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Digital twins (DTs) have revolutionised digitalisation practices across various domains, including the Architecture, Engineering,
Construction and Operations (AECO) sector. However, DTs often face challenges related to data scarcity, especially in AECO,
where tests are costly and difcult to scale. Historical data in this domain are often limited, unstructured and lack interoperability
standards. Data scarcity directly afects the accuracy and reliability of the DTmodels and their decision-making capabilities. To
address these challenges, classical methods are used to produce synthetic data based on predefned statistical distributions, which
are barely scalable to unpredictable scenarios and prone to overftting. Alternately, this work presents a novel comprehensive
approach that covers every aspect from synthetic data generation to training and testing of these data on the system’s models. Tis
strategy not only delivers high-quality data that meets the model’s requirements in terms of diversity, complexity and class
balance, but also provides the diagnostic and prognostic capabilities of the DTof the system through its trained models. State-of-
the-art techniques including generative adversarial networks (GANs), specifcally Wasserstein generative adversarial networks
with gradient penalty (WGAN-GP), and convolutional neural networks (CNNs) are employed in this novel pervasive approach,
participating in the same architecture for generative, diagnostic and prognostic purposes. GANs enable data augmentation and
reconstruction, while CNNs excel in spatial pattern recognition tasks. Te proposed framework is demonstrated through an
experimental case study on damage diagnostics and prognostics of a laboratory-scale metallic tower, where synthetic datasets are
generated to supplement limited health monitoring data. Te results showcase the efectiveness of the generated data for damage
detection, prognostics and operational decision-making within the DTcontext. Te presented method contributes to overcoming
data scarcity challenges and improving the accuracy of DTmodels in the AECO sector. Te article concludes with discussions on
the application of the results and their implications for decision-making within the DT framework.

Keywords: convolutional neural network (CNN); digital twin (DT); generative adversarial networks (GANs); synthetic data;
Wasserstein generative adversarial networks with gradient penalty (WGAN-GP)

1. Introduction

Digital twins (DTs) emerged from aNASA conceptualisation
[1] as comprehensive simulations of real-world systems,
using physical models, sensor data and historical in-
formation to mirror the behaviour of their physical coun-
terparts. Te continuous exchange of information between

the real and the virtual twin, together with the real-time
model updating, facilitates informed decision-making [2].

Te DT framework has disrupted digitalisation practices
in various domains, including the Architecture, Engineering,
Construction and Operations (AECO) sector, which sig-
nifcantly contributes to global energy-related CO2 emis-
sions [3] and has been slow to adopt new technologies and
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digitalisation [4]. Several factors have contributed to this
delay, such as the fact that AECO is a fragmented industry
with multiple stakeholders, along with a marked risk
aversion and high inertia in adapting to new developments
due to the high cost of operations [5–7].

Models, as mathematical representations of systems and
processes, play a vital role in DTs by providing insights
through simulations under diferent conditions [8]. Al-
though models are typically trained and scaled ofine, they
are employed online for simulation [9] and require regular
model updating based on time or criteria basis [10],
depending on the application. Factors such as parameter
evolution, changing ambient conditions, performance
metrics or data drift may force the model update to adapt to
the evolving patterns.

While models have the potential to serve as a data source,
DTs often encounter data scarcity challenges, particularly in
the AECO sector, where deploying realistic models is
complex and conducting tests is expensive, time-consuming
and difcult to scale. Historical data in this domain are often
limited, unstructured and incomplete [11]. Moreover,
available data frequently lack interoperability standards (e.g.,
Industry Foundation Classes [IFC]), ontologies (e.g.,
Building Information Modelling [BIM]) and other industry-
specifc formats [12]. Te scarcity of data is widely recog-
nised as a challenge by researchers and industry practi-
tioners [13–16], as it directly afects the accuracy and
reliability of the DT models and its decision-making capa-
bility. Te economic impact of data scarcity can lead to
fgures in cost overruns of up to 80% and planning delays of
20% as a result of suboptimal resource allocation and in-
efciencies due to insufcient data-driven decision-making
[17].

Previous attempts to address this matter include scaled
laboratory tests, historical data from previous observations,
feld surveys and numerical simulations, such as the fnite
element (FE) method. Tese methods can be used to cali-
brate and test models, although they are not the optimal
source for training, as they fail to reproduce the diversity of
real-world situations, without fully capturing the inherent
complexity of reality [18].

An alternative approach involves generating synthetic
data by mirroring and enhancing the properties of a foun-
dational dataset [19]. Synthetic data can be generated tomeet
the model’s requirements in terms of data size, diversity,
complexity and class balance [18], expanding the charac-
teristics of the real data. Industries such as medicine [20],
pharmacy [21] and fnance [22] have already embraced
synthetic datasets to develop models, with the intention of
leveraging the knowledge from real data.

Among the artifcial intelligence (AI) developments
capable of solving complex problems as those related to real-
time damage assessment for DTapplications, state-of-the-art
techniques such as generative adversarial networks (GANs)
and convolutional neural networks (CNNs) are well suited
due to their related ability. GANs, which were conceived by
Ian Goodfellow in 2014 [23], have revolutionised the gen-
eration of high-quality synthetic data [24–28] that closely
resembles the real world. Tey are particularly useful in

scenarios where there are no data or when a limited amount
of real data is available, enabling the simulation of multiple
scenarios, which is crucial for testing the robustness of the
DTs. Meanwhile, CNNs [29] are specifcally designed for
tasks involving spatial hierarchies and local patterns [30, 31]
such as those related to data in the AECO industry, where
spatial relationships in structural features are common.

In the context of this research, a GAN model is for-
mulated employing CNNs in both the generator and the
discriminator, due to their fexibility and ability to manage
complex grid-like shape data, respectively. Tis Wasserstein
generative adversarial network with gradient penalty
(WGAN-GP) and CNN architectural combination leverages
the generative capabilities of the WGAN-GP and the feature
extraction prowess of CNNs, enhancing the overall per-
formance and robustness of the model. By training a CNN-
based GAN on existing data, the underlying patterns are
learnt and the model generates new original samples for
robust model training and scenario testing. At the same
time, this type of training preserves sensitive information
and reduces data collection costs in the AECO industry.

Te present work develops a data generation framework
with a particular focus on the role that the generated data
play in the diagnostic and prognostic capabilities of the DT
in the AECO sector. Te scope of the proposed framework is
designed for structures of limited size where pivotal loca-
tions can be precisely defned at specifc points and their
features can be observed through discrete measurements,
thereby capturing the utmost critical behaviour exhibited by
the entire system. Tis study does not address the global
assessment of damage to large structures achieved by con-
tinuous vibrational evaluations, and future research is fos-
tered to explore these dimensions.

Figure 1 provides a visual representation of the proposed
methodology as elucidated in this study. Te schematic il-
lustration takes the form of an algorithm, encapsulating the
key steps and components that integrate the developed
approach.

Te research gap related to the use of discrete in-
formation for DTapplications is addressed in this work, as it
difers from the commonly used continuous information
sources such as vibration signals and other time series data
[32–34]. Discrete data are more prevalent in AECO appli-
cations because of the challenge of obtaining long-term
measurements for slow processes. Furthermore, the use of
discrete data is advantageous for the DT deployment, as it
facilitates synchronisation, computation on the edge and
minimisation of energy consumption in wireless Internet of
Tings (IoT) sensor devices [35]. It is worth mentioning that
edge computing enhances DT capabilities by providing
seamless operation near the data source, which increases
cybersecurity, reduces the latency of data transmission and
reduces the response time for real-time decision-making.

A demonstration of the present method is provided
through a specially designed experimental pilot. Te pro-
posed case study has focused on the diagnostics and
prognostics of damage in a laboratory-scale building-shaped
frame.Tis structure was subjected to a number of load cases
in a variety of damage states, where a limited amount of
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structural health monitoring (SHM) data is available. In this
context, the proposed CNN-based GANs are able to produce
a realistic synthetic dataset that supplements the limited
SHM data. Te resulting dataset thoroughly covers all
damage scenarios and the range of forces that the structure
can withstand without compromising its integrity.

