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A B S T R A C T   

The increasing mechanical and economical demands in modern systems and structures are forcing an inevitable 
need for joining dissimilar materials, thus creating the challenge of establishing a process to inspect and monitor 
dissimilar joints. Condition monitoring is a necessity to ensure that the structures are being safely used and to 
extend their lifetime. Lamb waves (LWs) are ultrasonic guided waves that are widely used for structural health 
monitoring of mechanical, aerospace, and civil structures. This paper proposes a novel structural health moni
toring approach for damage detection, localization, and assessment using a minimal LW sensor-actuator set-up. 
More specifically, the proposed framework provides damage detection, localization and assessment within a 
dissimilar-material joint by Bayesian inference of six parameters of damage extent and location. Finite element 
simulations are used to simulate the measured LWs and generate a dataset required to train artificial neural 
networks (ANN), acting as surrogate models for LW simulation with reduced computational cost. The ANN-based 
LW simulations are further used as forward model within an Approximate Bayesian Computation (ABC) 
framework to provide probabilistic inference of the damage size and position. The results show that damage of 
different sizes and locations can be successfully identified with a high level of resolution and with quantified 
uncertainty. The results also show that data fusion for ABC inference using multiple sensor measurements can be 
possible with improved inference results. However, a precise and robust damage inference can be achieved using 
a minimal sensing set-up based on one actuator and two sensing points, with consideration of certain levels of 
measurement noise. These findings imply a considerable reduction of complexity of LW actuator-sensor net
works, and overall, they imply a significant reduction of computational resources and cost for damage detection 
and assessment in structures, thus providing a step forward towards online/onboard monitoring applications.   

1. Introduction 

The increasing demand for higher fuel efficiency in all kinds of 
mobile vehicles has led to a greater interest in using lightweight mate
rials in their structures [1,2]. Variants of aluminum and magnesium 
alloys are being widely used in transportation and aerospace industries 
due to their lightweight and attractive properties, including high spe
cific strength, corrosion resistance, and good formability [1,3]. Using 
different materials in specific locations of structures is an advantageous 
strategy to optimize designs from both mechanical and economical 
perspectives by fully exploiting the materials’ native properties (e.g., 

mechanical, thermal, physical, chemical, etc.) [2,4]. In such a case, 
dissimilar joints between different metallic alloys become a need, 
however they require effective technological solutions to guarantee 
their structural integrity. Invisible or buried defects within welded re
gions, if remained undetected, may develop into bigger cracks, 
compromising the safety of the whole structure, and leading to cata
strophic failures [5]. 

During more than three decades, structural health monitoring (SHM) 
technologies have been developed and used for the early detection of 
structural damage to prevent sudden failures [6]. Within them, the use 
of ultrasonic guided waves, and especially Lamb waves (LWs) [7–9], has 
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emerged as a promising solution due to their sensitivity to the existence 
of various types and sizes of defects [10], their ability to propagate in 
complex structures and for long distances [11], and their capability to 
inspect hidden areas [12]. 

Many challenges still have to be addressed to guarantee a successful 
implementation and reliable application of SHM systems on real struc
tures. Early damage identification is one of the main objectives that need 
to be met using a continuous SHM system. The latter includes early 
damage detection, localization, and assessment [13]. Achieving these 
three objectives with a minimal number of transducers is of high 
importance for the industrial community to move the developed tech
nology from research into real life applications. 

The design of the sensor network is one of the main bottlenecks for 
the successful implementation of SHM systems. The research found in 
the current literature demonstrate that even in an optimized sensor 
network, a relatively large number of transducers is still required to 
maximize the coverage. Recent works have contributed on the optimi
zation of sensor networks for damage localization in plate-like structures 
using LWs excited and received by dual-functional lead zirconate tita
nate (PZT) transducers. In Refs. [14,15] a total of 14 PZTs were required 
to ensure a 95% coverage for a plate-like structure of about 500 × 500 
[mm2]. More recently [9], reported the coverage of a large metallic 
surface of 2740 × 2385 [mm2] from an Airbus A330 cargo door using 48 
PZTs assuming a maximum effective actuator-sensor distance of 1.5 m. 
Other authors have used the Bayesian information theoretic approach 
for LW-based sensor-network optimization [16]. Particularly relevant 
are the works by Cantero-Chinchilla et al. who developed optimization 
techiques based on the value-of-information [17] and on the con
vexification of the cost-benefit function [18]. In Ref. [17], 6 transducers 
(1 actuator and 5 sensors) were needed to ensure decent coverage of a 
damage area of 200 × 400 [mm2], whilst in Ref. [18], 6 dual-functional 
PZTs were shown to be enough to cover a damage area more than five 
times larger. The referred studies reflect that covering a larger compo
nent or sub-component of a structure, like an aircraft wing or a wind 
turbine blade, would demand the employment of a significant number of 
PZT transducers. This leads to many challenges in the design and inte
gration of the network, apart from the additional weight and high cost. 
In the literature, the use of damage indices (DIs) has shown to be an 
effective solution to tackle with the LW monitoring of large structures 
using complex sensor-networks [19]. Indeed, some of the authors of this 
paper [8,10,11] have effectively addressed the damage detection and 
localization problem based on several DIs for qualitative classification or 
comparison between several damage severities. However, these studies 
show that DIs fail on providing a direct quantitative assessment of the 
damage severity. 

The current study aims at the development of a novel technique to 
deal with the three damage identification objectives, namely detection, 
localization, and assessment, using a minimal number of transducers. To 
this end, a model-driven inverse problem methodology embedded 
within different computational intelligence algorithms, including Arti
ficial Neural Networks (ANN) and Approximate Bayesian Computation 
(ABC) [20], is employed. In this work, the model-driven approach is 
used for damage assessment since it provides information about the 
underlined physics of the wave propagation and its interaction with the 
medium [12], which includes the structural discontinuities, the 
boundaries, and also the damage. Note that these damage models 
require the use of analytical and numerical methods such as finite 
element (FE) or semi-analytical finite element (SAFE) models, among 
others, whereby damage identification can be obtained by systematic 
comparison to an intact signal, taken as benchmark. However, the latter 
is at the cost of a high computational demand required per each damage 
simulation, thus making it impractical for on-line SHM [21]. 

The current paper addresses the drawbacks mentioned in Ref. [21] 
by training a LW surrogate model based on previously performed FE 
simulations, to efficiently replace the FE model during online SHM. The 
resulting surrogate model can systematically simulate LW signals at a 

certain sensing point in almost real-time given the damage size and 
position and with a very low computational cost. This has enabled for 
the application of Bayesian damage inference which would have been 
computationally infeasible if the physical model was directly employed. 
In particular, the ABC by subset simulation, known as ABC-SubSim al
gorithm [22], is used as Bayesian inference algorithm due to its 
computational efficiency and accuracy. The algorithm yields probability 
density functions (PDFs) of the inferred damage parameters as measure 
of the relative degree of confidence in the possible damage scenarios, 
considering both measurement and modeling uncertainties. As a result, 
six damage parameters of size and position can be inferred with quan
tified uncertainty. Due to the physics-based LW propagation model 
embedded within the ANN acting as forward simulation in the 
ABC-SubSim, the damage identification and assessment is provided with 
significant accuracy using an absolutely minimal actuator-sensor 
configuration based on one sensor and one actuator within a plate-like 
area, thus avoiding the use of complex sensing networks to provide 
the required accuracy. Indeed, the proposed damage identification 
approach with minimal sensing has also shown robustness against sig
nificant measurement noise levels, however the results indicate that the 
more sensors used the better the robustness. Further, the proposed 
surrogate modeling approach can cater to different sources of informa
tion while training including analytical, numerical, and experimental 
data; this will lead to a more informed model. The proposed approach 
would also be helpful in digital twinning applications, where the mini
mal sensing need is a fundamental preference, and overall, in key in
dustries for the SHM domain like aeronautics and aerospace, where the 
complexity of the sensing system implies higher weight and extra 
vulnerabilities. 

