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Abstract

The objective of this paper is to find out possible patterns of failure occurrences in a
repairable system. We develop a graphical exploratory tool and perform visual inference
considering nonparametric local linear kernel estimators for the rate of occurrence of failures
(ROCOF) and its first derivative. The shape characteristics of the ROCOF function are
distinguished from those which are merely an artifact of the sampling variability of the data
through the construction of confidence intervals for the first derivative. The proposal is
illustrated with several real datasets, and its performance is evaluated through an extensive
simulation study.
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1. INTRODUCTION

It is usually understood that a repairable system works as follows: it is put into op-
eration, it fails, it is repaired, it is put back into satisfactory operational conditions and
so on. When the time duration of times between failures varies, increasing or decreasing,
it is obvious that the number of failures occurring within successive, equally spaced time5

intervals decreases or increases respectively. The quantity that describes failures per unit
time was defined by Ascher and Feingold1 as the rate of occurrence of failures (ROCOF).
It gives the pattern of occurrences in a repairable system and it is computed in terms of
the first derivative of the expected number of failures.

Traditionally, the literature on repairable systems is concerned with stochastic mod-10

elling based on point process theory. A typical reference is Ascher and Feingold1 and an
updated revision on the subject, including recent theoretical developments on point pro-
cesses and applications on reliability analysis, is presented in Cha and Finkelstein2. The
most commonly used models for the failure process of a repairable system are renewal
processes (RP), and nonhomogeneous Poisson processes (NHPP). Lindqvist et al.3 and15

Lindqvist4 study some generalizations of these models. In particular they consider the
Trend Renewal Process (TRP) that includes NHPP and RP as special cases.

The features of a point process are determined by its conditional intensity function.
In this paper we consider counting processes that fit the multiplicative intensity model
presented in Aalen5, which assumes that the intensity function of the counting process can20

be decomposed into a product of a purely deterministic factor (hazard) and an observable
stochastic factor. One simple particular case of this kind of processes is the NHPP that
assumes that after each failure the system is returned to identical operational conditions
it was just before the failure, i.e. minimal repair is being carried out by the system en-
vironment. This occurs frequently in a very natural way, in particular when a system is25

large. In such a case, upon failure of the system, repair (or perhaps replacement) of only
a small part may change the state of the system from failed to working without affecting
the system in any other sense. More general examples of counting processes fitting the
Aalen multiplicative intensity model are the Cox proportional intensity process, where the
heterogeneity of the population of systems can be accounted by the model, and the gen-30

eralized Polya process, where the independent increments property that defines the NHPP
is relaxed (see Cha and Finkelstein2).

For data analysis concerns, Aalen model is a quite general model which has shown to
be acceptable for a large number of practical situations in many applied areas where the
interest is in event history analysis, see Andersen et al.6 for discussion of a large list of35

examples as well as for an exhaustive statistical analysis of counting processes under the
Aalen model. The methods presented in this paper are developed for a class of count-
ing processes that fit the model of Aalen. The real examples discussed in Section 5 are
previously tested in order to decide whether this assumption is acceptable or not. To do
it we consider a graphical procedure that has been adapted here from the nonparametric40

techniques presented in Gámiz and Lindqvist30.
As pointed out in Krivtsov7, an overwhelming majority of publications on NHPPs con-

siders just two monotonic forms of the NHPP’s ROCOF: the log-linear model and the power
law model. In his paper, the author claims the fact that the NHPP intensity rate formally
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coincides with the hazard function of the underlying lifetime distribution. Therefore, the45

variety of parametric forms for the hazard functions of traditional lifetime distributions
could be used as the models for the ROCOF of respective NHPPs. In consequence he con-
cludes that parameter estimation of such ROCOF models reduces to the estimation of the
cumulative hazard function of the underlying lifetime distribution. For a recent discussion
on the subject see Wang and Lu8 and references therein.50

In this aim, statistical modelling based on data analyses is a highly valuable tool that
engineers can employ to optimize the performance of assets under their supervision. An
inadequate parametric approach leads to erroneous model selection for the failure time of
the system, which can in turn induce to wrong decisions for the system maintenance proce-
dure thus involving serious economical problems, among others. In conclusion, statistical55

analyses based on false (parametric) premises about the system lifetime lead to erroneous
model selection which, in the best of the cases, turn out to be useless for reliability ana-
lysts. On the one hand, in certain situations, a fully detailed description of the time-system
relationship is not necessary. Rather, what the reliability analyst needs to know, to im-
plement an efficient (preventive and/or corrective) maintenance policy for the system, is60

just appropriate and useful information about the critical trend changes of the ROCOF.
The knowledge about the existence of peaks in the intensity function curve might help the
analyst to anticipate the occurrence of failures and thus more efficiently programming a
preventive maintenance policy. On the other hand, in case the analyst needs to explicitly
construct a parametric model for the system lifetime (for forecasting purposes for example),65

a previous trend-changes analysis of the failure rate would be very useful for an adequate
model selection. Although many well-known life distributions that show monotone failure
rate and are typical models used as intensity models for counting failure processes, there
exist several situations for which the monotonicity assumption does not model the tendency
to failure properly. Therefore trend change of failure rate has been an important subject70

of study for engineers. See for example references9,10,11,12, just to cite some recent studies.
Having in mind all the above considerations, the main purpose of this paper is to provide

an effective graphical tool to explore the underlying characteristics of the ROCOF, in order
to detect constant or monotonic patterns, or possible trend changes. Our practical moti-
vation is the study presented in Phillips13 where the author develops bootstrap methods75

for constructing confidence regions for the ROCOF of a repairable system, in particular he
analyses the failure times of a photocopier. That paper shows up the advantages of kernel
smoothing to detect local features of the ROCOF such as changes of trend. A rigid para-
metric approach such as the power-law estimate is not able to reveal such trend changes.
Kernel estimators depend on smoothing (bandwidth) parameters which need to be chosen80

in practice. Moreover different choices of the bandwidth can lead to very different outcomes
in some cases, which can be tricky to interpret (see Section 3). Phillips13 deals with this
problem choosing the bandwidth by cross-validation, and therefore the conclusions in the
paper rely on a unique curve estimation. This approach has the problem that some fea-
tures in the data can be only revealed looking at a wide range of bandwidth values. With85

this idea Chaudhuri and Marron14 introduced the inferential graphical tool SiZer to detect
significant local features in density and regression functions. SiZer (shortening of “signifi-
cant zero crossing of the derivatives”) utilizes kernel smoothing to estimate the underlying
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structure in the data and plays with the smoothing parameter, as a scale parameter, to
visualize the underlying characteristics in the target function. The characteristics that90

are really there, that is, those which are not an artefact of the sampling variability, are
revealed through the construction of confidence intervals for the first derivative of the func-
tion. See Marron and de Uña Álvarez15, Godtliebsen and Oigard16, González-Manteiga et
al.17, Mart́ınez-Miranda et al.18, Park et al.19,20, for recent appealing extensions.

