non-experts.

5.4. Computational cost

Our method CLR-GPCR is scalable on the WSI size. The complexity
of the encoder network (i.e., a convolutional network) scales linear,
and SVGP yields a computational cost of (𝑀2𝑁𝑠) where 𝑀 is the
number of inducing points and 𝑁𝑠 is the batch size [56]. Notice that the
number of inducing points and batch size remain constant regardless of
the volume of data.

The most time-consuming aspect of the training process was the
SimCLR method. The model trained with a batch size of 256 took
1.73 days to complete using two GPUs (NVIDIA TITAN X and NVIDIA
GeForce RTX 2080 Ti). The model with a batch size of 512 required
more memory and time, taking 5.13 days to be trained using two
NVIDIA GeForce RTX 3090 GPUs.

In comparison, training the Gaussian processes was significantly
faster. Each model only took a few minutes to fit the data. To conduct
the hyperparameter study, we ran each model several times, consuming
a total of approximately 4 h and 30 min of computation on the CPU and
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Fig. 5. Each line chart represents the performance of the models trained with different labels and different learning rates but fixing the number of inducing points. Each experiment
was repeated 10 times to estimate the mean value and the confidence interval.
Fig. 6. Comparison of the performance for different values of inducing points fixing the value of the learning rate.
Fig. A.7. Histological features of CSC neoplasms. (a) Leiomyoma, (b) leiomyosarcoma, (c) dermatofibroma, (d) dermatofibrosarcoma, (e) spindle cell melanoma, (f) atypical
fibroxanthoma and (g) squamous cell carcinoma.
1 h and 30 min on the GPU. CLR-GPCR was trained on a single GPU,
NVIDIA GeForce GTX 980 Ti.

The inference time is notably short. The neural network employed
to extract embeddings has 11,560,896 parameters, and it takes 5.62 ms
±1.07 ms to process one patch with a MacBook Pro M1 Max. The
Gaussian process contains just 51,402 parameters and is even more
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efficient, requiring only 223 μs ±1.5 μs to classify one WSI with a
MacBook Pro M1 Max.

6. Conclusion and future work

This paper introduces CR-AI4SkIN, a new dataset of 271 WSIs con-
taining seven different types of spindle cell neoplasms. We design an
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Table A.4
Histological features of spindle cell neoplasms in the dataset.

Tumor type Benignity Malignancy

Origin tumor Significant patterns Name Features Name Features

Smooth muscle cells Spindle cells with eosinophilic
cytoplasm
Elongated nuclei ( pure form)

Leiomyoma No mitosis (exceptional)
No frequent atypia

Leiomyosarcoma Mitoses always present
Nuclear atypia

Connective tissue cells Spindle cells with a swirling
or storiform pattern

Dermatofibroma May have mitosis
Multinucleated cells
Epidermal ridges

Dermatofibrosarcoma Few but present mitoses
No multinucleated cells
Epidermis more flattened

Melanocytic cells Spindle cell fascicles – – Spindle cell melanoma Mitoses ≥ 2/mm2
Significant atypia

Squamous cells Spindle cell fascicles with
variable cohesiveness

– – squamous cell carcinoma Mitosis
Nuclear atypia

Fibroblasts Spindle-shaped, histiocytoid
and multinucleated cells

– – Atypical fibroxanthomaa Solar elastosis
Multinucleated cells
Atypical mitoses

a For this type, the borderline between benignity and malignancy is not obvious.
Table A.5
Dataset distribution. DSV: dataset from Valencia; DSG: dataset from Granada.
Lm:leiomyomas; lms: leiomyosarcomas; df:dermatofibromas; dfs: dermatofibrosarcomas;
scm: spindle cell melanomas; afx: fibroxanthomas; scc: squamous cell carcinoma.

lm lms df dfs scm afx scc Total

DSV 28 19 52 11 32 28 10 180

DSG 27 9 16 7 6 26 – 91

Total 55 28 68 28 38 44 10 271

annotation protocol, combining expert and non-expert annotations with
global WSI labels. We develop an automatic ROI extraction algorithm
with a few expert annotations to discard irrelevant tissue and non-
tumoral areas. These ROIs were shown to the non-expert participants to
facilitate the labeling, and we only passed the ROIs to the classification
method (to avoid memory issues). Our protocol scales and speeds
up the labeling process by distributing and alleviating the annotation
burden. To the best of our knowledge, this is the first dataset com-
bining non-expert annotations (crowdsourcing) with global WSI labels
(Multiple Instance Learning).