Similar to the work by Sbarufatti et al. [19], most of the works found 
in literature use DIs or features extracted from the waves as inputs for 
the ANN, which in turn is used to predict the damage parameters 
[23–25]. On the contrary, in this paper the ANN is used to produce the 
LW simulation with consideration of damage and not to give any dam
age indicator of damage position and size. Indeed, the inputs of the ANN 
will be the damage parameters (size and position), producing as output 
the predicted LW signal. 

The proposed methodology is generic, however the approach has 
been validated in a plate-like area of 250 × 250 [mm2] with a welded 
joint between AA6061-T6 aluminum alloy and AZ31B magnesium alloy, 
ultimately to detect and quantify defects that may exist at the weld line. 

The rest of the paper is organized as follows. Section 2 introduces the 
FE model developed for generating sensor measurements of different 
damage cases. In Section 3, the ANN-based surrogate modeling of the FE 
physical model of LW propagation, is presented, which is further used 
for damage inference by Approximate Bayesian Computation in Section 
4. Section 5 presents the results about inference of selected damage cases 
and provides discussion about the prediction performance. In Section 6, 
a discussion on the methodology is given, and finally, Section 7 gives 
concluding remarks. 

2. Finite element modeling 

The Finite Element Method (FEM) is used as a forward model to 
obtain physical simulations of LW propagation through a metallic plate, 
including a dissimilar-material butt-welded joint, under different dam
age scenarios. The simulations are produced to generate a dataset of 
synthetic ultrasonic measurements under various damage cases whereby 
a surrogate model can be further trained to replace the FE model with 
significantly reduced computational cost. 

The physical model, which has been implemented using Abaqus®/ 
CAE commercial software, consists of two AA6061-T6 and AZ31B sub- 
plates, sized 250 × 125 × 3 [mm3], which are joined together 
assuming a perfect joint, thus forming a welded plate of 250 × 250 × 3 
[mm3] dimensions, as depicted in Fig. 1. Homogeneous isotropic line
arly elastic behavior is assumed for the constituent-metallic materials, 
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whose physical and mechanical properties are listed in Table 1. The 
geometry is meshed using linear hexahedral elements with reduced 
integration through the element type C3D8R, with size 1 × 0.5 × 0.5 
[mm3]. The weld region (corresponding to 5 [mm] before and after the 
interface) is meshed using an element size of 0.5 × 0.5 × 0.5 [mm3], 
which allows enough flexibility to represent a variety of damage extents 
and positions. This mesh configuration ensures the availability of more 
than ten elemental-nodes per wavelength in the in-plane dimensions, 
based on the used excitation frequency, as recommended in the litera
ture for LW FE simulation [26–30]. Moreover, enhanced hourglass 
control is employed to avoid extreme element deformation upon using 
reduced integration elements. For the boundary conditions, the edges 
coinciding with the X-direction on the bottom surface of the plate are 
simply supported, whilst the lower-left corner is fixed to prevent the 
model from movement, as labeled on Fig. 1. 

Abaqus®/Explicit solver is used to perform the wave simulations of 
150 microseconds (μs) each, with a maximum time step of 5 × 10− 2 [μs]. 
A five-cycle Hann-windowed sinusoidal wave of 300 [kHz] central fre
quency is excited through the plate by feeding radial in-plane point 
forces to the nodes representing a circular PZT actuator [8]. The actu
ator, of 10 [mm] diameter, is placed at 90 [mm] center distance from the 
weld line in the AA6061-T6 sub-plate, with its center located at the 
YZ-plane. A surface node of 80 [mm] located on the other side of the 
weld line (in the AZ31B sub-plate), is used as a sensing point and 
referred to as S1. The in-plane displacements in the direction perpen
dicular to the weld line (U2, along the Y-axis) and the out-of-plane dis
placements (U3, along the Z-axis) are recorded for S1 at a sampling rate 
of 20 [MHz]. The excitation central frequency of 300 [kHz] was chosen 
based on experimental observations of LWs in similar plates [8,31]. At 
this frequency, only the fundamental Lamb-wave modes will exist and 
with a good difference in the group velocity between the symmetric (S0) 
and antisymmetric (A0) modes, according to the theoretical LW 
dispersion curves [32]. This would provide a good signal quality with 
well-separated wave packs. As a typical damage type in FSW joints, 
wormhole damage of rectangular-cuboid shape of variable damage size 
and position, is assumed to exist within the weld region. In this work, six 

damage parameters are used to mathematically describe the damage 
extent and position, namely, length (ℓ), width (w), and thickness (t), 
along with the coordinate positions x, y, and z, respectively. Fig. 2 il
lustrates a damage example with indication of the size and position 
parameters. Note that the {x, y, z} positions are considered as the co
ordinates of the center of the damage with respect to the center of the 
plate. The damage is added to the model by deleting the damaged ele
ments from the FEM mesh before submitting the modified file for 
simulation. In this work, numerous (i.e., thousands) damage cases are 
simulated, thus the MATLAB® and Abaqus2Matlab MATLAB®-based 
software [33] are used to automate the modeling, execution, and 
post-processing of these damage cases in an efficient manner. For ANN 
training purposes, waves are excited from the AA6061-T6 to the AZ31B 
sub-plates using a variety of damage parameters, in addition to the intact 
state of the plate. In the simulations, both the U2 and U3 displacement 
measurements are recorded at the sensing point S1, namely U2S1 and 
U3S1. For the simulations, the ranges of damage parameters have been 
carefully chosen to ensure that the resulting damage cases are good 
representatives of all possible damage scenarios. Table 2 lists the ranges 
of variation of the damage parameters along with their variation in
crements used in this study. In total, 10888 possible damage cases are 
finally considered as a simulated dataset for ANN training and testing. 

3. ANN-based Lamb-wave surrogate modeling 

In this section, an ANN-based Lamb-wave surrogate model is pro
posed as an approximated fast-computing forward model replacing the 
FE model. The surrogate modeling process is composed of several steps 
including data preprocessing, balancing, reduction, and splitting, in 
addition to the ANN design, training, validation, and then testing. These 
steps will be explained in the following subsections. 

3.1. Data preparation 

Fig. 3a shows the simulation results of U2S1 for both an intact and a 
damaged weld sample with the following damage parameters, referred 
to here as D1: {ℓ = 50, w = 2, t = 1.5, x = 0, y = 0, z = 0.25}, where the 
units are expressed in milimeters. Note that amplitude variations and 
changes in the signal’s shape are evident between the healthy and 
damaged case. The wave-packs corresponding to the first transmissions 
of the waves’ S0 and A0 modes are marked on the figure. They corre
spond to the waves’ S0 and A0 modes transmitted directly from the 
actuator to the sensing point. Modes are identified based on a previous 
study [34], where a similar model and actuator-sensor configuration 
were used. Since the S0 mode is considerably faster than the A0 mode, 
A0’s first transmission is mixed with some S0 boundary reflections, as 
indicated in the figure. The other wave-packs correspond to waves 
measured by the sensing point after bouncing from the plate’s bound
aries, the so-called boundary reflections. Observe that the first trans
mission of the S0 mode shows a significant amplitude attenuation due to 
the presence of the damage within the signal’s direct path between the 
actuator and S1, also named as sensing path. Note as well that the 
boundary reflections are also affected by the presence of the damage. 

