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Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe,
B-1050 Brussels, Belgium.

E-Mail paolo.saracco@ulb.be

Abstract. A differentially recursive sequence over a differential field is a sequence
of elements satisfying a homogeneous differential equation with non-constant coeffi-
cients (namely, Taylor expansions of elements of the field) in the differential algebra
of Hurwitz series. The main aim of this paper is to explore the space of all differ-
entially recursive sequences over a given field with a non-zero differential. We show
that these sequences form a two-sided vector space that admits, in a canonical way,
a structure of Hopf algebroid over the subfield of constant elements. We prove that
it is the direct limit, as a left comodule, of all spaces of formal solutions of linear
differential equations and that it satisfies, as Hopf algebroid, an additional universal
property. When the differential on the base field is zero, we recover the Hopf algebra
structure of linearly recursive sequences.
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Paolo Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique - FNRS and a
member of the “National Group for Algebraic and Geometric Structures and their Applications”
(GNSAGA-INdAM). Research supported by the Spanish Ministerio de Economı́a y Competitivi-
dad and the European Union FEDER, grant MTM2016-77033-P.

Quaestiones Mathematicae is co-published by NISC (Pty) Ltd and Informa UK Limited
(trading as the Taylor & Francis Group)



L. El Kaoutit and P. Saracco

2.1. General facts on rings and bimodules. 6
2.2. Commutative Hopf algebroids. 8
2.3. Co-commutative Hopf algebroids. 9
3. Differential operators and differentially recursive sequences over

differential fields. 10
3.1. Differential operators over differential fields and Hopf algebroids. 10
3.2. The finite dual Hopf algebroid. 12
3.3. Differentially recursive sequences. 14
3.4. The Hopf algebroid structure on differentially recursive sequences. 16
3.5. Comparing linearly and differentially recursive sequences. 26
4. Connections with linear differential matrix equations. 29
4.1. DlinK as the universal algebroid of solutions. 29
4.2. Comments on the Picard-Vessiot ring extension. 39
Appendix A. Some technical details. 42
References. 46

1. Introduction. This section represents a self-contained introduction to this
note. After giving a little background on linear differential equations over a differ-
ential field and on the study of their solutions from the point of view of Hurwitz
series, we clarify our motivations in reconsidering this subject. The main results
of the paper are reported herein as well, in great detail.

1.1. Motivation and overview. Let K be a field (of any characteristic) and
∂ : K→ K a derivation, that is, an additive map which satisfies

∂(xy) = x∂(y) + ∂(x)y, ∀x, y ∈ K.

The pair (K, ∂) is referred to as a differential field and its subfield of constant
elements is the set:

k := K∂ =
{
c ∈ K | ∂(c) = 0

}
.

We keep this notation fixed all over the paper and we may often omit to refer
explicitly to ∂ and simply write K instead of (K, ∂). The ring of linear differential
operators (also known as the skew polynomial algebra) K[Y ; ∂] associated with
(K, ∂) is the free k-algebra generated by K and an element Y subject to the relations

xY = Y x+ ∂(x) (1)

for all x ∈ K. Over K, it coincides with the right K-vector space generated by the
symbols {Y i | i ≥ 0}:

⊕
i≥0 Y

iK. Therefore, a generic element of K[Y ; ∂] will be

written as
∑d
i=0 Y

ici, with ci ∈ K for i = 0, . . . , d (see [MR, Section 2]). For the
sake of simplicity, we will often simplify the notation K[Y ; ∂] into K[∂]. Notice that
K[∂] is a two-sided K-vector space (i.e., a K-bimodule). However, over k it is an
ordinary, symmetric, vector space (i.e., we have cP = Pc for every c ∈ k and P ∈
K[∂]). Equivalently, one may say that K[∂] is a central k-bimodule. Henceforth, all
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The Hopf algebroid structure of differentially recursive sequences

K-vector spaces will be right K-vector spaces, unless stated otherwise, and vector
spaces over k will be symmetric two-sided k-vector spaces.

Assume that we are given a homogeneous linear scalar differential equation of
order d, with not necessarily constant coefficients, of the form

∂d (y)−
(
cd−1∂

d−1 (y) + · · ·+ c1∂ (y) + c0y
)

= 0, (2)

where ci ∈ K for i = 0, . . . , d − 1. One is interested in looking for a full set of
solutions, that is, d linearly independent solutions of (2). It may happen that K
already contains a full set of solutions. This is the case, for instance, if we consider
the equation ∂ (y)−y/z = 0 over C(z) with the obvious differential induced by ∂/∂z.
In general, however, this is not the case. For example, the equation ∂ (y)−cy/z = 0
over C(z) admits solutions in C(z) if and only if c is an integer (see [vPS, Exmple
1.14 (3)] for both examples). One then looks for differential field (or even differential
ring) extensions of K containing the missing solutions, and this is, in fact, part of
the main duty of what is known in the literature as differential Galois theory [vPS].

In a series of papers [K2, KP, KS], Keigher and collaborators studied Hurwitz
series as a practical way of formally integrating homogeneous linear differential
equations over fields (or, more generally, rings, possibly with zero differential).
Namely, one introduces the differential algebra of Hurwitz series (H(K),N ) over K
as H(K) = KN with product given by the Hurwitz product

α · β =

 ∑
0≤k≤n

(
n

k

)
αkβn−k


n∈N

, ∀α, β ∈ H(K),

and differential map given by the shift operator

N : H(K) −→ H(K),
(

(α0, α1, α2, . . .) 7−→ (α1, α2, α3, . . .)
)
.

In this way, one may look at (2) as a differential equation over H(K) of the form:

N d −
(
s (cd−1)N d−1 + · · ·+ s (c1)N + s (c0)

)
= 0, (3)

where s : K→ H(K), x 7→ (x, 0, 0, . . .), is called the source map. Since N (α) = 0 if
and only if α = s(c) for some c ∈ K, the k-algebra K can be identified via s with
the subalgebra of constant elements of the differential k-algebra (H(K),N ). More
precisely, by adopting a notation similar to the one as above, we have that

H(K)N =
{
α ∈ H(K)| N (α) = 0

}
= s(K).

As a consequence, equation (3) is now a differential equation with constant
coefficients and one can solve it to find the so called formal solutions of (2) in
H(K), that is, sequences α ∈ KN such that

αn+d = cd−1αn+d−1 + · · ·+ c1αn+1 + c0αn, for all n ≥ 0. (4)

It is noteworthy that α ∈ H(K) is a formal solution of (2) in this sense if and only
if it is a linearly recursive sequence over K, that is, it satisfies a recurrence like
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(4). For the sake of comparison with what follows, let us highlight that in order
to write (4) at level (n + 1) + d, one needs to place the coefficients (cd−1, . . . , c0)
along the vector (αn+d, . . . , αn+1) in a linear way, without deriving the ci’s.

Linearly recursive sequences arise widely in mathematics and have been studied
extensively and from different points of view. See for example [FMT, PT, T]
concerning their connections with Hopf algebras and the Sweedler dual K[X]

◦
of

the coordinate algebra of the affine additive group (K,+, 0) and [ES1] concerning
their topological structure and properties. For a survey on the topic, we refer to
[vdP].

Despite the strong motivations supporting Keigher’s approach, that is to say,
the fact that the “universal” space of formal solutions admits the structure of a
Hopf algebra, we believe that the argument reported above has a disadvantage:
the inclusion s : K → H(K) does not make of H(K) a differential extension of K,
as it does not commute with the differentials, unless the differential of K is zero
(i.e., ∂ = 0). Therefore, we could not see how to relate Keigher’s formal solutions
to solutions of the original equation (2) over K. In particular it is not clear, at
least to us, how to relate the Hopf algebra of formal solutions with the affine
algebraic k-group attached to the initial equation (2), neither how to construct the
Picard-Vessiot extension of this equation out of this Hopf algebra.

In the present paper, our aim is to overcome the aforementioned obstacle and
to offer to the reader a genuine differential extension of K containing all (formal)
solutions to homogeneous linear differential equations over K. Namely, our ap-
proach in studying (2) by means of the differential algebra (H(K),N ) will take
into account the injective “Taylor map”: t : K → H(K), x 7→

(
x, ∂(x), ∂2(x), . . .

)
,

referred to as the the target map. In this way, we are able to show that H(K) con-
tains a distinguished two-sided vector space, the one of all differentially recursive
sequences hereby introduced, that naturally carries a commutative Hopf algebroid
structure (as linearly recursive sequences were carrying a Hopf algebra structure).
We will show how it can be realized as the universal object satisfying two universal
properties, and how, as left comodule, it turns out to be the direct limit of the
spaces of formal solutions of linear differential equations (compare with [KS]).

1.2. Description of the main Theorem. We consider H(K) as a differential
extension of K via the target map t : K→ H(K) above. By identifying K with its
image via t, we may now look at (2) as an equation over H(K) of the form

N d −
(
t (cd−1)N d−1 + · · ·+ t (c1)N + t (c0)

)
= 0. (5)

A sequence α ∈ H(K) is a solution of (5) if and only if it satisfies a recurrence
relation of the form

αn+d =
n∑
k=0

(
n

k

)
∂k(cd−1)αn+d−k−1 + · · ·

+
n∑
k=0

(
n

k

)
∂k(c1)αn−k+1 +

n∑
k=0

(
n

k

)
∂k(c0)αn−k (6)
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= cd−1αn+d−1 + n∂(cd−1)αn+d−2 +

(
n

2

)
∂2(cd1)αn+d−3 + · · ·

+ ∂n(cd−1)αd−1 + cd−2αn+d−2 + · · ·+ ∂n(c0)α0,

for ci ∈ K. For instance, if d = 2 and equation (5) has the form N 2 − t (c1)N −
t (c0) = 0, then the attached differential recurrence relation can be written as
follows:

αn+2 =

(
n

0

)
∂0c1αn+1 +

n−1∑
k=0

((
n

k + 1

)
∂k+1c1 +

(
n

k

)
∂kc0

)
αn−k+

(
n

n

)
∂nc0α0, ∀n ≥ 0.

(7)

By solving (7), every αn for n ≥ 2 can be expressed in terms of α0, α1. For
example, we have

α2 = c1α1 + c0α0,

α3 =
(
c21 + ∂c1 + c0

)
α1 +

(
c0c1 + ∂c0

)
α0,

α4 =
(
c31 + 3c1∂c1 + 2c0c1 + ∂2c1 + 2∂c0

)
α1 +

+
(
c21c0 + 2c0∂c1 + c1∂c0 + c20 + ∂2c0

)
α0,

where one clearly notices the occurrence of ∂ in the coefficients. As a consequence,
a sequence satisfying a relation of the form (6) will be referred to as a differentially
recursive sequence. We will prove that the collection DlinK of all differentially
recursive sequences over K is not only a differential extension of K providing all
“formal” solutions to linear differential equations, but it also enjoys a structure of
a commutative Hopf algebroid over k (i.e., that of an affine groupoid k-scheme)
converting it into a universal construction (in the category theoretical sense) in
two ways. On the one hand, DlinK is the universal object K[∂]

◦
provided by the

Tannaka-Krĕın reconstruction procedure applied to the forgetful functor from the
category of all differential K-modules (i.e., finite-dimensional modules over K[∂])
to the category of finite-dimensional right K-vector spaces, as in [EG]. On the
other hand, DlinK is the “biggest” K-coring K[∂]

•
, provided by the ring/coring

duality via the Special Adjoint Functor Theorem, inside the right K-linear dual
HomK (K[∂],K), as in [AES2]. Namely, the following Theorem and the forthcoming
paragraph resume the main achievement of ours.

Theorem. The k-algebra DlinK of differentially recursive sequences (i.e., satis-
fying (6)) enjoys a structure of commutative Hopf algebroid with base k-algebra
K. The structure maps are explicitly given by the source s : K → DlinK, x 7→
(x, 0, . . .), the target t : K → DlinK, x 7→ (∂n(x))n≥0, the counit ε : DlinK →
K, α 7→ α(0), the comultiplication

∆ : DlinK −→ DlinK ⊗K DlinK, α 7−→
d∑
i=0

N i (α)⊗K (y∗i (yn))n≥0

(where { y∗i | 0 ≤ i ≤ d } is a suitable dual basis of the space of formal solutions
of the differential equation satisfied by α and yn are the canonical images of the
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operators ∂n therein) and the antipode

S : DlinK −→ DlinK, α 7−→

(
n∑
k=0

(
n

k

)
(−1)n−k∂k (α(n− k))

)
n≥0

.

It turns out that, with this structure, there is a chain of isomorphisms

K[∂]
◦ ∼= DlinK ∼= K[∂]

•

of commutative Hopf algebroids (see [AES2] for the definitions of both (−)◦, (−)
•
).

Furthermore, if by M∗L we denote the (formal) solution space of the differential
equation L(y) = 0, then the family {M∗L}L forms a directed system of left DlinK-
comodules such that we have an isomorphism

lim−→
L

(M∗L) ∼= DlinK

of left comodules.

The relation between differentially recursive sequences and linear recursive se-
quences is given in form of the following commutative diagram of k-algebras, with
injective arrows:

H(K)

DlinK
, �

99

LinK
2 R

dd

Link
3 S

ee

, �

::

where LinF denotes the F-vector space of linearly recursive sequences for a given
field F (with or without differential). We provide concrete examples (see the ones
reported in Example 3.29 below) to show that the images of DlinK and LinK
inside H(K) do not coincide. We conclude the paper by giving a brief comment
on the Picard-Vessiot ring extension of equation (2) and its relation with the Hopf
algebroid DlinK.

2. Preliminaries, notation and basic notions. In this section, we recall
with details the notions of commutative and co-commutative Hopf algebroids over
a field. We also explain the main notations that will be used freely in the sequel.