This paper provides an extension of SiZer for the rate function of a counting process95

under the Aalen’s multiplicative intensity model. The first step in developing SiZer is to
define a proper kernel estimator for the ROCOF and its first derivative, as the character-
istics of the function are identified by the sign of the first derivative. Section 2 describes
local linear kernel estimators for the failure rate function and its first derivative, which
arise from the intuitive least squares principle suggested by Nielsen and Tanggaard21 for100

hazard estimation. By exploiting the properties of the assumed model for the arrival pro-
cess it is possible to derive straightforward closed-form expressions for the variance of these
estimators. Closely related local linear estimators have been proposed by Chen et al.22

for counting process intensity functions, but considering martingale estimating equations.
Section 3 illustrates the effect of the bandwidth on the estimated ROCOF considering the105

classic coal mining disaster data. The second step is to construct confidence intervals for
the intensity rate derivative to allow the inference about the trend changes in the failure
rate. Section 4 describes two alternative methods to construct confidence intervals, one
based on the asymptotic Normal distribution and other based on a consistent bootstrap
method suggested by Cowling et al.23. Both methods have been considered to define point-110

wise and simultaneous confidence intervals. Four applications to real data are described in
Section 5. The empirical performance of the proposal in the paper is evaluated through
an extensive simulation study in Section 6. Finally, some conclusions are drawn in Section 7.

2. LOCAL LINEAR ESTIMATION OF THE INTENSITY FUNCTION AND115

IT FIRST DERIVATIVE

2.1. Model and local linear estimators

This paper is concerned with nonparametric estimation of the intensity of a counting
process, {N(t); t ≥ 0}. The conditional rate or intensity function of a counting process
{N(t); t ≥ 0} is defined as

λ(t) = lim
∆→0

Pr {N(t+ ∆)−N(t) ≥ 1|Ft−}
∆

, (1)

where Ft− is a filtration which describes the history of the process up to, but not including,
time t. The filtration Ft− is generated by the set {N(s); 0 < s < t}, and so, it contains all
the information about event arrivals in the past, that is until t.120

In the general case, the intensity is a stochastic function. Aalen5 suggested a multiplicative
model by assuming that the conditional rate defined in equation (1) has the form λ(t) =
α(t)Y (t), with α being an unknown non-negative deterministic function and Y a non-
negative observable stochastic process whose value at any time t is known just before t, so
Y is a predictable process.125
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In many cases Y is the so-called at risk, process, i.e. Y (t) takes value 1 when the subject
is under observation at time t, and 0 otherwise. The intensity function of a NHPP is a
particular case satisfying the Aalen’s multiplicative model for which Y (t) = 1, for all t in
the interval of duration of the experiment. In other words, λ(t) = α(t), for all t ≥ 0. A
Cox-type model may also be encompassed by defining Y (t) = exp(β>Xi(t)), with Xi(t) a130

covariate process for subject i.
Consider that we observe a sample of n systems and let Ni count observed failures for the
ith individual in the time interval [0, T ], {Ni(t), t ∈ [0, T ]} is a counting process, for i =
1, . . . , n. For each, we assume the Aalen’s multiplicative model so that the random intensity
is written as λi(t) = α(t)Yi(t), with no restriction on the functional form of the hazard135

function α(·), and Yi is a non-negative predictable process, finally (N1, Y1) , . . . , (Nn, Yn)
are i.i.d. for the n systems in the sample.
Under a local linear approach we assume that, for each t, the hazard function α(t) can
be locally approximated (in a neighborhood of t) by a linear function, this is, for all
s ∈ (t− h, t+ h), α(t) = θ0 +θ1 (s− t), for an appropriate bandwidth h. Thus, at the time140

point t, an estimation of the intercept θ0 would provide an estimation of α (t), whereas an
estimation of the slope θ1 would provide an estimation of the derivative α′ (t).

To this goal, we formulate the following least squares problem (see Nielsen and Tang-
gaard21):(

θ̂0, θ̂1

)>
= arg min

(θ0,θ1)>

n∑
i=1

∫ T

0

(∆Ni(t)− θ0 − θ1 (s− t))2Kh (s− t)Yi(s)ds, (2)

where Kh(·) = K(·/h)/h, with K an appropriate kernel function. For simplicity let us145

denote N(t) =
∑n

i=1 Ni(t) and Y (t) =
∑n

i=1 Yi(t), the aggregated processes, respectively.
The solution to the problem (2) provides estimates for the hazard function and its first
derivative, which can be expressed as follows:

• For the hazard function, θ̂0 = α̂(t):

α̂LL (t) =

∫ T

0

a2 (t)− a1 (t) (s− t)
a2 (t) a0 (t)− (a1 (t))2Kh (s− t) dN(s). (3)

• For the first derivative of the hazard, θ̂1 = α̂′(t):

α̂′LL (t) =

∫ T

0

a0 (t) (s− t)− a1 (t)

a2 (t) a0 (t)− (a1 (t))2Kh (s− t) dN(s). (4)

Here we have defined the moments aj, for j = 0, 1, 2,

aj(t) =

∫ T

0

(s− t)jKh (s− t)Y (s)ds. (5)
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2.2. Consistency and asymptotic normality150

The pointwise asymptotic properties of the local linear estimator of intensity rate, given
in (3), are obtained in Nielsen and Tanggaard21. The authors demonstrate that

α̂LL(t)− α(t) = B0(t) + V0(t) (6)

where B0(t) = 1
2
h2µ2(K)α′′(t)+oP (h2) and, (nh)1/2V0(t)→ N

(
0, R(K)α(t)

γ(t)

)
, with µj(K) =∫

ujK(u)du, for j = 0, 1, . . ., and, R(K) =
∫
K2(u)du.