Similarly, Fig. 3b shows the U2S1 measurement comparing the intact 
weld to another damage case named as D2, of the same size as D1 but 
located on the left side of the weld, with parameters: {ℓ = 50, w = 2, t =
1.5, x = − 75, y = 0, z = 0.25}, expressed in [mm]. Fig. 3b reflects that 
the first transmission is not affected by the damage, unlike what was 
seen in the case of D1. This is due to the shift of the damage location 
from the line of sight. However, the plot reveals that the boundary re
flections are affected by the existence of the damage D2. For further 
emphasis, Fig. 12a will later illustrate two damage cases where the 
damage does not exist within the coverage of the sensing path, however, 
it can still be perceived by the sensor when considering the wave’s 
boundary reflections. This preliminary analysis reflects the need to 
consider the entire signal including both the direct transmissions and 

Fig. 1. A view of the FE model showing the actuator model (inset) and the 
sensing point S1 (in red) on the bottom side of the plate. Note that the weld line 
lies along the X-direction. Dimensions are expressed in [mm]. (For interpreta
tion of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 1 
Physical and mechanical properties of the used materials.  

Material Density [Kg/ 
m3] 

Young’s modulus 
[GPa] 

Poisson’s 
ratio 

AA6061-T6 aluminum 
alloy 

2700 69 0.33 

AZ31B magnesium alloy 1770 45 0.35  
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boundary reflections in the current study. Thus, since the entire signal is 
used for calculations, data preprocessing is required to minimize the 
computational burden for all the available FE-wave simulations before 
being used as training or testing units. In this work, data reduction was 
carried out by three different means: signal cutting, signal down- 
sampling, and sample reduction, where the latter is explained in Sec
tion 3.2. For the signal cutting, 30 [μs] signal segment was cut out from 
all the start of the signals since it does not carry any useful information, 
as can be seen in Fig. 3. Further, all the signals were down-sampled from 
20 to 3 [MHz] sampling rate. After preprocessing, the length of each 
signal was reduced from 2999 to 361 data points. Lowering the number 
of data samples in the signal lowers the size of the ANN’s output layer in 
the same manner and, thus, allows for a less complex ANN architecture. 
This would not only reduce the training and testing computational cost 
of the ANN, but would also lead to a much faster surrogate model. 

3.2. ANN architecture and training 

In ANN training and testing, the overfitting is a typical major 
drawback which makes the trained model learn the details of the data in 
such a way that it negatively affects the performance of the model on 
new data. When over-fitted, the trained model will fit excessively well to 
the training data such that it would even learn the noise and possible 
errors of the data [35], and would not fit for a newly presented data, thus 
giving wrong or inaccurate predictions. This problem is called a gener
alization problem of the trained model that can happen if the training 
dataset is not large enough nor carefully chosen to represent the whole 
population of known and unknown samples. Also when the data are 
unbalanced in a way that makes the model learn about a part of the 
population more than it learns about other parts (so-called biased data). 

In the current study, the training data come from FE simulations, 
which cancels the possibility of noisy or outlier data within the training 
set. Further, the geometry of the monitored structure, which corre
sponds to the welded region of the plate in this case, makes the universe 

of all possible damage scenarios finite and well bounded. This makes it 
easy for the user to define a well balanced and well-distributed training 
dataset that can be a good representative of the whole population of 
possible damages. These facts allowed the training of the ANNs down to 
extremely low performance errors, without the concern of having 
generalization problems. Fig. 4 displays an illustration of the rationale 
behind this concept. As mentioned above, 10801 observations were 
collected for each of the two ANNs, which correspond to 10800 damage 
cases plus one healthy case. Out of these, 594 damage cases were chosen 
in a well distributed manner to test the effectiveness of the approach 
over different ranges of damage sizes and positions. Thus, 10207 cases 
were kept for training, including one healthy weld case. To balance the 
training dataset and improve the results for small damages, data 
measured from the healthy case was made available multiple times 
within the training dataset but for different virtual damage positions. 
The healthy measurements were repeated with 1859 different virtual 
damage positions, according to Table 3, thus increasing the total amount 
of observations in the training dataset to 12065 cases for each of the two 
ANNs. Since selecting a random dataset from a large pool would keep a 
good data balance and distribution, the training dataset was reduced to 
half through a random sample reduction process. Finally, the training 
and testing datasets included 6032 and 594 samples, respectively, for 
each of the two ANNs. The inputs (predictors) of each ANN are the six 
damage parameters of the wormhole damage lying within the weld, 
namely {ℓ, w, t, x, y, z}, while the outputs are a set of 361 values rep
resenting the data points of the predicted LW signal received at the 
sensing point S1. On that basis, the architecture of the ANN was decided 
by performing a trial-and-error process in search for a well performing 
and computationally efficient design. The number of hidden layers as 
well as the number of neurons in each hidden layer were varied in 
different combinations, while comparing the signals predicted by the 
ANN to the FE simulation signals, until satisfactory results were 
attained. During this process, it was kept in mind that both the training 
and prediction times would significantly increase when increasing the 
complexity of the ANN architecture. Finally, an ANN architecture of two 
200-neuron hidden layers plus a 361-neuron output layer was adopted, 
as shown in Fig. 5. The training data were split using the typical ANN 
design procedure into a training set and a validation set. To ensure good 
data splitting and better model generalization, k-fold cross validation of 
ten folds [36] was applied. Scaled conjugate gradient backpropagation 
function [37] was used for training the model, and the performance of 
the ANN, while training, was evaluated using the mean square error 
function. To further prevent overfitting, the maximum validation fails 
early stopping criterion was adopted using 1000 as maximum allowed 

Fig. 2. An illustration showing the welded plate containing a damage example (in red) and the six damage parameters. Position parameters are measured with 
respect to the center of the damage. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Ranges of the damage parameters used for the simulated damage cases. The 
third row shows the incremental step per damage parameter.  

Damage parameter ℓ w t x y z 

Minimum value [mm] 25 1 0.5 − 100 − 1.25 − 1.25 
Increment [mm] 25 1 0.5 25 0.25 0.25 
Maximum value [mm] 200 3 2.5 100 1.25 1.25  
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fails. The other stopping criteria were relaxed so that the training would 
not stop except when reaching the maximum validation fails. These 
criteria include the maximum number of training epochs (⩽5 ⋅105), the 
best performance over the training data (goal = 10− 6), and the minimum 
performance gradient (10− 7). Finally, to visually check the agreement 
between the signals predicted by the ANN model and the testing signals, 
a sample of the ANN prediction for one of the testing damage cases is 

Fig. 3. Raw signals of U2S1 for the intact (black line) and damaged weld (in red). Two damage cases D1 (Panel a) and D2 (Panel b) are considered. D1 lies within the 
coverage of the sensing path, while damage D2 lies outside the coverage of the sensing path. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 4. An illustration showing a well balanced and well distributed training 
dataset which should be convenient for training down to extremely low per
formance errors, without generalization concerns when seeing a true dam
age case. 

