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Abstract

This paper presents a general framework for learning with imprecise proba-
bilities, consisting of a hierarchical approach with two sets of parameters. In
the top set we have imprecise information, and conditioned on this set we
have precise Bayesian information about the other set of parameters. Given
a set of observations, the information about both sets of parameters is up-
dated by conditioning, and a model selection method is applied to compute
a reduced top set. This model selection method is based on decisions with
imprecise probabilities. It will be shown that many existing approaches can
be fitted in this general procedure, and a theoretical justification will be pro-
vided. Finally, the method will be applied to the problem of learning credal
networks.

Keywords: imprecise probability, decision making, learning, model
selection, probability estimation, likelihood, Bayesian networks, credal
networks.

1. Introduction

This paper proposes a hierarchical approach to learning. It considers
that learning is equivalent to selecting the parameters for a given model.
These parameters should be understood in a wide sense. For example, if
we are considering classification trees, the parameters can represent the tree
structure too. So, this learning also implies model selection [1, 2].

The procedure used in this paper follows the basic scheme of Gärdenfors
and Shalin [3]. The parameters are classified in two sets: Θ and B. Θ is the
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top set and conditioned to each θ ∈ Θ we have a precise Bayesian model for
the parameters in B and the variables of interest, in order to follow a model
averaging approach (by averaging with respect to the posterior probability in
B given the observations) [1]. At the same time, a set of observations defines
a likelihood in top set Θ. Different methods of using this likelihood have been
proposed in the literature [4, 5, 3], but in general they do not provide a sound
and well-founded integration model. The idea in this paper is essentially
similar to the α-cut conditioning by Cattaneo [5], but it gives a justification
based on decision making with imprecise probabilities. The final procedure
proposed here is quite flexible and can accommodate very different available
procedures, such as maximum likelihood, likelihood intervals [6], imprecise
probability methods such as the imprecise Dirichlet model [7], and others.
It will be also the basis for proposing new imprecise probabilities methods
for learning credal networks [8]. There are also relations with Bayesian high-
density regions [9, 10] that can be justified within our framework.

An important fact about the procedure is that the prior information on
Θ is given by a coherent set of desirable gambles [11, 12, 13]. This is a
quite general model to represent imprecise probabilistic information with
a behavioural interpretation. In our case, the use of desirable gambles is
essential in the case of an infinite Θ, since there will not be an equivalent
representation as a set of probability measures or credal set. The model
will be based on the discounting of uniform information on Θ. This uniform
information will be a generalization of the uniform probability on a finite
Θ but quite different from the usual uniform density on a continuous Θ.
The proposed discounting is a generalization of the concept of discounting
a belief function [14] or the ǫ-contaminated robust models [15], but here
a behavioural interpretation based on sets of desirable gambles is provided
following the ideas presented in [16].

This paper is organized as follows: Section 2 provides the basic frame-
work and introduces the main concepts of coherent sets of desirable gambles;
Section 3 introduces the discounted uniform model, which will be the prior
information on Θ; Section 4 provides examples of the general procedure used
to estimate multinomial probabilities, including cases such as maximum like-
lihood, maximum likelihood intervals, and the imprecise Dirichlet model,
among others; Section 5 proposes a modification of the prior model for cases
in which Θ is partitioned into sets of different dimensions to provide the basis
for selecting among models of different complexity; Section 6 applies these
ideas to propose methods for learning credal networks; and finally Section 7
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is devoted to the conclusions and future work.

2. The Basic Framework for Learning

Uncertain variables will be denoted by X, Y, Z, . . .. A set of uncertain
variables will be denoted in bold-face X = {X, Y, U, . . .}. The set of possible
values of X is denoted by ΩX , and analogously for sets of variables.

To learn an imprecise probabilities model, assume that we have a param-
eter space Θ × B and that for each θ ∈ Θ, there is a precise probabilistic
model for β and a set of variables X, i.e. we have precise probabilities P (β|θ)
and P (X|β, θ).

We are interested in learning a model for variables X given a dataset O of
independent observations for variables X. An element of O can be a full or
partial observation of the variables in X. Since conditioned to θ ∈ Θ we have
a precise Bayesian specification of B and X, we can consider that learning
with a fixed parameter θ ∈ Θ is equivalent to conditioning the parameter β
to the observations O, i.e. computing P (β|θ,O), so that the model after the
observations is1

P (X|O, θ) =

∫

B

P (β|θ,O)P (X|β, θ)dβ (1)

For this expression, it has been assumed that O and X are conditionally
independent given the parameters (θ, β).

In this way we follow a model averaging Bayesian approach for parameter
β conditioned to θ ∈ Θ. Note that this does not imply that a single value or
a region is selected from B. In fact, a pure Bayesian approach is followed,
computing the posterior density on B given the observations and predict-
ing future observations by averaging with respect to this posterior density
(assuming that X is conditionally independent of O given β, θ).

But for parameter θ ∈ Θ we will follow a model selection procedure
[1, 2, 17]. Model selection is a decision problem that in our case will consist
in selecting a parameter θ ∈ Θ: We will assume that we have a decision dθ
for each parameter θ ∈ Θ. To solve it, some prior information on Θ will
be necessary. This prior information will be encoded using a coherent set
of desirable gambles [11, 12, 13, 18]. A gamble on Θ is a bounded mapping

1When the parameter space B is finite, the integral is the summation on β ∈ B, but

we will always keep the integral notation for the general case.

3



f : Θ → R. A number x ∈ R will denote the gamble that is constantly equal
to x for any θ ∈ Θ. If f is a gamble, the support of f , denoted by Support(f)
is the set {θ ∈ Θ : f(θ) 6= 0}.

Operations on gambles (sum, scalar multiplication) will mean a pointwise
application of them. f ≤ g will mean that f(θ) ≤ g(θ), ∀θ ∈ Θ, f < g will
denote f ≤ g and f(θ) < g(θ) for at least one θ ∈ Θ. The set of all the
gambles in Θ will be denoted by L. A set D ⊂ L is said to be a coherent set
of desirable gambles if and only if it satisfies the following properties,

D1. 0 6∈ D,

D2. if f ∈ L and f > 0 then f ∈ D,

D3. if f ∈ D and c ∈ R with c > 0 then cf ∈ D,

D4. if f ∈ D and g ∈ D then f + g ∈ D.

Given an arbitrary set of gambles A, then the natural extension of A will
be the intersection of all the coherent sets of gambles containing A, denoted
by A. If there is no coherent set of gambles containing A then, the natural
extension is L. In other case, it is said that A avoids partial loss. If K ⊆ L,
where posi(K) is the set of gambles

posi(K) = {
k

∑

i=1

cifi : ci > 0, fi ∈ K, k ≥ 1},

then if A avoids partial loss, it can be proved that the natural extension of
A is equal to posi(A∪ L+), where L+ is the set of gambles f > 0.