2.1. General facts on rings and bimodules. For R,S, T three rings with
identity, the terminology (R,S)-bimodule refers to a bimodule where the ring R
acts on the left-hand side and the ring S acts on the right-hand side. An R-
bimodule stands for an (R,R)-bimodule and bimodules over a field are referred to
as two-sided vector spaces. Assume that we have a diagram of rings

R
ϕ // T S.

%oo
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The Hopf algebroid structure of differentially recursive sequences

Then T admits two structures of bimodule via its multiplication. In fact, it is an
(R,S)-bimodule and (S,R)-bimodule, where the actions are given by:

r · t · s = ϕ(r) t %(s) and s · t · r = %(s) t ϕ(r)

for all r ∈ R, s ∈ S and t ∈ T . The first bimodule will be denoted by ϕT% and
the second one by %Tϕ. If, in addition, R and S are commutative rings, then there
are other possible structures of bimodule on T . Namely, the ones which we denote
by ϕ%T , %ϕT , Tϕ% and T%ϕ. For instance, the actions defining ϕ%T are explicitly
given by

r · t · s = ϕ(r) %(s) t,

for all r ∈ R, s ∈ S and t ∈ T . If furthermore T is a commutative ring, then all
these bimodules are equal.

The abelian group of all bilinear morphisms between two (R,S)-bimodules M
and M ′ is denoted by RHomS (M,M ′). The endomorphism ring of right R-module
X is denoted by End-R(X) and we use the notation EndR(X) if R is commutative.
Given an (S, T )-bimodule N , an (R,S)-bimodule M and an (R, T )-bimodule P ,
the hom-tensor adjunction states that we have a natural isomorphism

SHomT (N,RHom (M,P )) ∼= RHomT (M ⊗S N,P ) ∼= RHomS (M, HomT (N,P )) ,

where ⊗S denotes the tensor product over S. The (S, T )-bimodule structure on

RHom (M,P ) (and, similarly, the (R,S)-bimodule one on HomT (N,P )) is given
as follows. For all s ∈ S, t ∈ T , f ∈ RHom (M,P ) and m ∈M ,

(s · f · t) (m) = f (m · s) · t.

Equivalently, observe that every s ∈ S (and, analogously, every t ∈ T ) induces an
R-linear endomorphism ρs : M →M,m 7→ m · s. Therefore, we can also write

s · f · t = ρt ◦ f ◦ ρs.

Similarly, every r ∈ R (and every s ∈ S) induces the T -linear morphism λr : N →
N,n 7→ r · n, and hence

r · g · s = λs ◦ g ◦ λr
for all g ∈ HomT (N,P ). We will often omit the · symbol in what follows.

By a differential algebra over a commutative ring R we mean an R-algebra A
together with an R-linear endomorphism ∂A : A→ A satisfying the Leibniz rule:

∂A(ab) = ∂A(a)b+ a∂A(b),

for all a, b ∈ A. The following relation can be proven inductively

∂nA(ab) =
n∑
k=0

(
n

k

)
∂kA(a)∂n−kA (b). (8)

With (K, ∂) we always denote a differential field with subfield of constants k.
If a different field is required, we denote it by F. The unadorned tensor product ⊗
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is that over k. The space of right K-linear functionals HomK (V,K) on a two-sided
K-vector space V will be denoted by V ∗.

For the definition of a general left (or right) Hopf algebroid over a non-com-
mutative algebra, one can consider [Sc, Theorem and Definition 3.5] (or a right-
handed version of it. See also [BM, Definition 2.2]). However, in the sequel we
will be interested in 1. commutative Hopf algebroids and 2. co-commutative right
bialgebroids and right Hopf algebroids with base algebra the field K, considered as
k-algebra. Thus, let us remind quickly about these constructions, for the sake of
the unaccustomed reader.

2.2. Commutative Hopf algebroids. Recall from [Ra, Appendix A1] that a
commutative Hopf algebroid over the base k-algebra K consists of a k-algebra H
together with a diagram of k-algebra maps:

K
s //

t
// Hεoo

S

��
∆ // H⊗K H,

where, to perform the tensor product, H is considered as a two-sided K-vector
space of the form sHt. The maps s, t : K → H are called the source and the
target respectively, ε : H → K the counit, ∆ : H → H ⊗K H the comultiplication
and S : H → H the antipode. These have to satisfy the following compatibility
conditions:

� the datum (H,∆, ε) is a coassociative and counital comonoid in (KBimK,⊗K,K),
i.e., a K-coring;

� the antipode satisfies S ◦ s = t, S ◦ t = s and S 2 = IdH;

� by resorting to the so-called Sweedler’s Sigma Notation ∆(h) =
∑

(h) h(1) ⊗K

h(2),
1 the antipode satisfies also

∑
(h) S (h1)h2 = (t◦ ε)(h) and

∑
(h) h1S (h2)

= (s ◦ ε)(h).

A morphism of commutative Hopf algebroids over K is a k-algebra map φ : H → K
such that

φ ◦ sH = sK, φ ◦ tH = tK,

∆K ◦ φ = (φ⊗K φ) ◦∆H, εK ◦ φ = εH,

SK ◦ φ = φ ◦SH.

If it is important to highlight that the commutative Hopf algebroid H is over K,
one usually writes that (K,H) is a commutative Hopf algebroid over k.

Observe that the existence of s and t is equivalent to the existence of a k-algebra
extension η : K⊗K→ H that makes of H a (K⊗K)-algebra.

1When involved in long computations, we will often omit the summation symbol.
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2.3. Co-commutative Hopf algebroids. Next, we recall the definition of a
co-commutative right Hopf algebroid. A k-algebra U together with a k-algebra
extension A → U is called an A-ring. A co-commutative right bialgebroid over
K is the datum of a possibly noncommutative k-algebra U and a k-algebra map
τ : K → U landing not necessarily in the center of U (i.e., a K-ring structure on
U), with the following additional structure maps:

� a morphism of right K-vector spaces ε : Uτ → K;

� a morphism of K-rings ∆ : U → U ×K U , where

U ×K U :=

{∑
i

ui ⊗K vi ∈ Uτ ⊗K Uτ

∣∣∣∣∣ ∑
i

τ(x)ui ⊗K vi

=
∑
i

ui ⊗K τ(x)vi for all x ∈ K

}
is a right K-vector subspace of Uτ ⊗K Uτ via(∑

i

ui ⊗K vi

)
· x =

∑
i

ui ⊗K viτ(x) =
∑
i

uiτ(x)⊗K vi.

This is one instance of the so-called Takeuchi-Sweedler’s ×-product (see [Sw,
Definition 2.1] and [Tak, p. 460]). It is endowed with the k-algebra structure(∑

i

ui ⊗K vi

)∑
j

u′j ⊗K v
′
j

 =
∑
i,j

uiu
′
j ⊗K viv

′
j , 1U×KU = 1U ⊗K 1U

and the K-ring structure given by the k-algebra morphism

K→ U ×K U, x 7→ τ(x)⊗K 1U = 1U ⊗K τ(x);

subject to the conditions

� the composition U
∆−→ U ×K U ⊆ Uτ ⊗K Uτ , which we denote by ∆ again, is

coassociative, it admits ε as a right and left counit and it is co-commutative
in the sense that

∆cop(u) =
∑
(u)

u(2) ⊗K u(1) =
∑
(u)

u(1) ⊗K u(2) = ∆(u)

for any u ∈ U ;

� ε satisfies ε(uv) = ε(ε(u)v) for all u, v ∈ U .

The so-called Hopf-Galois map (or canonical map) attached to a right co-commu-
tative bialgebroid U is the map defined by

β : Uτ ⊗K τU −→ Uτ ⊗K Uτ ,

u⊗K v 7−→
∑
(v)

uv(1) ⊗K v(2)

 .
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The co-commutative right bialgebroid (K, U) is said to be a co-commutative right
Hopf algebroid whenever its canonical map β is bijective. If this is the case, then
there is a well-defined map β−1(1⊗K −) : U → Uτ ⊗K τU , u 7→ β−1(1⊗K u), known
as the translation map.

If it is important to highlight that the co-commutative right Hopf algebroid U
is over K, one usually writes that (K, U) is a co-commutative right Hopf algebroid
over k.

It is worthy to mention that if (K, U) is a right co-commutative bialgebroid,
then the category of right U -modules is a monoidal category and the restriction of
scalars functor (or forgetful functor) to the category of right K-vector spaces is a
strict monoidal functor. In this case, the category of U -modules is for free a left
closed monoidal category and (K, U) is a right Hopf algebroid if and only if the
forgetful functor preserves left inner homs-functors. For more details we refer to
[Sc] (see also [EG, Section 1.2]).

3. Differential operators and differentially recursive sequences over dif-
ferential fields. This section is devoted to stating and proving the main result
of the paper, concerning the Hopf algebroid structure on the space of differentially
recursive sequences. Namely, after recalling explicitly the Hopf algebroid structure
of the differential operator algebra of a given differential field, we introduce the
space of differentially recursive sequences, we prove that it inherits a Hopf alge-
broid structure from that and, finally, we compare these sequences with the usual
linearly recursive ones.

3.1. Differential operators over differential fields and Hopf algebroids.
Given K, ∂ and k as before, we consider the skew polynomial algebra K[Y ; ∂] asso-
ciated with K. For the sake of simplicity, we set K[∂] := K[Y ; ∂]. Let us give a few
examples and then describe the Hopf algebroid structure of K[∂].

Example 3.1. The field C of complex numbers (and, in general, any field) with the
zero derivation ∂ = 0 is a differential field with constant field C itself. It’s associated
skew polynomial algebra is the algebra of polynomials in one indeterminate C[Y ].

Example 3.2. For a field F of characteristic 0, the field of rational functions
F(X) = {p(X)/q(X) | q(X) 6= 0} in one indeterminate, with derivation ∂X
uniquely extended from ∂X : F[X] → F[X], is a differential field with constant
field F itself. Notice that

∂X

(
1

q(X)

)
= −∂X(q(X))

q(X)2

for all non-zero q(X) ∈ F[X], in light of the Leibniz rule. In this case, the associated
skew polynomial algebra is the algebra of differential operators of F (X) (see [MR,
Corollary 15.2.5 and Theorem 15.5.5]).

Remark 3.3. In general, the skew polynomial algebra K[∂] can be considered as an
algebra of differential operators of K (i.e., a subalgebra of the algebra of differential
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operators of K). It is well-known that for C a differential field as in Example 3.1,
the skew polynomial algebra C[Y ] is a Hopf algebra and its finite dual Hopf algebra
C[Y ]

◦
coincides (up to isomorphism) with the algebra LinC of linearly recursive

sequences over C (see [Ab, Section 3.5] for the explicit definition of the finite dual
Hopf algebra). This observation played a fundamental role in [ES1] and allowed us
to reveal the rich topological structure of LinC. The present section is devoted to
show that a similar identification holds over more general differential fields.

For any differential field (K, ∂) with field of constants k, the skew polynomial
algebra K[∂] is a co-commutative right Hopf algebroid over K. In details, identify
xY 0 with x for every x ∈ K, so that we may consider the assignment τ : K →
K[∂], x 7→ x. This is a morphism of k-algebras which converts K[∂] into a K-ring
(not a K-algebra, as τ does not land into the center of K[∂] because of equation
(1)). As a consequence, K[∂] is a two-sided K-vector space with actions

Y n · x = Y nx and x · Y n =
n∑
k=0

(
n

k

)
Y k∂n−k(x), (9)

for all n ≥ 0, x ∈ K. The counit is provided by the assignment ε : K[∂]→ K, Y n 7→
δ0,n, extended by right K-linearity, where δn,m is Kronecker’s delta (i.e., δn,m = 1
if n = m and 0 otherwise). The unique right K-linear morphism ∆ : K[∂] →
K[∂]⊗K K[∂] satisfying

∆ (Y n) =
n∑
k=0

(
n

k

)
Y k ⊗K Y

n−k (10)

for all n ≥ 0 (where the tensor product ⊗K is taken by considering K[∂] as a
symmetric two-sided K-vector space with left action induced by the right one)
is a well-defined coassociative and counital comultiplication that lands into the
Sweedler-Takeuchi ×-product and such that ∆ : K[∂] → K[∂] ×K K[∂] is a K-ring
map. The translation map is provided by

β−1(1⊗K Y
n) =

n∑
k=0

(
n

k

)
(−1)kY k ⊗K Y

n−k.

Example 3.4. For K = C(z) and ∂z := ∂/∂z, K[∂z] is the universal enveloping
Hopf algebroid of the Lie-Rinehart algebra DerC(C(z)) = C(z)∂z, the free left
C(z)-module generated by ∂z.

The space K[∂]∗ = HomK (K[∂],K) of right K-linear morphisms from K[∂] to K
becomes a ring with the convolution product

(f ∗ g) (u) =
∑
(u)

f
(
u(1)

)
g
(
u(2)

)
, (11)

for all f, g ∈ K[∂]∗ and u ∈ K[∂].
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Remark 3.5. The interested reader may check that, since the filtration
Fn (K[Y ; ∂]) :=

⊕n
k=0 Y

kK is an admissible filtration on K[∂] (in the sense of
[ES2, Section 3.4]) and since the translation map is filtered with respect to this
filtration, K[∂]∗ becomes a complete commutative Hopf algebroid in the sense of
[ES2] (see in particular [ES2, Proposition 3.16] and [Sa, Section 3.3.1] for a detailed
treatment of the general case).