With the purpose of highlighting the efectiveness of the
proposed approach, two CNN-based models have been
trained using the generated datasets: a damage diagnosis
classifer and a prognostic regressor for the Remaining
Useful Life (RUL) of the structure. Te results show that the
method is capable of detecting structural damage with an
accuracy of 92% in classifying damage, regardless of the

damage stage tested, and predicting the structural RUL with
a mean absolute error (MAE) of 12 years over 100, with
a goodness of ft (R2) of 0.9. Following the training phase,
a testing phase has evaluated the models’ ability to generalise
and perform well on unseen data, thereby avoiding potential
issues such as overftting. Finally, the paper demonstrates
how the proposed method can be used for operational
decision-making within a DTcontext. Decisions made under
this approach are distinguished by their real-time nature,
relying on online data streams through the IoT-enabled
SHM systems.

In summary, this work aims to address the challenge of
data scarcity in SHM, which harnesses the efective adoption

1. Experimental data collection:
- Running of the pilot to obtain the foundational dataset 'data_sens'

2. Calibration and statistical augmentation:
-Calibrate FEM: Use FEM to calibrate the system and produce data. Add heteroscedastic noise to mimic 
reality and obtain a dataset 'data_stat'

3. Generative adversarial network (GAN) data generation:
-Train a GAN on both datasets: 'data_stat' and 'data_stat' to generate a dataset 'data_GAN', 
resulting in a nonparametric generative model with improved generalisation capabilities

5. Performance comparison:
 - Compare the performance of diagnostic and prognostic models trained on datasets 'data_stats'
and 'data_GAN'

6. Models’ test:
 - Test the generative, diagnostic and prognostic models with new experimental data never seen by the 
model (dataset 'data_test') to assess their goodness and generalisation capability

STEPS:

OUTPUTS:

- Trained generative model (GAN) mimicking the real system

-Trained damage diagnostic and prognostic models ready for 
deployment in DT applications.

- Evaluation metrics of models’ performances

Real system: structure monitored by IoT sensors, capturing real-
time discrete measurements 

FE model (FEM): Finite element model of the system

GAN model: Generative model framework based on CNNs, to be 
trained and to mirror the real system

 INPUTS:

4. Models’ training and validation:
- Train diagnostic and prognosticmodels:

Train separate models for diagnostic and prognostic tasks using datasets 'data_stats' and
'data_GAN' to compare performances
Evaluate models and obtain both the best fit in each case (diagnosis and prognosis) to be 
implemented on a DT of the system

 - 

- 

Figure 1: Overview of the proposed data generation framework within the context of the digital twin.
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of the DT technology within the AECO sector. Te limited
availability of data in quality and quantity, essential for
training robust DT models, hinders their full potential in
providing predictive capabilities for managing structural
assets in this industry. Despite classical methods, which
barely produce data for calibration and testing due to their
limited size and working scenarios, this work presents an
innovative approach spanning from data generation to the
application of these data for both training and evaluation on
the models of the DT system. Te methodology consists of
the deployment of a CNN-based architecture which serves to
generate the data through a GAN and provides the di-
agnostic and prognostic capabilities of the DT at the same
time that test the goodness of the data generated.

Te novel contribution lies in the comprehensive in-
novative approach, which covers from the generation of
synthetic data to the training and testing of these data in the
DT system’s models, and the use of discrete measurements
instead of the continuous vibrational approach, typical in
SHM developments.

Te structure of the remaining paper is organised as
follows: Section 2 (Methodology) presents the mathematical
description and background of the procedures employed in
this work. Section 3 (Case Study Description and Problem
Confguration) outlines the practical context in which these
methods are applied and provides the model confguration
details of the CNN-based GANs. Te outcomes of the data
generation and validation, along with their impact on model
training for damage diagnostics and prognostics, are pre-
sented in Section 4 (Results and Discussion). Section 5
(Application Within the DT Context) details the practical
integration of the achieved outcomes within the DT frame-
work and the context of decision-making. Finally, Section 6
(Conclusions) delivers the fnal remarks and summary.

2. Methodology

In engineering, synthetic data generation is a common
practice achieved by simulating various scenarios through
experimental pilots and/or computational models. Te
models are further elaborated by incorporating noise or
other types of perturbation into the results obtained [36].
Tis technique not only increases the amount of data but
also enhances its diversity. Consequently, it enriches the
data-driven models with a better understanding of the
underlying physics and improves their robustness.

Within the classical paradigm, the noise introduced
typically conforms to a particular statistical distribution,
whereas perturbations manifest themselves as diverse geo-
metric transformations, including rotation, translation and
scaling. However, existing methods face several limitations
that hinder their efectiveness and reliability. Most of them
are computationally intensive and time-consuming, making
it challenging to scale up the data generation process for
large-scale applications and their subjacent predefned sta-
tistical distribution and geometrical transformations fail to
capture the full diversity and variability inherent in real-
world data, lacking robustness and adaptability to unusual
situations [18, 24].

Emerging approaches for this purpose encompass AI-
based techniques, including deep generative models such as
GANs, variational autoencoders (VAEs), autoregressive
models (AMs), fow-based models (FBMs) and energy-based
models (EBMs), which have gained considerable attention
and utility across diverse domains and recently in engi-
neering and DT [37]. Tese advanced models ofer multi-
faceted applications that efectively address the challenges
associated with limited data availability, anomaly detection,
damage localisation and predictive maintenance, to cite but
any [38]. Within these methodologies, GANs stand out as
particularly adept at capturing the underlying distribution of
real data, yielding the generation of more realistic synthetic
datasets [39]. Te superior performance of GANs can be
attributed to their ability to capture intricate patterns, while
requiring fewer assumptions about the data distribution.

In any case, attention should be paid to ensure the
quality and authenticity of the synthetic data. Transparency
in the methodology used for their generation embraces
explicability and instils confdence in the reliability of the
synthetic data. Regarding authenticity, the traceability of the
data throughout its lifecycle is essential, verifying the origin,
history and transformation of the data, providing a docu-
mented history that guarantees that the data have been
handled appropriately. In addition to this, there are quali-
tative and quantitative metrics that evaluate the goodness of
synthetic data according to its intended purpose, which will
be further detailed in this section.

2.1. GANs. A GAN consists of two neural networks:
a generative model or generator, referred to as G, and
a discriminative model or discriminator, D. Tese networks
are trained concurrently through a mix-max game, leading
to the development of a generator model capable of pro-
ducing synthetic data that align with the distribution of the
real data. To illustrate the main structure of a GAN, Figure 2
presents a schematic representation.

Let x ∈ X⊆ Rd be the vector representing the real data
and πr: X⟶ R+ a probability density function (PDF) as-
sociated with these data. Similarly, we denote 􏽥x ∈ 􏽥X⊆ Rd as
the latent noise vector, which follows the PDF πg: 􏽥X⟶ R+

(typically a multidimensional zero mean Gaussian).
Te generator G takes 􏽥x as input and maps it to a vector

G(􏽥x) of dimension d. Te discriminator D takes both the real
data for training x and the generated vector G(􏽥x) as inputs.
Ten, it outputs the probability that the generated sample
G(􏽥x) belongs to πr. Te training of D involves maximising
the probability of correctly assigning labels (‘real’ or ‘fake’) to
the generated samples. Simultaneously, the training of the
generator aims to minimise the probability of the discrimi-
nator classifying the generated samples as fake. Both training
stages of the GAN are conducted using the following loss
function [40] described in the following equation:

LGAN � Eπr
[logD(x)] + Eπg

[log(1 − D(G(􏽥x)))]. (1)

4 Structural Control and Health Monitoring
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Note that the discriminator D aims to distinguish
between inputs originating from the real data distribution
and those generated by the generator. Its objective is to
maximise the probability of correctly classifying the
generated samples as fakes. Conversely, the generator G

strives to produce synthetic samples that closely resemble
real data, with the goal of minimising the probability of
the discriminator classifying a generated sample as fake.
Once trained, the GAN can generate synthetic data that
follow a distribution similar to the real training
dataset [41].