If we have a coherent set of desirable gambles D, then the conditioning of
D to a likelihood function L : Θ → R, is the set of gambles DL = {f : f.L ∈
D}, where f.L stands for pointwise multiplication [12]. If A is a subset
of Θ, then conditioning D to A, DA, means conditioning to the likelihood
equal to the indicator function of A, IA. This conditioning to a likelihood
is the counterpart in terms of desirable gambles of the conditioning to a
likelihood for lower previsions (see [19, Sec. 8.4]). For example, if you find
that aIθ − bIθ′ desirable, and our observations induce a likelihood such that
L(θ) = 1 L(θ′) = 0.5, then our odds in favour of θ against θ′ double, so we
are ready to accept aIθ − 2bIθ′ as desirable (multiplying this gamble by the
likelihood is unconditionally desirable).
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Given a set of desirable gambles D, we can associate with it a set of
almost desirable gambles D∗, which is given by:

D∗ = {f : f + α ∈ D, ∀α > 0}. (2)

A set of desirable gambles on Θ defines a convex set of finitely additive
probability measures (a credal set) on Θ, namely

MD = {P | P (f) ≥ 0, ∀f ∈ D}, (3)

where P (f) is the expectation of f with respect to P [19, Section 3.2].
Using the same expression, we can associate a credal set to D∗, which is

identical to the one associated with D: MD = MD∗ [19]. There is a one-
to-one correspondence between sets of almost desirable gambles and credal
sets, in the sense that D∗ = {f | P (f) ≥ 0, ∀P ∈ MD∗} [19].

We will assume that each decision dθ is identified with a utility gamble
denoted in the same way, in such a way that dθ(θ

′) denotes the utility of
selecting θ ∈ Θ when the true value of the parameter is θ′. Hereafter, a
0-1 utility will be considered: dθ(θ

′) = 1 if θ = θ′ and 0, otherwise. Other
utilities could be used, but this one does not assume a distance in Θ and
will be enough to explain many of the model selection procedures used in
practice.

In our full setting, each observation O defines a likelihood (the marginal
likelihood with respect to β ∈ B) on D given by:

L(θ) =

∫

B

P (β|θ).P (O|β, θ)dβ. (4)

Finally, our full procedure to learning can be expressed with the following
steps:

• Solve the decision problem in Θ: Since we have a set of observations,
we must first condition D on these observations, and then compute the
non-dominated decisions, i.e.

1. Compute the conditional set of desirable gambles DL for the like-
lihood associated to the observations, which is given by expression
(4).

2. Select the set of maximal (non-dominated) decisions on the pa-
rameter space Θ [20], i.e. the set

HL = {dθ : dθ′ − dθ 6∈ DL, ∀θ′ ∈ Θ}. (5)
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• Finally, consider the set of models about X associated with these de-
cisions,

MO = {P (X|O, θ) : dθ ∈ HL}, (6)

where P (X|O, θ) is given by expression (1).

The final result is a set of models, not a single model. Since the informa-
tion about Θ is imprecise, the set of optimal decisions will be in most of the
cases imprecise too.

3. The Discounted Uniform Prior

This section is focused on the prior information D on Θ. Several possi-
bilities can be considered, but our approach is based on the uniform prior.
This uniform prior, Du, is the natural extension of the set of gambles:

Ku = {Iθ − αIθ′ : θ, θ′ ∈ Θ, α < 1} (7)

where Iθ is the indicator function of θ. Note that Iθ is identical to dθ, but here
we have preferred to use a different notation, to distinguish it from decision
dθ.

Proposition 1. If Θ is finite, Du is equal to the set of gambles f such that
∑

θ∈Θ f(θ) > 0.

Proof. Any gamble f belonging to posi(Ku) can be expressed as

f =
k

∑

i=1

cifi, (8)

where fi > 0 or fi ∈ Ku and ci > 0. Since for any fi,
∑

θ∈Θ fi(θ) = ri > 0, it

follows immediately that
∑

θ∈Θ f(θ) =
∑

θ∈Θ

∑k
i=1 cifi(θ) =

∑k
i=1 ci

∑

θ∈Θ fi(θ) =
∑k

i=1 ciri > 0.
On the other hand, if f is such that

∑

θ∈Θ f(θ) > 0, let us prove that it
can be expressed as in equation (8) by induction in the number of elements
of Support(f).

If Support(f) contains only one element {θ}, then we have that f = cIθ,
where the indicator Iθ > 0, in which case it is in the natural extension of Ku.
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If the number of elements in Support(f) is greater than 1, then let us
consider θ0 ∈ Support(f) such that |f(θ0)| = minθ∈Support(f) |f(θ)| = h, and
r =

∑

θ∈Θ f(θ) > 0. Let us consider θ1 ∈ Support(f) and θ1 6= θ0. In this
case we have

• If f(θ0) < 0, let us consider f ′ = f − c(Iθ1 − αIθ0), where c = r/2 −
f(θ0) > 0 and α = −f(θ0)

r/2−f(θ0)
< 1.

As
∑

θ∈Θ c(Iθ1(θ)−αIθ0(θ)) = c(1−α) = r/2, we have that
∑

θ∈Θ f ′(θ) =
r − r/2 > 0.

Taking into account that f ′ is obtained from f by modifying its value in
two points belonging to its support, then Support(f ′) ⊆ Support(f),
but f ′(θ0) = f(θ0) + cα = 0, so Support(f ′) has less elements than
Support(f), and we can apply the induction hypothesis to f ′. As f =
f ′ + c(Iθ1 − αIθ0), and Iθ1 − αIθ0 ∈ Ku, the result follows.

• If f(θ0) > 0, let us consider f ′ = f−c(Iθ0−αIθ1), were c = 1/f(θ0) > 1

and α = 1 − f(θ0)r
2

< 1. In this case too it follows immediately that
Support(f ′) = Support(f) \ {θ0} and

∑

θ∈Θ f ′(θ) = r − c(1 − α) =
r/2 > 0. So, the result follows by induction taking into account that
(Iθ0 − αIθ1) ∈ Ku.

In this case (a finite Θ), set MDu
of finitely additive probability measures

in Θ contains only one element: Pu, the uniform probability in Θ. If there
are two values θ1, θ2 such that P (θ1) > P (θ2), it is easy to select a gamble
from Ku, f = Iθ2 − αIθ1 with P (f) < 0.

For the following result, Support+(f) will denote the set {θ ∈ Θ : f(θ) >
0} and Support−(f) will denote the set {θ ∈ Θ : f(θ) < 0}.

Proposition 2. If Θ is infinite, Du is the set of gambles f for which Support−(f)
is finite and there is H ⊆ Support+(f) with H finite and

∑

θ∈(H∪Support−(f)) f(θ) >
0.

Proof. The natural extension is posi(Ku ∪ L+), as any element of K and L+

has finite negative support. Then, any finite positive linear combination of
them will have a finite negative support too. Also, if f ∈ posi(Ku ∪ L+),
then f =

∑k
i=1 cifi +

∑l
j=1 djgl, where fi ∈ Ku, gj ∈ L+, ci > 0, dj > 0.
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Let H be Support+(f) ∩ (
⋃k

i=1 Support(fi)). We have that H is finite, and
∑

θ∈(H∪Support−(f)) f(θ) ≥
∑

θ∈(H∪Support−(f))

∑k
i=1 cifi. And the result follows

taking into account that Support(fi) ⊆ (H ∪ Support−(f)) and
∑

θ∈Θ fi =
1− α > 0.

On the other hand, if f is a gamble for which Support−(f) is finite and
there is H ⊆ Support+(f) with H finite and

∑

θ∈(H∪Support−(f)) f(θ) > 0, we
can consider the gamble g = I(H∪Support−(f)).f , where I(H∪Support−(f)) is the

indicator function of (H∪Support−(f)). This gamble has a finite support and
so we can follow a reasoning completely analogous to the previous proposition
to show that g ∈ Du, and since f ≥ g, we have that f ∈ Du.