Notice that K is a (right) K[∂]-module with action uniquely determined by
x · Y = ∂(x) for all x ∈ K. In view of (10), a straightforward check by induction
shows that x ·u = ε(xu) for all x ∈ K and u ∈ K[∂]. By the hom-tensor adjunction,
this action induces a k-linear map µ : K→ K[∂]

∗
such that µ(x)(u) = x · u for all

x ∈ K, u ∈ K[∂]. This µ turns out to be a k-algebra morphism, since for all n ≥ 0

µ(xy) (Y n) = ∂n(xy)
(8)
=

n∑
k=0

(
n

k

)
∂k(x)∂n−k(y)

(11)
= (µ(x) ∗ µ(y)) (Y n) .

As a consequence, K[∂]∗ is a (K⊗K)-algebra with η′ : K ⊗ K → K[∂]∗ uniquely
determined by η′(x⊗ 1) = xε and η′(1⊗ x) = µ(x) for all x ∈ K. Namely

η′ : K⊗ K −→ K[∂]∗,
(
x⊗ y 7−→

[
P 7→ ε(yP )x

])
.

It is also a right K[∂]-module with action induced by left multiplication on K[∂]:

K[∂]∗ ⊗K[∂]→ K[∂], f ⊗ u 7→ f ◦ λu (12)

where λu(v) = uv for all u, v ∈ K[∂].

3.2. The finite dual Hopf algebroid. All over the paper, by K[∂]
◦

we mean
the finite dual construction performed in [EG] and not the Sweedler dual of K[∂]
(see also [AES2]). Recall from [EG] that K[∂]

◦
is constructed out of the symmetric

rigid monoidal k-linear abelian category of finite-dimensional differential K-vector
spaces (equivalently, the category of right K[∂]-modules with finite-dimensional
underlying K-vector space). That is to say, out of those finite-dimensional (right)
K-vector spaces M endowed with a k-linear endomorphism ∂M : M →M satisfying

∂M (mx) = ∂M (m)x+m∂(x)

for all m ∈M , x ∈ K. Notice that the following extension of (8) holds

∂nM (mx) =
n∑
k=0

(
n

k

)
∂kM (m)∂n−k(x). (13)

Henceforth, we resort to the notation of [EG, Section 3.1]. For a given differential
K-vector space M , we denote by TM = End((M,∂M )) its k-algebra of differential
endomorphisms (e.g., TK = k), and for two given differential K-vector spaces M,N ,
we denote by TMN the k-vector space of all differential morphisms from (M,∂M )
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to (N, ∂N ). The (K⊗K)-algebra K[∂]
◦

is by definition the quotient two-sided
K-vector space:

K[∂]
◦

:=

⊕
(M,∂M )

M∗ ⊗TM M

〈ψ ⊗TN f(x)− (ψ ◦ f)⊗TM x〉ψ∈N∗, x∈M, f∈TMN

with multiplication (see [EG, Equation (20)])(
ϕ⊗TP p

)
·
(
ψ ⊗TQ q

)
= (ψ � ϕ)⊗TQ⊗KP

(q ⊗K p), (14)

where ψ � ϕ : Q ⊗K P → K, q ⊗K p 7→ ϕ (ψ(q)p) and where the overlined notation
stands for the equivalence class of a given element in the direct sum displayed in
the numerator.

The (K⊗K)-algebra K[∂]
◦

is, in fact, a commutative Hopf algebroid (see [EG,
Theorem 4.2.2]) with source and target

s◦ : K→ K[∂]
◦
, x 7→ x⊗k 1 and t◦ : K→ K[∂]

◦
, x 7→ 1⊗k x, (15)

comultiplication

∆◦ : K[∂]
◦ → K[∂]

◦ ⊗K K[∂]
◦
, ϕ⊗TM m 7→

∑
i

ϕ⊗TM ei ⊗K e∗i ⊗TM m(
{ei, e∗i } dual basis of M

)
,

counit ε◦ : K[∂]
◦ → K, ϕ⊗TM m 7→ ϕ(m), and antipode

S◦ : K[∂]
◦ → K[∂]

◦
, ϕ⊗TM m 7→ evm ⊗TM∗ ϕ,

where evm : M∗ → K, ϕ 7→ ϕ(m), is the evaluation at m. Furthermore, K[∂]
◦

always comes with a canonical morphism of (K⊗K)-algebras

ζ : K[∂]
◦ −→ K[∂]∗,

(
ϕ⊗TM m 7−→

[
P 7→ ϕ(m J P )

])
where J is the action of K[∂] on M . In this particular case, this ζ is also injective
(see [EG, Corollary 3.3.6]).

Remark 3.6. In addition, K[∂]
◦

is a differential K-algebra with respect to the
source s◦ and the derivation

∂◦ : K[∂]
◦ −→ K[∂]

◦
, ϕ⊗TM m 7−→ ϕ⊗TM (m J Y ), (16)

and the target t◦ becomes a morphism of differential algebras with respect to this
structure.

Observe that the finite dual Hopf algebroid K[∂]
◦

is not, in general, the same
as the Sweedler dual of K[∂]. In fact, recall that the Sweedler dual of an alge-
bra A is the space of linear functionals on A vanishing on a finite-codimensional
two-sided ideal. If we consider the example K = C(z) with ∂z = ∂/∂z, then
K[∂z] = C(z)[Y ; ∂z] is a simple ring (in light of [MR, Theorem 1.8.4], for instance).
Therefore, the Sweedler dual of K[∂z] is zero. On the other hand, the existence of
the non-zero algebra map η◦ : K ⊗ K → K[∂z]

◦
provided by s◦ and t◦ from (15)

ensures that the finite dual K[∂z]
◦

in the sense of [EG] is non-zero.
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3.3. Differentially recursive sequences. The set KN of all denumerable se-
quences of elements in K admits a left (eventually, symmetric) K-vector space
structure induced by the equivalent description

KN = Fun(N,K) =
{
α : N→ K

}
,

that is to say, given by the componentwise sum and action:

(α+ β) (n) = α(n) + β(n) and (xα) (n) = xα(n)

for all α, β ∈ KN, x ∈ K and n ∈ N. As a matter of notation, a sequence in KN

will be denoted either as (αn)n≥0, or as (α(n))n≥0 or simply as α, meaning by this

the function α : N→ K. On KN we can also consider a product, called the Hurwitz
product,

(α · β)(n) =
n∑
k=0

(
n

k

)
α(k)β(n− k) (17)

for all α, β ∈ KN and n ∈ N, and the shift operator N : KN → KN, given by
N (α)(n) = α(n+ 1) for all α ∈ KN, n ∈ N. Denote by H(K) the ring KN with the
Hurwitz product. With respect to this structure, H(K) becomes a commutative
K-algebra with unit morphism s : K→ KN, x 7→ (x, 0, . . .), and N , which is already
a K-linear endomorphism, becomes a derivation. Since this structure will be fixed
throughout the paper, we will often omit the · symbol in equation (17).

Remark 3.7. Observe that N (α) = 0 if and only if α(n) = xδn,0 for some x ∈ K,
whence H(K) is a differential algebra with subalgebra of constants K via s. In
particular,

N ∈ DerK(H(K)) =
{
δ ∈ Endk(H(K)) | δ(αβ) = δ(α)β + αδ(β) and δ ◦ s = 0

}
.

In addition, H(K) is a K-algebra with respect to the k-algebra map t : K →
H(K), x 7→ (∂n(x))n≥0. In the literature, the map t has been called the Hurwitz
mapping of ∂ (see [K2]) and the element t(x) has been called the Hurwitz expansion
of x. In particular, H(K) becomes a commutative (K⊗K)-algebra with unit

η : K⊗K −→ H(K), x⊗ y 7−→ s(x)t(y) = (x∂n(y))n∈N .

As such, we will consider it as a two-sided K-vector space with left K-action induced
by s and right K-action induced by t. It is noteworthy that t : (K, ∂)→ (H(K),N )
is a morphism of differential k-algebras. Furthermore, H(K) is also augmented over
K via the algebra map ε : H(K)→ K sending α 7→ α0.

Remark 3.8. Observe that Endk(H(K)) is naturally endowed with a two-sided
K-vector space structure given by

x · F · y := s(x)t(y)F : α 7−→ s(x)t(y)F(α)
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for all x, y ∈ K, F ∈ Endk(H(K)) and α ∈ H(K). Thus, H(K) is naturally a right
K[∂]-module, infinite-dimensional over K, with action uniquely determined by

α / Y := N (α) (18)

for all α ∈ H(K).

We are now ready to introduce differentially recursive sequences.

Definition 3.9. An operator L =
∑d
i=0 t(ci)N i ∈ EndK(H(K)), with ci ∈ K and

cd 6= 0, is said to have order (or degree) d. We set

DlinK :=

{
α ∈ H(K)

∣∣∣∣∣L (α) = 0 for some L =
d∑
i=0

t(ci)N i, ci ∈ K with cd 6= 0

}
.

An element α of DlinK is called a differentially recursive sequence over K. The
minimum d such that α is annihilated by an operator of order d is said to be of
order α.

Remark 3.10. Very informally speaking, the motivation for this terminology is
twofold. On the one hand, a sequence as in Definition 3.9 satisfies a differential
recursive relation with differential coefficients in the same way a linearly recursive
one satisfies a linear relation with constant coefficients (with respect to the differ-
ential N ). On the other hand, as we will see in Remarks 3.15 and 3.28, a sequence
is differentially recursive if and only if it is killed by a differential polynomial while
it is linearly recursive if and only if it killed by an ordinary one.

Example 3.11. If K = C with the zero derivation, then s = t and a differentially
recursive sequence in the sense of Definition 3.9 is the same as a linearly recursive
sequence in the classical sense, that is to say, a sequence of elements of C which
satisfies a recurrence relation with constant coefficients. Indeed, α ∈ DlinC if and
only if there exists c0, . . . , cd ∈ C, cd = 1, such that

0 =
d∑
i=0

t(ci)N i(α) =

(
d∑
i=0

ciα(n+ i)

)
n≥0

if and only if αn+d = − (cd−1αn+d−1 + cd−2αn+d−2 + · · ·+ c0αn), for every n ≥ 0.

Example 3.12. If K = C(z) with derivation ∂ = ∂/∂z, then t (p(z)/q(z)) =

(∂n (p(z)/q(z)))n≥0. Consider the particular case of an operator L =
∑d
i=0 t(ai)N i

in which ai ∈ C for all i = 0, . . . , d. Then the elements f ∈ C(z) for which
L(t(f)) = 0 are exactly the solutions to the differential equation

a0y + a1∂(y) + a2∂
2(y) + · · ·+ ad∂

d(y) = 0

with constant coefficients in C(z).
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3.4. The Hopf algebroid structure on differentially recursive sequences.
Henceforth, for the sake of simplicity and clearness, a sequence α = (α(n))n≥0 =
(αn)n≥0 will be denoted also by (α•).

Proposition 3.13. We have an isomorphism of (K⊗K)-algebras

Φ : K[∂]∗ → H(K) : f 7→ (f (Y •))

with inverse sending the sequence α to the right K-linear morphism fα uniquely
determined by the assignment Y n 7→ α(n) for all n ∈ N. Moreover, Φ is also right
K[∂]-linear with respect to the actions (12) and (18), namely

Φ (f) / P (Y ) = Φ
(
f ◦ λP (Y )

)
(19)

for every differential polynomial P (Y ) ∈ K[∂].

Proof. At the level of K-vector spaces, the isomorphism Φ is the one derived from
the following chain of canonical isomorphisms:

K[∂]∗ = HomK (⊕n≥0Y
nK, K) ∼= HomK

(
K(N), K

)
∼= KN = H(K).

By using the formulae (10), (11) and (17), the proof of the fact that Φ is a (K⊗K)-
algebra map is immediate and the details are left to the reader. Now, let us check
explicitly the last claim. If P (Y ) =

∑d
i=0 Y

ici, ci ∈ K, then for all n ≥ 0

(Φ(f) / P (Y )) (n) =

(
d∑
i=0

t(ci)N i (Φ(f))

)
(n) =

d∑
i=0

n∑
k=0

(
n

k

)
∂k(ci)f

(
Y n−k+i

)
= f

(
d∑
i=0

n∑
k=0

(
n

k

)
Y n−k+i∂k(ci)

)

= f

(
d∑
i=0

Y iciY
n

)
=
(
f ◦ λP (Y )

)
(Y n) = Φ

(
f ◦ λP (Y )

)
(n),

which gives the stated equation (19). 2

Corollary 3.14. The pair (K,H(K)) is a complete commutative Hopf algebroid
with respect to the structure maps and the linear topology coming from that of
K[∂]∗ via Φ.

Proof. It follows from Proposition 3.13 together with the observation of Remark
3.5. 2

Remark 3.15. Observe that if P (Y ) =
∑d
i=0 Y

ici then L(α) = α / P (Y ), where

L =
∑d
i=0 t(ci)N i. This in particular justifies the terminology used before: the

degree of α. Furthermore, thanks to the division algorithm on K[∂] (see [O]), for
every α ∈ DlinK we may assume that L such that L(α) = 0 is the operator asso-
ciated with the monic generator P (Y ) of the right annihilator Ann (α) = {Q(Y ) ∈
K[∂] | α / Q(Y ) = 0}.
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Proposition 3.16. Both maps s, t : K → H(K) land into DlinK. Moreover, via
Φ of Proposition 3.13, differentially recursive sequences correspond to linear maps
f : K[∂] → K vanishing on a principal right ideal of K[∂]. More precisely, for

f ∈ K[∂]∗ we have that Φ(f) ∈ ker (L) with L =
∑d
i=0 t(ci)N i, ci ∈ K, if and only

if ker (f) ⊇ P (Y )K[∂], the principal right ideal generated by P (Y ) =
∑d
i=0 Y

ici in
K[∂].