To enhance the stability of GANs, various improvements
have been proposed to optimise the objective function, with
the recent introduction of the WGAN-GP [42, 43]. Te
WGAN-GP demonstrates superior performance compared
to the original GAN, addressing issues such as mode collapse
(where generated samples cluster in specifc regions) and
facilitating more consistent training. In WGAN-GP, the
discriminator is often referred to as the ‘critic’ since its focus
is not on classifying real or fake samples, but on determining
the degree of belief, providing confdence or reliability es-
timates for the generator’s predictions [44]. By introducing
the Wasserstein-1 distance, the WGAN-GP improves the
training stability with minimal hyperparameter tuning,
compared to the original GAN [45]. Te Wasserstein-1
distance is defned as follows:

W πr, πg􏼐 􏼑 � inf
􏽑 πr,πg( 􏼁

Ec∼􏽑 πr,πg( 􏼁[‖x − 􏽥x‖], (2)

where 􏽑 (Pr,Pg) denotes the set of all joint distributions
over πr and πg and the function c(x, 􏽥x) ∼ 􏽑 (·) can be
interpreted as the measure of the mass that must be
transported from x to 􏽥x in order to transform πr into πg.
Consequently, the infmum distance corresponds to the cost
of the optimal transport plan.

To ensure the stability of the training process, the
WGAN-GP incorporates a gradient norm penalty for ran-
dom samples, which augments the Wasserstein loss and
achieves Lipschitz continuity in the critic.Tus, the objective
function of the WGAN-GP is described as follows:

LWGAN−GP � Eπg
[f(􏽥x)] − Eπr

[f(x)]

+ λE􏽢x∼πu
∇

􏽥x
D(􏽥x)

�����

�����2
− 1􏼒 􏼓

2
􏼢 􏼣.

(3)

In equation (3), f is a 1-Lipschitz continuous function
and πu is the distribution obtained by uniformly sampling 􏽢x

along a straight line between the real and generated dis-
tributions πr and πg. Tis is justifed by the fact that the
optimal critic has straight lines with unit gradient norm
between the samples coupled from πr and πg. Te term λ is
the penalty coefcient used to weigh the gradient
penalty term.

2.2. CNNs. As indicated previously, both the generator and
discriminator in this study are founded on CNNs. A CNN is
a multistage neural network employed for spatial pattern
recognition [46], which consists of a flter phase followed by
a classifcation or prediction phase.Tis architecture enables
hierarchical learning and information extraction in sub-
sequent layers. Te flter stage involves convolutional, batch
normalisation, activation and pooling layers. Te classif-
cation/prediction phase utilises fully connected dense layers
to establish pattern relationships. Regarding architecture,
a small multilayer CNN is enough to train a full regular-size
model. CNNs deepen the models by increasing the number
of layers needed, but at the same time, they contribute to
reducing the number of neurons, as CNNs get good rep-
resentations of the input signals, improving the overall
performance of the whole network [47].

Generator’s
Input:

Generator’s
Output:

Discriminator’s
Inputs:

Discriminator’s
Output:

Synthetic
Data

Generator

Noise
latent space

Real
data

Discriminator Real/Fake
labels

Backpropagation: minimise discriminant error
(distinguishing real/fake as much as possible)

Back propagation: maximise discriminant error
(not distinguishing real/fake)

Figure 2: Structure of a generative adversarial network (GAN).
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Convolution is a mathematical operation in which
a kernel, also referred to as a flter, slides over the input data
computing dot products with local receptive felds [48]. Tis
process generates feature maps that indicate the presence of
specifc patterns. As the CNN progresses, it captures in-
creasingly complex representations, which are utilised by
subsequent layers, such as pooling and fully connected
layers, for classifcation, prediction or further processing.

For 1-D CNNs, the convolutional layer applies a sliding
time window along the feature series axis to obtain sub-
sequences. Each subsequence is element-wise multiplied
with the kernel to obtain the convolution result [49]. Te
computation of each unit in the convolutional feature signal
can be expressed as the following equation:

Cm � f 􏽘
L

l�1
Sl ⊗Wl,m

⎛⎝ ⎞⎠. (4)

Here, Sl represents the l-th input feature signal or
subsequence and Wl,m is the weight matrix connecting the
l-th input feature signal to the m-th output convolutional
feature signal. Te sign ⊗ denotes the convolution opera-
tion, f is the activation function, and fnally, Cm represents
the output, namely, the featured map or the convolutional
featured signal [50].

Following the convolution operation, the pooling pro-
cess is applied to reduce the dimension of the feature signal
and enhance the feature invariance for small disturbances.
Te pooling function that demonstrates better performance
in most cases is the maximum function [51], defned as
equation (5), where N is the pooling size and q determines
the degree of overlap of adjacent pooling windows:

pm � max
N

n�1
Cm(q+n)􏼐 􏼑. (5)

In each 1-D CNN layer, a forward propagation occurs,
which is given by equation (6), where xl

k represents the
input, bl

k is the bias of the k-th neuron at layer l, sl−1
i is the

output of the i-th neuron at layer l − 1, and wl−1
ik is the kernel

from the i-th neuron at layer l − 1 to the k-th neuron at layer
l. Finally, C(·) denotes the 1-D convolution operation
without zero-padding:

x
l
k � 􏽘

Nl−1

i�1
C S

l−1
i , w

l−1
ik􏼐 􏼑 + b

l
k. (6)

In the last step, the intermediate output yl
k is obtained by

applying the activation function f(·) to the input xl
k as in the

following equation:

y
l
k � f x

l
k􏼐 􏼑. (7)

CNNs are typically trained in a supervised manner using
the stochastic gradient descent or backpropagation (BP)
algorithm [52]. During each iteration, the gradient magni-
tude of the network parameters is computed, including the
weights of the convolutional and the fully connected layers.
Tese parameter sensitivities are then used to update the
CNN parameters iteratively until a stopping criterion is met.

Te BP method is a well-known procedure in the literature
[50] and leads to a CNN architecture that efciently captures
spatial invariance, identifying relevant patterns in the input
data regardless of where they occur along the 1-D sequence
while maintaining parameter efciency.

3. Case Study Description and
Problem Configuration

Tis section presents a case study that aims to serve as an
application scenario of the procedures presented in Section 2
(Methodology). Tis application has been intentionally
streamlined for the sake of clarity while preserving the
signifcance of the method. Te computational de-
velopments employed in this case study are open source and
compatible with Python [53], drawing on resources pre-
viously developed by the authors in [2].

3.1. Problem Defnition. Te case study implemented in-
volves a 6-storey 1.5-m high laboratory-scale steel frame
structure and its corresponding DT, which is informed by
displacement and force sensors (Figure 3). Te structure is
subjected to variable lateral forces and undergoes simulated
damage due to the progressive loosening of the bolts. Te
displacements of the individual storeys were recorded using
wireless IoTsystems employing ultrasonic methods, whereas
the force was measured by a digital transducer.

It should be emphasised that one of the main challenges
in this experiment was the use of basic and cost-efective
sensors with limited sensitivity and moderate accuracy,
transmitting data via the IoT, rather than using professional
wired data acquisition systems. Tis sensing system adheres
to the fexible open-source principles of this research and
also introduces additional uncertainties in the data that need
to be addressed by the DT.

Te virtual twin is computationally simulated using a FE
model developed in OpenSeesPy [54] considering only the
static behaviour according to the following equation:

F � K(t) · d, (8)

where K is the stifness of the metal evolving over time (t) due
to the progression of the damage,F is the infringed force, and d

is the response of the tower in the form of displacement. Both
forces and subsequent displacements occur at discrete time
steps and are independent of the initial conditions.

Damage is caused by the progressive loosening of the
joints when forces are applied. Once it starts, it is assumed to
increase with time over a period T, with T � 100(years)
being the accepted useful life of a civil structure. Te
loosening of the bolts has been linearly estimated to reach
a 60% reduction in the stifness of the structure after
100 years of intermittent forces, causing the end of life of the
structure.Tis leads to a stifness reduction coefcient (α) in
the system due to bolt loosening as follows:

α � 1 − 0, 006 · t, (9)

with α varying from 0 to 1 and t being the time of damage,
expressed in years.

6 Structural Control and Health Monitoring
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In the laboratory pilot test, it was only possible to re-
produce three scenarios due to experimental limitations: (1)
a healthy structure, (2) a semidamaged structure with me-
dium bolt loosening and (3) a fully damaged structure.
However, in the FE model, a full range of possible scenarios
was simulated by progressively reducing joint stifness on all
foors, one foor at a time, afected by diferent random forces
ranging from 0 to 450N (the maximum afordable load of
the structure), obtaining the displacement of the stories in
each scenario.