Table 3 
Range of virtual damage positions of the healthy cases added to the training 
dataset for data balance. In total 1,859 healthy signals are added with different 
virtual damage positions.  

Damage parameter ℓ w t x y z 

Minimum value [mm] 0 0 0 − 125 − 1.5 − 1.5 
Increment [mm] 0 0 0 25 0.25 0.25 
Maximum value [mm] 0 0 0 125 1.5 1.5  
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plotted versus its corresponding testing one in Fig. 6. For this example, 
the damage parameters were randomly chosen to be (in [mm]): {ℓ = 25, 
w = 1, t = 1, x = − 75, y = − 1, z = − 1}, referred to as damage case D3. 
Note that the signals obtained using FE simulation and the ANN for 
measurement U3S1 show good agreement. 

4. Damage inference by Approximate Bayesian Computation 

This section presents the method for damage parameter inference 
given one or several sensor measurements and using multiple LW sur
rogate models (i.e., trained ANNs). To this end, let 𝒟 = {s∈ Rl} be the 
set of training data whose elements come from FE simulation, as stated 
in the previous section. From a frequentist point of view, the damage 
predictors {ℓ, w, t, x, y, z} are assumed to be unknown but deterministic 
values which are revealed through the ANN after training with a dataset 
𝒟. However, in real-life situations, damage parameters come with an 
implicit uncertainty about their values, that is not covered by the fre
quentist approach. Under a Bayesian perspective, the uncertainty about 
the damage parameters can be considered, and the objective is no longer 
to obtain the true value of the damage parameters but a distribution of 
their plausible values in congruence with the training dataset 𝒟 [38]. 
From a mathematical point of view, let θ ∈ Θ⊂Rnp be the set of model 

parameters such that θ = {θ1, θ2, …, θ6}≡{ℓ, w, t, x, y, z}, thus np = 6. 
Next, let us denote by ̂s = f(θ, u) ∈ 𝒮⊂Rl the predicted outcome from the 
ANN, where u denotes the deterministic inputs of the ANN like the 
number of layers and neurons per layer, the activation functions in each 
of the hidden and output layers, along with the weights of the neurons. 
In our approach, f(⋅) represents the ANN-based forward model for LW 
prediction based on the input, yet uncertain, damage parameters θ, and ̂s 
represents the ANN-predicted ultrasonic signal response. The initial 
uncertainty about θ is expressed by the prior PDF, which quantifies our 
initial degree of belief about the plausibility of the damage parameter 
values. By Bayes’ theorem, the prior PDF can be updated using the in
formation in the dataset 𝒟, as follows: 

p(θ|𝒟) =
p(𝒟|θ)p(θ)

∫

Θp(𝒟|θ)p(θ)dθ
(1)  

where p(θ|𝒟) is the posterior PDF of the model parameters given the data, 
and p(𝒟|θ) is known as the likelihood function. This function measures 
how likely the model specified by the parameters θ reproduces the 
observed data 𝒟. The integral in the denominator is typically difficult to 
evaluate, however it is circumvented through stochastic simulation 
[38]. In complex and practical applications, the likelihood function is 

Fig. 5. A schematic illustration of the ANNs used as surrogate models for Lamb-wave measurement prediction.  

Fig. 6. A sample result of the ANN prediction of LW sensor measurement compared to the signal obtained using FE simulation, both obtained for the damage case D3.  
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unknown or analytically intractable, for which Approximate Bayesian 
Computation (ABC) methods [39] provide an efficient alternative at the 
cost of producing the posterior PDF p(θ|𝒟) under a tolerance error ε ∈ R, 
namely pε(θ|𝒟). This precisely happens when inferring uncertain pa
rameters from an ANN-based model, since the likelihood function of an 
ANN is unknown unless unjustifiably adopting a predefined probabi
listic model (e.g., a Gaussian) for it. Indeed, through a tolerance 
parameter ε, the ABC method can produce posterior samples of the pairs 
(θ, ŝ) ∈ Θ × 𝒮 without the need of a formal likelihood function, which 
makes the model response ŝ = f(θ, u) ∼ p(ŝ|θ)p(θ) lay within a defined 
region around the data s ∈ 𝒟. This region can be formally defined as: 

𝒩 ε(s) = {ŝ ∈ 𝒮 : ρ(ζ(ŝ), ζ(s))⩽ε } (2)  

where ρ(⋅) : Rl→R is a comparison distance metric between the ANN- 
predicted model output ŝ and the data s, and ζ(⋅) is a summary statis
tic which, if required, allows this comparison in a weak manner [40]. 
The aforementioned posterior samples produce an approximation of the 
posterior PDF pε(θ, ŝ|s) = p(θ, ŝ |̂s ∈ 𝒩 ε(s)), which by Bayes’ theorem can 
be written as: 

pε(θ, ŝ|𝒟)∝P(ŝ ∈𝒩 ε(s)|θ)p(ŝ|θ)p(θ) (3) 

In the last equation P(ŝ ∈ 𝒩 ε(s)|θ) is the approximated likelihood 
function which is evaluated through simulation adopting the unity when 
ρ(ζ(ŝ),ζ(s))⩽ε, and 0 otherwise. Also, P(⋅) denotes probability whilst p(⋅) 
refers to a PDF. Since ultimate interest relies on the approximate pos
terior of the model parameters, this can be straightforwardly obtained 
as: 

pε(θ|𝒟)∝P(ŝ ∈𝒩 ε(s)|θ)p(θ) (4)  

4.1. ABC-SubSim for damage inference using one sensor measurement 

In ABC, the choice of ε is a matter of the amount of computational 
effort that the user wishes to expend. For a sufficiently small value (ε → 
0), then ŝ→s, and all accepted samples come from the closest approxi
mation to the required posterior. This desirable fact is at the expense of a 
high computational effort (usually prohibitive) to get ŝ = s using the 
forward model, i.e., using the ANN surrogate model in this case. On the 
contrary, as ε → ∞, all accepted observations come from the prior. 
Therefore, the choice of an adequate and sufficiently small ε reflects a 
trade-off between computability and accuracy. Thus, the ABC-SubSim 
merges the ABC principle with the technique of Subset Simulation [41] 

to achieve computational efficiency for very small ε values. It was pro
posed by Chiachío et al. [22] as a combination between the ABC algo
rithm and a highly efficient rare-event sampler that draws conditional 
samples from a nested sequence of simulation levels, also referred to as 
subsets. Fig. 7 provides a simplified flowchart explaining the imple
mentation of ABC-SubSim for LW-based damage inference using one 
sensor measurement. The algorithm is implemented such that a 
maximum number of simulation levels m is allowed in case the specified 
final tolerance parameter εf is too small. The algorithm starts by 
generating N samples of random damage parameters that satisfy the 
problem’s geometric conditions, which are described through the prior 
PDF of the damage parameters. Each random sample is denoted by θ̃, 
and feeds the ANN-based surrogate LW model to generate a predicted 
sensor measurement ŝ = f(θ̃,u). The resulting N distances ρ(⋅) between 
the predicted sensor measurements and the actual sensor measurement s 
are then calculated, whereby the sampled parameters ̃θ can be sorted. A 
selection of Np0 samples from the lowest ρ(⋅) values are chosen out of the 
N available samples, where p0 ∈ R is a user-defined conditional proba
bility value [41,42]. The chosen samples are used as seeds to generate 
more samples closer to s, until a set of N samples is reached. This fi
nalizes one simulation level, where new N samples, closer to s, are 
available for the next simulation level. The tolerance parameter ε, 
attained at the current simulation level, is obtained as the average be
tween the Npth