Proof. Clearly, for every x ∈ K we have that N (s(x)) = 0, whence s(x) is
differentially recursive. Moreover, since we already know that N (t(x)) = t(∂(x))
because t is a morphism of differential algebras, it is clear also that L(t(x)) = 0
with L = t(∂(x)) − t(x)N , whence t(x) is differentially recursive as well. This
proves the first claim. Concerning the second claim, assume that Φ(f) ∈ ker (L)

with L =
∑d
i=0 t(ci)N i and set P (Y ) :=

∑d
i=0 Y

ici ∈ K[∂]. Then,

0 = L(Φ(f)) = Φ(f) / P (Y )
(19)
= Φ(f ◦ λP (Y )).

However, being Φ invertible, this means that for every u ∈ K[∂], f(P (Y )u) = 0 and
hence ker (f) ⊇ P (Y )K[∂]. Conversely, if ker (f) ⊇ P (Y )K[∂] then f ◦ λP (Y ) = 0
and hence

0 = Φ(f ◦ λP (Y ))
(19)
= Φ(f) / P (Y ).

Thus, L (Φ(f)) = 0 with operator L =
∑d
i=0 t(ci)N i. 2

As a matter of notation, for every f ∈ K[∂]∗ as in Proposition 3.16 we will write

Pf (Y ) for the polynomial
∑d
i=0 Y

ici, so that ker (f) ⊇ Pf (Y )K[∂]. If moreover
f = fα := Φ−1(α) then we will write Pα(Y ) instead of Pf (Y ). In particular, by an
harmless abuse of notation, from time to time we will write L = Pα(N ). Observe
that for every x ∈ K, Pt(x)(Y ) = ∂(x)− Y x.

Remark 3.17. Let us observe that the foregoing arguments and constructions can
be realized over any differential algebra (A, ∂) instead of a differential field (K, ∂)
with no additional effort. In this more general context one may also show that the
assignment R 7→ H(R) induces a functor H : Algk → DiffAlgk from the category of
k-algebras to that of differential k-algebras, which is right adjoint to the underlying
functor U : DiffAlgk → Algk forgetting the differential structure (see [K1]). The unit
of this adjunction is exactly t : (A, ∂) → (H(A),N ), a 7→ (∂•(a)), and the counit
is ε : H(R) → R, α 7→ α(0). The distinctive feature of the field case is that
we may always assume Pα(Y ) to be monic and hence the ideal Pα(Y )K[∂] to be
finite-codimensional, as we will need later on.

Our next objective is to show that DlinK is isomorphic to the finite dual Hopf
algebroid K[∂]

◦
of K[∂] as a (K⊗K)-algebra. Our first step will be that of showing

that, for a given differential vector space (M,∂M ) and a given element ϕ⊗TM m ∈
K[∂]

◦
(i.e., the equivalence class of the homogeneous element ϕ⊗TM m ∈M∗ ⊗TM

M), the sequence

(ϕ (∂•M (m))) = Φ
(
ζ
(
ϕ⊗TM m

))
∈ KN,
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satisfies a particular kind of (differential) recursion, where Φ is the isomorphism of
Proposition 3.13.

Proposition 3.18. Given an element of the form ϕ⊗TM m ∈ K[∂]
◦
, then α :=

(ϕ (∂•M (m))) is a differentially recursive sequence in H(K). That is to say, there

exist 0 ≤ d ≤ dimK(M) and c0, . . . , cd ∈ K such that
∑d
i=0 t (ci)N i(α) = 0.

Proof. Write d′ := dimK(M). Then the set
{
m, ∂M (m), . . . , ∂d

′

M (m)
}

is linearly

dependent over K, in the sense that there exist c0, . . . , cd′ in K such that mc0 +
∂M (m)c1 + · · · + ∂d

′

M (m)cd′ = 0. If 0 ≤ d ≤ d′ is the maximum index for which
cd 6= 0, we may look at the set

{
m, ∂M (m), . . . , ∂dM (m)

}
, which is still linearly

dependent over K, and at the relation mc0 +∂M (m)c1 + · · ·+∂dM (m)cd = 0 instead.
Then

0 = ∂nM

(
d∑
i=0

∂iM (m)ci

)
(13)
=

d∑
i=0

n∑
k=0

(
n

k

)
∂i+n−kM (m)∂k(ci).

for all n ≥ 0 and hence

0 = ϕ

(
d∑
i=0

n∑
k=0

(
n

k

)
∂i+n−kM (m)∂k(ci)

)
=

d∑
i=0

n∑
k=0

(
n

k

)
ϕ
(
∂i+n−kM (m)

)
∂k(ci)

=
d∑
i=0

n∑
k=0

(
n

k

)
∂k(ci)N i (ϕ (∂•M (m))) (n− k) =

(
d∑
i=0

t(ci)N i (ϕ (∂•M (m)))

)
(n)

as claimed. 2

Conversely, pick α ∈ H(K) and consider

fα := Φ−1(α) : K[∂] // K
Y n � // α(n)

. (20)

If α ∈ DlinK then, by definition, there exists L =
∑d
i=0 t(ci)N i such that α ∈

ker (L) and hence fα vanishes on Pα(Y )K[∂] where Pα(Y ) =
∑d
i=0 Y

ici. The
quotient K[∂]/Pα(Y )K[∂] is a right K[∂]-module and we may consider the mor-
phism f̃α ∈ HomK (K[∂]/Pα(Y )K[∂],K) induced by fα. We denote by 1 := 1K[∂] +
Pα(Y )K[∂] the equivalence class of the unit 1K[∂] of the algebra K[∂].

Proposition 3.19. For α ∈ DlinK, the right K-vector space
Mα := K[∂]/Pα(Y )K[∂] is finite-dimensional and a differential K-vector space with
differential ∂Mα

given by acting on the right via Y .
If α is of order d (i.e., it is annihilated by an operator L of order d), then

dimK (Mα) = d. In particular, the element f̃α ⊗TMα 1̄ is a well-defined element in

K[∂]
◦
. Moreover, for all n ∈ N, it satisfies

f̃α
(
∂nMα

(1̄)
)

= α(n). (21)
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Proof. If Pα(Y ) =
∑d
i=0 Y

ici and d = deg(Pα(Y )), then we claim that Mα =
K[∂]/Pα(Y )K[∂] is the right K-vector space generated by the vectors yi := Y i +
Pα(Y )K[∂] for i = 0, . . . , d− 1. Consider the obvious right K-linear morphism

ψ :

d−1⊕
i=0

yiK→
K[∂]

Pα(Y )K[∂]

induced by the inclusions yiK ⊆ K[∂]/Pα(Y )K[∂]. Let us see first that it is injective.
Assume that

0 = ψ

d−1∑
j=0

yjxj

 =
d−1∑
j=0

Y jxj + Pα(Y )K[∂]

and assume, by contradiction, that
∑d−1
j=0 yjxj 6= 0. Then there exists u ∈ K[∂]

non-zero such that
∑d−1
j=0 Y

jxj =
(∑d

i=0 Y
ici

)
u. Let Y sus be the leading term of

u (the summand with highest degree such that us 6= 0). Then(
d∑
i=0

Y ici

)
Y sus

(9)
=

d∑
i=0

s∑
k=0

(
s

k

)
Y i+k∂s−k(ci)us

= Y d+scdus +
d−1∑
i=0

Y i+scius +
d∑
i=0

s−1∑
k=0

(
s

k

)
Y i+k∂s−k(ci)us

and hence Y d+scdus is a summand of
(∑d

i=0 Y
ici

)
u. However, being s ≥ 0, Y s+d

appears with 0 coefficient in
∑d−1
j=0 Y

jxj and hence we should have cdus = 0, which

is a contradiction. Summing up,
∑d−1
j=0 yjxj = 0 and ψ is injective. To see that

it is surjective, consider the following facts. First of all, since cd 6= 0, we may
assume that cd = 1 and hence that yd =

∑d−1
h=0 yhc

′
h. On the one hand, for every

0 ≤ j ≤ d− 1, yj = Y j + Pα(Y )K[∂] = ψ(Yj). On the other hand, let us show by

induction on r ≥ 0 that for every j = d+r we have that yj ∈
∑d−i
i=0 yiK. For r = 0,

we know that yd =
∑d−1
h=0 yhc

′
h ∈

∑d−1
i=0 yiK. Assume then that the property holds

for all 0 ≤ l ≤ r − 1 and let us see that it holds for r. Compute

yj = Y j + Pα(Y )K[∂] = Y dY r + Pα(Y )K[∂] =
(
Y d + Pα(Y )K[∂]

)
J Y r

=

(
d−1∑
h=0

Y hc′h + Pα(Y )K[∂]

)
J Y r

(9)
=

d−1∑
h=0

r∑
k=0

(
r

k

)
Y h+k∂r−k (c′h) + Pα(Y )K[∂]

=

d−1∑
h=0

r∑
k=0

(
r

k

)(
Y h+k + Pα(Y )K[∂]

)
∂r−k (c′h) ,

where J is the K[∂]-action on Mα. Now, for all h = 0, . . . , d− 1, k = 0, . . . , r, we

have h+ k ≤ d+ r− 1 and hence Y h+k + Pα(Y )K[∂] ∈
∑d−i
i=0 yiK by the inductive

hypothesis. Therefore,

yj =
d−1∑
h=0

r∑
k=0

(
r

k

)(
Y h+k + Pα(Y )K[∂]

)
∂r−k (c′h) ∈

d−i∑
i=0

yiK
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as claimed. By induction, we conclude that ψ is surjective and hence an isomor-
phism. This allows us to conclude that Mα is a differential K-vector space as
claimed and the differential is exactly the linear endomorphism induced by right
multiplication by Y .

Concerning the last claim, it should be clear now that, for every n ≥ 0, we have
that

f̃α
(
∂nMα

(1̄)
)

= f̃α (yn) = fα(Y n) = α(n).

2

As a consequence of Propositions 3.18 and 3.19 we can prove the main theorem
of this section, that allows us to describe the finite dual of a skew polynomial
algebra as the space of linear functionals vanishing on a finite-codimensional ideal
and to relate it with differentially recursive sequences.

Theorem 3.20. The isomorphism Φ of Proposition 3.13 induces an isomorphism
of (K⊗K)-algebras φ : K[∂]

◦ → DlinK such that Φ◦ζ = φ. It is explicitly given by

φ
(
ϕ⊗TM m

)
= (ϕ (∂•M (m))) with inverse φ−1(α) = f̃α ⊗TMα 1̄, for all ϕ⊗TM m ∈

K[∂]
◦

and all α ∈ DlinK. Furthermore, φ is an isomorphism of differential K-
algebras.

Proof. It follows from Proposition 3.18 that Φ◦ ζ lands into DlinK, thus inducing
the claimed morphism φ. Being ζ : K[∂]

◦ → K[∂]∗ injective, φ has to be injective.
From Proposition 3.19 it follows that the assignment φ−1 : DlinK → K[∂]

◦
, α 7→

f̃α ⊗TMα 1̄, is a section of φ (i.e., φ ◦ φ−1 = IdDlinK), whence φ is surjective as well
and hence an isomorphism. To show that φ is also compatible with the differentials,
let us consider a generic element ϕ⊗TM m ∈ K[∂]

◦
. Then

φ
(
∂◦(ϕ⊗TM m)

)
= φ

(
ϕ⊗TM (m J Y )

)
= φ

(
ϕ⊗TM ∂M (m)

)
=
(
ϕ
(
∂•+1
M (m)

))
= N

(
φ(ϕ⊗TM m)

)
where ∂◦ is as in (16). Thus, we have φ ◦ ∂◦ = N ◦ φ and so φ is a differential
morphism. 2

Corollary 3.21. Up to the canonical morphism ζ, K[∂]
◦

can be identified with
the (K⊗K)-subalgebra of K[∂]∗ of all those linear functionals vanishing on a finite-
codimensional (principal) right ideal.

Remark 3.22. Something more general than (21) can be said, in light of Theorem
3.20. In fact, observe that K[∂]

◦
is a right K[∂]-module with action given by(

ϕ⊗TM m
)

J u = ϕ⊗TM (m J u)

for all ϕ⊗TM m ∈ K[∂]
◦
, u ∈ K[∂], and, as such, it is an K[∂]-submodule of K[∂]∗.

Therefore, DlinK inherits a structure of right K[∂]-module such that φ is K[∂]-
linear and, in particular, it becomes a right K[∂]-submodule of H(K). Therefore,
for every i ≥ 0 we have(

f̃α
(
∂•Mα

(yi)
))

= φ
(
f̃α ⊗TMα yi

)
= φ

(
f̃α ⊗TMα 1 J Y i

)
= α / Y i = N i(α).

(22)
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As a consequence of Theorem 3.20 we can finally state the central result of the
paper.

Theorem 3.23. The k-algebra DlinK of differentially recursive sequences enjoys a
structure of commutative Hopf algebroid over K. The structure maps are explicitly
given by the source s and the target t from Proposition 3.16, the counit ε : DlinK →
K, α 7→ α(0), and the comultiplication

∆ : DlinK −→ DlinK ⊗K DlinK, α 7−→
d−1∑
i=0

N i (α)⊗K (y∗i (y•)) , (23)

where
{
yi = Y i + Pα(Y )K[∂], y∗i

}
i=0, ..., d−1

is the dual basis of Mα and d is the

degree of α. Lastly, the antipode is given by

S : DlinK −→ DlinK, α 7−→

(
n∑
k=0

(
n

k

)
(−1)n−k∂k (α(n− k))

)
n≥0

.

Proof. The structures come from those of K[∂]
◦

via φ of Theorem 3.20. 2

Remark 3.24. We know, for abstract reasons, that if α, β ∈ DlinK, then α · β ∈
DlinK as well. However, before proceeding, the reader may be interested in knowing
explicitly which differential operator the product of two differentially recursive
sequences satisfies2.