3.2. Dataset Generation. A frst dataset (data sens) was
created with measurements coming from the sensors and
corresponding to the three scenarios aforementioned: (1)
a healthy tower, (2) a partially damaged tower with medium
loosening of the bolts and (3) a fully damaged tower with
total loosening of the bolts (Figure 4).

Te FEmodel was calibrated to these trial data, achieving
high accuracy in the results for the three scenarios, as shown
in Figure 5. Te resulting dataset (data sens) was composed
of these experimental data and only covers specifc cases
with limited forces, lacking values within the range of 250 to
450N due to the difculties in the practical aspects of the
experiment.

By applying statistical approximation techniques, an-
other dataset is created (referred to as data stat) simulating
the original statistical distribution, assimilated to Gaussian.
Te data were observed to show heteroscedasticity: Te
variance of the y values increases with increasing values of x

(Figure 6). Tis is a common phenomenon in engineering
[55], where noise can be input-dependent. Considering
equation (8) as a linear regression problem and taking i �

1, . . . , N (number of measurements), the displacements are
obtained in the following equation:

di � K
−1
i ti( 􏼁 · Fi + εi ti( ), (10)

where the dependent variable di is equal to the independent
random variable Fi times a coefcient plus a random dis-
turbance term that has zero mean and variance depending
on both the value of Fi with σ2i � Fi · σ2 and the time of
damage ti, as it varies from the healthy case (t= 0) to the fully
damaged (t= 100).

Following this approximation, each displacement di

corresponds to a force Fi distributed as a Gaussian G with
a mean (μi) equal to the FE force calculated for that dis-
placement and a variance (σ2i ) that linearly depends on both
the force Fi and the time since the damage began ti.
According to the geometry and material properties of the
tower, the values of the main parameters are shown in
Table 1.

According to the procedure described previously,
a dataset with a tensor shape (the third dimension being
equal to the time of damage) can be produced covering all
possible scenarios considered in this case study, namely six
combinations of damage (one per foor) in the case of bolt
loosening, with a time span ranging from 0 to 100 years since
the damage began. Te results are given in Figure 7.

Real twin Virtual twin (and virtual representations)

Sensors measurement render CAD-BIM model FE model

Figure 3: Case study: the digital twin of a metal tower.
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It is worth highlighting the paramount importance of
creating a dataset that closely mirrors real-world data,
encompassing not only the error but also its variation
(heteroscedasticity). Tis emphasis on dataset quality arises
from the challenging objective of training a deep learning
(DL) model capable of real-time diagnosis, discerning
whether sensor measurements correspond to a healthy or
damaged state, even without the need for preprocessing as
occurs when operating at the edge. Tis means that the
model needs to digest the error and understand it, fnding
a compromise between the bias and the variance trade-of.

Taking advantage of the two datasets: data_sens that is
the experimental dataset obtained from themeasurements of
the sensor not covering the full case scenario and data_stat
that is smarter in terms of bigger size, diversity, complexity
and class balance, the feld is prepared to launch the GAN
method, which will mirror the real data distribution in

a nonparametric form. In the context of generative models,
the ‘nonparametric’ term refers to themodel’s ability to learn
directly from the real data without explicitly defning its
probability distribution, allowing models to generate com-
pletely new data points that closely resemble the real ones
without assuming an underlying distribution. In this way,
the training dataset data_stat will be given to the WGAN-
GP, which will create data_GAN from randomness.

Te validation and testing of the generated data are
performed in Section 4 (Results and Discussion): First,
a validation using a subset of 20% randomly partitioned
from the datasets, data_stat and data_GAN, and sub-
sequently tested with new values coming from the dataset,
data_test, never seen before by the models. Te criteria for
stopping the GAN’s training will be the stability reached by
the loss functions and the metrics adopted, consisting of
several quantitative fgures: the aforementioned Wasserstein

(a) (b) (c)

Figure 4: Bolts’ loosening: healthy state (a), medium damage state (b) and fully damaged (c).
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Figure 5: Calibration of the FE model in 3 diferent scenarios with
data coming from the sensors (data sens).
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Figure 6: Heteroscedasticity of the variance depending on the force
Fi and on the time ti from the healthy state (ti � 0) to the fully
damaged (ti �100).
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distance [42] between the generated and the real distribu-
tion, the Frechet Inception Distance (FID) [56] and the
Structural Similarity Index Measure (SSIM) [57], along with
the qualitative visual inspection of the results.

Consistent with the previously mentioned, CNNs are
employed within the generator and the critic due to their
recognised profciency in processing data with a grid-like
shape [58], the same shape as the displacement vector over
the six stories of the tower in the case study. Te patterns
shown by this signal (Figure 8) will enable the models to
discern that when the tower is in a healthy condition, the
signal exhibits a consistent linear tilt across the six stories.

On the contrary, when the tower is damaged, the signal will
register diferent tilts depending on the location of the perturbed
story and the time of damage. In this way, the resulting GAN
can generate a realistic dataset considering all case scenarios for
the healthy state and the damaged state for the range of forces
that the tower is able to resist without compromising its integrity
(maximumallowed displacement for a force of 450N).Here, the
label is ‘0’ if the tower is healthy and ‘1’ if damaged, and this
information is treated as a feature by the CNNs.

Te architecture of both the generator and the dis-
criminator consists of a multilayered CNN (Figure 9), as
noted earlier. Te generator employs CNNs, batch nor-
malisation and ReLU activation functions followed by
fully connected dense layers; before the output layer,

a nonlinear hyperbolic tangent activation function was
introduced. Te discriminator also accounts for CNNs,
layer normalisation and LeakyReLU which performs
better with gradient penalty. In addition, dropout is also
applied to avoid overftting.

Table 1: Parameters of the system (steel tower of 6 stories, 1.5-m high).

Name Value Units
Young’s modulus (E) 2.10·1011 N/m2

Shear modulus (G) 8.10·1010 N/m2

Poisson coefcient (]i) 0.3 —
Equation of the std. deviation of F (dev F) σi � 0.0758·ti + 0.0448 N

400
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(a)
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)
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Figure 7: Data produced by statistical approximation (data stat) for the healthy state (time ti � 0). (a) Displacements on the sixth foor,
synthetic and real. (b) Displacements on each foor, frst to sixth.

1D displacement signal:
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Figure 8: Plot of a 1-D displacement signal corresponding to
a force F and a time t of damage afecting one of its foors.
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Te primary hyperparameters are set according to the
recommended values for using the WGAN-GP [43] and are
included in Table 2. Te remaining parameters such as the
number of neurons and layers, the architecture of each layer
and the number of epochs were determined through an
empirical refnement process. Tis procedure consists of
a trial-and-error iteration until convergence is reached and
the validation metrics reveal adequate performance.

Te implementation deployed in Figure 9 and further
detailed in Table 3 shows, at the convolutional stage, a frst
kernel size of 3, with a flter of 3 units of width in the input
sequence, moving across with a stride of 1 and scanning 3
consecutive units at a time. In the fnal layer, the width
was decreased to 2. Additionally, a flter of 32 guarantees
that there will be 32 unique flters applied to the input
data. So, the CNN will apply 32 diferent flters of width 3
to the input sequence, capturing several features at dif-
ferent positions in the sequence. Batch normalisation is
implemented right after both the convolutional layers and
the fully connected layers to accelerate the training
process. Furthermore, dropout is also applied after every
convolutional layer to prevent overftting [59], together
with a maxpool function performing local max operation
to reduce parameters and obtain location-invariant fea-
tures. Finally, the classifcation stage in this case was
composed of two fully connected layers for classifcation,
with decreasing sizes of 64 and 32.

Te architectural framework presented will be sub-
sequently evaluated in the context of the DT diagnostic and
prognostic models in Section 4 (Results and Discussion).Tese
models follow the same confguration, although adapted to
their specifc tasks: classifcation [60] and regression [61]. It is
reasonable to assert that an architecture capable of generating
authentic data is likely to demonstrate an inherent capacity for
accurate interpretation, thus facilitating classifcation and
prediction within real-world contexts.