The following result shows that moving from the finite to the infinite case
changes the nature of MDu

. In fact, now MDu
contains many probability

measures.

Proposition 3. If Θ is infinite, then MDu
is equal to the set of all the finitely

additive probability measures in Θ such that P (H) = 0 for any H ⊆ Θ finite.

Proof. If P satisfies P (H) = 0 for any finite set H , since every gamble f in
Du has a finite negative support, we have that P (f) ≥ 0 and P ∈ MDu

.
On the other hand, if P is such that P (H) > 0 for a finite set, then there

is θ0 ∈ Θ with P (θ0) > 0. Since Θ is infinite, we cannot have P (θ) ≥ P (θ0)
for every θ ∈ Θ. Therefore, we can conclude that there is a θ1 ∈ Θ such that
P (θ1) < P (θ0).

Consider α = P (θ0)−P (θ1)
2P (θ0)

< 1, and the gamble f = Iθ1 − αIθ0 ∈ Du. We

have that P (f) = P (θ1)− αP (θ0) = P (θ1) − (P (θ0) − P (θ1))/2 = (P (θ1)−
P (θ0))/2 < 0, and therefore P 6∈ Du.

It is important to note that MDu
contains many finitely additive prob-

ability measures, in particular if Θ is the [0, 1] interval, it contains all the
finitely additive probability measures compatible with the uniform density,
but also all the finitely additive probability measures compatible with any
other continuous distribution in [0, 1], as all of them assign probability 0 to
finite sets. For example, it contains the probabilities associated with density
h(x) = 2x. However, Du contains more information than MDu

, as sets of
desirable gambles may include information conditional to sets of probability
0. In particular, if H is finite, the conditioning of Du to H , DuH , will contain
all the gambles f such that

∑

θ∈H f(θ) > 0, and the associated credal set is
given by the uniform probability in H .
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Now, we define discounting for sets of desirable gambles following the
approach in [16]. If D is a set of desirable gambles and ǫ ∈ [0, 1], then the
discounting of D by ǫ is the set of desirable gambles given by:

Dǫ = {f − ǫ inf(f)ISupport(f) : f ∈ D} \ {0}. (9)

It is immediate to prove that if D is coherent, then Dǫ is coherent too.
Also, we have that Dǫ ⊆ D, i.e. we are losing information in D when moving
to Dǫ. On the other hand, D0 = D and D1 is the vacuous set of gambles: it
only contains the positive gambles.

The use of the support in the definition is important to keep conditional
information in the discounting. If sets of almost desirable gambles are to be
considered, the use of the support in the definition is not significant (in the
sense of the following result).

Proposition 4. If D is a coherent set of desirable gambles, then if D′ǫ =
{f − ǫ inf(f) : f ∈ D} \ {0}, we have that (Dǫ)∗ = (D′ǫ)∗.

Proof. First, we are going to prove that D′ǫ ⊆ Dǫ. If g ∈ D′ǫ and g ≥ 0,
then g ∈ Dǫ, as Dǫ is coherent. If g 6≥ 0, then inf(g) < 0, and there
is f ∈ D with inf(f) < 0, such that g = f − ǫ inf(f). As f ∈ D, then
h = f − ǫ inf(f)ISupport(f) ∈ Dǫ. Since inf(f) < 0, we have that g ≥ h, and
therefore g ∈ Dǫ.

Having proved that D′ǫ ⊆ Dǫ, we also have that (D′ǫ)∗ ⊆ (Dǫ)∗.
Consider now f ∈ (Dǫ)∗. Again, if f ≥ 0, then f ∈ (D′ǫ)∗. In other case

we can assume without loss of generality that inf(f) < −1 (we could multiply
by a positive constant, c, and make the proof with cf , and if cf ∈ (D′ǫ)∗ we
will also have f ∈ (D′ǫ)∗). Let us consider the sequence {αn}n∈N where
αn = 1/n. We have that, for any n, f + αn ∈ Dǫ, and there is gn ∈ D such
that

f + αn = gn − ǫ inf(gn)ISupport(gn). (10)

Since inf(f) < −1, we have inf(f + αn) < 0, and therefore inf(gn −
ǫ inf(gn)ISupport(gn)) < 0 obtaining

inf(f) + αn = inf(gn)(1− ǫ),

and
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inf(gn) =
inf(f) + αn

1− ǫ
.

So, {inf(gn)}n∈N is a decreasing sequence converging to inf(f)
1−ǫ

.
Let us denote by An, Bn the supports of f+αn and gn respectively, and by

Ac
n, B

c
n their complementary sets. We have that Ac

n = {θ ∈ Θ : f(θ) = αn}
and then Ac

n ∩ Ac
m = ∅ if n 6= m. We also have that Bc

n ⊆ Ac
n. Therefore,

Bc
n ∩ Bc

m = ∅ if n 6= m.
Going back to equation (10) and subtracting ǫ inf(gn)IBc

n
in both sides,

we get:

f +αn−ǫ inf(gn)IBc
n
= gn−ǫ inf(gn)ISupport(gn)−ǫ inf(gn)IBc

n
= gn−ǫ inf(gn).

As gn ∈ D, we get f + αn − ǫ inf(gn)IBc
n
∈ D′ǫ.

Now consider m ∈ N and the average of the gambles fn = f + αn −
ǫ inf(gn)IBc

n
, i.e. tm = (1/m)

∑m
n=1 fn. We have that tm ∈ D′ǫ too, since this

set is coherent.
As all sets Bc

n (n = 1, . . . , m) are disjoint and inf(gn) < 0, we have

tm ≤ f + (1/m)
∑

n=1,...,m

αn − (1/m)ǫ inf(gn).

Taking into account that {inf(gn)}n∈N is a decreasing sequence converging

to inf(f)
1−ǫ

, we also have

tm ≤ f + (1/m)
m
∑

n=1

αn − (1/m)ǫ inf(f).

So, for any m, we have f + (1/m)
∑m

n=1 αn − (1/m)ǫ inf(f) ∈ D′ǫ. As the
sequences {(1/m)

∑

n=1,...,m αn}m∈N and {(1/m)ǫ inf(f)}m∈N, converge to 0,
we have that, for any α > 0, there is anm such that f+(1/m)

∑

n=1,...,m αn−
(1/m)ǫ inf(f) ≤ f + α, and then f + α ∈ D′ǫ, and f ∈ (D′ǫ)∗.

This discounting is consistent with the one used in belief functions [14]
or the ǫ-contaminated model [15], as proved by the following proposition.

Proposition 5. If D is a coherent set of desirable gambles and ǫ ∈ [0, 1],
then MDǫ = (1 − ǫ)MD + ǫM0 = {(1 − ǫ)P + ǫQ : P ∈ MD, Q ∈ M0},
where M0 is the vacuous set of finitely additive probability measures in Θ,
i.e. it contains all the finitely additive probability measures.
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Proof. If ǫ = 1, the result is trivial as both sets are M0. Assume now ǫ < 1.
Assume P ∈ (1−ǫ)MD+ǫM0, then P = (1−ǫ)P1+ǫP2 where P1 ∈ MD

and P2 is an arbitrary finitely additive probability measure.
If g ∈ Dǫ,then g = f − α(inf(f))Support(f), where f ∈ D.
As f ∈ D and P1 ∈ MD, we have that P1(f) ≥ 0.
In these conditions, P (g) = P (f) − ǫ(inf(f))P (Support(f)) = (1 −

ǫ)P1(f) + ǫP2(f)− ǫ(inf(f))P (Support(f)).
As P2(f) ≥ inf(f), we have

P (g) ≥ (1− ǫ)P1(f) + ǫ inf(f)− ǫ(inf(f))P (Support(f)) ≥ (1− ǫ)P1(f) ≥ 0.