To this aim, assume that Lα(α) = 0 = Lβ(β) with Lα =
∑dα
i=0 t(ai)N i and

Lβ =
∑dβ
i=0 t(bi)N i, ai, bj ∈ K. In light of Theorem 3.20,

α · β = φ
(
φ−1(α) · φ−1(β)

)
= φ

((
f̃α ⊗TMα 1̄

)
·
(
f̃β ⊗TMβ 1̄

))
(14)
= φ

((
f̃β � f̃α

)
⊗TMβ⊗KMα

(1̄⊗K 1̄)

)
.

By Proposition 3.18, α · β is annihilated by an operator Lα·β of order d such that

0 ≤ d ≤ dimK (Mβ ⊗K Mα) = dαdβ

(see Proposition 3.19 as well). Therefore, we may assume Lα·β =
∑dαdβ
i=0 t(xi)N i for

some (not necessarily non-zero) xi ∈ K, i = 0, . . . , dαdβ . Consider the (non-linear)
system of equations

0 = Lα·β (α · β) (n) =

dαdβ∑
i=0

n∑
k=0

(
n

k

)
∂k (xi) (α · β) (n−k+ i), 0 ≤ n ≤ dαdβ−1,

(24)

2Apart from its own interest, this computation could perhaps have a certain interest form a
combinatorial point of view.
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in the dαdβ + 1 unknowns x0, . . . , xdαdβ . By Proposition A.2, this is equivalent to
the homogeneous (linear) system

dαdβ∑
i=0

xi

(
n∑
k=0

(
n

k

)
(−1)k∂k ((α · β)(n− k + i))

)
= 0, 0 ≤ n ≤ dαdβ − 1, (25)

which necessarily admits a non-zero solution (recall that α · β ∈ DlinK, whence
Lα·β exists and it satisfies (24)). Conversely, in light of Lemma A.1, any solution
of (25) (and hence of (24)) gives rise to an operator L′ which annihilates α · β.
Therefore, in order to find an operator Lα·β such that 0 = Lα·β(α · β) it is enough
to solve (25).

Let us show the procedure in detail on a concrete and easy-handled example.

Example 3.25. Consider p, q two non-zero scalars in K and assume that 0 =
α / (Y − p), 0 = β / (Y − q), α(0) 6= 0 and β(0) 6= 0. Then the recursions are

α(n+ 1) =
n∑
k=0

(
n

k

)
∂k (p)α(n− k) and β(n+ 1) =

n∑
k=0

(
n

k

)
∂k (q)β(n− k)

for all n ≥ 0. In particular, one may check directly that

α(1) = pα(0) β(1) = qβ(0)

α(2) =
(
p2 + ∂(p)

)
α(0) β(2) =

(
q2 + ∂(q)

)
β(0)

by iterative substitution (we will come back on these computations with more detail
in Section 4). Now, consider the relation (α · β) / (Y a+ b) = 0. For n = 0, this
gives rise to the equation

a (α(1)β(0) + α(0)β(1)) + bα(0)β(0) = 0

which, after substituting and cancelling α(0)β(0), becomes

a (p+ q) + b = 0.

For n = 1 it gives rise to

a (α(2)β(0) + 2α(1)β(1) + α(0)β(2)) +

+ (∂(a) + b) (α(1)β(0) + α(0)β(1)) + ∂(b)α(0)β(0) = 0,

which, after substituting and cancelling α(0)β(0), becomes

a
(
p2 + ∂(p) + 2pq + q2 + ∂(q)

)
+ (∂(a) + b) (p+ q) + ∂(b) = 0.

Observe that, since b = −a (p+ q), we get

a
(
p2 + ∂(p) + 2pq + q2 + ∂(q)

)
+ ∂(a) (p+ q)− a

(
p2 + 2pq + q2

)
+

568



The Hopf algebroid structure of differentially recursive sequences

− ∂(a) (p+ q)− a(∂(p) + ∂(q)) = 0,

that is to say, the second equation is identically satisfied and Y a+ b is determined
by any solution of

a (p+ q) + b = 0,

as we were expecting. The easiest one is, of course, a = 1 and b = −(p + q),
i.e., Pα·β(Y ) = Y − (p+ q).

Let us devote an additional bit of time to see a second, more meaningful, ex-
ample with a bit less of details.

Example 3.26. Assume that 0 = α/(Y −p), 0 = β/(Y 2−Y q1−q0), α(0) = a 6= 0
and (β(0), β(1)) = (b0, b1) 6= (0, 0). Assume also that a = 1. As in Example 3.25,
this is not restrictive. Then the recursions are

α(n+ 1) =

n∑
k=0

(
n

k

)
∂k (p)α(n− k) and

β(n+ 2) =
n∑
k=0

(
n

k

)
∂k (q1)β(n− k + 1) +

n∑
k=0

(
n

k

)
∂k (q0)β(n− k)

for all n ≥ 0. In particular, one may check directly that

α(0) = 1,

α(1) = p,

α(2) = p2 + ∂(p),

α(3) = p3 + 3p∂(p) + ∂2(p),

α(4) = p4 + 6p2∂(p) + 4p∂2(p) + 3(∂(p))2 + ∂3(p),

β(0) = b0

β(1) = b1

β(2) = q1b1 + q0b0

β(3) =
(
q2
1 + ∂(q1) + q0

)
b0 + (q1q0 + ∂(q0)) b1

β(4) =
(
q3
1 + 3q1∂(q1) + 2q0q1 + ∂2(q1) + 2∂(q0)

)
b1+

+
(
q2
1q0 + q1∂(q0) + 2q0∂(q1) + q2

0 + ∂2(q0)
)
b0

by iterative substitution as before. Now, consider the relation
(α · β) /

(
Y 2a+ Y b+ c

)
= 0. For n = 0, this gives rise to the equation(

(p2 + ∂(p) + q0)b0 + (2p+ q1)b1
)
a+ (pb0 + b1) b+ b0c = 0. (26)

For n = 1 it gives rise to(
(p3 + 3p∂(p) + ∂2(p) + 3pq0 + q1q0 + ∂(q0))b0 +
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+(3p2 + 3∂(p) + 3pq1 + q2
1 + ∂(q1) + q0)b1

)
a+

+
(
(p2 + ∂(p) + q0)b0 + (2p+ q1)b1

)
(∂(a) + b)+(pb0 + b1) (c+∂(b))+b0∂(c) = 0.

(27)

For the sake of brevity, we omit here the expression for n = 2. Now, a priori this
situation gives rise to three different possibilities.

(1) b0 = 0 and we may consequently assume b1 = 1. In this case, (26) gives b =
−(2p+q1)a. If we substitute it in (27) then we get c = (p2 +pq1−q0−∂(p))a.
A straightforward but tedious computation confirms that the third equation
is identically satisfied and hence

Pα·β(Y ) = Y 2 + Y (2p+ q1)−
(
p2 + pq1 − q0 − ∂(p)

)
. (28)

Having ruled out the case b0 = 0, we may assume henceforth that b0 = 1 and
substitute b1 with w := b1/b0. Under these hypothesis, (26) gives

c = −
(
p2 + ∂(p) + q0 + (2p+ q1)w

)
a− (p+ w)b. (29)

(2) w satisfies the (generalized) Riccati equation ∂(w) = q0 + wq1 − w2 (see [R,
Section I.1]). In this case, (27) turns out to be automatically satisfied and
hence Pα·β is determined simply by (29). Therefore

Pα·β(Y ) = Y − (p+ w).

This is a case in which the order of the product is strictly smaller than the
product of the orders.

(3) w does not satisfy the (generalized) Riccati equation, i.e., ∂(w) 6= q0 +wq1−
w2. In this case, by substituting (29) into (27) we find out that b = −(2p+q1)a
and that the third equation is identically satisfied (as expected). Therefore,

Pα·β(Y ) = Y 2 + Y (2p+ q1)−
(
p2 + pq1 − q0 − ∂(p)

)
,

which coincides with (28).

Back to the main topic, Corollary 3.21 gives a description of K[∂]
◦

that closely
resembles the classical one: for an ordinary Hopf k-algebra H, H◦ is the subalgebra
of H∗ of all those linear functionals that vanishes on a finite-codimensional (two-
sided) ideal. As a consequence, a very natural question arises. Recall from [AES2,
Section 4] that there exists a second finite dual construction for co-commutative
Hopf algebroids, obtained via the Special Adjoint Functor Theorem. This alter-
native finite dual K[∂]

•
is, in a suitable sense, the biggest K-coring inside K[∂]∗.

Namely, it is uniquely determined by the following universal property: K[∂]
•

is a
K-coring together with a k-linear map ξ : K[∂]

• → K[∂]∗ which satisfies

ξ(z)(uv) =
∑

ξ(z(1))
(
τ
(
ξ
(
z(2)

)
(u)
)
v
)
, ξ(z)(1K[∂]) = ε(z)

and ξ(x · z · y)(u) = xξ(z)(τ(y)u) (30)
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for all z ∈ K[∂]
•
, u, v ∈ K[∂] and x, y ∈ K. It is universal with respect to this

property, in the sense that if C is another K-coring with a k-linear morphism
f : C → K[∂]∗ satisfying (30) then there exists a unique coring homomorphism

f̂ : C → K[∂]
•

such that ξ ◦ f̂ = f . In light of this, it is natural to ask how K[∂]
◦

(and DlinK) are related with K[∂]
•
, which will give the second universal property

mentioned in the Introduction.

Theorem 3.27. For a differential field (K, ∂), the two-sided K-vector space of
differentially recursive sequences DlinK with the inclusion DlinK ⊆ K[∂]∗, which
we denote by ξ, satisfies the universal property of the Hopf algebroid K[∂]

•
. In

particular, we have a chain of isomorphisms K[∂]
◦ ∼= DlinK ∼= K[∂]

•
of commutative

Hopf algebroids.

Proof. Assume that C is a K-coring together with a k-linear morphism g : C →
K[∂]∗ satisfying (30). For every c ∈ C, write explicitly ∆(c) =

∑r
j=1 c

′
j ⊗K c

′′
j . All

the morphisms g
(
c′′j
)

for j = 1, . . . , r admit a kernel ker
(
g
(
c′′j
))
⊆ K[∂] which is of

codimension 1. In particular, since there is only a finite number of them and K[∂]
is infinite-dimensional,

⋂r
j=1 ker

(
g
(
c′′j
))
3 Pc(Y ) 6= 0. In light of (30), for every

n ≥ 0

g(c) (Pc(Y )Y n) =
r∑
j=1

g
(
c′j
) (
τ
(
g
(
c′′j
)

(Pc(Y ))
)
Y n
)

= 0

and hence ker (g(c)) ⊇ Pc(Y )K[∂], which is a finite-codimensional (principal) right
ideal. Summing up, g factors uniquely through g′ : C → DlinK, c 7→ g′c, where
ξ(g′c) = g(c) for all c ∈ C and we have the following chain of equalities

g(c)(Y n) = ξ(g′c)(Y
n) = g′c(n) = fg′c(Y

n) = f̃g′c(yn), ∀n ∈ N, (31)

where f̃g′c ∈
(
K[∂]/Pg′c(Y )K[∂]

)∗
is the factorization through the quotient of fg′c =

ξ(g′c). Let us check that with the structure introduced in Theorem 3.23 and with the
canonical inclusion ξ : DlinK → K[∂]∗, α 7→ fα, as K-coring DlinK satisfies relations
(30). First of all, ξ is K-bilinear because Φ of Proposition 3.13 is. Secondly, in light
of (20), ξ(α)(1K[∂]) = α (0) = ε(α). Thirdly, we have that

∑
(α)

ξ
(
α(1)

) (
ξ
(
α(2)

) (
Y k
)
Y n
)

(23)
=

d−1∑
i=0

ξ
(
N i (α)

)(
ξ
(

(y∗i (y•))
)(

Y k
)
Y n
)

(20)
=

d−1∑
i=0

ξ
(
N i (α)

)
(y∗i (yk)Y n)

(9)
=

d−1∑
i=0

ξ
(
N i (α)

)( n∑
j=0

(
n

j

)
Y j∂n−j (y∗i (yk))

)

=

d−1∑
i=0

n∑
j=0

(
n

j

)
ξ
(
N i (α)

)(
Y j
)
∂n−j (y∗i (yk))

(20)
=

d−1∑
i=0

n∑
j=0

(
n

j

)
N i(α)(j)∂n−j (y∗i (yk))

(22)
=

d−1∑
i=0

n∑
j=0

(
n

j

)
f̃α
(
∂jMα (yi)

)
∂n−j (y∗i (yk))

(∗)
= f̃α

(
d−1∑
i=0

n∑
j=0

(
n

j

)
∂jMα (yi) ∂

n−j (y∗i (yk))

)

(13)
= f̃α

(
∂nMα

(
d−1∑
i=0

yiy
∗
i (yk)

))
= f̃α (∂nMα (yk))

(22)
= α(n+ k) = ξ(α)

(
Y n+k

)
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where in (∗) we used the right K-linearity of f̃α. Therefore, ξ satisfies the condition
(30). We are left to check that the morphism g′ : C → DlinK, c 7→ g′c, where
g′c(n) = g(c)(Y n) for all n ≥ 0, is a morphism of K-corings. Again, it is K-bilinear
because g : C → K[∂]∗ was and Φ is. It is counital because

ε (g′c) = g′c(0) = g(c)(1K[∂])
(30)
= εC(c).