0 and the (Np0 + 1)th set of ρ distances. If the stopping 
criterion ε ≤ εf is satisfied, the algorithm stops, otherwise, this process is 
repeated up to m simulation levels, where m can be fixed after a trial and 
error process. For sample generation, the chosen Np0 samples are used as 
seeds for Np0 Markov chains of length 1/p0 each, where the new (1/p0 −

1) samples in each chain are generated by the modified Metropolis al
gorithm (MMA) [41,42]. Note that each one of the seeds is used as a 
“parent” from which (1/p0 − 1) “children” samples are generated 
sequentially. In this case, the predicted sensor measurement ŝ of each 
newly generated child is tested against the real sensor measurement s 
through the distance metric. If the distance between s and ̂s is less than 
or equal to the current tolerance parameter (ρ ≤ ε), then the child is 
accepted, otherwise, the child is replaced by its previous parent sample. 
This sample generation process shows the strength that Subset Simulation 
adds to ABC, given that a small probability is converted into a sequence 
of larger conditional probabilities. A new generation of samples is bred 
out of the best samples from the previous generation, where accepting 
new samples depends on their evaluation based on the proposed 

Fig. 7. A flowchart explaining ABC-SubSim damage inference within the context of damage parameter inference from one LW sensor measurement using an ANN 
Lamb-wave surrogate model. 

M.A. Fakih et al.                                                                                                                                                                                                                                



NDT and E International 128 (2022) 102626

8

distance metric ρ. Repeating this process over several simulation levels 
leads to the convergence into a rich approximated posterior, while 
attaining a low enough tolerance parameter εf. Finally, regarding the 
distance metric, the well known cosine distance was chosen as a metric 
for comparison between the real s and the ANN-predicted ŝ ultrasonic 
signals. The metric was modified to have a range of 0 ≤ ρ ≤ 1, as shown 
next in Equation (5): 

ρ(s, ŝ) = 1 −

⃒
⃒
⃒
⃒
⃒

ŝs′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ŝ ŝ
′

)(ss′
)

√

⃒
⃒
⃒
⃒
⃒

(5)  

where ŝ
′

and s′ are, respectively, the transposes of the signals ŝ and s, 
treated as vectors of data points. 

4.2. Data fusion: applying ABC-SubSim to multiple sensor measurements 

To obtain an accurate and robust damage inference, more than one 
sensor measurement may be used. The application of ABC-SubSim using 
multiple sensor measurements requires the use of multiple LW surrogate 
models each for the prediction of one of the sensor measurements, as 
mentioned earlier in Section 3.1. Thus, assuming the use of M sensing 
points, the set {s1, …, sM} of reference signals are obtained. Similarly, a 
number M of ANNs can be employed to predict the LW signal responses 
for each damage case, thus leading to a total of M predictions, namely 
{ŝ1, …, ŝM}. Both sets are then compared using data fusion of the M 
sensing points whereby the distances are all merged into one overall 
distance metric ρT, as follows: 

ρT =
∏M

j=1
ρ
(

ŝj, sj
)

(6)  

where j is the index of the corresponding sensor measurement, ranging 
from 1 to M. Note that the combined metric from the previous equation 
makes ρT = 0 if any individual distance ρ(ŝj, sj) = 0 for any j = 1, …, M, 
hence it works equivalently to a logical AND operator. After the metric 
combination, each sample damage parameter θ̃ will have a joint corre
sponding distance metric ρT, and the rest of the algorithm can then be 
continued similar to ABC-SubSim using a single sensor measurement, as 
depicted in Fig. 7. 

5. Results and discussion 

In this section, the results of applying the proposed method are 
shown for damage detection and identification, and discussion is pro
vided about the inference evaluation along with the use of one or several 
sensing points. The values of ABC-SubSim control parameters that are 
used in this study are listed in Table 4. Finally, the prior distributions 
adopted for model parameters θ are component-wise uniforms defined 
over the intervals given in Table 5. 

5.1. Damage detection 

Here the method is tested for damage detection purposes, to which 
the inference of an intact weld using U2S1 is analyzed. To ensure that the 
healthy case can still be captured in the presence of noise, the intact 
signal is corrupted with random colored noise of a frequency up to 450 
[kHz]. The maximum noise level is 3% of the healthy signal’s maximum 

amplitude. For this analysis, a damage detection rule was set such that 
all the three damage size parameters {ℓ, w, t} should surpass their set 
thresholds (α, β, γ), respectively to indicate that a wormhole damage 
exists. Since the targeted damage type is the wormhole welding defect (a 
relatively macro-sized damage type), the thresholds were chosen to be α 
= 1, β = 0.1, and γ = 0.1, expressed in millimeters. Note that size 
thresholds are problem specific and should be chosen carefully based on 
the problem at hand and the targeted damage types and shapes. 

The inference results are visualized in Fig. 8 as scatter plots of the 
approximated posterior of the damage parameters θ ∼ pε(θ|𝒟) deter
mined by the ABC-SubSim algorithm. The plots on the diagonals are 
probability histograms representing the inferred posterior PDF of each 
of the damage parameters. To select a representative realization from 
the posterior PDF of damage parameters, the maximum a posteriori 
(MAP) of the damage parameters, referred to as θMAP, is adopted based 
on the posterior PDF pε(θ|𝒟). The results reveal MAP values for the size 
parameters as follows: ℓ = 25.2, w = 0.02 < β, and t = 0.01 < γ, given in 
millimeters. Note that even though the length parameter has not been 
successfully inferred, it can still be concluded that there is no damage 
within the weld from the inference of the width (w) and thickness (t) 
damage parameters, as depicted in second and third columns in Fig. 8. 
Thus, the virtual position of the non-existent damage can be anywhere 
as predicted in the scatter plots of the position parameters, given in the 
last three columns of the referred figure. 

5.2. Damage identification and inference evaluation using one sensor 
measurement 

This section presents the results of the damage parameter inference 
in the weld joint taken as a case study. Since many testing damage cases 
are available (namely 594 cases), only 18 representative cases are 
chosen to be analyzed and discussed. Table 6 lists the nominal damage 
parameters of the chosen damage cases whereby the simulated ultra
sound signals were produced. To reproduce a more realistic sensor 
measurement, the FE data of each testing damage case were contami
nated with random colored noise, as was done previously with the intact 
signals. In addition to noise contamination, it is important to remark 
that the damage cases used for testing the suggested framework were not 
included within the training dataset of the ANN surrogate models. 
Additional discussions and results of higher noise contamination levels 
can be viewed in Section 6 and Tables 12 and 13 in Appendix B. Figs. 9 
and 10 show the ABC-SubSim damage inference results of two test cases 
using U3S1. Fig. 9 shows the scatter plots of the inferred θ values for the 
test case 15, starting from the prior at the first simulation level and until 
reaching the approximated posterior at the final simulation level, which 
in this case corresponds to m = 13, and is marked in blue color. Samples 
of the intermediate simulation levels are drawn using increasing gray 
tones to show the algorithm’s convergence towards the final damage 
inference. The empty and less dense regions in the prior reveal the 
geometric constraints that were imposed by the problem at hand. The 
red dotted lines indicate the actual values of the damage. Fig. 10 dis
plays the final approximated posterior of another test case, namely the 
test case 5, along with the labels of the true damage parameters. The 
results show that the damage parameters are still efficiently inferred 
using only one sensor measurement. However, when trying to capture a 
small damage of 25 [mm] length, some scatter plots appear to be more 
spread over the damage parameter ranges. Although the highest prob
abilities (seen on the diagonal plots) are close enough to the actual 

Table 4 
ABC-SubSim algorithm hyper-parameters used in this study.  