Now, to derive the pointwise asymptotic properties of the estimator of the derivative we
proceed as in Nielsen and Tanggaard21, that is, we split the error into a deterministic term
B(t) converging in probability plus a variable term V (t) converging to a normal distribution.
Using that dN(t) = dM(t) + dΛ(t), where M is a martingale, and Λ(t) =

∫
α(t)Y (t)dt is a

predictable process, the compensator for N , then we can write α̂′LL(t)−α′(t) = B(t)+V (t),
where

V (t) =

∫ T

0

a0 (t) (s− t)− a1 (t)

a2 (t) a0 (t)− (a1 (t))2Kh (s− t) dM(s), (7)

and,

B(t) =

∫ T

0

a0 (t) (s− t)− a1 (t)

a2 (t) a0 (t)− (a1 (t))2Kh (s− t)α(s)Y (s)ds− α′(t). (8)

The following theorem provides the asymptotic behaviour of these terms.

Theorem 1. Assume that the following conditions hold:

A1. The bandwidth h = h(n) satisfies h→ 0 and nh3 → +∞, for n→ +∞.155

A2. The kernel K is symmetric, supported on the interval [−1, 1] and with finite second
moment.

A3. It holds that α ∈ C2([0, T ]).

A4. There exists a function γ ∈ C1([0, T ]) such that it is strictly positive for t ∈ [0, T ],
and that sups∈[0,T ] |Y (s)/n− γ(s)| = oP (1).160

Then we have that
B(t) = oP

(
h2
)

(9)

and (
nh3
)1/2

V (t)
D−→ N

(
0, σ2

t

)
(10)

where σ2
t =

α(t)
∫ T
0 u2K2(u)du

γ(t)µ22(K)
.
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2.3. Inference on the NHPP rate based on aggregated data

The arrival rate of a NHPP can be considered as a particular case of Aalen’s model,
where Y (t) = 1 for all t in the interval of duration of the experiment. In other words,
λ(t) = α(t), for all t ≥ 0. We observe a sample of n arrival times T1 < T2 < . . . < Tn.165

Thus, the sampling information consists of a single realization of a NHPP {N(t); t ≥ 0}
and the goal is to obtain an estimate of the failure rate λ(t). The failures occurring at
disjointed intervals are assumed to be independent and there are no simultaneous failures
in the system.

In applications in reliability engineering, this means that a single system is followed170

until a failure occurs, immediately the system is fixed and restored to work. After the
repair the system’s state is exactly the same as it was before failure. The “as-bad-as-old”
condition after the failure/repair or, equivalently “minimal repair” maintenance is being
carried out by the system environment.

Now we consider the local linear estimator of the rate of a NHPP when only the succes-175

sive counts of failures at disjoint consecutive intervals of time are available. As a result we
derive discretized versions of the estimators for the ROCOF and it first derivative presented
in (3) and (4).

Under a discrete formulation the sampling information consists of counts of occur-
rences of the process at fixed time points {x0 = 0, x1, . . . , xM}, i.e. Nr =

∫ xr
xr−1

dN(s), for180

r = 1, . . . ,M . As the process is NHPP, then Nr comes from a Poisson distribution with
parameter µr = Λ (xr)−Λ (xr−1), for r = 1, . . . ,M . Here Λ is the cumulative rate function,
Λ(t) =

∫ t
0
λ(u)du. We can approximate µr ≈ λ (xr) (xr − xr−1) = λr∆r, where we denote

λr = λ (xr), and ∆r = xr − xr−1, r = 1, . . . ,M .
For each xr with r = 1, . . . ,M and for each j = 0, 1, 2 we can approximate aj (x) by

ad,j (x) =
M∑
m=0

(xm − xr)jKh (xm − xr) ∆m (11)

so we can write the discrete version of the local linear estimator of the ROCOF as185

α̂d,h (xr) =
M∑
m=0

(
A2 (xr)− A1 (xr) (xm − xr)
A2 (xr)A0 (xr)− (A1 (xr))

2

)
Kh (xm − xr)

Nm

∆m

, (12)

and the first derivative

α̂′d,h (xr) =
M∑
m=0

(
A1 (xr)− A0 (xr) (xm − xr)
A2 (xr)A0 (xr)− (A1 (xr))

2

)
Kh (xm − xr)

Nm

∆m

, (13)

where Aj(x) =
∑M

m=0 (xm − x)jKh (xm − x), for j = 0, 1, 2.
Alternative expressions for the variance of the estimates can be easily computed from

the expressions (12) and (13), instead of using discretized version of the variance obtained
for the continuous case given in (10). Specifically, the variance of α̂′d,h(xr) can be directly
deduced from the expression (13) as follows:

V ar
(
α̂′d,h (xr)

)
=

M∑
m=0

(
A1 (xr)− A0 (xr) (xm − xr)
A2 (xr)A0 (xr)− (A1 (xr))

2

)2

(Kh (xm − xr))2 V ar (Nm)

∆2
m

. (14)
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For each m = 1, . . . ,M , we have that V ar (Nm) = λm∆m, and then we can estimate

the variance above using the empirical estimator of λm, λ̂m ≈ Nm/∆m (m = 1, . . . ,M), so

V̂ ar
(
α̂′d,h (xr)

)
=

M∑
m=0

(
A1 (xr)− A0 (xr) (xm − xr)
A2 (xr)A0 (xr)− (A1 (xr))

2

)2

(Kh (xm − xr))2 Nm

∆2
m

. (15)

3. THE SMOOTHING PARAMETER AND NONPARAMETRIC INFER-
ENCE

The kernel estimators defined in the previous section involve an unknown bandwidth
parameter that determines the level of smoothing to be considered. To illustrate the effect190

of the bandwidth on the estimated failure intensity we consider the classic coal mining
disaster data. Details about these data are provided in Section 5.3. In such an industrial
accident the aim is to explore the overall trend in the ROCOF (the rate of occurrence
of explosions) trying to find a decreasing trend, but also looking for possible local trend
changes. Figure 1 shows four estimates of the ROCOF function computed from these data.195

All of them are local linear kernel estimators derived from equation (12) but with different
bandwidths, h = 2, 10, 20 and 50. The impression one can get looking at the estimates
is quite different. While the smallest bandwidth produces many wiggles in the ROCOF,
suggesting many local trend changes, the biggest bandwidth produce a smooth curve with
a clear decreasing trend and no changes. On the other hand moderate bandwidths suggest200

both an overall decreasing trend but two bumps around 1880 and 1940, for h = 20, and
even a third one around 1910 for h = 10.