As P (g) ≥ 0 for any g ∈ Dǫ, we have that P ∈ MDǫ.
For the other inclusion, given that a coherent set of desirable gambles

and its associated set of almost desirable gambles define the same credal
set and the result of Proposition 4, it is enough to prove that M(D′ǫ)∗ ⊆
(1− ǫ)MD + ǫM0.

Assume now P 6∈ (1 − ǫ)MD + ǫM0. As this set is closed and convex,
then as a consequence of the weak∗-compactness theorem [19, Section 3.6.1]
there is a gamble f such that P (f) < 0 and P ′(f) ≥ 0 for any P ′ ∈ (1 −
ǫ)MD + ǫM0.

This implies that

(1− ǫ)P1(f) + ǫP2(f) ≥ 0, ∀P1 ∈ MD, P2 ∈ M0.

Let λ > 0 be an arbitrary value. Since M0 contains all the probability
measures, consider that P2 is the probability that assigns probability 1.0 to
the points θ ∈ Θ in which f(θ) ≤ inf(f) + λ. We get

(1− ǫ)P1(f) + ǫ(inf(f) + λ) ≥ 0, ∀P1 ∈ MD.

Since λ > 0 is arbitrary, we get

(1− ǫ)P1(f) + ǫ inf(f) ≥ 0, ∀P1 ∈ MD.

Given the duality between credal sets and sets of almost desirable gam-
bles, we have that g = (1− ǫ)f + ǫ inf(f) ∈ D∗.

We also have that inf(g) = (1− ǫ) inf(f) + ǫ inf(f) = inf(f).
For any α > 0, let α′ = α/(1 − ǫ), then g + α′ ∈ D, and therefore

g+α′−ǫ(inf(g)+α′) ∈ D′ǫ, so g−ǫ inf(g)+α′(1−ǫ) = g−ǫ inf(g)+α ∈ D′ǫ,
and therefore, g − ǫ inf(g) ∈ (D′ǫ)∗. On the other hand, P (g − ǫ inf(g)) =
(1− ǫ)P (f) + ǫ inf(f)− ǫ inf(g) = (1− ǫ)P (f) < 0. So, P 6∈ M(D′ǫ)∗ .
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Now we are going to analyse the gambles in Dǫ
u, focusing on gambles with

finite support.

Proposition 6. If f is a gamble with finite support, then f ∈ Dǫ
u if and only

if (1− ǫ)
∑

θ∈Support(f) f(θ) + ǫ inf(f)|Support(f)| > 0.

Proof. If f > 0, then f ∈ Dǫ
u and (1− ǫ)

∑

θ∈Support(f) f(θ) + ǫ inf(f) > 0, so

let us assume that there is a point θ with f(θ) < 0.
f ∈ Dǫ

u then f = g − ǫ inf(g)ISupport(g), where g ∈ Du. We have that
Support(g) must be finite. Otherwise Support−(g) should be infinite and
this is not possible if g ∈ Du.

We also get inf(f) = inf(g)− ǫ inf(g) = (1− ǫ) inf(g).
Now,

∑

θ∈Support(f) f(θ) =
∑

θ∈Support(g) g(θ)− ǫ|Support(g)| inf(g) and
∑

θ∈Support(g) g(θ) =
∑

θ∈Support(f) f(θ)+ǫ|Support(g)| inf(g) = ∑

θ∈Support(f) f(θ)+

ǫ|Support(g)| inf(f)/(1− ǫ) > 0.
Therefore,

∑

θ∈Support(f) f(θ) + ǫ|Support(g)| inf(f)/(1 − ǫ) > 0. Since

Support(f) ⊆ Support(g) and inf(f) < 0, we also have
∑

θ∈Support(f) f(θ) +

ǫ|Support(f)| inf(f)/(1 − ǫ) > 0, and multiplying by 1 − ǫ we get (1 −
ǫ)
∑

θ∈Support(f) f(θ) + ǫ inf(f)|Support(f)| > 0.

On the other hand, assume that (1−ǫ)
∑

θ∈Support(f) f(θ)+ǫ inf(f)|Support(f)| >
0, and then consider

g = (1− ǫ)f + ǫ(inf(f)− α)ISupport(f),

where α > 0 is a number small enough such that (1− ǫ)
∑

θ∈Support(f) f(θ) +

ǫ(inf(f) − α)|Support(f)| > 0 and f(θ) + ǫ(inf(f) − α) 6= 0, for any θ ∈
Support(f) (this is always possible, as Support(f) is finite).

We have that Support(f) = Support(g) and g ∈ Du, so g−ǫ inf(g)ISupport(g) ∈
Dǫ

u.
Since inf(g) = (1− ǫ) inf(f) + ǫ(inf(f)− α) = inf(f)− ǫα,
if θ ∈ Support(g), g(θ)−ǫ inf(g) = (1−ǫ)f(θ)+ ǫ(inf(f)−α)−ǫ(inf(f)−

ǫα) = (1− ǫ)f(θ)− ǫα(1− ǫ) ≤ (1− ǫ)f(θ), so as g − ǫ inf(g)ISupport(g) ∈ Dǫ
u

we have that f ∈ Dǫ
u too.

To finish this section, let us consider the gambles f in Dǫ
u with support

in two points θ1, θ2 and such that f 6> 0. Without loss of generality, we
can assume that f(θ1) > 0 > f(θ2). These assumptions are important, as
they will determine which decisions are dominated in our setting. In these
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conditions, taking into account that inf(f) = f(θ2) gamble f is desirable in
Dǫ

u if and only if

(1− ǫ)f(θ1) + (1 + ǫ)f(θ2) > 0.

Or, equivalently, if

−f(θ2)

f(θ1)
<

1− ǫ

1 + ǫ
.

If we have a set of observations O, then we must transform Dǫ
u by condi-

tioning using the associated likelihood L, thus producing Dǫ
u,L. Then g with

support in {θ1, θ2} and g(θ1) > 0 > g(θ2) is desirable in this set if and only
if gL ∈ Dǫ

u, i.e.

−g(θ2)L(θ2)

g(θ1)L(θ1)
<

1− ǫ

1 + ǫ
.

If g(θ2) = −1, g(θ1) = 1, this condition is

L(θ2)

L(θ1)
<

1− ǫ

1 + ǫ
. (11)

4. Applications to Multinomial Probabilities Estimation

In this section we will assume that we have a single variable X with K
possible values {x1, x2, . . . , xK} for which we want to estimate P (X = xi) =
θi, (i = 1, . . . , K). This is a simple setting, but most of the procedures shown
here can be extended to other statistical problems such as estimating the
parameters of a Gaussian variable or a regression model.