Algorithm hyper-parameter Value Description 

N 8000 Samples/simulation level 
m ⩽13 Simulation levels 
εf 10− 6M Tolerance value 
p0 0.25 Cond. Probability  

Table 5 
Range of definition of the prior PDFs of damage parameters, which are 
component-wise considered as uniforms.  

Damage parameter ℓ w t x y z 

Minimum value [mm] 0 0 0 − 125 − 1.5 − 1.5 
Maximum value [mm] 250 3.2 3 125 1.5 1.5  
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values for all the damage parameters, the higher spreads in some scatter 
plots reveal that the inference is subject to higher uncertainty. Hence, a 
quantitative approach is used to evaluate the quality of the damage 
inference in terms of uncertainty and precision, thus making the damage 
inference results more comparable and physically meaningful. 

To this end, the precision of the damage inference, denoted by η (in 
%), is evaluated through the MAP value using the following expression: 

η(%) = 100⋅
(

1 −
|θ − θMAP|

θmax − θmin

)

(7)  

where θmax and θmin are the set of maximum and minimum allowed 
values of the damage parameter θ ∈ Θ, respectively, as specified in 
Table 5. Note that Equation (7) gives an array of six precision values, 
each corresponding to one component-wise damage parameter θ1, …, 
θ6. Here, a value of 90% is adopted as acceptable precision threshold, 
which means that the error in predicting the damage parameter is 10% 
of the damage parameter’s range, imposed by the problem’s geometrical 

constraints. On the other hand, the uncertainty in the damage inference, 
as a measure of how unconfident the inference is and referred to here as 
ξ, is accounted for through the following expression: 

ξ(%) = 100⋅
2⋅std(θ)

θmax − θmin
(8)  

where std(θ) is the standard deviation of the approximated posterior 
PDF of parameter θ ∈ Θ. In this work, a 15% uncertainty threshold is 
adopted for inference evaluation. Tables 10 and 11 given in Appendix A 
present a summary of inference evaluation of the 18 chosen testing 
damage cases using U2S1 and U3S1, respectively. Damage parameters 
that are inferred with a precision of less than 90% or with an uncertainty 
above 15%, are marked in red color. The values in the tables written in 
bold are not to be considered at this level due to a symmetry effect 
related to S1, which will be discussed further below in detail. The results 
from the aforementioned tables reveal high uncertainty in the inference 
of at least one of the damage parameters for 9 out of the 18 damage cases 
when using the measurement U2S1, and for 11 out of the 18 damages 
cases when using the measurement U3S1. Note that higher uncertainties 
and lower precision in the damage prediction are mostly associated with 
the first six damage cases, where the damage length is relatively small 
(ℓ = 25 [mm]). Additionally observe that the damage cases of noticeable 
damage, i.e., ℓ = 200 [mm] (test cases 13 to 18) are better inferred, with 
high precision and low uncertainties for both sensor measurements. 
Finally note that damage cases of ℓ = 100 [mm] (test cases 7 to 12) are 
inferred with high precision as well, however, more uncertainties exist 
among their results. 

Besides, Fig. 11 shows ABC-SubSim damage inference results of the 
test case 12 using U2S1. Observe that while all damage parameters are 
well inferred, two x-positions of opposite values are obtained. This is due 
to the symmetry associated with the sensing point S1, as both the 
actuator and S1 are located within the YZ-plane, the plane of symmetry 
of the plate. This is illustrated in Fig. 12a on an example of two identical 
damages, each having an opposite x-position with respect to the other. 
The two damages are symmetric with respect to the YZ-plane, where 
both the actuator and the sensor are located. Hence, since there is no 
noise, nor variation in the boundary conditions, neither any other factor 
affecting the measurements, the two damage cases yield the same LW 
measurements at the sensor. This fact should be taken into consideration 

Fig. 8. ABC-SubSim damage inference results of the intact weld using U2S1 and m = 11 simulation levels. Units are expressed in [mm].  

Table 6 
Values of the parameters of the selected damage cases for inference. Units are 
expressed in [mm].  

Case ℓ w t x y z θ 

1 25 1 1 − 75 − 1 − 1 [25, 1, 1, − 75, − 1, − 1] 
2 25 1 2 0 1 0 [25, 1, 2, 0, 1, 0] 
3 25 2 1 − 50 0 − 0.5 [25, 2, 1, − 50, 0, − 0.5] 
4 25 2 2 50 − 1 − 0.5 [25, 2, 2, 50, − 1, − 0.5] 
5 25 3 1 0 0 0 [25, 3, 1, 0, 0, 0] 
6 25 3 2 50 1 − 0.5 [25, 3, 2, 50, 1, − 0.5] 

7 100 1 1 − 75 − 1 − 1 [100, 1, 1, − 75, − 1, − 1] 
8 100 1 2 0 1 0 [100, 1, 2, 0, 1, 0] 
9 100 2 1 − 50 0 − 0.5 [100, 2, 1, − 50, 0, − 0.5] 
10 100 2 2 50 − 1 − 0.5 [100, 2, 2, 50, − 1, − 0.5] 
11 100 3 1 0 0 0 [100, 3, 1, 0, 0, 0] 

12 100 3 2 50 1 − 0.5 [100, 3, 2, 50, 1, − 0.5] 
13 200 1 1 0 − 1 − 1 [200, 1, 1, 0, − 1, − 1] 
14 200 1 2 0 1 0 [200, 1, 2, 0, 1, 0] 
15 200 2 1 0 0 − 0.5 [200, 2, 1, 0, 0, − 0.5] 
16 200 2 2 0 − 1 − 0.5 [200, 2, 2, 0, − 1, − 0.5] 
17 200 3 1 0 0 0 [200, 3, 1, 0, 0, 0] 
18 200 3 2 0 1 − 0.5 [200, 3, 2, 0, 1, − 0.5]  
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when trying to infer the damage parameters using measurements from a 
single sensing point (S1). To verify this concept, U2S1 simulation results 
of the damage case D2 were compared to those of the damage case 
having the same damage parameters but an opposite x-position; i.e., D2- 
sym: {ℓ = 50, w = 2, t = 1.5, x = 75, y = 0, z = 0.25}, expressed in 
millimeter units. The results show that the two signals overlap without 
any visible difference, as depicted in Fig. 12b. Moreover, it is evident in 
Tables 10 and 11 that either of the symmetric x-positions is successfully 

inferred in all of the test cases (values written in bold). The other sym
metric values are also predicted but with a lower probability. This can be 
seen when visualizing the approximated posterior PDF of model pa
rameters θ, as was shown in Fig. 11. 