The bandwidth effect we have visualized with this example is well known in kernel
smoothing. Big bandwidths produce oversmooth estimates at the risk of smoothing away
important features of the data. Too small bandwidths produce undersmooth estimates with205

too many wiggles. Choosing the bandwidth becomes then a bias-variance trade-off problem.
When the aim of kernel smoothing is to provide a good estimator of the target function
the common approach starts defining what is considered the “optimal” bandwidth, and
then, since optimal bandwidths are infeasible in practice, specific methods are defined to
find a proper estimate from the available data. The least-squares cross-validation method210

is maybe one of the simplest and most popular bandwidth selectors, which can be used
for the kernel estimators considered in this paper (Brooks and Marron24). Other popular
approaches for bandwidth selection are based on plug-in rules such as the method proposed
by Chen et al.22 for their local linear estimator. However, if the goal is beyond the pointwise
estimation of the underlying curve and one wants to assess the significance of its features,215

a common way to proceed consist of deriving inferential conclusions based on a bandwidth
choice. Such approach has been followed by Cowling et al.23 who constructed bootstrap
confidence intervals for the ROCOF of the coal mines data, based on a kernel estimator
with a cross-validated bandwidth. However, since the kernel estimator is biased these
confidence intervals estimate the expectation of the ROCOF, not the target ROCOF. The220

authors discuss how to correct for this bias but without providing any practical guidance
(in fact in the coal mines example no bias correction was performed).

The inferential approach we adopt in this paper differs from the traditional approach
where a single bandwidth is chosen and the inferential conclusions are drawn from a kernel
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Figure 1: Effect of the bandwidth choice on the local linear estimates of the intensity (coal mines data).

estimator with such bandwidth. We consider nonparametric estimation from the viewpoint225

of “scale space theory” (Lindeberg25, Chaudhuri and Marron26). We focus simultaneously
on a wide range of values for the smoothing parameter, instead of trying to estimate the op-
timum amount of smoothing from the data. This is an effective approach from exploratory
purposes since different levels of smoothing may reveal different useful information in the
data. In this sense, the smoothing levels are comparable with variations in the levels of230

resolution or scales in a visual system. Large bandwidths provide a “macroscopic or distant
vision”, where one can hope to resolve only large scale features. Similarly small bandwidths
provide a “microscopic vision” that can resolve small scale features (provided that we have
a sufficient amount of informative data). Under this perspective the traditional approach
of choosing a single bandwidth (according to an optimality criteria) becomes uninformative235

and even misleading. Looking at the problem at a unique scale would mean to ignore signif-
icant characteristics if this bandwidth is too big, or overestimating the number of changes
in the trend of the target function when the chosen bandwidth is too small. Chaudhuri
and Marron14 implemented the scale space inference for density and regression functions
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through the graphical tool SiZer. In the next section we extend SiZer for the inference on240

the ROCOF function in the context described in Section 2.

4. DEVELOPMENT OF SIZER FOR THE ROCOF

After being introduced by Chaudhuri and Marron14, SiZer has become a powerful tool
for conducting exploratory data analysis in many statistical frameworks. Given a set of
noisy data, it helps the data analyst to distinguish between the structures that are “re-245

ally there” and those that are due to sampling noise. This is achieved by an effective
combination of statistical inference in scale space and visualization.

SiZer consists of two plots, the so-called “family plot”, which that is a family of
smoothers indexed by the bandwidth parameter, and the coloured map, which displays
information about the significant positivity and negativity of the first derivative. The map250

visualize the inference about the first derivative in a two dimensional space with ngrid×nh
pixels, considering two equally spaced grids, one of size ngrid defining the localizations, and
the other of size nh for the scales (bandwidths). In this arrangement the portions of the
display are colour coded as follows: blue if zero is greater than the upper confidence limit
(significantly increasing), red if zero is less than the lower confidence limit (significantly255

decreasing), purple if zero is within the confidence limits (not significantly increasing or
decreasing), and grey indicating regions where the data are too sparse to make statements
about significance (the effective sample size defined below is less than 5).

As an illustration, and before entering in more details, we show in Figure 2 the SiZer
that corresponds to the coal mining disaster data considered in the previous section and260

fully described in Section 5.3. The family plot in the top panel shows the estimated rate of
occurrence of accidents (ROCOF) over time (localization space) with different bandwidths
(scales). Small bandwidths, which correspond to high resolution visualization, produce
irregular intensity estimates with several spurious changes in the trend as a result of the
variability in the data. In this case the data set is small with 191 observations. In this265

case we have constructed the SiZer Map with bootstrap confidence intervals derived from
1000 bootstrap samples, the output for the other type of intervals is quite similar though.
The SiZer Map shows a clear decreasing trend and no changes. This is the same conclusion
obtained by Barnard27 and Cox and Lewis28. These authors showed that an exponen-
tial model provides an accurate fit for the intensity rate. They concluded that a general270

decreasing trend is exhibited by the accident hazard rate with no trend changes with time.
Following Chaudhuri and Marron14, the confidence intervals for the first derivative of

the target function, which is α(t) in the context of this paper, have been defined as(
α̂′h(t) + q1−p/2

√
V̂ ar(α̂′h(t)), α̂

′
h(t) + qp/2

√
V̂ ar(α̂′h(t))

)
, (16)

where p is the significance level, and q1−p/2, qp/2 are appropriate quantiles.
Notice that in Section 2 we have described the main elements required for the inference

about the ROCOF with SiZer. We consider the local linear estimator given in (3) to
define the family of smoothers, and compute confidence intervals for the first derivative275

from expression (16), using the local linear estimator of the derivative given in (4), and

10



1860 1880 1900 1920 1940 1960

0
1

2
3

4

date

Family plot

1860 1880 1900 1920 1940 1960

0.
8

1.
0

1.
2

1.
4

1.
6

date

lo
g1

0(
h)

SiZer Map

Figure 2: SiZer analysis of the coal mines data.

the estimate of its variance given in (15). It only remains how to calculate the quantiles
q1−p/2, qp/2. We devote the rest of this section to define two different approaches, one based
on the limiting normality property and other based on bootstrapping.

The pointwise asymptotic normality of these estimators given in Theorem 1 can be280

used to construct pointwise confidence intervals, just by taking q1−p/2 and qp/2 equal to the
(1− p/2) and p/2 quantiles of the standard Normal distribution, respectively.

Chaudhuri and Marron14 pointed out that, even though the Normal approximation
works fine, pointwise quantiles are not recommended in some cases where the map seems
to suggest that too many features are “significant”. SiZer is a simultaneous display of sta-285

tistical inferences, so the multiple comparison problem can be addressed using simultaneous
inference across the localizations.