4. Results and Discussion

Tis section presents the results obtained when using syn-
thetically generated data on the proposed methodology, all
within the case study described previously. Furthermore, in
this section, an assessment of the diagnostic and prognostic
models’ performance is conducted. Tese models have been
trained and validated on diferent subsets of the generated
data to evaluate their accuracy and efciency in the tasks of
detecting damage and predicting the RUL of the system.

4.1. Synthetic Dataset Generation and Quality Evaluation.
Te results of data generation using the proposed CNN-based
WGAN-GP approach are presented in Figure 10, which depicts
the triads: {force, displacement, damage}. It should be noted
that damage in this study is quantifed in terms of years,
following a temporal stifness reduction law due to bold
loosening, as described by equation (9). Both qualitative (visual
comparison) and quantitative evaluations (numerical index
values) are employed to assess the generated data.

Figure 11 illustrates a visual comparison between the
generated dataset (represented by orange dots), the measured
data (depicted by blue dots) and the statistically generated data
(shown in green) at diferent damage levels, namely: healthy

GENERATOR
Input

(random
latent space)

CNN1 Maxpool 1D CNN2 Maxpool 1D CNN3 Maxpool 1D

1@1 × 25 1@32 × 23 1@32 × 11 1@32 × 9 1@32 × 4 1@32 × 3

1 × 64
1@32 × 1 1 × 32

1 × 9

Real data

1@9 × 1
1@7 × 32 1@5 × 32 1@4 × 32

1@1 × 128

1@1 × 1

CNN1 CNN2 CNN3 Flatten

CRITIC
Output

(label: 0/1)

MLP1 MLP2

MLP1

Figure 9: Confguration of the CNN-based WGAN-GP architecture.

Table 2: Hyperparameters of the WGAN-GP.

Hyperparameters Values
Gradient penalty coefcient (λ) 10
Number of critic iterations per generator iteration
(ncritic)

5

Learning rate (α1) 0.0001
Adam optimiser hyperparameters (β1, β2) (0.5, 0.9)
Batch size 100
Latent space dimension 25
Dropout 0.3
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state, medium damage state and fully damaged state, depicted
as panels (a) to (c), respectively. Te results demonstrate high
accuracy in predictionwhen compared to themeasured data, as
well as the ability of the data generation approach to introduce
novel data points including outliers and enrich the dataset in
underrepresented regions of the testing dataset.

At this standpoint, it is worth mentioning that visually
evaluating large-sized numeric data is more challenging
compared to images, whose features can be visually per-
ceived in the qualitative approach. Tus, the quantitative
approach is desirable in such cases through the use of
performance metrics, even when accounting for similarity at
the same time that the novelty and complexity between
distributions are also complex [57]. In this work, three
metrics are used, namely the Wasserstein distance [42], the
FID [56] and the SSIM [57].

Te Wasserstein distance, according to equation (2), cap-
tures the ‘cost’ required to transform one distribution (real) into
another (generated), accommodating distributions with non-
conventional shapes and outperforming metrics like Euclidean
distance or Kullback–Leibler divergence in such cases.Te lower
the Wasserstein distance, the better the GAN performance.

Te FID, also known as theWasserstein-2 distance, assumes
that the real and the generated data follow a multidimensional
Gaussian distribution and measures the distance between these
twoGaussians in the feature space by calculating their respective
mean and variance, as in equation (11). Again, a lower FID
indicates greater similarity between the compared data:

FID(x, 􏽥x) � μx − μx̃

����
����
2
2 + Tr σx + σx̃ − 2 σxσx̃( 􏼁

1/2
􏼐 􏼑, (11)

where μ and σ stand, respectively, for the mean and the
variance of the compared distributions and Tr refers to the
trace linear algebra operation.

Finally, the SSIM evaluates the similarity between two
datasets based on three aspects: inheritance, creativity and
diversity. While creativity and diversity remain relevant for
data types other than images, inheritance is no longer
necessary. Te score obtained from equation (12) ranges
from 0 to 1, with 1 indicating exact similarity and 0 repre-
senting complete dissimilarity. In the context of GANs, the
objective is to generate outputs that are similar to the real
data (creative) but diferent from each other (diverse), and
a maximum score of 0.8 is often considered:

SSIM(x, 􏽥x) �
2μxμx̃ + C1( 􏼁 2σxx̃ + C2( 􏼁

μ2x + μ2x̃ + C1􏼐 􏼑 σ2x + σ2x̃ + C2􏼐 􏼑
, (12)

with σx and σ
􏽥x
being the variances of the compared dis-

tributions, σ
x􏽥x

the covariance, and C1 and C2 the constants
to stabilise the division, typically set to 0.01 and 0.03,
respectively.

Table 4 presents the metrics obtained during training
and testing, demonstrating good results for the metrics
derived from the WGAN-GP in generating a dataset of over
100,000 samples. Note that although the test values are
expected to be worse than the training values, they remain
above acceptable thresholds.

Te stability of the training process is another crucial
factor in the evaluation, as it should remain consistent to
ensure convergence. As depicted in Figure 12, during the
initial stages of training, both the critic and the generator
experience some peaks, almost imperceptible in the case of
the critic. Te critic takes the lead in this process, as it has
access to the training dataset and possesses more knowledge
than the generator. However, after a few epochs, the gen-
erator begins to efectively learn the gradients and generate
data that closely resemble real samples. Eventually, both the
critic and the generator converge, indicating the successful
training of the GAN model. Te number of epochs was fne-
tuned through an iterative process of trial and error.

4.2. Model Training Using Synthetic Datasets.
Damage-induced modifcations in a structure, such as
stifness and mass reduction, lead to alterations in its dis-
placement response, which can be efectively assessed
through SHM. In this context, machine learning supervised
techniques are employed to train models using the synthetic
datasets generated in the preceding section. Te objective is
twofold: further test the generated dataset and detect damage
in the laboratory-scale structure while predicting its RUL.

For this purpose, damage detection and damage prog-
nostic models will be trained and validated on the afore-
mentioned synthetic datasets.Te performance validation of
these is made according to the ‘train-validation split’ pro-
cedure. In this approach, the dataset is divided into two
subsets: the training set (80% of the data is used to train the
model) and the validation set (a portion of 20% of the dataset

Table 3: Architecture of the WGAN-GP model.

Generator
Layer Shape
Input (latent space) 1@1× 25
CNN 1D (ReLU, 32, 3) 1@32× 23
BatchNormalisation/Maxpooling 1@32×11
CNN 1D (ReLU, 32, 3) 1@32× 9
BatchNormalisation/Maxpooling 1@32× 4
CNN 1D (ReLU, 32, 2) 1@32× 3
BatchNormalisation/Maxpooling 1@32×1
Flatten () 1@32×1
Dense (ReLU, 64) 1× 64
Dense (ReLU, 32) 1× 32
Dense (Tanh, 1) 1× 9
Output (F, t, d1, d2, d3, d4, d5, d6, label) (9, 1)

Discriminator (critic)
Layer Shape
Input (F, t, d1, d2, d3, d4, d5, d6, label) 1@9×1
CNN 1D (LeakyReLU, 32, 3) 1@7× 32
BatchNormalisation/dropout
CNN 1D (LeakyReLU, 32, 3) 1@5× 32
BatchNormalisation/dropout
CNN 1D (LeakyReLU, 32, 2) 1@4× 32
Flatten () 1@1× 28
Dense (, 1) 1@1× 1
Output (critic’s value) (1)

Structural Control and Health Monitoring 11

 schm
, 2024, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/stc/9997872 by U
niversidad D

e G
ranada, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



is reserved for validating the model, helping fne-tune the
hyperparameters and prevent overftting). Te data are
randomly shufed before splitting to avoid biases in subset
composition.Te fnal evaluation of themodels is performed
on a separate dataset (external to the training and validation

sets), which assesses how well the models generalise to new
unseen data.

Te datasets employed in the development of this case
study are described in Table 5, and their main statistical
descriptors are included in Table 6:
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Figure 11: Visual comparison of three datasets: data sens, data stat and data GAN. Panel (a) shows the dataset corresponding to t � 0
(healthy state); panel (b) depicts the dataset corresponding to t � 66 years (medium damage state) and panel (c) presents the dataset
corresponding to t � 100 years (fully damaged state).