4.1. Maximum Likelihood Estimation

In this case, Θ = {θ = (θ1, . . . , θK) |
∑K

i=1 θi = 1, θi ≥ 0}, and B = {β}
(a single value is equivalent to the non-existence of the set: there is no
uncertainty and it does not have any effect in the observation process). If
we consider the uniform set of desirable gambles in Θ without discounting,
then dθ is dominated if and only if there is a dθ′ such that

L(θ)

L(θ′)
< 1,
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i.e. we obtain maximum likelihood estimation. If we observe a sample of
size N for which ni values correspond to the observation [X = xi], it is well
known that the only non-dominated decision dθ corresponds to the maximum
likelihood estimation: θ̂i = ni/N , being the likelihood function:

L(θ) = θn1

1 . . . . θnK

K . (12)

4.2. Maximum Likelihood Confidence Regions

In the above setting, if the uniform model is ǫ discounted, the non-
dominated decisions θ are those vectors, such that

L(θ)

L(θ̂)
≥ 1− ǫ

1 + ǫ
, (13)

where θ̂ is the maximum likelihood estimation.
This corresponds to the so-called likelihood-based confidence regions [6],

consisting in selecting all the parameters θ for which L(θ)

L(θ̂)
> c. This provides

a framework for justifying the use of these intervals with an ǫ-discounted
uniform model and c = 1−ǫ

1+ǫ
. It is important to notice, that in some cases,

Expression (13) gives rise to regions that are not convex, as it will be shown
with an example. In the case of a single parameter with a convex region, we
obtain what is called a pure likelihood interval [6].

The result in this case is an imprecise model, since many decisions are
not dominated, namely all the vectors (θ1, . . . , θK) such that

θn1

1 . . . . .θnK

K ≥
(n1

N

)n1

. . . . .
(nK

N

)nK 1− ǫ

1 + ǫ
.

Maximum likelihood estimation can be too precise, especially with small
samples: If N = 1 and we observe xi, then we estimate the probability
θi = P (xi) = 1. Maximum likelihood intervals can be used to solve this
problem. For a sample of size 1, P (xi) will be in the interval [1−ǫ

1+ǫ
, 1] if the only

observation has been xi and in the interval [0, 1− 1−ǫ
1+ǫ

] for P (X = xj), j 6= i.

4.3. Bayesian High-Density Regions

In the Bayesian setting there are also procedures for selecting a parameter
region instead of doing a point estimation or a model averaging: the so-called
high-density regions, or Bayesian interval estimation [9, 10]. To describe this
in our framework we will consider a set Θ of parameters and B = {beta}
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(equivalent to non-existence of the set). It will also be assumed that there
is a prior density f on Θ. In these conditions, it is possible to compute a
posterior density f(θ|O). Then a high-density region is computed by fixing a
threshold γ and then selecting a region H ⊆ Θ (a measurable set) such that
P (H||O) ≥ γ, being H = {θ : f(θ|O) ≥ d} of minimum size (with respect
to the Lebesgue measure). Usually, this method is presented as a procedure
to summarize the posterior density. A justification of this methodology in
terms of Bayesian decision theory is given in [10, Subset. 5.2.5], but the
problem is specified in a different way: The set of decisions is the set of all
measurable sets H ⊆ Θ, instead of the set of parameters. Under suitable loss
functions linking a true value of the parameter θ to a selected region H , the
best decision is a high-density region.

If a prior uniform density is considered, this procedure is very similar to
maximum likelihood confidence regions, since f(θ|O) ∝ L(θ) in that case.
However, in practice there is a difference: In likelihood regions a value c is
fixed and then d = cL(θ̂). In high-density regions γ is selected and d is the
maximum value such that P (H||O) ≥ γ. So, in both cases the confidence
region will be of the formH = {θ : f(θ|O) ≥ d}, but the value d is computed
in different ways from the defining parameter in both cases. Therefore, a 0.95
likelihood region will be in general different from a 0.95 high-density region:
One is included in the other, depending of the values of d in both cases.

If the prior density f is not uniform, then a very similar procedure to the
high-density regions can be obtained by considering that the prior informa-
tion is given taking into account that

Kf = {f(θ′)Iθ − αf(θ)Iθ′ : θ, θ′ ∈ Θ, α < 1}
In this situation, if observations give rise to likelihood L as in Equation

(??), then it follows that the non-dominated decision corresponds to the
maximum posterior point:

θ̂f = argmax
θ∈Θ

f(θ)L(θ).

If a previous discounting by ǫ is carried out for Kf , then what we get is
a high-density region:

H = {θ ∈ Θ | f(θ)L(θ) ≥ cf(θ̂f)L(θ̂f ), }
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where c = 1−ǫ
1+ǫ

, as usual. Note that this is a high-density region, but the
defining parameter is γ = P (H|O), instead of ǫ or c.

Finally, let us remark that this approach makes sense when the posterior
density is bounded.

4.4. Bayesian Point Estimation

In this case, Θ = {s} is a single hyperparameter (the equivalent sample
size), and B = {θ = (θ1, . . . , θK) | ∑K

i=1 θi = 1, θi ≥ 0} (the former Θ in
maximum likelihood estimation).

The prior probability in B conditioned to s is associated to a symmetrical
Dirichlet distribution:

P (θ1, . . . , θK |s) =
(Γ(s/K))K

Γ(s)
θ
s/K
1 . . . . .θ

s/K
1 ,

where Γ() is the Gamma function.
The probability of the observations is P (X = xi|θ, s) = θi.
Now, there is no model selection, since Θ has only a single value, and we

only have a Bayesian averaging of parameters in B, estimating the probabil-
ities using Equation (1): P (X = xi|O, s) by ni+s/K

N+s
.

Model averaging is appropriate in many situations, but there are cases
in which likelihood intervals or general high-density regions can be more
intuitive.

Example 1. Consider that we are estimating the probability of a binary vari-
able X with values in {0, 1}. Imagine that we have a set of 100 independent
values of X (X1, . . . , X100) which have been partially observed: We only know
the difference between the number of 0s and the number of 1s, which in our
particular case was 100, i.e. all the observations were of the same value. If
P (X = 0) = θ, then the likelihood function is:

L(θ) = P (X1 = X2 = · · · = X100|θ) =
P (X1 = X2 = · · · = X100 = 1|θ) + P (X1 = X2 = · · · = X100 = 0|θ) =

θ100 + (1− θ)100. (14)

As this likelihood is symmetrical with respect to θ = 0.5, if prior infor-
mation is symmetrical too, the posterior will be also symmetrical, and the
averaging is 0.5. However, given the observations we have a strong belief
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that the probabilities will be extreme. In fact, with 1−ǫ
1+ǫ

= 0.95, the likeli-
hood confidence region is [0, 0.02951305] ∪ [0.970487, 1.0], showing that the
parameter value should be close to 0 or 1.

The averaging Bayesian approach can make sense if we want to predict
the probability of a single future outcome of the variables, but often we are
estimating a probability, which remains fixed for later use. This use can be
very diverse and not known at this moment. For example, we could need to
know whether two future independent observations of X will be both 0. In
that case, the use of Bayesian probabilities could lead to very bad decisions.

4.5. The Imprecise Dirichlet Model (IDM)

The imprecise Dirichlet model (IDM) was introduced by Walley [7]. In
our setting, it can be described by considering a fixed hyperparameter s (the
equivalent sample size) and considering Θ = {α = (α1, . . . , αk) :

∑K
i=1 αi =

s, αi > 0}; B = {θ = (θ1, . . . , θK) |
∑K

i=1 θi = 1, θi ≥ 0} as in the Bayesian
procedure, and P (X = xi|α, θ) = θi. The prior information in Θ is the
1-discounted uniform, i.e. the vacuous set of desirable gambles. In this
setting, there is no dominance of decisions in Θ and the model is equivalent
to averaging with respect to all the parameters in this set. If we have a dataset
of N independent observations for variable X , the result for P (X = xi|α,O)
is ni+αi

N+s
. As there is no dominated α, the result for P (X = xi|O) is the set

of values corresponding to all the α values. Taking supremum and infimum
in these values, we get P (X = xi|O) ∈ [ ni

ni+s
, ni+s
ni+s

].