Simultaneous inference for SiZer is solved by defining m independent confidence interval
problems, where m reflects the number of independent blocks. Thus, the simultaneous
Normal quantiles in SiZer are calculated as follows

q1−p/2 = −qp/2 = Φ−1

(
1 + (1− p)1/m

2

)
. (17)
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Here Φ−1 is the quantile function standard Normal law and m, which depends on the
bandwidth h, m ≡ m(h), is the number of independent blocks of average size available
from a dataset of size n. The estimation of m is based on an estimate of the effective290

sample size (ESS ), which reflects the “number of data points in each kernel window”.
For the kernel estimator of the intensity function the ESS can be computed as

ESS(t, h) =

∑n
i=1

∫ T
0
Kh(t− s)dNi(s)

Kh(0)
. (18)

And the number of independent blocks for each h is estimated as:

m =
n

avgtεDh
ESS(t, h)

(19)

where avgtεDh
denotes the average value on the set Dh = {t : ESS(t, h) ≥ 5}.

As an alternative to the Normal confidence intervals proposed above, the bootstrap
method can be used to construct pointwise and simultaneous confidence intervals. We
consider percentile-t bootstrap confidence intervals based on one of the resampling methods295

suggested by Cowling et al.23, we refer the reader to this paper for a detailed description of
the resampling method (named as method 2) as well as the derived percentile-t intervals,
also Gámiz et al.29 (pp. 80). Simultaneous bootstrap confidence intervals can be derived
using again the independent blocks approach and the ESS described above.

The four types of intervals defined above have been considered and compared in the300

empirical analyses reported in the next sections.

5. APPLICATION TO REAL DATA

5.1. Preamble

For illustration we have included in 5.2-5.5 the analysis of four real data examples. We
begin our study checking whether the Poisson assumption is admissible for the underlying305

process that governs the arrivals in all the examples presented in this section. To do so we
have considered a graphical check similar to the one in Gámiz and Lindqvist30. Specifically,
if the occurrence process is a NHPP, the transformation of the successive event times by
means of the cumulative intensity function will provide successive arrival times according
to a homogeneous Poisson process with rate 1 on the transformed scale. To obtain the310

interarrival times on the transformed scale, we have previously calculated a nonparametric
estimator of the intensity function using the procedure presented in Gámiz and Lindqvist30.

If the underlying process is a NHPP, these times are independent and identically dis-
tributed as an Exponential law of rate 1 and then the corresponding hazard estimation
should be around the line y = 1.315

The procedure we have implemented to construct the plots for the corresponding visual
check of the Poisson hypothesis can be summarized as follows:

• The time sequence between successive arrivals on the transformed scale is calculated
as Xi = Λ̂(Ti)− Λ̂(Ti−1) with i = 1, . . . , n.
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• If the arrival process on the original scale is a NHPP, then the {X1, . . . , Xn} are320

independent and identically distributed according to an exponential law with rate 1.

• Estimate the hazard of {X1, . . . , Xn} and compare with the line y = 1.
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Figure 3: Visual check of the Poisson assumption for the three analysed datasets: Hydraulic system,
Coal-mining disasters, Powertrain system of a city bus.

5.2. Hydraulic system of load-haul-dump machines

Here we describe an application in reliability engineering. The data have been taken
from Kumar and Klefsjö31 and consist of the times between successive failures (in hours,325

and excluding repair or down times) of the hydraulic systems of the load-haul-dump (LHD)
machines selected for the study (six individual machines in total). The authors conclude in
their analysis that the failure times of each item (machine) can be adequately represented
by a NHPP. Given that machines operate independently each other in time, we can consider
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the overall failure process, that is all failures occurred in all items, also as a NHPP. This330

fact is confirmed by the visual check we present on the top panel of Figure 3.
We have then performed the SiZer analysis for these data and shown the result in

Figure 4. Looking at the family plot we can see that small bandwidths (high resolution
levels) produce many wiggles on the underlying intensity (the rate of occurrence of failures,
ROCOF), while large bandwidths (low resolution visualization) tends to hide many of335

the characteristics proving a nearly decreasing trend. The question is then whether the
characteristics shown in the family plot are indeed significant. The colour map below
provides a statistical answer to this question at the nominal level 5%. Specifically it shows
at each pixel (time and bandwidth) which is the sign of the intensity derivative with 95%
confidence. Reading the map (from left to right and taking into account the colour code340

described above) we can conclude that the ROCOF is significant increasing up to about
1800 hours and it decreases afterwards. The colour change blue-purple-red around 2000
hours means that the ROCOF exhibits a significant trend change (a bump) at that time.
Finally we can see that this trend change can be visualized at most of the considered
bandwidths.345

The SiZer map shown in Figure 4 have been constructed using simultaneous bootstrap
intervals (with 1000 bootstrap samples). The results are quite close for the other types of
intervals, however the bootstrap method seems to be appropriate for these data since the
sample size is small, just 151 observations.

5.3. Coal data350

In this example, we consider the data concerning to mining accidents (explosions) caused
by coalbed gas or coal dust that caused the deaths of 10 or more miners during many years.
The data are taken from Jarrett32 and consists of 191 times of occurrences of accidents
(in days) occurring during a period from March 15, 1851 to March 22, 1962. Source:
package boot in R. The occurrences of such accidents can be considered as a NHPP (see355

Figure 3). The interest of this example arises from the need to know possible patterns of
occurrence of accidents to a better comprehension of the nature of such events. We have
then performed the SiZer analysis for this dataset and the results are shown in Figure 2 (see
Section 4). The plots show that the ROCOF is decreasing with no changes in trend. This
characteristic in the ROCOF curve can be clearly visualized for all the scales (smoothing360

parameters) considered in the plot. In this case we have considered again simultaneous
bootstrap intervals (with 1000 bootstrap samples).

5.4. Powertrain system of an urban route bus

In this case the data have been taken from Guida and Pulcini33 and consist of 55 failure
times (in kilometres) of the powertrain system of an urban route bus between the early365

months of 1999 and up to the end of December of 2004. Each powertrain system was
subject to minimal repair at failure which is corroborated by our graphical check of the
Poisson assumption (see bottom panel in Figure 3).

The bus was circulating on urban roads of the city of Naples. The powertrain of the
bus consists of a FIAT engine, transmission ZF gearbox, driveshafts and differentials. The370

powertrain system was subject to minimum repair after the failure due to three factors:
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Figure 4: SiZer analysis of the hydraulic system data.

a) the complexity of the system, b) the expected presence of premature failure, and c) the
large number of failures/repairs experienced during the whole observation period. In this
example we are interested in exploring failure patterns of the powertrain system of these
buses.375

SiZer analysis for this dataset is shown in Figure 5. A close inspection to these plots
reveals that the ROCOF presents three significant changes. The map displays a colour
change red-purple-blue between 0 and 150 kilometres, which means that the ROCOF ex-
hibits a significant decreasing tendency of the failure during the first part of the bus lifetime
at that time. The colour change blue-purple-red between 150 and 250 kilometres means380

that the ROCOF also exhibits a significant trend change at that time, and the colour
change red-purple-blue between 300 and 400 kilometres means that the ROCOF exhibits
a significant trend change at that time. These characteristics of the ROCOF are displayed
at all resolution levels, this is, for all the bandwidths considered in the plot.