It is comultiplicative because

∆ (g′c)
(23)
=

dc−1∑
i=0

N i(g′c)⊗K (y∗i (y•))
(31)
=

dc−1∑
i=0

(
g(c)(Y iY •)

)
⊗K (y∗i (y•))

(30)
=

dc−1∑
i=0

(
g(c(1))

(
g(c(2))

(
Y i
)
Y •
))
⊗K (y∗i (y•))

(9)
=

dc−1∑
i=0

(
g(c(1))

(
n∑
k=0

(
n

k

)
Y k∂n−k

(
g′c(2) (i)

)))
n≥0

⊗K (y∗i (y•))

(31)
=

dc−1∑
i=0

(
n∑
k=0

(
n

k

)
g′c(1) (k) ∂n−k

(
gc(2) (i)

))
n≥0

⊗K (y∗i (y•))

(17)
=

dc−1∑
i=0

g′c(1) · t
(
g′c(2) (i)

)
⊗K (y∗i (y•))

=

dc−1∑
i=0

g′c(1) ⊗K s
(
g′c(2) (i)

)
· (y∗i (y•))

(31)
=

dc−1∑
i=0

g′c(1) ⊗K

(
f̃g′c(2)

(yi) y
∗
i (y•)

)
=
∑
(c)

g′c(1) ⊗K

(
f̃g′c(2)

(y•)
)

(31)
=
∑
(c)

g′c(1) ⊗K

(
g
(
c(2)

)
(Y •)

)
=
∑
(c)

gc(1) ⊗K gc(2) = (g ⊗K g) (∆C(c)) ,

where dc is the degree of g′c. Therefore, it is a coring homomorphism and the proof
is complete. 2

3.5. Comparing linearly and differentially recursive sequences. Let us
conclude the section by showing how the notion of differentially recursive sequences
is related to the classical notion of linearly recursive sequences over fields. Given
any field F, recall that a sequence α ∈ FN is linearly recursive if there exist d ≥ 0
and coefficients b0, . . . , bd−1 ∈ F such that

α(n+ d) = bd−1α(n+ d− 1) + · · ·+ b0α(n)

for all n ≥ 0. The space of linearly recursive sequences over F will be denoted
by LinF. Notice that α is linearly recursive if and only if it satisfies L(α) = 0
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where L =
∑d
i=0 s(ci)N i and ci ∈ F for all i = 0, . . . , d. If F is considered as

differential field with the zero derivation, then the morphisms s, t : F → H(F)
obviously coincide. Therefore, a linearly recursive sequence over F (in the classical
sense) is the same as a differentially recursive sequence over (F, 0) (in the sense
of the present paper). Thus, the notion of differentially recursive sequence does
not add anything new to the picture when the base field is differential with zero
derivation.

In general, for a differential field (K, ∂), the spaces DlinK and LinK are related
by the following commutative diagram of k-algebras

H(K)

DlinK

99

LinK

ee

Link

ff 99

where, as usual, k is the field of constants of (K, ∂) and all the morphisms are
injective. In the forthcoming Example 3.29 we show that, in general, DlinK and
LinK have different images inside H(K).

Remark 3.28. Consider the assignment λs : K → Endk(H(K)) sending every
x ∈ K to the endomorphism λs(x) : H(K)→ H(K), α 7→ s(x)α = (xαn)n∈N. It is a
morphism of k-algebras satisfying N ◦λs(x) = λs(x) ◦N for every x ∈ K. Therefore,
it extends to a unique k-algebra morphism Λ : K[Z] → Endk(H(K)) which makes
of H(K) a left K[Z]-module with action

P (Z) . α = L(α),

where L =
∑d
j=0 s(pj)N j if P (Z) =

∑d
j=0 pjZ

j . With this interpretation, α ∈
LinK if and only if P (Z) . α = 0 for some P (Z) ∈ K[Z]. However, this procedure
does not convert H(K) into a (K[Z],K)-bimodule, as

Z . (α / x) = Z . (t(x) · α) = N (t(x) · α) = t (∂(x)) · α+ t(x) · N (α)

while
(Z . α) / x = t(x) · N (α)

for all x ∈ K, α ∈ H(K). In particular, H(K) is not a (K[Z],K[Y ; ∂])-bimodule.

Example 3.29. In general, there is no evident relation between DlinK and LinK.
Consider, for example, the case K = C(z) with the usual derivative ∂z = ∂/∂z. If
we pick 1/z ∈ C(z), then

t

(
1

z

)
=

(
(−1)n

n!

zn+1

)
=

(
1

z
,− 1

z2
,

2

z3
,− 6

z4
, · · ·

)
∈ H (C(z))

and satisfies t(1/z) /
(
∂z(1/z)− Y (1/z)

)
= 0, whence it belongs to DlinC(z). How-

ever, let us show that it cannot belong to LinC(z) by mimicking the proof of [AES1,
Lemma B.6]. Observe that if we assume that
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0 =
d∑
i=0

s(ci)N i

(
t

(
1

z

))
=

(
d∑
i=0

(−1)n+i (n+ i)!ci
zn+i+1

)
n≥0

=

(∑d
i=0(−1)n+i(n+ i)!ciz

d−i

zn+d+1

)
n≥0

, (32)

then, in particular, the set of elements
{
c0z

d, . . . , cd−1z, cd
}
⊆ C(z) satisfy the

(d+ 1)× (d+ 1) linear system:
0! −1! 2! · · · (−1)dd!

−1! 2! −3! · · · (−1)d+1(d+ 1)!

2! −3! 4! · · · (−1)d+2(d+ 2)!
...

...
...

. . .
...

(−1)dd! (−1)d+1(d+ 1)! (−1)d+2(d+ 2)! · · · (−1)2d(2d)!

·


c0z
d

c1z
d−1

...
cd−1z
cd

=0.

The matrix of this system is T =
(

(−1)i+j(i + j)!
)
i,j

, for i, j that run from 0 to

d and its determinant satisfies

det(T ) = det
(

(−1)i+j(i+ j)!
)

= det
(

(−1)i+ji!j!qij

)
=

(
d∏
i=0

(−1)ii!

) d∏
j=0

(−1)jj!

det(Qd)

=

(
(−1)

d(d+1)
2

d∏
i=0

i!

)2

det(Qd) = (0!1! · · · d!)
2

det(Qd)

where qij =
(
i+j
i

)
and Qd is the d-th Pascal matrix. In view of [BP, Discussion

preceding Theorem 4], we know that det(Qd) = 1, whence det(T ) 6= 0 and hence
T is invertible. As a consequence, the only solution turns out to be ci = 0 for all
i = 0, . . . , d, and so there is no non-trivial relation of the form (32).

In the other way around, consider the sequence α = (z•) = (1, z, z2, . . .) ∈
C(z)N. This is linearly recursive since it satisfies (z − Z) . α = 0, but it cannot
be differentially recursive because of the following argument. Assume, by contra-
diction, that there exists P (Y ) =

∑d
i=0 Y

ici ∈ C(z)[Y ; ∂z] with cd 6= 0 such that
α / P (Y ) = 0. This implies that

0 =

(
d∑
i=0

n∑
k=0

(
n

k

)
∂kz (ci)z

n−k+i

)
n≥0

=

(
n∑
k=0

(
n

k

)( d∑
i=0

∂kz (ci)z
i

)
zn−k

)
n≥0

.

By induction on m, one deduces from this that
∑d
i=0 ∂

m
z (ci)z

i = 0 for all m ≥ 0.

Now, from
∑d
i=0 ∂

m
z (ci) z

i = 0 we deduce that

0 = ∂z

(
d∑
i=0

∂mz (ci) z
i

)
=

d∑
i=0

∂m+1
z (ci) z

i +

d∑
i=1

i∂mz (ci) z
i−1 =

d∑
i=1

i∂mz (ci) z
i−1
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and hence
∑d
i=1 i∂

m
z (ci) z

i−1 = 0 for all m ≥ 0. In the same way,

0 = ∂z

(
d∑
i=1

i∂mz (ci) z
i−1

)
=

d∑
i=1

i∂m+1
z (ci) z

i−1 +
d∑
i=2

i(i− 1)∂mz (ci) z
i−2,

so that
∑d
i=2 i(i− 1)∂mz (ci) z

i−2 = 0 for every m ≥ 0. By proceeding inductively,
after d steps one concludes that d!∂mz (cd) = 0 for every m ≥ 0. In particular, for
m = 0 we find d!cd = 0, which contradicts the choice of cd. Thus, there does not
exist P (Y ) 6= 0 such that α / P (Y ) = 0.

Summing up, there exist linearly recursive sequences that are not differentially
recursive and conversely. In addition, there exist sequences which are linearly and
differentially recursive but that are not coming from LinC. The easiest example is
s(z) = (z, 0, . . .): it satisfies N (s(z)) = 0, which identifies it as a linearly and a
differentially recursive sequence (Z . s(z) = 0 = s(z) / Y ), but it is not an element
of CN. In fact, any sequence with compact (finite) support would be linearly and
differentially recursive without being in CN.

4. Connections with linear differential matrix equations. This section
is devoted to explain how differential linear matrix equations can be approached
by means of differentially recursive sequences. Firstly we show that the space of
these sequences can be seen as a direct limit of all spaces of formal solutions of
linear homogeneous differential equations (that is, it is a kind of “universal formal
solution”). Secondly we comment on how Picard-Vessiot ring extensions can be
constructed from the Hopf algebroid of all differentially recursive sequences by
analysing, for the sake of simplicity, the case of two-dimensional differential vector
spaces.

As before we fix a differential field (K, ∂) with (non-trivial) sub-field of constants
k and we consider its differential algebra of Hurwitz series (H(K),N ) and its algebra
of differential operators K[∂].

4.1. DlinK as the universal algebroid of solutions. Consider a differential
operator L =

∑d
i=0 t(ci)N i and set PL(Y ) :=

∑d
i=0 Y

ici, the associated element
in K[∂]. For any α ∈ H(K) solution of L(α) = 0, we have that the map fα of
equation (20) vanishes on the right ideal PL(Y )K[∂] and conversely. Therefore, the
following correspondences are bijective

ker (L)
∼= // (PL(Y )K[∂])

⊥ ∼= //
(

K[∂]

PL(Y )K[∂]

)∗
α � // fα

� // f̃α

,
(33)

where (PL(Y )K[∂])
⊥

= {f : K[∂]→ K | f (PL(Y )K[∂]) = 0}.
In light of this, we refer to ML

∗ := (K[∂]/PL(Y )K[∂])
∗

as the space of solutions
of the differential equation L(α) = 0. It is a differential module itself with

∂ML∗ : ML
∗ −→ML

∗, f 7−→ [m 7→ ∂(f(m))− f (∂ML(m))]
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and a left K[∂]
◦
-comodule with coaction

ρML∗ : ML
∗ −→ K[∂]

◦ ⊗K ML∗, f 7−→
deg(PL)−1∑

i=0

(
f ⊗TML yi

)
⊗K y

∗
i . (34)

Example 4.1. Here are some basic examples. Let R be the field of real numbers
with zero derivation.

1. Consider the differential equation ∂ (y) = yx for x ∈ R. To it, one assigns
the operator L = N − t(x) on H(R) which corresponds to the polynomial
PL(Y ) = Y − x ∈ R[Y ; 0]. The space of solutions of L is the one-dimensional
vector space (R[Y ]/PL(Y )R[Y ])

∗
, which means that any solution is a scalar

multiple of the one associated with the linear functional R[Y ]/PL(Y )R[Y ] →
R, 1 7→ 1. By pre-composition with the canonical projection, we find R[Y ] →
R, Y n 7→ xn, corresponding to the sequence (1, x, . . . , xn, . . .), which in turn
can be seen (via the algebra isomorphism R[Y ]∗ ∼= R[[T ]]) as the power series∑
n≥0

xn

n! T
n = exp(xT ). It is well-known that the solutions of y′ = yx are of

the form y = c exp(xT ) for c ∈ R.

2. Consider the equation ∂2 (y) + ω2y = 0 with ω 6= 0. The space of solutions
of the associated operator L = N 2− t

(
ω2
)

is
(
R[Y ]/

(
Y 2 − ω2

)
R[Y ]

)∗
, which

is 2-dimensional. Therefore, any solution is a linear combination of those
corresponding to the morphisms y∗0 and y∗1 . Now, by pre-composition with
the canonical projection, y∗0 corresponds to

(
1, 0,−ω2, 0, ω4, 0,−ω6, . . .

)
while

y∗1 corresponds to
(
0, 1, 0,−ω2, 0, ω4, 0,−ω6, . . .

)
. One would easily recognize

the power series expansions of cos(ωT ) and 1
ω sin(ωT ), as expected from the

theory of ordinary differential equations.

Analogously, one may consider a differential polynomial P (Y ) ∈ K[∂] and set

MP := K[∂]/P (Y )K[∂]. If LP =
∑d
i=0 t(ci)N i denotes the associated differential

operator then MP
∗ = HomK (MP , K) ∼= ker (LP ) can be seen as a sub-space of

DlinK.

Remark 4.2. Let us introduce, for the sake of brevity, the componentwise deriva-
tion

∇ : H(K) −→ H(K), ∇(β) := (∂(β(n)))n≥0

and observe that the inverse of (33) is explicitly given by ML
∗ → ker (L) , f 7→

(f(yn))n≥0. Thanks to this, one may endow ker (L) with a structure of differential
K-module with

∂ker(L)(α) = ∇(α)−N (α)

for every α ∈ ker (L).

The following proposition shows why K[∂]
◦
, or DlinK, can be referred to as the

universal space of solutions.
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Proposition 4.3. The family
{
MP

∗ = HomK (MP ,K)
∣∣ P (Y ) ∈ K[∂]

}
, where

MP = K[∂]/P (Y )K[∂], forms a directed system of left K[∂]
◦
-comodules with mor-

phisms πP,Q
∗ : MP

∗ →MQ
∗ induced by the canonical right K[∂]-linear projections

πP,Q : MQ →MP for Q(Y ) ∈ P (Y )K[∂]. Moreover, we have the following directed
limit

lim−→
P ∈K[∂]

(MP
∗) ∼= K[∂]

◦

of left K[∂]
◦
-comodules with canonical injections being the comodule maps MP

∗ ↪→
K[∂]

◦
, f 7→ f ⊗TMP 1, where K[∂]

◦
is a comodule over itself via the comultiplication

∆◦ (see §3.2).