4.6. The Empirical Bayes Approach

In the Bayesian approach we must fix the hyperparameter s. However,
there is no unified method to select its value. The empirical Bayes approach
[21] considers a set of possible values, for example, an interval [s1, s2], and
makes the estimation using the value s ∈ [s1, s2] with maximum likelihood
(marginal likelihood on β ∈ B as in Equation (4)). In our setting, Θ =
[s1, s2], B = {θ = (θ1, . . . , θK) |

∑K
i=1 θi = 1, θi ≥ 0}, with

P (θ1, . . . , θK |s) = θ
s/K
1 . . . . .θ

s/K
1 ,

P (X = xi|θ, s) = θi

In Θ we consider the uniform model without discounting (ǫ = 0). If we
have a set of observations about X , then the likelihood in Θ is [22],
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L(s) =
Γ(s)

Γ(N + s

K
∏

i=1

Γ(ni + s/k)

Γ(s/K)
.

So, the only parameter in Θ that is not dominated is parameter ŝ, maxi-
mizing L(s) and the final estimation ni+ŝ/K

N+ŝ
.

Of course, this model can be also applied by discounting the uniform
distribution on Θ = [s1, s2]. If ǫ = 1, the vacuous set of desirable gambles
in Θ is obtained, and the result is the imprecise sample size Dirichlet model
(ISSDM) proposed in Masegosa, Moral [23]. In this model, the estimated
interval for P (Xi = xi|O) is given by

[min{ni + s1/K

N + s2
,
ni + s2/K

N + s1
},max{ni + s1/K

N + s1
,
ni + s2/K

N + s2
}].

But we could also consider an ǫ-discounted uniform, in which case the
estimation of probabilities would be done by computing ŝ, the value of s
with greatest likelihood, and then reducing Θ to HL = {s ∈ Θ | L(s) ≥ 1−ǫ

1+ǫ
}.

Finally, P (Xi = xi|O) is given by

[min
s∈HL

ni + s/K

N + s
,max
s∈Θ′

ni + s/K

N + s
]

.
We do not know a closed form for this interval, or even under which

conditions HL is convex, but in any case, an approximate computation based
on considering a finite set of points s ∈ [s1, s2] seems feasible.

4.7. The Imprecise Dirichlet Model with α-cut Conditioning

It is well known that IDM has a good behaviour when we have precise
observations of variable X , but it has difficulties when we have indirect ob-
servations with some probability of error [24]. Let us assume that we have
now two variables X, Y with values {0, 1}, where X is a binomial variable
for which we want to learn about its probabilities, and we have a Θ and B
as in the IDM. Y is a variable that is conditional independent on the pa-
rameters (θ, β), given the value of X , i.e. it only depends of the concrete
value of X and represents indirect observations of the values of X , with
P (Y = 1|X = 1) = 1− λ1, P (Y = 0|X = 0) = 1− λ0, where λ0, λ1 are small
positive numbers. Imagine that we have N = 100 observations of variable Y
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and that in all of them we have observed Y = 1. We should expect a low
value for the probability P (X = 0) = θ0, but the IDM provides the vacuous
interval for this probability [24]: P (X = 0|O) ∈ [0, 1].

In fact, given the probabilities θ0, 1− θ0 for the two values of X , we have

L(θ0|O) = P (O|θ1, θ2) = (θ0λ0 + (1− θ0)(1− λ1))
100.

Given a couple of values (α0, α1) ∈ Θ with α0 + α1 = s, the posterior
probability of θ0 is proportional to:

P (θ0|O) ∝ θα0−1
0 (1− θ0)

α1−1(θ0λ0 + (1− θ0)(1− λ1))
100

For a very small value of α0, we have the product of two functions,
θα0−1
0 (1 − θ0)

α1−1, which is concentrated in low values of θ0 and (θ0λ0 +
(1 − θ0)(1 − λ1))

100 which in turn is concentrated in values of θ0 close to 1.
However, the second term does not depend on α0 and it is possible to make
α0 small enough to concentrate the product in low values of θ0, with which
the expected value of P (θ0|O) can be made as close to 0 as desirable, so that
the final interval for P (θ0|O) is [0, 1].

The induced likelihood in Θ is given by

L(α0) =

∫ 1

0

θα0−1
0 (1− θ0)

α1−1(θ0λ0 + (1− θ0)(1− λ1))
100dθ0.

For low values of α0, as the two functions we are multiplying are concen-
trated in different parts of [0, 1], their product is small in all the intervals,
and the likelihood is small. So, even if the infimum of the expected values of
θ0 is 0, this infimum is obtained for values α0 with very low likelihood. But
the problem is that, since in the IDM we have the vacuous information in Θ
(1-discounted uniform model), the information provided by this likelihood is
not being used.

To solve this problem, Cattaneo [5] proposes the α-cut conditioning con-
sisting in selecting a threshold c ∈ [0, 1] and discarding the values α′

0 for
which L(α′

0) < cmaxα0
L(α0). In this way, low values of α0 should be dis-

carded in our example and the interval for P (X = 1|O) is not vacuous. This
approach corresponds to our model with ǫ-discounted uniform and c = 1−ǫ

1+ǫ
.

In general, the ǫ-discounted uniform can be applied to the general IDM
with direct observations. In that situation, we must compute α̂ = (α̂1, . . . , α̂K)
maximizing the marginal likelihood,
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L(α) = L(α1, . . . , αK) =
Γ(s)

Γ(N + s)

K
∏

i=1

Γ(ni + αi)

Γ(αi)
.

Then, Θ is reduced to the values HL = {α : L(α) ≥ L(α̂)1−ǫ
1+ǫ

}. Finally,
the estimated probabilities are

[

min
α∈HL

ni + αi

N + s
,max
α∈HL

ni + αi

N + s

]

.

We have not studied this computational problem, but it is intuitive to
think that the maximum of likelihood should be obtained in a point α, where
αi/s is close (or equal) to the relative frequencies ni/N , and that the points
in HL will be in a neighbourhood around this point. As the value of ni+αi

N+s

is increasing in αi, it should not be very difficult to compute the maximum
and minimum, at least in an approximate way.

5. Partitioned Sets of Parameters

In some cases, Θ is not homogeneous and some alternative to the uniform
discounted model can be more reasonable.

Example 2. Imagine that we have two observed variables (X, Y ) that repre-
sent the colours of two balls extracted from urns with 10 balls in two different
colours, red (R) and white (W). Two situations are possible:

• X and Y are selected from different urns of unknown composition.

• X and Y are selected from the same urn (with replacement, so that the
extractions are conditionally independent given the urn).

In this setting, the set of parameters Θ can be decomposed in two parts:

• Θ1 = {(D, ri1, rj2) | ri1, ri2 ∈ {0, 1, . . . , 10}}, representing the first sit-
uation, in which ri1, ri2 are the number of red balls in urns 1 and 2
respectively.