As conclusion our analysis detects a peak in the ROCOF, meaning a trend change in the385

failure occurrences approximately after 200 kilometres of use. This feature is not reflected
by the parametric approach developed in the paper of Guida and Pulcini33.

The SiZer map shown in Figure 5 has been constructed using pointwise Normal intervals.
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The results for the other types of intervals are quite close though.
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Figure 5: SiZer analysis of the powertrain system of a city bus.

5.5. Storm occurrences in the Artic Sea390

Unlike the previous examples, in this case we do not have information about the exact
times of occurrences, instead we have monthly counts of the event of interest.

Our main concern in this example is to explore cyclic behaviour of the intensity of the
underlying NHPP. The data we consider have been taken from Lee et al.34 and consist of
oceanic high-wave events, which are referred as storms. These events were observed each395

month over a nine-year observation interval, at an off-shore drilling site in the Artic Sea.
A total of 302 storms were observed during this time interval. According to Lee et al.34

the observed series of storm-arrival times has pronounced cyclic behaviour, and the rate of
occurrence of these events appears to vary smoothly from year to year.

In their analysis, the authors conclude that there are strong evidence against the hy-400

pothesis that the storm-arrival process is a homogeneous Poisson process. They argue that
there are good reasons to believe that the storm-arrival process will exhibit a pronounced
time-of-year effect. In consequence they propose a parametric model for the intensity func-
tion in terms of an exponential-polynomial-trigonometric function that provides a good
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explanation of the cyclic event arrivals. Our SiZer analysis supports their conclusions as405

we describe below.
The results of the SiZer analysis are displayed in Figure 6. The family plot shows that

the observed series of storm-arrival times has pronounced cyclic behaviour, where the peaks
are produced in the middle of each year, that is, the frequency of the storms is higher at
midyear. All these peaks are concluded to be significant in the map, this can be shown410

in the colour changes blue-purple-red that occurs around the middle of each year period
(one peak per year). These plots have been constructed using pointwise intervals based on
the Normal approximation. This choice is based on the sample size of this dataset and the
high frequency in the underlying ROCOF, which can be noticed looking at the family plot
in the first graph of Figure 6.415
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Figure 6: SiZer analysis based on the Artic Sea high-wave events.

6. SIMULATION STUDY

The main purpose of this section is to elucidate the effectiveness of our procedure based
on the SiZer analysis, when evaluating the underlying shape of the ROCOF of a repairable
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system. Then, we focus just on the deterministic part of the intensity function and we set
Y (t) = 1, for all the simulations below. In other words, in all cases we simulate data from420

an NHPP, for which λ(t) = α(t).
We consider four theoretical models with rate functions and sample sizes summarized

in Table 1 and plotted in Figure 7. The two first models represent intensities that do not
show any change in the trend but a constant trend (M1), or an increasing monotone trend
(M2). The third model shows two changes in the trend and the fourth model is a high425

frequency signal, which exhibits thirteen changes in the trend.

Table 1: Simulated models.

Model Rate function Sample size n
M1 λ1(t) = 1 100
M2 λ2(t) = 3t2 500
M3 λ3(t) = 100 + 50 cos

(
1
2
πt
)

500
M4 λ4(t) = 100 + 50 cos

(
3
2
πt
)

1000
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Figure 7: Rate functions for the models and sample size considered.

From each model we have simulated 1000 samples as follows. For i = 1, . . . , n, we
generate ui from a uniform distribution in [0, 1], then we define xi = − log ui and ri =
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ri−1 + xi, with r0 = 0. Finally the occurrence times ti, are defined as ti = Λ−1(ri), with
Λ(t) being the cumulative rate function.430

The ROCOF and its first derivative have been estimated using the local linear estimators
defined in Section 2, with Epanechnikov kernel.

The SiZer maps have been constructed to visualize the inference about the first deriva-
tive of the intensity rate in a two dimensional space with 401 × 11 pixels. This has been
defined using two equally spaced grids, one of size 401 defining the localizations (times),435

and the other of size 11 defining the scales or resolution levels (bandwidths). The local-
izations have been defined between suitable minimum and maximum values that contain,
for each model, all the generated times. The minimum and maximum values to define the
grid of bandwidths have been chosen, for each model, to allow a suitable visualization of
the inference problem at both low and high resolution level. Finally we have considered440

and compared four types of confidence intervals to construct the SiZer maps. These are
the obtained using Normal or bootstrap intervals, and pointwise or simultaneous inference
as described in Section 3. The computational complexity of the bootstrap method has
been addressed by using parallel programming in R (R Core Team35), and restricting the
number of bootstrap samples to 500 in the simulation (whereas it was 1000 in the real data445

analyses described in the previous section).
With the above specifications we now evaluate the capability of SiZer to detect the

true number of trend changes in the ROCOF. To this goal we have counted the number of
changes detected from inspecting the SiZer map, from each of the 1000 simulated samples.
Tables 2 to 5 summarize the results for models M1 to M4, respectively. Each table shows the450

results for the 11 considered bandwidths (represented by columns in logarithmic scale) and
for each type of confidence intervals (Normal and bootstrap, pointwise and simultaneous).
For all cases, the counts for each column adds up to 1000, except for few cases where the
bandwidth was too small for some simulated samples to make valid inference, and they
were discarded.455

Model M1 corresponds to a constant rate and therefore no significant changes should
be detected. In the second column of Table 2 we have written the number of changes
detected by SiZer along the 1000 samples. The true number of changes is highlighted in
the shaded row. Note that the simultaneous inference is the more appropriate in this case,
almost all samples are detecting no changes for all bandwidths. As expected with a sample460

size of n = 100, the bootstrap intervals provide better results than those derived from the
Normal approximation. On the other hand, pointwise intervals tend to show few changes
over time, and specially for small bandwidths. Similar results can be seen for model M2 in
Table 3, where the rate function is strictly increasing. However, in this case, the pointwise
intervals provide quite good results too, being able to detect zero changes from most of the465

simulated samples.
The results are quite different for complex models with several changes as models M3

and M4. For model M3, which exhibits two changes, the summary in Table 4 shows that
the pointwise intervals are able to detect the two changes in most of samples, specially
with moderate bandwidths. For the high frequency model M4, thirteen changes should be470

detected by SiZer. Table 5 shows that, using simultaneous intervals SiZer fails, detecting
less characteristics for many of the simulated samples. These poor results can be seen with
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all bandwidths. On the contrary, the pointwise intervals are able to detect the true number
of changes in most of the samples, and specially with moderate bandwidths. In this case
both Normal and bootstrap intervals give similar results, as expected with a sample size of475

n = 1000.