Table 4: Results in terms of performance metrics of the proposed GAN applied to the case study.

Metric Training Test
Wasserstein distance 0.75 2.18
Frechet Inception Distance (FID) 33.12 265.98
Structural Similarity Index Measure (SSIM) 0.63 0.60

F (N)
d6 (m)
t (years)

Projection over the 3 axes of the training dataset

Z 
ax

is 
= 

t (
ye

ar
s)

100

80

60

40

20

0

0
100

200
300

400
X axis = F (N) 500

Y ax
is =

 d6 (
m)

0.00
0.01

0.02
0.03

0.04
0.05

(a)

Projection over the 3 axes of the generated dataset

Z 
ax

is 
= 

t (
ye

ar
s)

100

80

60

40

20

0

0
100

200
300

400
X axis = F (N) 500

Y ax
is =

 d6 (
m)

0.00
0.01

0.02
0.03

0.04

F (N)
d6 (m)
t (years)

(b)

Figure 10: Tree-dimensional visual comparison of the outcomes using the proposed data generation method. Te x-axis represents the
applied force (F, in Newtons), the y-axis corresponds to the displacement on the top foor (d6, in millimetres), and the z-axis depicts the
duration of damage (t, in years). Panel (a) shows the dataset generated during the GAN training process utilising statistical approximation
(data stat). Panel (b) depicts the dataset produced using the proposed CNN-based WGAN model (data GAN).
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Te sizes of the datasets involved in this research aim to
balance the benefts and drawbacks associated with large
magnitudes. Te reason is that the disadvantages, such as
extended training time and increased computational re-
source demands, may outweigh the benefts derived from the
prospective incorporation of pertinent supplementary in-
formation. In this study, the sizes of the experimental
datasets (data sens and data test) align with the typical
dimensions of a test sample, representing a day-long survey
with data recorded at a frequency of 1 data point per minute
for 24 h. On the other hand, the sizes of synthetically
generated datasets are fexible and tailored to the specif-
cations of the research. Te initial statistically produced
dataset (data stat) exhibited considerable volume (600 k);
nevertheless, it was noted that smaller sizes yield comparable
results in training. Consequently, a second dataset
(data GAN) was generated with a reduced size (115 k), yet it
showed comparable performance.

4.2.1. Training for Damage Detection. CNNs are applied at
this point in the diagnostic model due to their aforemen-
tioned capacity to extract complex geometric patterns within
the data [62]. Te damage diagnostic model consists of
a binary classifer discerning between a healthy and damaged
state. It is trained using the dataset produced by statistical
methods data_stat along with the dataset generated by the
proposed GAN data_GAN. During training, 20% of the data
was reserved for validation in each case. In both instances,
100 epochs were sufcient for the model to learn the features
of the problem, namely the forces and displacements of the
six stories of the structure. Te architecture of the diagnostic
model is detailed in Table 7.

Performance metrics, including accuracy (correctly
predicted labels over the total), recall (ratio of true positives
[TPs] out of all correctly predicted values) and precision
(fraction of TPs out of the real and false positives [FPs]), are

employed to evaluate the model’s performance, and the
results are presented in Table 8.

Note that the performance metrics in training and
validation when using data stat are very similar because
both datasets come from the same distribution. Te model
tends to overft with this type of training dataset, resulting in
high rates. However, the performance metrics are slightly
diferent when the model is trained on data GAN. It is also
notable that the learning curve shown in Figure 13 is more
progressive when training with data GAN due to the di-
versity of the data, as depicted in Figure 13(b).

Furthermore, the results are analysed using a normalised
confusion matrix [63], which categorises the model pre-
dictions into TP, FP, false negative (FN) and true negative
(TN) based on the comparison between the predicted labels
and the true labels.

Te normalised confusion matrix demonstrates perfect
accuracy (1.0) in detecting the healthy state for the model
trained on data stat (Figure 14(a)), while achieving a value of
0.98 for detecting the damaged state. Te results also show
that, for earlier stages of damage that are often negligible,
there is a tendency for FNs (0.02). It is important to note that
in this model, the label ‘0’ represents a healthy state, so the
aforementioned situation might imply misdiagnosing
a damaged state as healthy (FN), which can be risky. Tis
tendency can be addressed by employing techniques such as
oversampling early damage cases. On the other hand, the
model trained on data GAN (Figure 14(b)) exhibits slightly
lower performance, achieving a value of 0.96 for detecting
the healthy state and 0.92 for detecting the damaged state.
Once again, there is an increasing trend of FNs (0.08), which
can be rectifed, as mentioned above.

4.2.2. Training for Damage Prognostics. Te prognostic
model employed in this study also uses a CNN architecture,
which enables the estimation of the structural RUL by
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Figure 12: Plot of the loss values in generator and critic versus the number of epochs.
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predicting the progression of its damage once detected. Te
regressor specifcally forecasts the time during which the
structure has sufered damage since it began, taking into
account the applied force and a displacement vector mea-
sured on the six foors of the structure.

Te RUL is calculated using one hundred years as the
reference time required to fully develop the damage state
and, therefore, as the maximum available structural life.
Consequently, the following equation (13) is played to obtain
the RUL, where ti is the predicted time of damage at
a discrete time i, expressed in years:

RUL(years) � 100 − ti. (13)

Similarly to the damage diagnostics model introduced
previously, the prognostic model has been trained separately
on both datasets: data_stat and data_GAN, saving 20% of
the data in each for validation. Te architecture of the CNN
prognostic model is presented in Table 9.

Te learning curves of the prognostic models, depicted in
Figure 15, exhibit diferent patterns. Notably, when utilising
data GAN (Figure 15(b)), the model displays a need for more
training epochs due to the increased diversity of the dataset.

At the same time, the learning process during training
and validation difers between the two datasets, as illustrated
in Figure 16. Learning with data_stat (Figure 16(a)) dem-
onstrates a more linear approach, while data GAN (Fig-
ure 16(b)) explores a wider range of potential solutions.

Te performance of the prognostic model has been
evaluated using metrics such as the mean squared error
(MSE) to measure the average squared diference between
the estimated values and the true values; its variant using
absolute values: the MAE; and the R2 score or coefcient of
determination, which calculates the proportion of variance
in the dependent variable that is explained by the in-
dependent variables in the regression model, which scores
from 0 to 1 (the greater, the better).

It is worth noting that the task of forecasting the
damage is not straightforward, as the model initially has to
identify the specifc foor that is afected by the damage
and subsequently predict the corresponding time of
damage for that particular foor and no other, which could
mislead the result. Due to this fact, the errors are sig-
nifcant, as can be seen in Table 10. Nevertheless, the
performance of the prognostic model is good when
trained on data_stat, and good enough when the model is
trained on data_GAN.

4.3. Testing the Models on Real Data. To assess the models’
functionality within a more realistic setting, their perfor-
mance is evaluated using novel real data obtained from
sensors that were not previously encountered by the models.
Te testing phase often reveals common errors made by
diagnostic and prognostic models trained with poor-quality
data, such as inaccurate classifcations, resulting in FPs and

Table 6: Statistical descriptors for the main variables of the case study datasets.

Name
Range Mean StDev 95% CI IQR

d6 F t d6 F t d6 F t d6 F t d6 F t
data sens 0–39 0.0–400.1 0–100 13.8 122.4 49.4 7.2 56.6 44.4 0.3 5.2 0.6 10.0 83.7 100
data test 0–49 0.3–463.8 0–100 20.3 194.0 54.1 12.0 114.1 41.8 0.5 5.2 1.9 20.0 186.9 100
data_stat 0–49 0.0–494.7 0–100 19.7 199.8 50.0 11.5 116.0 33.2 0.0 0.2 0.1 19.6 199.5 97
data_GAN 0–49 0.0–489.2 0–100 15.9 164.5 55.1 12.6 129.7 33.4 0.1 0.6 0.1 22.2 232.9 91
Note: d6: 6th foor displacement (mm), F: force (N), t: time of damage (years).
Abbreviations: CI, confdence interval; IQR, interquartile range; StDev, standard deviation.

Table 7: Architecture of the CNN used as damage diagnostic model.