We propose and validate a Crowdsourcing-MIL method called CLR-
GPCR for WSI classification. We perform the classification in two
stages. First, we use self-supervised learning to obtain WSI representa-
tions. Second, we use crowdsourcing Gaussian Processes to classify the
WSIs with crowdsourcing labels. Our approach leverages the developed
annotation protocol and only requires global WSI labels provided by
multiple noisy annotators.

Experimental results show the effectiveness of the proposed method
and annotation protocol in distinguishing between malign and benign.
Our method obtains satisfying results and outperforms the widely used
Majority Voting in crowdsourcing. Our method, with non-expert labels,
also outperforms the supervised method trained with single expert
labels.

Future work will address the multiclass classification of the seven
types of CSC neoplasms. We further improve the modeling for the
annotators’ behavior in this task, e.g., by considering the years of
experience. Since we perform the classification in two independent
stages, we will further investigate how to optimize the crowdsourcing
and MIL parts end-to-end.
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Appendix. CR-AI4SKIN database description

A.1. Medical background

The CSC neoplasms are predominantly composed of spindle-shaped
neoplastic cells arranged in sheets and fascicles [33]. Cutaneous spindle
cell neoplasms are relatively common. For example, cutaneous squa-
mous cell carcinoma is the second most common epidermal cancer
representing 20% to 50% of skin cancers and spindle cell melanoma
contributes 3% to 14% of all melanoma cases [59]. The most com-
mon neoplasms in this group are: leiomyomas (lm), leiomyosarcomas
(lms), dermatofibromas (df), dermatofibrosarcomas (dfs), spindle cell
melanomas (scm), atypical fibroxanthomas (afx) and squamous cell
carcinoma (scc), see Fig. A.7 for some visual examples.

CSC neoplasms are challenging to diagnose due to the considerable
morphological overlap between the different tumor types that fall
under this category [34], which constitutes a particularly challeng-
ing problem for less experienced pathologists. Table A.4 displays the
patterns and features that distinguish the different types of spindle
cell neoplasms from one another. It is important to evaluate the fol-
lowing histological features to accurately classify these neoplasms: (1)
architectural (growth) pattern of the tumor, (2) overall cellularity, (3)
appearance of cells, (4) amount and type of matrix formation, (5) tu-
mor and adjacent tissue interfaces, (6) vascularity, (7) tumor necrosis,
and (8) mitotic activity [34]. At low resolution, preserving normal
architecture, zonation, lesional symmetry, and overall cellularity aid to
differentiate between benign and malignant tumors. At high magnifica-
tion, atypical mitoses and nuclear atypia are more often associated with
malignancy. In this difficult scenario, a specific immunohistochemical
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panel is often needed to evaluate and classify cutaneous spindle cell
neoplasms. However, immunohistochemical analysis is expensive, and
the observations must be carefully interpreted in context with other
findings.

A.2. Data summary

CR-AI4SkIN consists of two datasets from the University Clinic
Hospital of Valencia (HCUV) and San Cecilio University Hospital in
Granada (HUSC) of skin tissue biopsies. Each dataset, DSV for HCUV
and DSG for HUSC, comprises, respectively, 180 and 91 different
patients who signed the pertinent informed consent. The tissue samples
from the different patients were sliced, H&E stained, and digitized at
40x magnification, obtaining WSIs. Two expert pathologists provided
the WSI label for the dataset, consisting of 271 images. Specifically, one
pathologist analyzed 91 images from HSUC, and the other pathologist
analyzed the 180 images belonging to HCUV. Each WSI belongs to one
of the seven types of CSC neoplasms previously described. A summary
of the dataset is presented in Table A.5.

Note that the number of WSIs is different from the one presented
in Section 3.1 due to the afx lesions were eliminated from the study as
the distinction between benign and malignant is unclear.
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