Table 2: Number of trend changes in the ROCOF detected by SiZer in 1000 simulated
samples from model M1. The true number of changes corresponds to the shaded rows.

Model M1
XXXXXXXXXXXXChanges

log10(h)
1.00 1.05 1.10 1.14 1.19 1.24 1.29 1.33 1.38 1.43 1.48

Pointwise Normal 0 701 744 769 790 804 835 860 869 822 794 742
1 230 206 196 172 167 147 129 122 171 202 250
2 59 42 33 37 29 18 11 9 7 4 8
3 9 8 2 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 0

Simultaneous Normal 0 987 981 979 979 980 975 973 969 944 926 870
1 10 18 20 19 19 24 27 31 56 74 130
2 3 1 1 2 1 1 0 0 0 0 0

Pointwise bootstrap 0 461 534 589 630 670 724 762 783 743 705 658
1 347 322 314 295 272 239 217 201 242 283 326
2 149 120 88 73 57 37 21 16 15 12 16
3 39 23 9 2 1 0 0 0 0 0 0
4 4 1 1 0 0 0 0 0 0 0 0

Simultaneous bootstrap 0 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 992
1 0 0 0 0 0 0 0 0 0 1 8

Table 3: Number of trend changes in the ROCOF detected by SiZer in 1000 simulated
samples from model M2. The true number of changes corresponds to the shaded rows.

Model M2
XXXXXXXXXXXXChanges

log10(h)
-0.10 -0.06 -0.02 0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30

Pointwise Normal 0 998 1000 1000 1000 1000 1000 1000 995 980 936 820
1 0 0 0 0 0 0 0 5 20 64 180
2 2 0 0 0 0 0 0 0 0 0 0

Simultaneous Normal 0 1000 1000 1000 1000 1000 1000 1000 996 986 963 873
1 0 0 0 0 0 0 0 4 14 37 127

Pointwise bootstrap 0 993 997 999 1000 1000 1000 997 994 973 914 785
1 2 1 0 0 0 0 3 6 27 86 215
2 5 2 1 0 0 0 0 0 0 0 0

Simultaneous bootstrap 0 1000 1000 1000 1000 1000 1000 1000 1000 1000 997 995
1 0 0 0 0 0 0 0 0 0 3 5

7. CONCLUDING REMARKS

In this paper the main focus has been nonparametric inference about the failure rate
(ROCOF) of a repairable system from the viewpoint of “scale space theory”. We have
assumed for the system behaviour a counting process under the Aalen’s multiplicative480

intensity model. To derive the inference conclusions we have focused simultaneously on a
wide range of values for the smoothing parameter instead of trying to estimate the optimum
amount of smoothing from the data, as the traditional nonparametric inferential approach
does. This is an effective approach from an exploratory point of view since different levels
of smoothing may reveal different useful information in the data.485

We have analysed several real datasets where our proposal based on a SiZer analysis
has demonstrated to be a helpful tool to detect underlying structures in the shape of the
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Table 4: Number of trend changes in the ROCOF detected by SiZer in 1000 simulated
samples from model M3. The true number of changes corresponds to the shaded rows.

Model M3
XXXXXXXXXXXXChanges

log10(h)
-0.30 -0.26 -0.22 -0.18 -0.14 -0.09 -0.05 -0.01 0.03 0.07 0.11

Pointwise Normal 0 0 0 0 0 0 0 0 0 0 0 1
1 35 18 13 3 2 0 0 0 0 0 0
2 961 982 987 997 998 1000 1000 1000 1000 1000 999
3 4 0 0 0 0 0 0 0 0 0 0

Simultaneous Normal 0 10 3 1 0 0 0 0 0 0 0 0
1 113 52 18 5 1 0 0 0 0 0 2
2 877 945 981 995 999 1000 1000 1000 1000 1000 998

Pointwise bootstrap 0 1 0 0 0 0 0 0 0 0 0 0
1 27 15 9 3 1 0 0 0 0 0 0
2 966 983 991 997 999 1000 1000 1000 1000 1000 1000
3 6 2 0 0 0 0 0 0 0 0 0

Simultaneous bootstrap 0 227 90 30 6 6 1 1 0 0 0 0
1 609 608 487 318 209 100 48 23 9 14 24
2 164 302 483 676 785 899 951 977 991 986 976

ROCOF. The simulation experiments have confirmed the effectiveness of SiZer to detect
significant trend intensity changes.

Theorem 1 in Section 2 is valid for the general case of a counting process with the490

multiplicative intensity condition of Aalen. However, in the simulations (Section 6) we
have concentrated on the NHPP case because we wanted to reproduce as close as possible
the scenarios that we found in the real datasets that we have analyzed in Section 5. This is
also the reason to choose the parametric models presented in Section 6 which, furthermore,
represent a wide variety of real cases: from the simplest case of no trend changes to the495

most complex one where many trend changes in the intensity shape are observed. The
Aalen’ model has largely demonstrated to be very useful in applications, however there
are, certainly, many cases where the intensity function of the failure process does not fit
the Aalen’ multiplicative model. In the case that the multiplicative structure of the Aalen
model can not be assumed, the local linear estimation problem of the rate function, as500

well as its first derivative, has to be solved from a different point of view and the elements
needed to construct the SiZer will require future research.

The SiZer analyses reported in this paper have been produced using self-programmed
code in a form an R package that will be available at the CRAN site in the next months.
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Table 5: Number of trend changes in the ROCOF detected by SiZer in 1000 simulated
samples from model M4. The true number of changes corresponds to the shaded rows.