Layer Output shape Parameters
Input (d1, d2, d3, d4, d5, d6) (6, 1) 0
CNN 1D (ReLU, 32, 3) (4, 32) 128
CNN 1D (ReLU, 32, 3) (2, 32) 3104
CNN 1D (ReLU, 32, 2) (1, 32) 2080
Flatten () (32) 0
Dense (ReLU, 64) (64) 2012
Dropout (0.3) (64) 0
Dense (Sigmoid, 1) Output (label 0,1) (1) 65
Total parameters — 7489

Table 8: Comparative results of the diagnostic model trained on diferent synthetic datasets (data_stat and data_GAN).

Model Dataset for
the training

Metrics
Train Validation

Accuracy Recall Precision Accuracy Recall Precision

Diagnostic (binary classifer) data_stat 0.987 0.975 0.998 0.981 0.973 0.996
data_GAN 0.938 0.956 0.921 0.933 0.908 0.916

Structural Control and Health Monitoring 15
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FNs. Tese errors occur when the models incorrectly predict
nonexistent issues or fail to detect actual problems. Addi-
tionally, models often misclassify rare events due to im-
balanced training data, leading to a bias towards more
common outcomes. Overgeneralisation is another signif-
cant issue, as models trained on limited or homogeneous

data tend to perform poorly on diverse or unseen data.
Furthermore, if the training data are biased, the models can
exhibit a bias towards specifc features, causing systematic
errors and misinterpretations of patterns. Addressing these
challenges requires robust data generation techniques to
improve the models’ generalisation and accuracy. Tis
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Figure 13: Learning curves of the classifer model trained on (a) data_stat and (b) data_GAN.
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Figure 14: Normalised confusion matrices for the classifer model trained on (a) data_stat and (b) data_GAN.
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Table 9: Architecture of the prognostic model.

Layer Output shape Parameters
Input (F, d1, d2, d3, d4, d5, d6) (7, 1) 0
CNN 1D (ReLU, 32, 3) (4, 32) 128
CNN 1D (ReLU, 32, 3) (2, 32) 3104
CNN 1D (ReLU, 32, 2) (1, 32) 2080
Flatten () (32) 0
Dense (ReLU, 64) (64) 4160
Dense (ReLU, 32) (32) 2080
Dense (1) Output (t) (1) 33
Total parameters — 11,585
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Figure 15: Learning curves of the regression model trained on (a) data_stat and (b) data_GAN.
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Figure 16: Predicted values versus true values during training with (a) data_stat and (b) data_GAN.
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procedure enables the monitoring of the GAN-generated
data as a training dataset to instruct the models [64].

Te new data for testing, which comprise more than
1000 samples, were collected in the aforementioned three
damage scenarios: healthy (stifness coefcient [α � 1]),
medium damage (stifness coefcient [α � 0.6]) and fully
damaged (stifness coefcient [α � 0, 4]). Damage was
inficted independently on each of the six stories, and
samples were labelled ‘0’ for the healthy state and ‘1’ for the
damaged scenarios. Measurements included both force and
displacement, as illustrated in Figure 17, where the dis-
placement at the sixth foor is represented.

During the testing phase, the diagnostic and prognostic
models were comparatively evaluated using the new dataset,
referred to as data_test, and the synthetically generated
dataset (data_GAN), as shown in Table 11.Te results clearly
demonstrate that the models trained with data_GAN out-
perform themodels trained without it.Tis indicates that the
GAN-generated dataset enhances the model’s generalisation
capability, efectively capturing the noise present in real data
and enabling accurate diagnosis and prognostic predictions.

Regarding diagnosis, the performance of themodels with
the new dataset data_test has been similar on average in the
confusion matrices (Figure 18), with slightly better accuracy
of the model trained on data_GAN (accuracy = 0.92) than
the model trained on data_stat, as seen in Table 11. How-
ever, the most important aspect is that the recall is the
highest in the case of the model trained on data_GAN
concerning the security of the tower, as it minimises to 0 the
existence of FNs (being damaged but predicted as healthy).

To graphically deploy the accuracy of a binary classifer, the
area under the [65] receiver operating characteristic (ROC)
curve (AUC) is used. A higher AUC and a ROC curve closer to
the top left corner indicate better performance [66], as happens
with the model trained using data_GAN (Figure 19(b)).

In the case of the prognostic regressor, the results show
accurate values for the predicted median and quartiles for
the three scenarios tested (t� 0 for the healthy state, t� 66
for the medium damaged and t� 100 for the fully damaged),
with better performance for the case of the models trained
on data GAN as seen in Figure 20 and Table 12. In this case,
the interquartile range exhibited a wider span. However, the
predicted median showed greater proximity to the actual
value and, importantly, no outliers were observed.

According to the results obtained, it can be concluded
that the quality of the synthetic data employed to train and
validate the models directly impacts their ability to gener-
alise to unseen real-world scenarios. It confers enhanced
robustness to variability, enabling an accurate damage di-
agnosis and prognosis. It is also appreciated that the number

of resulting FNs (predicted to be healthy when damaged) is
minimal, reinforcing the safety of the proposed method.

Te experiments and analyses were conducted on
a computer with the following specifcations: an Intel Core
i7-8700K processor, Intel Dual Band Wireless-AC 8265
adapter, 16GB DDR4 RAM, 512GB SSD and running on
Windows 10 Pro. Tis setup ensured sufcient performance
for the computational tasks involved in this research.

Te efciency of the data generation process was eval-
uated by measuring the time required to generate synthetic
datasets of varying sizes by performing both methods. Te
generation times were recorded to assess scalability. Simi-
larly, the efciency of the diagnostic and prognostic model’s
training and testing was assessed by recording the training

Table 10: Comparison of the prognostic model performance trained on diferent synthetic datasets (data_stat and data_GAN).

Model Dataset for
the training

Metrics
Train Validation

MSE MAE R2 MSE MAE R2

Prognostic (regressor) data stat 5.080 0.850 0.995 5.371 0.851 0.994
data GAN 91.898 5.106 0.909 93.876 5.109 0.911
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Figure 17: Real data never seen before by the models, obtained in
a test and included in data test.

Table 11: Comparison of the models’ performance trained on
diferent synthetic datasets (data_stat and data_GAN) and tested
on the new real data (data_test).

Dataset for
the training

Metrics
Diagnosis Prognostic

ACC REC PREC MSE MAE R2

data_stat 0.91 0.96 0.81 273.548 12.046 0.843
data_GAN 0.92 1.00 0.81 264.601 11.746 0.871
Note: R2: Coef. of determination.
Abbreviations: ACC, accuracy; MAE, mean absolute error; MSE, mean
squared error; PREC, precision; REC, recall.
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epochs and the time consumed. Te results included in
Table 13 indicated that while the training time per epoch
increased with more complex datasets, such as the

WGAN-GP CNN-based, models maintained reasonable
training durations, illustrating their suitability for scalable
applications.
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Figure 18: Normalised confusion matrices for the classifer model trained on (a) data_stat and (b) data_gan performing on the new dataset
data test.
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Figure 19: ROC curves for the damage classifer model trained on (a) data_stat and (b) data_GAN, performing on the new dataset data test.
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5. Application Within the DT Context

Tis section shows how CNN-based diagnostics and prog-
nostics models trained on synthetically GAN-generated
datasets can be efciently used within the workfow of
a DT to enable decision-making. Te models, which are
trained ofine and utilised online, are updated when new
state parameters, such as changes in stifness or mass, appear
in the system. Updates can occur either online or ofine,
based on a predefned interval or when specifc threshold
values are reached by the system. Te workfow can be
managed autonomously by a Petri net (PN)–based frame-
work, which represents the logic of discrete events in a dy-
namically distributed system and efectively handles the
workfow of the DT [2].

In Figure 21, a PN designed for the presented case study
is illustrated, consisting of eight places (p1 to p8) repre-
senting discrete system states, seven transitions (t1 to t7)
denoting symbolic or conditional actions (including post-
fring actions) and two cold transitions ϵ for data arrival and
system rearm. Changes in the DT state are the outcomes of
automated actions triggered by fring transitions t1 to t7.

Te system is assumed to initiate at time T � 0 when new
data are received from the force and displacement sensors.