5.3. Inference results based on multiple sensor measurements 

To avoid the symmetry effect described in the previous section, two 

Fig. 9. Scatter plot representation of samples of the θ space at different simulation levels as output of the ABC-SubSim algorithm applied to test case 15 (refer to 
Table 6) using U3S1 and m = 13 simulation levels. The final posterior samples are marked in blue. To reveal the uncertainty reduction, the intermediate posterior 
samples are superposed in increasing gray tones. On the diagonal, histogram estimates are drawn for the marginal posterior PDFs of the respective parameters. The 
true damage parameters are marked using red dotted lines. Units are expressed in [mm]. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 

Fig. 10. ABC-SubSim damage inference results of test case 5 (refer to Table 6) using U3S1, and m = 12 simulation levels. The true damage parameters are marked 
using red dotted lines. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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additional sensing points are used as shown in Fig. 13. The coordinates 
of the two added sensing points, with respect to the coordinate axis 
defined at the center of the plate, are S2(− 100, − 80) and S3(− 100, 80), 
expressed in [mm]. Similar to S1, displacements in the U2 and U3 di
rections were recorded, and the same methodology was repeated for all 
the sensor measurements (U2S2, U3S2, U2S3, and U3S3), including pre
processing, data balancing, sample reduction, ANN training, and ABC- 
SubSim damage inference. Fig. 14 shows the boxplots summarizing 
ABC-SubSim damage inference results for the whole testing dataset (594 
cases) using U2S2. Results of different damage lengths are separated to 
investigate the effect of the damage size on the accuracy of prediction. 
The boxplot of each damage parameter consists of a box bounded by the 
25th and 75th percentiles (lower and upper quartiles) of the 594 in
ferences, with a central mark representing the median. Hence, the 

interquartile range (IQR) represented within the box signifies 50% of the 
plotted inference cases. The whiskers extend from the box edges up to a 
maximum length of 1.5 × IQR, such that points lying outside this range 
are considered outliers and are plotted separately. Specially note that 
very narrow IQRs are observed in this case for the inference of the x- 
position, showing high precision (above 98%) and low uncertainty 
(below 4%). Indeed, few outliers lie within regions of precision below 
90% or uncertainty above 15%. This confirms the resolution of the 
symmetry problem when using extra sensing points outside the plane of 
symmetry. Note also that moving the actuator to a position outside the 
plane of symmetry would have also solved the problem. Moreover, note 
that the damage length (ℓ) is accurately identified as well in all the 
testing dataset with few outlier cases, as depicted in Fig. 14. Finally, note 
as well that wider IQRs and more outliers are observed for the inference 

Fig. 11. ABC-SubSim damage inference results of test case 12 (refer to Table 6) using U2S1, and m = 13 simulation levels. The true damage parameters are marked 
using red dotted lines. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Panel (a): illustration demonstrating the need for using the whole signal, including the wave’s boundary reflections, to perceive damages lying outside the 
coverage of the sensing path. The illustration also shows how two symmetric damage cases would yield the same LW measurement at a sensor located along the Y −
axis. The damages are drawn in red color. Panel (b): FE results of symmetric sample damage cases; D2: ℓ = 50, w = 2, t = 1.5, x = − 75, y = 0, z = 0.25; D2-sym: ℓ =
50, w = 2, t = 1.5, x = 75, y = 0, z = 0.25; all units are expressed in [mm]. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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of damages of small extent, with ℓ = 25 [mm] (Fig. 14a). Particularly, 
the damage width (w) and y-positions in those cases are inferred with 
higher percentages within the unacceptable thresholds of precision 
(<90%) and uncertainty (>15%). Contrarily, note that higher precisions 
and lower uncertainties are generally attained for ℓ = 100 [mm] 
(Fig. 14b), and very accurate predictions are achieved in the case of ℓ =
200 [mm] (Fig. 14c). 

5.4. Inference results using data fusion 

To further overcome the shortages of using a single sensor mea
surement along with to improve the robustness and accuracy of the 
inference results for inference of small damages, data fusion from two or 
more sensing points was performed. To this end, combinations of U2 
measurements from different sensing points were used together by 
employing the methodology explained in Section 4.2. Table 7 summa
rizes the inference results of test cases 1 to 6 (ℓ = 25 [mm]) when using 
U2S1 and U2S2 together, while Table 8 summarizes those of fusing U2S2 
with U2S3. Finally, Table 9 provides the results of fusing U2 measure
ments from all the three sensing points S1, S2, and S3. In general, the 
results show that both damage length ℓ and x-position are inferred with 
a precision higher than 99% for all the shown cases and combinations of 
sensing points. Very low uncertainties are also attained for both damage 
parameters. This proves the high potential of the data fusion technique 
for accurately assessing these two important parameters defining the 
length of the wormhole and its position along the weld. The best infer
ence results are obtained when merging U2 measurements from S2 and 

Fig. 13. The FE model showing the two added sensing points S2 and S3 (in 
red). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 14. Boxplots summarizing the precision and uncertainty of ABC-SubSim damage inference for the whole testing dataset (594 cases) using U2S2. Results of 
different damage lengths are shown separately for (a): ℓ = 25 [mm]; (b): ℓ = 100 [mm]; and (c): ℓ = 200 [mm]. 
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S3, as revealed in Table 8. In this case, damage parameters are inferred 
with a precision of above 95% for more than 83% of the cases. Indeed, 
the only inference with a precision below 91% is for the damage width 
(w) in test case 4, with an error less 0.9 [mm]. Moreover, only two un
certainty values above the 15% threshold are recorded, which precisely 
also correspond for the damage width parameter (w). 

The results also show that combining U2 measurements from S1 and 
S2 does not produce a significant improvement with respect to the 
inference using one sensor measurement, as manifested in Table 7, 
however, combining the measurements of the three sensing points have 
resulted in better inference, as shown in Table 9. In this latter case, 
damage is inferred with high precision (>90%) for all the cases except 
for two damage parameters (highlighted in red), with errors less than 
0.6 [mm]. Moreover, more than half of the inference results are obtained 
with a precision above 99%, while being above 95% happens in most of 
the cases. 

6. Discussion on methodology 

The proposed approach enables probabilistic damage detection and 
identification in welded structures by giving PDFs of a number of 
damage parameters, including size and position parameters of the 
damage. This overcomes deterministic identification methods since the 
uncertainty present in the measurements, damage model, and the 
method itself, can be considered and quantified, and further used for 
decision making. The proposed methodology has been proved capable of 
inferring the intact state of a monitored weld along with damage cases of 
different size, using only one single measurement and despite it noisy 
condition. This resolution in inferring a precise size and position of the 
damage using only one single measurement, can be considered as an 
important achievement in the damage identification field, where the 
current practice typically requires numerous arrays of sensors. 

When using a single sensor measurement, two x-positions were 
inferred revealing a geometrical symmetry for both the actuator and the 

Table 7 
A summary of the ABC − SubSim inference results using U2S1 and U2S2 sensor measurements, for the testing damage cases 1 to 6. 

Table 8 
A summary of the ABC-SubSim inference results using U2S2 and U2S3 sensor measurements, for the testing damage cases 1 to 6. 

Table 9 
A summary of the ABC − SubSim inference results using the three sensor measurements (U2S1, U2S2, and U2S3), for the testing damage cases 1 to 6. 
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sensing point, as expected. Nevertheless, the successful prediction of 
both the actual x and its symmetric value, means that the ANN-based 
surrogate model has effectively learned this symmetry from the 
training data. This result is a validation of the ANN’s performance and of 
the methodology’s potential for detecting multiple possibilities of the 
available damage. Notwithstanding, the symmetry problem was 
resolved upon using measurements from an extra sensing point lying 
outside the plate’s plane of symmetry. In such case, damage length (ℓ) 
and x-position were precisely predicted even for small damage sizes, 
while for large damages, very accurate predictions were attained for all 
the damage parameters. The symmetry of S1 is obvious in the problem 
under study; however, other non-trivial similarities of measurements 
from different damage cases may be faced in real-life situations. Hence, 
data fusion from multiple sensing points (at least two sensor measure
ments) is thought to be a necessity to avoid such issues and increase the 
reliability of the damage identification process. Indeed, after fusing 
multiple sensor measurements (U2S1, U2S2, and/or U2S3) within the ABC- 
SubSim algorithm, even higher precisions and lower uncertainties were 
achieved for the cases of small damage size. 