• Θ2 = {(E, ri) | ri ∈ {0, 1, . . . , 10}}, representing the case of one urn
for the two extractions, being ri the number of red balls.
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Θ1 and Θ2 do not have the same size (121 for Θ1 and 11 for Θ2). Further-
more, for each parameter (E, ri) ∈ Θ2 there is a parameter (D, ri1, rj2) ∈ Θ1

with L(E, ri) = L(D, ri1, rj2), considering ri1 = ri2 = ri, as in this case the
probabilities for the observations are the same. In this situation, (E, ri) will
not dominate (D, ri, ri) for any set of observations O. So, at least from the
point of view of the likelihood information, the set of parameters Θ2 is in-
cluded in Θ1. However, if the maximum likelihood obtained in Θ1 is similar
to the maximum likelihood obtained in Θ2, it could be reasonable to discard
parameters in Θ1 and select the case of the same urn, since it is simpler and
explains the data reasonably well.

The situation described in the example above could be handled for Θ =
⋃I

i=1Θi, being Θi disjoint finite sets, by considering the following modifica-
tion of the uniform model:

• Given Θi, a uniform model is considered inside Θi. This implies that all
the gambles aIθi1 + bIθi2 with a+ b > 0 and θi1, θi2 ∈ Θi, are considered
desirable.

• A gamble aIθi + bIθj is desirable with θi ∈ Θi, θj ∈ Θj, when a/|Θi| +
b/|Θj| > 0.

In this way, we consider that there is no preference for any Θi over Θj , i.e.
no gamble IΘi

− IΘj
should be desirable. In fact, we have that for any proba-

bility in the associated credal set P (Θi) = P (Θj). In that situation, param-
eters in larger sets Θi get probabilities lower than parameters in the smaller
set Θ2. In the case of the example we have that P (θ1)/121 = P (θ2)/11, if
θ1 ∈ Θ1, θ2 ∈ Θ2.

The final result is a hierarchical uniform model: The parts have globally
the same associated probability and there is a uniform probability condi-
tioned to each one of the parts. After the observations, in the example, we
could have a parameter in Θ2 that dominates all the parameters in Θ1.

Consider now that Θ = Θ1 ∪ Θ2, and that each parameter in θi ∈ Θi

is a vector of Mi elementary parameters (θi1, . . . , θiMi
) and each θij is one

element of a set ofm values (the same for every component of every parameter
and every set). The case in the example corresponds to this situation with
m = 11,M1 = 2,M2 = 1. In these conditions, a gamble Iθ1 − Iθ2 is desirable
conditioned to likelihood L(θ) if and only if L(θ1)Iθ1 − Iθ2L(θ2) is desirable,
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and this happens if L(θ1)/|Θ1| > L(θ2)/|Θ2|. Taking into account that |Θi| =
mMi, and taking logarithms, this condition is equivalent to:

log(L(θ1))−M1 log(m) > log(L(θ2))−M2 log(m). (15)

Note the similarity with classical model selection procedures like AIC or
BIC, having a part related to the logarithm of the likelihood (how the model
explains the data) and other part that is a penalty for the complexity of the
associated model and which is proportional to the number of parameters.

This approach cannot be directly generalized to the infinite case, as the
expression a/|Θi| > b/|Θj| makes only sense in the finite case. Furthermore,
there is no single way of penalizing complexity in this framework, in the sense
that there can be many different coherent methods for comparing gambles
from two different subsets of parameters. But following the analysis in the
finite case, it seems reasonable to assume a virtual value for |Θi|, which is
equal to rMi where Mi is the number of continuous parameters in Θi and r is
a parameter. Finally, a gamble Iθi − Iθj is desirable conditioned to likelihood
L(θ), if and only if

L(θi)

rMi
>

L(θj)

rMj
. (16)

Note that this criterion is also valid for i = j, since in that case rMi = rMj .
Different criteria are obtained depending on the selection of parameter r.
More specifically, if r = e (Euler’s number), what we obtain is Akaike’s in-
formation criterion [25]. Another possibility is r =

√
N , i.e. the number

of virtual cases of a continuous parameter is the square root of the sample
size. This can make sense, since the precision with which a parameter can be
determined for a sample of size N is, in general, proportional to

√
N (under

very general regularity conditions, the error of the maximum likelihood esti-
mation is asymptotically Gaussian, with standard deviation proportional to
1/
√
N). Assuming that r =

√
N , what we get is equivalent to the Bayesian

information criterion [26]. In any case, other selections for r are also possible.
If this partitioned uniform model is discounted, the result will be a set of

models, in particular all θi computed as follows:

• Compute θ∗i maximizing L(θi)/|Θi|, where |Θi| is the cardinality of Θi

in the finite case, or the virtual cardinal rMi in the infinite case, being
Mi the number of continuous parameters in Θi and r a parameter.
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• Select all θj ∈ Θj, such that

L(θj)/|Θj| ≥
1− ǫ

1 + ǫ
L(θ∗i )/|Θi|. (17)

5.1. Asymmetrical Discounting

The above procedure can be hard from a computational point of view,
as in some situations there can be too many parameters satisfying Equation
(17). A possible solution would be to favour the simpler models satisfying
the equation. The basis for this can be obtained using the following set of
desirable gambles based on asymmetrical discounting.

We will assume that Θ =
⋃I

i=1Θi. Then we will consider the following
preorder relation in sets Θi: Θi � Θj, if and only if for each θi ∈ Θi, there
is θj ∈ Θj such that for each possible set of observations O in the model
defining likelihood function L(θ) = P (O|θ), we have that L(θi) = L(θj). We
say that Θi ≺ Θj, when Θi � Θj and Θj 6� Θi. This preorder depends on
the full model, including the observation procedure. The intuitive idea is
that Θi � Θj when Θi is simpler than Θj , since for any parameter in Θi

there is another parameter in Θj giving always rise to the same likelihood
(i.e., defining the same probability for the observations). In Example 2 we
have that Θ2 � Θ1, as for each parameter (E, ri) ∈ Θ2 there is a parameter
(D, ri1, rj2) ∈ Θ1 with L(E, ri) = L(D, ri1, rj2).

So, the asymmetrical discounting considers the set of desirable gambles,
which is the natural extension of gambles

{a Iθi
|Θi|

− b
Iθj
|Θj|

+ bǫI{θi,θj} : θi ∈ Θi, θj ∈ Θj,Θi 6≺ Θj , a, b > 0}∪

{a Iθi
|Θi|

− b
Iθj
|Θj|

: θi ∈ Θi, θj ∈ Θj,Θi ≺ Θj, a+ b ≥ 0}.
(18)

In this case, the gambles expressing the dominance of a simpler model by
a larger model are not discounted. As a result, if we use, for example, BIC
(with the corresponding virtual cardinality of Θi) then if a model θi ∈ Θi

has the same or greater BIC than another model θj ∈ Θj and Θi ≺ Θj ,
then θj will be dominated: Never consider models that are more complex
than necessary to obtain the same fitting value. In this way, the number of
non-dominated parameters is lower, as the set of desirable gambles is larger.
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6. Applications to Learning Credal Networks

A Bayesian network [27] for a set of variables X = (X1, . . . , Xm) is a pair
(G,Π) where G is a directed acyclic graph with a node for each variable Xi

and Π is a list of conditional probability distributions P (X1|Pa1), . . . , P (Xm|Pam),
one for each variable Xi, given its parents in G, Pai.

• The graph G encodes a set of independent relationships: Given its
parents, each variableXi is independent of its non-descendant variables.