Proof. The morphisms πP,Q
∗ : MP

∗ →MQ
∗ are colinear because of the following

direct computation

deg(Q)−1∑
i=0

πP,Q∗(f)⊗TMQ yi ⊗K y
∗
i

(∗)
=

deg(Q)−1∑
i=0

f ⊗TMP πP,Q (yi)⊗K y
∗
i

(∗∗)
=

deg(P )−1∑
i=0

f ⊗TMP yi ⊗K πP,Q
∗ (y∗i )

where (∗) follows from the fact that πP,Q is a morphism of differential modules
and hence it belongs to TMQ,MP

and (∗∗) from the fact that the dual basis map

K→MP
∗ ⊗K MP , 1K 7→

∑deg(P )−1
i=0 yi ⊗K y

∗
i satisfies

deg(Q)−1∑
i=0

πP,Q (yi)⊗K y
∗
i =

deg(P )−1∑
i=0

yi ⊗K πP,Q
∗ (y∗i ) .

Let us show that K[∂]
◦

satisfies the universal property of the stated colimit. First
of all, for every P (Y ) ∈ K[∂] consider the assignment ψP : MP

∗ → K[∂]
◦
, f 7→

f ⊗TMP 1̄. For all x ∈ K and for all f ∈MP
∗, we have that

ψP (x · f) = ψP (λx ◦ f) = λx ◦ f ⊗TMP 1̄ = x ·
(
f ⊗TMP 1̄

)
,

whence ψP is K-linear and

∆◦ (ψP (f)) =

deg(P )−1∑
i=0

f ⊗TMP yi ⊗K y∗i ⊗TMP 1̄ =

deg(P )−1∑
i=0

f ⊗TMP yi ⊗K ψP (y∗i )

whence it is left colinear. Moreover

ψQ (πP,Q
∗ (f)) = ψQ (f ◦ πP,Q)

= f ◦ πP,Q ⊗TMQ 1̄ = f ⊗TMP πP,Q (1̄) = f ⊗TMP 1̄ = ψP (f)
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for all P (Y ) ∈ K[∂], Q(Y ) ∈ P (Y )K[∂], f ∈ MP
∗. Thus, the ψP ’s are compatible

with the morphisms of the directed system, and by the isomorphism of Theorem
3.20 they are all injective.

Assume now that there exist a left K[∂]
◦
-comodule V and K[∂]

◦
-colinear mor-

phisms σP : MP
∗ → V for all P (Y ) ∈ K[∂] such that σQ ◦ πP,Q∗ = σP for all

Q(Y ) ∈ P (Y )K[∂]. Now, for every finite-dimensional right K[∂]-module M pick
an element of the form ϕ ⊗TM m ∈ M∗ ⊗TM M . Since M is finite-dimensional
over K, m satisfies a relation of the form m J Pm(Y ) = 0 for a certain monic
Pm(Y ) ∈ K[∂] (see Proposition 3.18). Thus the (unique) right K[∂]-linear mor-
phism Φm : K[∂] → M mapping 1 to m factors (uniquely) through a right K[∂]-
linear morphism φm : MPm →M, 1̄ 7→ m. Define βM : M∗⊗TMM → V, ϕ⊗TMm 7→
σPm (ϕ ◦ φm). This is well-defined because if h ∈ TM , then

0 = h (m J Pm(Y )) = h (m) J Pm(Y )

and so Pm(Y ) ∈ Ph(m)(Y )K[∂]. The induced morphism πPh(m),Pm :K[∂]/Pm(Y )K[∂]
→ K[∂]/Ph(m)(Y )K[∂] satisfies then h ◦ φm = φh(m) ◦ πPh(m),Pm and hence

σPm ((ϕ ◦ h) ◦ φm) = σPm
(
ϕ ◦ φh(m) ◦ πPh(m),Pm

)
=
(
σPm ◦ πPh(m),Pm

∗) (ϕ ◦ φh(m)

)
= σPh(m)

(
ϕ ◦ φh(m)

)
.

The family of morphisms βM for M varying over all finite-dimensional right K[∂]-
modules induces a unique morphism

β′ :
⊕

M ∈mod-K[∂]

M∗ ⊗TM M → V

which factors through β : K[∂]
◦ → V by an argument similar to the one used to

show that βM was well-defined. Of course, β (ψP (f)) = β
(
f ⊗TP 1̄

)
= σP (f) for

all P (Y ) ∈ K[∂] and all f ∈ MP
∗. In addition, β is the unique satisfying this

property because we know that

ϕ⊗TM m = ϕ ◦ φm ⊗TMPm 1̄ = ψPm (ϕ ◦ φm)

for all ϕ⊗TM m ∈ K[∂]
◦
. We are then left to check that β is left K[∂]

◦
-colinear.

To this aim, for every ϕ⊗TM m ∈ K[∂]
◦

pick a dual basis {ei, e∗i | i = 1, . . . , d} of
M and compute

ρV (β (ϕ⊗TM m)) = ρV (σPm (ϕ ◦ φm))
(∗)
= (K[∂]◦ ⊗K σPm)

(
ρM∗

Pm
(ϕ ◦ φm)

)
(34)
=

deg(Pm)−1∑
i=0

(ϕ ◦ φm)⊗TMPm yi ⊗K σPm (y∗i ) =

deg(Pm)−1∑
i=0

ϕ⊗TM φm (yi)⊗K σPm (y∗i )

=

d∑
k=1

ϕ⊗TM ek ⊗K σPm

deg(Pm)−1∑
i=0

e∗k (φm (yi)) y
∗
i

 =

d∑
k=1

ϕ⊗TM ek ⊗K σPm (e∗k ◦ φm)

= (K[∂]◦ ⊗K β) (∆◦ (ϕ⊗TM m)) .
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2

The subsequent result provides a constructive method for finding these solu-
tions, given d initial conditions a0, . . . , ad−1 ∈ K. It is noteworthy the role played
in this by the universal coring structure on DlinK.

Proposition 4.4. A solution α ∈ H(K) of the equation L =
∑d
i=0 t(ci)N i = 0,

subject to the initial conditions a0, . . . , ad−1 ∈ K, is explicitly given by α(i) = ai
for i = 0, . . . , d− 1 and

α(n) =

d−1∑
i=0

aiy
∗
i (yn)

for all n ≥ d, where
{
y∗i
}
i=0, ..., d−1

is the basis of the space of solutions

(K[∂]/PL(Y )K[∂])
∗

dual to the basis
{
yi := Y i + PL(Y )K[∂]

}
i=0, ..., d−1

of ML =

K[∂]/PL(Y )K[∂].

Proof. In view of Theorem 3.27, we know that

α(h+ k) = ξ(α)
(
Y h+k

)
=
∑
(α)

ξ
(
α(1)

) (
ξ
(
α(2)

) (
Y h
)
Y k
)

=
k∑
j=0

(
k

j

)
ξ
(
α(1)

) (
Y j
)
∂k−j

(
ξ
(
α(2)

) (
Y h
))

=
k∑
j=0

(
k

j

)
α(1) (j) ∂k−j

(
α(2) (h)

)
.

By writing this relation with k = 0, h = n and by resorting to the explicit descrip-
tion of ∆(α) given in (23) we find out that

α(n) =
d−1∑
i=0

ξ
(
N i(α)

)
(1) ξ ((y∗i (y•))) (Y n) =

d−1∑
i=0

aiy
∗
i (yn)

as claimed. 2

Remark 4.5. An useful consequence of Proposition 4.4 is the following iterative
method to construct formal solutions to homogeneous linear differential equations.
Consider an equation of the form

0 = L(y) = ∂n (y)− (cn−1∂
n−1 (y) + · · ·+ c1∂ (y) + c0y)

over a differential field (K, ∂) as usual, and consider its extension

0 = L(y) = Nn(y)− (t (cn−1)Nn−1(y) + · · ·+ t (c1)N (y) + t (c0) y)

to (H(K),N ). Its space of solutions M∗L is an n-dimensional vector space over K
with basis

{
y∗0 , . . . , y

∗
n−1

}
and we know, from Proposition 4.4, that a full set of

linearly independent formal solutions to L(y) = 0 in H(K) (in fact, in DlinK) is
provided by the sequences

oi := (y∗i (y•)) , for i = 0, . . . , n− 1
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and where we recall that yk = Y k + PL(Y )K[∂] ∈ K[∂]/PL(Y )K[∂], for all k ≥ 0.

For every k ≥ 0 consider the column vector (o0 (k) , o1 (k) , . . . , on−1 (k))
T ∈ Kn

and consider the matrix

A :=


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cn−1

 .

Then the solutions oi satisfy the recursive formula
o0(k + 1)
o1(k + 1)

...
on−1(k + 1)

 =


∂ (o0(k))
∂ (o1(k))

...
∂ (on−1(k))

+A ·


o0(k)
o1(k)

...
on−1(k)


for all k ≥ n− 1, subject to the initial conditions

o0(0) o0(1) · · · o0(n− 1)
o1(0) o1(1) · · · o1(n− 1)

...
...

. . .
...

on−1(0) on−1(1) · · · on−1(n− 1)

 = In,

where In is the identity n× n matrix.

Example 4.6. For a differential operator of degree two L = N 2 − t(c1)N − t(c0),
the basis of the K-vector space of solutions inside DlinK is computed as follows.
Consider the attached differential polynomial PL(Y ) = Y 2 − Y c1 − c0. Set y0 :=
1 = 1 + PL(Y )K[∂], y1 := y = Y + PL(Y )K[∂] = ∂(1) (the basis as in Proposition
3.19) and for higher degree yn := Y n + PL(Y )K[∂] = ∂n(1), n ≥ 2. Inside K[∂]

◦

we have the following four elements

y∗0 ⊗TM y0, y∗0 ⊗TM y1, y∗1 ⊗TM y0 and y∗1 ⊗TM y1,

which, respectively, correspond to the following four sequences:

α0 = (1, 0, c0, ∂ (c0) + c0c1, · · · ), N (α0) = (0, c0, ∂ (c0) + c0c1, · · · ),
α1 = (0, 1, c1, c

2
1 + c0 + ∂ (c1) , · · · ), N (α1) = (1, c1, c

2
1 + c0 + ∂ (c1) , · · · ).

In matrix form, we have thatα0

α1

 =

1 0 c0 ∂ (c0) + c0c1 · · · α0(n) · · ·

0 1 c1 c21 + c0 + ∂ (c1) · · · α1(n) · · ·

 ,

with the following matrix recursive relations:α0(n)

α1(n)

 =

∂ (α0(n− 1)
)

∂
(
α1(n− 1)

)
+

0 c0

1 c1

α0(n− 1)

α1(n− 1)

 , ∀n ≥ 2.
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We know from Proposition 4.4, that {α0, α1} leads to the full set of solutions of
L(y) = 0. We also know that β0 = N (α0) and β1 = N (α1) generate the space of
solution of a differential equation of the same degree that we want to determine
now. For this reason, we will analyse the two cases: c0 = 0 and c0 6= 0.

For the case c0 = 0, we have that α0 = (1, 0, 0, · · · ) = s(1) and so N (α0) = β0 =
0, thus y∗0 ⊗TM y1 = 0 in K[∂]

◦
. On the other hand, we know that ∂(y1)− y1c1 = 0

and hence β1 satisfies N (β1)− t(c1)β1 = 0.
For the case c0 6= 0, we follow explicitly the argument of the proof of Proposition

3.18. Since y0 = y2/c0 − y1c1/c0, we have that

y3 = ∂(y2) = y2

(
c1 +

∂ (c0)

c0

)
+ y1

(
∂ (c1) + c0 −

∂ (c0)

c0
c1
)
.

Therefore,

∂2(y1)− ∂(y1)b1 − y1b0 = 0, with b0 = ∂ (c1) + c0 −
∂ (c0)

c0
c1, b1 = c1 +

∂ (c0)

c0
.

As a consequence, y∗0 ⊗TM y1 and y∗1 ⊗TM y1 (and so β0 and β1 as well) satisfy the
equation

N 2(y)− t(b1)N (y)− t(b0)y = 0

with b0, b1 as above. Observe that if c0, c1 ∈ k (i.e., they are constant elements),
then b0 = c0 and b1 = c1, and so β0, β1 satisfy the same recursive relation as α0, α1.

Example 4.7. Let (K, ∂) = (C(z), ∂/∂z) be the field rational functions on C with
the differential induced by the formal derivation with respect to z. On K, consider
the general homogeneous linear differential equation of order one

L(y) = ∂ (y)− ay = 0 (35)

for a = u(z)/v(z) ∈ C(z), u(z), v(z) ∈ C[z]. Observe that the space of solutions of
(35) in a differential extension of C(z) is one-dimensional, because (35) is of order
one. In particular, if a non-zero solution belongs to some differential extension
(R, ∂R) ⊇ (K, ∂), then R contains a full set of solutions of (35).