At this point, the virtual twin is updated with the physical
twin, as indicated by one token in both p1 and p4. Sub-
sequently, fring transition t4 occurs, placing one token in p5
and removing it from p4. Tis signifes that the structure is
subjected to a new force, and a decision must be made
regarding the potential consequences for the system, in-
cluding the update of the virtual twin. Tis is accomplished
through transitions t1 and t5, each based on their respective
transition conditions (Table 14).

When t5 is activated indicating a healthy state, a token is
produced for p4, which means that the DTdoes not require
an update of the virtual twin with respect to the real one, and
thus, the DT keeps its previous ‘updated’ state. However, if
the diagnostic model reveals a damaged state, the workfow
sequence p2, t2, p3, t3 will occur by placing one token in p4
and causing the system to return to an ‘updated’ state.

While the DT remains in the ‘updated’ state, marked by
the presence of a token in p4, an evaluation is conducted on
the measured force value to determine whether it exceeds
a safety threshold. When the force exceeds this threshold,
transition t6 is triggered. Tis transition activates a sequence
of warning states and actions represented by nodes p7, t7, p8,
which autonomously indicate that the structure is exposed to
a force that may compromise its integrity. In such cases, the

Table 12: Comparison of predicted value distribution obtained from the models trained on diferent synthetic datasets (data_stat and
data_GAN) and tested on the real data (data_test).

Dataset
for the training

Properties of the predicted value distributions
t (years) Median Q1 Q3 IQR MIN MAX OUT

data_stat
0 16.998 12.796 25.334 12.565 12.768 39.850 7
66 60.369 52.137 65.475 13.338 40.045 69.938 0
100 95.716 86.804 97.919 11.115 70.001 105.359 5

data_GAN
0 12.453 4.458 27.684 23.226 −2.838 42.813 0
66 67.749 56.841 78.809 21.968 45.051 89.942 0
100 94.748 92.894 101.481 8.587 90.034 109.225 0

Note: Q1: percentile 25%, Q3: percentile 75%.
Abbreviations: IQR, interquartile range; MAX, maximum value; MIN, minimum value; OUT, outliers.
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Figure 20: Time of damage boxplots predicted by the prognostic models: (a) model trained on data_stat and (b) model trained on
data_GAN.
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actuators trigger an alarm (through the fring of t7 ), and the
system enters a ‘warning state’ that demands predictive
maintenance based on the calculated RUL, or alternatively,
corrective action if the measured force has exceeded the
threshold. At this stage, the system is rearmed and awaits
new data, represented by the cold transition ϵ, which dis-
misses the warning state until a new evaluation is conducted.
Importantly, when the warning sequence is activated, a to-
ken is collected in p6, serving as an information bufer that
can be utilised for diagnostic purposes. Tis bufer provides
insight into the number of instances when the structure has
experienced force values surpassing the integrity threshold.

Remarkably, this workfow presents the capability to
operate in real time thanks to the surrogate models of

diagnosis and prognosis. Tese models were efectively
trained with GAN-generated synthetic datasets, which
conferred valuable properties of interpreting raw data di-
rectly from sensor measurements and demonstrated gen-
eralisation ability to make accurate predictions.

 . Conclusions

In this study, a new framework has been developed to
overcome the data scarcity problem that afects the imple-
mentation of DT in the AECO feld. Te contribution
consists of a comprehensive procedure for data generation,
model training and testing for 1-D discrete signals coming
from an IoT-based SHM system. Tis entitles the DT to

є
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C5

Data arrival

t1

t2

t3

t6

Prognosis

p2Update
required

p3New values 
stored in the 

database

p5
t5

Diagnosis

t4

2

2
p6

Buffer

p7

Warning 
state

t7 p8

Active 
actuators

p4

Rearm 
system

System 
updated

є

Figure 21: PN workfow of a DT assisted by the surrogate models of diagnostic and prognostic (highlighted).

Table 14: Transitions in the PN-assisted workfow of the DT.

Transition Type Description
t1 Conditional (C1) If diagnostic label equals 1 (damage), execute prognostic
t2 Conditional (C2) When prognostic executed, save updated values in the database
t3 Conditional (C3) When prognostic executed, update models with the new parameter’s values
t4 Conditional (C4) When data arrive, continue the fow
t5 Conditional (C5) Perform diagnosis and obtain the diagnostic label: ‘0’ if healthy, ‘1’ if damaged
t6 Conditional (C6) Evaluates if the measured force exceeds threshold force
t7 Conditional (C7) Triggers the actuator
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process raw data at the edge, minimise resource con-
sumption and enable real-time decision-making through the
use of surrogate models. Tese models possess a deep un-
derstanding of a wide range of possible scenarios, as they
were trained on synthetic datasets generated by the proposed
procedure.

To assess the efcacy of the synthetic dataset generation,
classifcation (diagnosis) and regression (prognostic) models
were trained and evaluated using a laboratory-scale structure
as a case study. Te results obtained from the GAN-
generated dataset were compared to a dataset created us-
ing traditional statistical techniques (e.g., FE method results
with added heteroscedastic Gaussian noise), demonstrating
superior performance in the former case. Subsequently, the
trained models were integrated into the DT, thereby en-
hancing its decision-making capabilities in real-time
scenarios.

Future research endeavours should focus on expanding
the capabilities of the models to precisely localise damage
within the system and assess its severity.Tis entails training
a multiclass classifer, increasing the number of scenarios in
the synthetic GAN-generated dataset and designing
a strategy to discretise the severity levels of the experienced
damage.Tese steps are crucial for advancing the operations
and maintenance strategy of the DT. Upcoming eforts will
also leverage the inherent scalability of GAN-GP CNN-
based methods to tackle more extensive systems and
complex datasets.

Te present research has the potential for a broader
applicability across other sectors beyond AECO. One of
these sectors is the energy industry, where discrete mea-
surements of environmental parameters and energy values
can be efectively monitored and modelled. Te scheme is
also adaptable to transportation and trafc fows, encom-
passing not only vehicular trafc but also dynamic fows
such as pipelines, and similarly, industrial processes and
supply chains, to cite any. Tese sectors are suitable for IoT
discrete sensor monitoring IoT that captures the relevant
features essential for operational and maintenance de-
ployments. Tese constitute the foundational data for the
generative and behavioural models that can be seamlessly
integrated into the DTs of their respective systems, as
expounded in this study.

In conclusion, this study leveraged a limited collection of
discrete data as a foundation for the generation of an en-
hanced synthetic dataset representing the observed system,
upon which diagnostic and prognostic models are built and
refned. Te methodological innovation laid in a compre-
hensive approach that fully covers from the generation of
data mimicking the real system to the training and testing of
the models. Tis provides distinct advantages in terms of
real-time computing on the edge for immediate decision-
making and minimisation of energy consumption. Te
present work has been developed using state-of-the-art AI,
specifcally employing architectures made of advanced DL
models such as WGAN-GP and CNNs.

Moving forward, further experimentation should be
conducted to assess the real-time performance and

generalisation capabilities of the presented framework in
benchmark real-world AECO scenarios and broader ap-
plications. Tis will involve rigorous testing and comparison
with other state-of-the-art deep NN-based approaches to
further gauge the robustness of this methodology.

Te impact of this research extends beyond the exper-
imental setting, ofering valuable insight into other sectors in
which main features can be monitored and modelled to be
seamlessly integrated into a DT implementation. By
addressing the data scarcity issue along with other challenges
such as cybersecurity compliance or the reduction of costs of
communications and data storage promoting sustainability,
this work contributes to the advancement of the DT ap-
plication in the AECO sector and laid the groundwork for
broader applications in other felds, such as energy or
manufacturing industry.

To end with, it is paramount to underscore the critical
importance of safeguarding the security of data generation
processes, maintaining data integrity to prevent tampering
and ensuring fairness by mitigating bias. Furthermore, ro-
bust measures must be implemented to protect data against
cyber threats, and transparent usage policies along with
compliance with legal standards are imperative. Addition-
ally, proactive steps are essential to prevent potential misuse
and misinterpretation of synthetic data through the pro-
vision of comprehensive documentation and guidelines.
Tese concerted eforts are crucial for optimising the ad-
vantages of synthetic data while upholding the highest
standards of security and ethical conduct.
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