• The Bayesian network encodes the joint probability distribution:

P (X1, . . . , Xm) =

m
∏

i=1

P (Xi|Pai) (19)

Let us callKi the number of values of variableXi. The number of possible
values or configurations of parent variables Pai is equal to Ri =

∏

Xj∈Pai
Kj .

The conditional probability distribution P (Xi|Pai) consists in a probabil-
ity distribution of Xi for each configuration of the parents Pai = paj .
The value P (Xi = xk|Pai = paj), j = 1, . . . , Ri, will be denoted by θijk,
(i = 1, . . . , m, j = 1, . . . , Ri, k = 1, . . . , Ki). The vector of all these values
(θijk)ijk will be denoted by θG, and it is the set of parameters associated
to a graph G that are required to specify the conditional probability distri-
butions. We add the subscript G to make explicit the fact that this vector
depends on G. We will also denote as θij the vector (θij1, . . . , θijKi

), i.e. the
probabilities associated with the distribution of probability of Xi given the
jth configuration of its parents Pai = paj . Also, we will also denote by G the
set of all possible directed acyclic graphs for variables X and by ΘG the set
of all possible parameter values θG for graph G.

Learning is the process of selecting a model (G, θG) given a set of ob-
servations O of the variables. We will consider that we have a set of full
observations of the variables X and that nijk is the number of observations

of Xi = xk and the jth configuration of the parents Pai and nij =
∑Ki

k=1 nijk.
In our setting, learning Bayesian networks can be considered in different

ways:

• One possibility is considering Θ the set of all directed acyclic graphs G
for variables X = (X1, . . . , Xm), G, and B being the set of parameters
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{θG ∈ ΘG | G ∈ G}. Given G, there is a probability density concen-
trated in θG: It is assumed that each θij is an independent Dirichlet
distribution D(α1, . . . , αKi

) with parameters αk = s/(RiKi), where s
is a global hyperparameter (the global sample size).

With these conditions, in the uniform model without discounting we
must select a graph G maximizing L(G) = P (O|G). This value is the
well-known BDEu score given by [22]:

BDEu(G) = P (O|G) =
m
∏

i=1

Ri
∏

j=1

Γ(s/Ri)

Γ(nij + s/Ri)

Ki
∏

k=1

Γ(nijk + s/(RiKi))

Γ(s/(RiKi))
.

(20)

As the parameters of the graph, θG, are in set B, the approach implies
an averaging in these parameters. Taking into account that the pa-
rameters of each conditional probability in P (Xi|Pai) are a Dirichlet
distribution with αk = s/(RiKi), then the estimated probabilities for
Xi = xk given the jth configuration of its parents are

θ̂ijk =
nijk + s/(RiKi)

nij + s/(Ri)
. (21)

• Another possibility is to consider Θ = {(G, θG) : G ∈ G, θG ∈ ΘG},
which is partitioned as Θ =

⋃

G∈G Θ
′
G, where Θ′

G = {(G, θG) | θG ∈
ΘG} = {G} ×ΘG and then the uniform partitioned model with differ-
ent versions of the virtual |Θ′

G|. When |Θ′
G| is equal to the exponen-

tial of the number of parameters: e
∑m

i=1
Ri(Ki−1), taking logarithm and

computing the non-dominated models is equivalent to computing the
Bayesian network (Ĝ, θ̂) maximizing the Akaike information criterion:

AIC(G, θG) = log(L(G, θ)) =

m
∑

i=1

Ri
∑

j=1

Ki
∑

k=1

nijk log(θijk)−
m
∑

i=1

Ri(Ki−1)

(22)

This method implies that maximum likelihood estimation is employed
to estimate the parameters, but in practice approaches are mixed and a
Bayesian averaging solution is used. For example, considering Laplace
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correction, i.e. estimating the probability of Xi = xk given the jth
configuration of its parents as

nijk+1

nij+Ki
.

A credal network [8] is a generalization of a Bayesian network in which we
have a graph with an imprecise set of probability distributions, all of which
factorize according to the graph (they satisfy equation (19)), i.e. a graph G
and a non-empty subset H ⊆ ΘG, instead of a single θG ∈ ΘG. Masegosa and
Moral [23] propose a generalization of this concept by allowing the graph to
be imprecise too. So, a generalized credal network C is a non-empty set of
pairs (G, θG), i.e. C ⊆ {(G, θG) : G ∈ G, θG ∈ ΘG}.

Discounting the uniform prior information on Θ by ǫ implies that the
result of learning is a set of graphs and parameters, i.e. a credal network.
More specifically, we get:

• In the BDEu approach, all the pairs of (G, θ̂G) where BDEu(G) ≥
1−ǫ
1+ǫ

maxG′∈G BDEu(G′) and the parameters θ̂G for each graph are ob-
tained by averaging as in Equation (21).

• In the Akaike information criterion we must compute the pair (Ĝ, θ̂G)
by maximizing it, and then all the pairs (G, θG) such thatAIC(G, θG) ≥
log

(

1−ǫ
1+ǫ

)

+ AIC(Ĝ, θ̂G).

In general, these are difficult computational problems, as the number of
non-dominated networks can be very high. In this sense, we can cite the
work of Liao et al. [28], proposing algorithms to compute all the Bayesian
networks with a score within a giving factor of the optimal one.

But our approach offers other possibilities, like being initially imprecise
in the global sample size s when using the BDEu approach. Usually, when
learning a Bayesian network with this score, a somewhat arbitrary value of
s is selected, but it is well known that this selection can have an important
impact in the learned graph: Low values of s tend to produce sparse graphs,
while with large values of s, dense graphs are obtained [29, 30]. In our
approach, we can consider Θ = {(G, s) : G ∈ G, s ∈ [s1, s2]}, i.e. an interval
[s1, s2] is initially selected for the global sample size. B is the same as in
the BDEu approach: {θG ∈ ΘG | G ∈ G}, and the rest of the model is also
similar, with the difference that now the prior probability on B will depend
on G and s, but it will be also a density concentrated in ΘG according to
which every parameter of every conditional probability θij follow independent
Dirichlet distributions with αk = s/(RiKi). Now the BDEu score in Equation
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(20) will be a function of G and s, BDEu(G, s). The problem will be to
determine the pair (Ĝ, ŝ) maximizing BDEu(G, s), and then all the pairs
(G, s) with BDEu(G, s) ≥ 1−ǫ

1+ǫ
BDEu(Ĝ, ŝ). For a pair, (G, s) parameters

are estimated by averaging (Equation (21)). IF ǫ = 0 i.e. the uniform prior is
not discounted, only (Ĝ, ŝ) is selected and this is equivalent to using empirical
Bayes to determine the global sample size.

7. Conclusions

This paper presents a general approach to learning with imprecise prob-
abilities that combines Bayesian model averaging and model selection based
on imprecise probabilities. It offers a theoretical foundation for many proce-
dures presented in the literature and opens several computational problems
to determine the set of non-dominated models using exact and approximate
procedures. This will be an important task in our future research. Another
pending task is extending the approach to consider other sets of decisions
and loss functions in order to justify other methods for using the likelihood
information as its transformation in a possibility measure [31] or comput-
ing conditional intervals [4]. Finally, as suggested by one of the reviewers,
it would of interest to integrate our hierarchical model in a global decision
problem in the set Θ × B, studying the loss functions that give rise to the
same procedure than the approach proposed in the present paper.
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