Besides, it is noticed in all the presented inference results that the 
width (w) and the y-position show higher uncertainties accompanied 
sometimes with less inference precision than for the rest of damage 
parameters. This is most obvious when looking at damages of small size 
(ℓ = 25 [mm]); i.e., for test cases 1 to 6 (Table 6). This reflects an 
imperfect performance of the ANN surrogate model over the w and y 
parameters when the damage is small. A potential solution if a better 
inference is desired in the case of small damages, is to include an 
additional inference step activated only if ℓ is inferred to be below a 
certain threshold in the first attempt. This would include the training of 
an additional ANNs using specific training data of small damage lengths 
only to help the ANNs better learn how to differentiate the other damage 
parameters. ABC-SubSim parameters may also be tuned, in this case, to 
make the first inference faster but probably less accurate. In practice, the 
SHM system designer should be aware of types, shapes, and possible 
positions of damages, in the monitored structure, that should be 
considered and modeled in the finite element model for data generation. 
Thus, the architecture of the trained ANN should also be adapted to the 
new number of input variables (size, position, and probably orientation 
and shape parameters of the damage) and to the new signal length, as 
needed. More complex damage cases can be integrated by using multiple 
neural networks to cover different types of damage and sizes. In this 
case, the problem might be split into a classification stage first, identi
fying the damage type using machine learning classifier(s), and then into 
an identification stage whereby to infer the predefined damage 
parameters. 

An additional consideration when implementing the proposed 
framework, is about calibration and normalization of the sensor mea
surements required to make the experimental data comparable to the 
numerical data in terms of amplitude. A deviation in the placement of 
the actuators and sensors is not expected to cause a major difference in 
the collected responses; neither might highly impact the coverage of the 
sensor network [9]. Also, slight misplacement of the PZT wafers may 
lead to small variations in the signals which are of the level of noise, 
however, it was demonstrated that damage inference is robust to such 
disparity. Non-contact sensing and actuation methods (e.g., air-coupled 
or laser-based transducers) would provide a better control and data 
normalization ability when available. Correspondingly, the FE modeling 
should be modified based on the used actuation and sensing methods to 
produce signals that are well matching with the experimental mea
surements. The better the match is between the FE simulations and real 
experimental signals, the more robust the inference is when applied to 
real sensor measurements, with less yielded uncertainties. The differ
ences in a signal that may arise due to noise or environmental changes 
(as temperature and pressure on an airplane structure) are expected to 
appear as small inference deviation rather than failure in prediction, 
which was corroborated by adding different levels of sensing noise, and 

shown in Appendix B. The results show that inference precision and 
uncertainty are not affected by the addition of various levels of noise for 
big damage cases, as shown in Table 12. For small damage cases (ℓ = 25 
[mm]), the results in Table 13 indicate that the increasing noise levels 
slightly affect the inference quality but without significant influence in 
terms of detectability and damage assessment. The results for 
middle-sized damages of ℓ = 100 [mm] represent an intermediate sit
uation between the previous damage cases cited before, thus, the anal
ysis in Appendix B is avoided for printing space purposes. 

Further, a prognostics-based decision making SHM system is envis
aged as desirable future work, where the structure’s deterioration and 
remaining useful life can be predicted to make informed decisions. A 
more intelligent system would also add self adaptation algorithms to 
dynamically account for environmental changes and operational con
ditions, therefore, increasing both the structure’s integrity and effi
ciency. The usage of transfer learning algorithms could be a potential 
solution for such adaptation [43]. Transfer learning may be also 
employed when moving from FE training to experimental testing to 
compensate for the differences between numerical and experimental 
signals. 

Finally, time is a key factor when monitoring critical structures that, 
in case of failure, may endanger people’s lives. This factor is more 
important when such structures are subject to highly variable loads (e.g., 
an operating passenger airplane) or may be exposed to abrupt changes 
(e.g., severe impact damage). A successful SHM system should be able to 
detect any damage at the moment it happens or even has the potential 
for capturing the deterioration in the structure’s strength before damage 
occurs. The time elapsed to perform one FE simulation was, on average, 
around 4.75 min using an Intel® Core™ i7-8750H CPU (parallel Aba
qus® simulation over 8 CPUs). However, the ANN takes around 8 [ms] 
to predict the signal using the same processor. This obvious advantage 
(more than 35,000 times faster) and the possibility to do the ANN pre
diction with minimal processing needs, both give the surrogate 
modeling its importance for applying a probabilistic damage inference 
methodology in a real SHM system. The latter opens a door for the 
development of smart sensors for monitoring of welded structures, that 
include microprocessors on-board the monitored system which can 
detect and identify damage in real time. 

7. Concluding remarks 

This paper proposed a novel framework for damage detection, 
localization, and assessment using ultrasonic measurements. The 
framework allows for full identification, in size and position, of damage 
within a dissimilar material joint using only one ultrasonic actuator and 
one sensor measurement. 

Surrogate models, based on Artificial Neural Networks (ANNs), were 
trained using finite element simulations to predict Lamb-wave sensor 
measurements when given specific damage. The ANNs were then 
employed to perform a probabilistic damage inference on simulated data 
corrupted with noise using Approximate Bayesian Computation, thus, 
providing posterior PDFs of six damage parameters (length, width, 
thickness, and x, y, and z-positions). 

The potential of the algorithm for detecting multiple damage sce
narios that may lead to the same sensor measurement, was proved. This 
made it advisable to fuse information from at least two sensor mea
surements to guarantee a more reliable damage identification. Upon 
data fusion of multiple sensor measurements, the length and x-position 
of the damage were inferred with a precision higher than 99% in all the 
test cases. The inference of the other four damage parameters (width, 
thickness, and y and z-positions) was attained with an error of less than 
0.9 [mm], in the worst case scenario. Damage parameters were inferred 
with a precision of above 95% for more than 83% of the cases when 
using a combination of two sensor measurements (U2 from S2 and S3). 

The developed framework is computationally inexpensive, thus 
rendering the methodology suitable for online/onboard monitoring 
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applications. The high resolution attained, inferring an accurate size and 
position of the damage by employing only one or two sensor measure
ments, is considered a major advancement in the structural assessment 
field. Improvements and future work may include the consideration of 
variable environmental and operational conditions, and the incorpora
tion of lifetime prediction and prognostics. 
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Appendix A  

Table 10 
A summary of the ABC-SubSim inference results using U2S1 sensor measurement, for the selected damage cases. 
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Table 11 
A summary of the ABC-SubSim inference results using U3S1 sensor measurement, for the selected damage cases. 
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Appendix B  

Table 12 
A summary of the ABC-SubSim inference results using U2S2 sensor measurement with variable sensing noise levels, for selected small damage cases with ℓ = 25 [mm]. 
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Table 13 
A summary of the ABC-SubSim inference results using U2S2 sensor measurement with variable sensing noise levels, for selected large damage cases with ℓ = 200 [mm]. 
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