Model M4
XXXXXXXXXXXXChanges

log10(h)
-0.70 -0.64 -0.59 -0.54 -0.48 -0.43 -0.37 -0.32 -0.26 -0.21 -0.15

Pointwise Normal 5 1 0 0 0 0 0 0 0 0 0 0
6 5 0 0 0 0 0 0 0 0 0 6
7 32 8 5 0 1 0 0 0 0 1 3
8 36 17 2 0 0 0 0 0 0 4 80
9 141 68 37 17 9 4 2 1 1 6 71
10 88 43 25 22 7 5 5 9 12 92 321
11 309 312 230 177 142 69 43 24 27 59 88
12 82 85 81 73 73 62 85 201 459 747 426
13 303 466 616 707 760 838 768 571 264 29 3
14 0 0 3 3 8 22 97 192 234 60 1
15 3 1 1 1 0 0 0 2 3 2 0

Simultaneous Normal 0 430 148 34 9 1 0 0 0 0 0 0
1 312 264 106 28 10 0 0 0 0 0 0
2 162 249 184 75 21 0 0 0 0 0 5
3 70 181 217 154 54 3 1 0 0 0 17
4 21 102 183 155 91 12 2 1 1 3 68
5 3 36 143 180 152 30 5 2 1 9 86
6 2 15 70 132 119 57 15 5 10 48 212
7 0 4 44 125 207 137 51 20 19 43 142
8 0 1 13 71 120 119 72 59 82 159 256
9 0 0 4 48 129 212 126 75 55 79 85
10 0 0 2 15 50 121 161 208 287 381 102
11 0 0 0 6 36 197 250 198 109 59 11
12 0 0 0 2 4 47 138 268 366 218 16
13 0 0 0 0 6 65 179 163 68 1 0
14 0 0 0 0 0 0 0 1 2 0 0

Pointwise bootstrap 5 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 4
7 2 0 0 0 0 0 0 0 0 0 6
8 4 1 0 0 0 0 0 0 0 3 61
9 31 11 7 3 3 1 1 0 0 7 65
10 18 15 7 4 4 5 3 3 9 62 286
11 221 162 136 95 63 45 20 12 16 49 89
12 77 64 55 47 51 45 71 178 415 763 482
13 627 739 790 846 870 865 752 526 246 30 2
14 5 3 3 4 9 39 153 277 309 83 4
15 15 5 2 1 0 0 0 4 5 3 0

Simultaneous bootstrap 0 978 883 694 453 250 53 6 2 2 4 54
1 21 93 225 300 276 87 15 8 4 18 126
2 1 24 58 158 208 163 53 32 16 51 200
3 0 0 20 59 146 186 96 37 52 90 212
4 0 0 3 27 70 169 137 87 89 152 191
5 0 0 0 2 36 140 156 103 94 160 99
6 0 0 0 1 5 84 177 173 186 180 77
7 0 0 0 0 6 69 139 148 138 128 25
8 0 0 0 0 2 19 92 175 194 134 15
9 0 0 0 0 1 24 77 102 89 37 1
10 0 0 0 0 0 5 29 77 88 36 0
11 0 0 0 0 0 1 18 33 23 4 0
12 0 0 0 0 0 0 4 17 23 6 0
13 0 0 0 0 0 0 1 6 2 0 0
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Appendix A. PROOF OF THEOREM 1590

To demonstrate the asymptotic behavior of the hazard estimate we make use of the following
central limit theorem for martingales which is presented as Proposition 4.2.1 in Ramlau-
Hansen36:
Proposition in Ramlau-Hansen (1983, pp. 461). Consider a predictable process Wn(t)
and assume that for some σ2 > 0595 ∫

W 2
n(s)α(s)Y (s)ds = σ2 + oP (1),

∫
W 2
n(s)I

{
W 2
n(s) > ε

}
α(s)Y (s)ds = oP (1), ε > 0,

then, it holds that
∫
Wn(s)dM(s)

D→ N
(
0, σ2

)
, as n→ +∞.

First we study the bias term, B(t). To do so, we consider a second order Taylor expansion
of the rate function, that is, for s ∈ (t− h, t+ h),

B(t) =

∫ T

0

a0(t)(s− t)− a1(t)

a2(t)a0(t)− a2
1(t)

Kh(s− t) [α(t) + α′(t)(s− t)+

+
α′′(t)

2
(s− t)2 ]Y (s)ds− α′(t) + oP

(
h2
)
.

(A.1)

Expanding the brackets in the integrand and using the definition of moments aj, for j =600

0, 1, 2, 3, given in (A.6), it yields

B(t) =
a0(t)

a2(t)a0(t)− a2
1(t)

(
α(t)a1(t) + α′(t)a2(t) +

α′′(t)

2
a3(t)

)
(A.2)

− a1(t)

a2(t)a0(t)− a2
1(t)

(
α(t)a0(t) + α′(t)a1(t) +

α′′(t)

2
a2(t)

)
(A.3)

− α′(t) + oP
(
h2
)
, (A.4)
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which can be reduced to the following expression

B(t) =
a3(t)a0(t)− a2(t)a1(t)

a2(t)a0(t)− a2
1(t)

α′′(t)

2
+ oP

(
h2
)
. (A.5)

Using the continuity of the limiting function γ, the moments can be approximated by

aj(t) = nhjγ(t)µj(K) + oP
(
hj
)
, (A.6)

for j = 0, 1, . . .. Assumption A2 implies that the moments µj(K) = 0, for j = 1, 3, whereas
µ0 = 1, µ2(K) > 0. Finally using A1 it can be deduced the first term on the right side of
(A.5) is also of order oP (h2), then it is true that

B(t) = oP
(
h2
)
. (A.7)

As for the variance we consider the approximation of the moments (A.6) in the integrand
of V (t) and define

V ∗(t) =

∫ T

0

(s− t)
nh2µ2(K)γ(t)

Kh(s− t)dM(s) (A.8)

and it can be seen that sup
t∈[0,T ]

|V ∗(t) − V (t)| = oP (1). Note that the integrand in V ∗(t)

is predictable so we can use Proposition Appendix A. Define the following predictable
process

Wn,t(s) =
(
nh3
)1/2 (s− t)

nh2µ2(K)γ(t)
Kh(s− t), (A.9)

then it can be shown through the usual change of variable in the integral and using A1−A4
that

∫ T
0
Wn,t(s)

2α(s)Y (s)ds converges to the following limit

σ2
t =

α(t)
∫
u2K2(u)du

γ(t)µ2
2(K)

(A.10)

The second part of the theorem is fulfilled given that nh3 → +∞, and then we have that∫
Wn,t(s)dM(s) =

(
nh3
)1/2

V ∗(t)
D−→ N

(
0, σ2

t

)
, (A.11)

which concludes the proof.

Remark: In survival analysis the interest is to model the lifetime of a subject. When the
life process is represented by a counting process N under the Aalen’s model, the process Y605

usually represents the at-risk process and is defined as taking value 1 when the subject is
alive and under observation and 0 otherwise. In such cases, the function γ is the limiting
exposure which is defined as γ(t) = Pr{Y (t) = 1}.
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