Being C algebraically closed, v(z) =
∏N
i=1 (z − ri)ni and hence, by the division

algorithm in C[z], we have that a can be rewritten as its partial fraction decompo-
sition

a =
N∑
i=1

ni∑
j=1

ci,j

(z − ri)j
+ p(z)

for certain p(z) ∈ C[z], ci,j ∈ C. It can be checked directly, by elementary argu-
ments, that (35) admits a non-zero solution in C(z) if and only if ci,1 ∈ Z for all
i = 1, . . . , N , ci,j = 0 for all i = 1, . . . , N and for all j ≥ 2 and p(z) = 0. It admits
a non-zero solution which is algebraic over C(z) (i.e., it satisfies a polynomial equa-
tion with coefficients in C(z)) if and only if ci,1 ∈ Q for all i = 1, . . . , N , ci,j = 0
for all i = 1, . . . , N and for all j = 2, . . . , ni and p(z) = 0 (check [vPS, Exercise
1.14(3)]).
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Now, extend (35) to (H (C(z)) ,N ) via the differential morphism t : C(z) →
H (C(z)). It becomes

L(y) = N (y)− t(a)y = 0. (36)

Consider the associated polynomial PL(Y ) = Y −a ∈ K[∂], the differential module

ML =
K[∂]

PL(Y )K[∂]

with (right) K-basis y0 := 1 + PL(Y )K[∂] and differential

∂L (u+ PL(Y )K[∂]) := (u+ PL(Y )K[∂]) J Y = uY + PL(Y )K[∂],

and the associated left K-vector space (K[∂]/PL(Y )K[∂])
∗

= Ky∗0 of dimension one.
If we set yn := Y n + PL(Y )K[∂] for all n ≥ 0, then there exists on ∈ C(z) (in fact,
on = y∗0 (yn)) such that yn = on + PL(Y )K[∂] and hence

y0on+1 = yn+1 = Y n+1 + PL(Y )K[∂] = (Y n + PL(Y )K[∂]) J Y

= (on + PL(Y )K[∂]) J Y

= (Y on + PL(Y )K[∂]) + (∂ (on) + PL(Y )K[∂])

= (Y + PL(Y )K[∂]) J on + (∂ (on) + PL(Y )K[∂])

= (aon + ∂ (on)) + PL(Y )K[∂]

= y0 (aon + ∂ (on)) .

By Proposition 4.4 we have that, for a given initial condition α(0) = p0 ∈ C(z), the
unique solution α of (36) is given by α(n) = p0on for all n ≥ 0 where on satisfies
the recursion  o0 = 1,

on+1 = aon + ∂ (on) ,

that is to say,

α = s(p0)
(

1, a, a2 + ∂ (a) , a3 + 3a∂ (a) + ∂2 (a) , . . .
)
.

Set o := (o•) := (y∗0 (y•)) =
(
1, a, a2 + ∂ (a) , . . .

)
, the solution corresponding to the

initial condition p0 = 1. In this more general framework, observe that (35) admits
a solution f ∈ C(z) if and only if ∂ (f) = af , which is equivalent to say that
∂n (f) = onf for all n ≥ 0 (one implication is trivial, for the other one proceeds by
induction on n ≥ 1). Thus, if and only if t(f) = s(f)o.

Let us analyse the case a = c/z for the sake of brevity, for some c ∈ C. A direct
computation by induction on n ≥ 1 shows that

o = (o•) =

(
1,
c

z
,
c(c− 1)

z2
,
c(c− 1)(c− 2)

z3
, . . . ,

c(c− 1) · · · (c− n+ 1)

zn
, . . .

)
.

(37)
Moreover, since o satisfies N (o) = t(a)o, it follows that

N (ok) = kok−1N (o) = t(ka)ok,
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for all k ∈ Z \ {0}, whence, by the same argument used to prove (37),

ok =

(
1,
kc

z
,
kc(kc− 1)

z2
,
kc(kc− 1)(kc− 2)

z3
, . . . ,

kc(kc− 1) · · · (kc− n+ 1)

zn
, . . .

)
.

(38)
If c ∈ N then

o =

(
1,
c

z
,
c(c− 1)

z2
, . . . ,

c!

zc
, 0, . . .

)
=

1

zc
(
zc, czc−1, c(c− 1)zc−2, . . . , c!, 0, . . .

)
= s (zc)

−1
t (zc)

and ∂ (y)− cy/z = 0 has general solution f = λzc ∈ C(z) for λ ∈ C. If c = −k for
k ∈ N then

o =

(
1,−k

z
,
k(k + 1)

z2
, . . . , (−1)n

k(k + 1) · · · (k + n− 1)

zn
, . . .

)
= zk

(
1

zk
,− k

zk+1
,
k(k + 1)

zk+2
, . . . , (−1)n

k(k + 1) · · · (k + n− 1)

zk+n
, . . . . . .

)
= s

(
zk
)
t

(
1

zk

)
and ∂ (y)− cy/z = 0 has general solution f = λzc ∈ C(z) for λ ∈ C. If c = p/q ∈ Q
with p ∈ Z, q ∈ N \ {0}, then

oq
(38)
=

(
1,
p

z
,
p(p− 1)

z2
,
p(p− 1)(p− 2)

z3
, . . . ,

p(p− 1) · · · (p− n+ 1)

zn
, . . .

)
,

whence either oq = s (zp)
−1
t (zp) (if p > 0) or oq = s (zp) t (zp)

−1
(if p < 0). In

both cases, o is a solution of ∂ (y)− cy/z = 0 algebraic over C(z).

Remark 4.8. The following is a noteworthy relation arising from the computations
performed in Example 4.7. For every c ∈ C and for every k ∈ N, set formally(

c

k

)
:=

c(c− 1)(c− 2) · · · (c− k + 1)

k!
.

Then
n∑
k=0

(
c

k

)(
c

n− k

)
=

(
2c

n

)
for all n ≥ 0. Indeed, it is enough to compare term by term the explicit computation
of o2, by using the Hurwitz product, with formula (38) for k = 2. Even more
general, for all r, n ∈ N, ∑

k1+···+kr=n

(
c

k1

)(
c

k2

)
· · ·
(
c

kr

)
=

(
rc

n

)
.
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Example 4.9. Let (K, ∂) := (C(z), ∂/∂z) as in Example 4.7. Consider the follow-
ing homogeneous differential equation:

∂2 (y)−
( 1

z − 1

)
∂ (y) +

( 1

z − 1

)2
y = 0. (39)

Denote by c = 1
z−1 ∈ K, so we have that ∂(c) = −c2. The differential operator

associated with (39) is L = t(c2) − t(c)N + N 2 with corresponding polynomial
PL(Y ) = Y 2 − Y c + c2 ∈ K[∂]. By Proposition 4.4, a solution α ∈ H(K) of
equation (39) subject to the initial conditions a0, a1 ∈ K has the form

α(n) = a0y
∗
0(yn) + a1y

∗
1(yn).

From the definition of the differential K-vector space ML = K[∂]/PL(Y )K[∂], we
have the following recursive relation:(

y∗0(yn+1)
y∗1(yn+1)

)
=

(
∂
(
y∗0(yn)

)
∂
(
y∗1(yn)

))+

(
0 −c2
1 c

)(
y∗0(yn)
y∗1(yn)

)
.

In matrix form, the fundamental solutions (i.e., those generating
(K[∂]/PL(Y )K[∂])

∗
) can be expressed by:1 0 −c2 c3 −2c4 6c5 · · · (−1)n+1(n− 2)!cn · · · · · ·

0 1 c −c2 2c3 −6c4 · · · (−1)n(n− 2)!cn−1 · · · · · ·

 . (40)

The general solution α ∈ H(K) is then
α(n) = (−1)n−1 (n− 2)!

(
a0 − a1(z − 1)

)
(z − 1)n

, n ≥ 2

α(0) = a0, α(1) = a1.

Remark 4.10. In Example 4.9 observe that, since ∂ (c) = −c2, we have

PL(Y ) = Y 2−Y c+c2 = Y 2−Y c−∂(c) = Y 2−
(
Y c+∂(c)

) (1)
= Y 2−cY = (Y−c)Y.

Therefore, any β such that N (β) − t(c)β = 0 satisfies L(β) = 0 as well. Thanks

to Example 4.7, we know that β = s (b0)
(

1, 1
z−1 , 0, . . .

)
for some initial condition

b0 ∈ K. Now, by looking at (40) the reader may easily convince himself that

β = s(b0)
(
y∗0 (yn) + c y∗1 (yn)

)
n∈N

, b0 ∈ K.

as expected.
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4.2. Comments on the Picard-Vessiot ring extension. In this section, we
discuss the relation between the Picard-Vessiot differential ring extension of a given
differential module and the Hopf algebroid of differentially recursive sequences. For
simplicity, we only treat the case of a differential module of rank two (that is, a
differential K-vector space (M,∂M ) of dimension two). We will often implicitly
refer to notations and constructions from [EG].

Consider, as before, (K, ∂) a differential field with k = K∂ ( K its non-trivial
sub-field of constant elements (assumed now to be algebraically closed of charac-
teristic zero). Let us consider a linear homogeneous scalar differential equation

∂2(y)− c1∂(y)− c0y = 0, (41)

with c0, c1 ∈ K. After extending the latter equation to (H(K),N ) via the differ-
ential algebra homomorphism t, it corresponds to L(α) = 0 where the differential
operator is given by L = N 2 − t(c1)N − t(c0) and the associated differential poly-
nomial by P (Y ) = Y 2 − Y c1 − c0. Set M := K[∂]/P (Y )K[∂]. It is a differential
module (M,∂M ) of dimension two over K with dual basis {y0, y1, y

∗
0 , y
∗
1} and dif-

ferential ∂M (yn) = yn+1, where yn = Y n + P (Y )K[∂] for all n ≥ 0. Therefore,
∂M (y0) = y1 and ∂M (y1) = c0y0 + c1y1. By considering the column expression
(with the usual minus), the matrix of the differential ∂M computed as in [vPS, p.

7] is then of the form

(
0 −c0
−1 −c1

)
. Recall from Remark 4.2 that ker (L) ∼= M∗ as

differential K-modules. The matrix of the differential module (M∗, ∂M∗) is then the
opposite of the transpose of the previous one. That is, we have ∂M∗(y

∗
0) = −c0y∗1

and ∂M∗(y
∗
1) = −y∗0 − c1y∗1 . By Remark 4.5, the dual basis for the solution space

M∗ of L(α) = 0 over H(K) satisfies the recursive relation:y∗0(yn+1)

y∗1(yn+1)

 =

∂(y∗0(yn)
)

∂
(
y∗1(yn)

)
+

0 c0

1 c1

y∗0(yn)

y∗1(yn)

 , for n ≥ 0.

In what follows, we will implicitly identify M with (M∗)∗ in the rigid symmetric
monoidal category of differential modules over K. Consider, as in Example 4.6, the
following four elements

x00 := y0 ⊗TM∗ y
∗
0 , x01 := y0 ⊗TM∗ y

∗
1 , x10 := y1 ⊗TM∗ y

∗
0

and x11 := y1 ⊗TM∗ y
∗
1

in the Hopf K-algebroid K[∂]
◦
, that is, the differentially recursive sequences

α0 =
(
y∗0(yn)

)
n∈N, α

1 =
(
y∗1(yn)

)
n∈N, N

(
α0
)
, and N

(
α1
)
.

Following [EG, Lemma 5.4.2], the element det(M∗) = x00x11− x01x10 is invertible
in K[∂]

◦
and it inverse is given by

det(M∗)−1 = (y0 ∧ y1)∗ ⊗T∧2M
(y0 ∧ y1) ∈ K[∂]

◦
,

where
∧2

M is the two-exterior power differential K-module of (M,∂M ).
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We denote by U◦(M∗) the Hopf K-sub-algebroid of K[∂]
◦

generated by the set of

elements {xij ,det(M∗)−1}0≤i,j≤1. It turns out that U◦(M∗) is in fact the universal

Hopf algebroid constructed from the rigid monoidal full sub-category {{M∗}}3 con-
sisting of those differential K-modules that are sub-quotient generated by (M∗, ∂∗M ).
More precisely, given two positive integers k, l, we denote by

T (k, l)(M) := M⊗l⊗K(M∗)⊗k = M ⊗K M ⊗K · · · ⊗K M︸ ︷︷ ︸
l-times

⊗K M
∗ ⊗K M

∗ ⊗K · · · ⊗K M
∗︸ ︷︷ ︸

k-times

which we consider canonically as a differential K-vector space. A differential K-
vector space (X, ∂) belongs to the sub-category {{M∗}} if it is a quotient of the
form X = X2/X1, where X1 ⊆ X2 ⊆ ⊕k, lT (k, l)(M) (finite direct sum). Since
the category of all differential K-vector spaces is in fact an abelian category, a
differential module (X, ∂) belongs to {{M∗}} if and only if it is a sub-object of an
object finitely generated by those T (k, l)(M)’s (see, for instance, [EG, Section 5.4]).

Moreover, since we know that ∂◦ ◦ s = 0 and ∂◦ ◦ t = t ◦ ∂ (see Remark 3.6),
the (K⊗K)-algebra U◦(M∗) is (via the target map) a differential extension of (K, ∂)
with differential the restriction of ∂◦.

Let us denote by P the total isotropy Hopf K-algebra U◦(M∗)/〈s − t〉, where

〈s − t〉 denote the Hopf ideal generated by the set
{
s(u)− t(u) | u ∈ U◦(M∗)

}
. In

light of [EG, Proposition 5.5.2], P is generated as a K-algebra by the elements:

fij := xij + 〈s− t〉, 0 ≤ i, j ≤ 1, and (f00f11 − f01f10)−1.

Moreover, it is a differential K-algebra whose differential δ : P → P can be ex-
pressed by the rule

δ

((
f00 f01

f10 f11

))
=

(
f10 f11

c0f00 + c1f10 c0f01 + c1f11

)
=

(
0 1
c0 c1

)(
f00 f01

f10 f11

)
.

Therefore the matrix F := (fij)0≤i,j≤1 is a fundamental matrix (in the sense
of [vPS, Definition 1.9]) for the linear differential matrix equation attached to
(M∗, ∂M∗), with entries in P . Furthermore, one can adapt the proof of [EG,
Proposition 5.5.2] to show that (P , δ) is in fact a Picard-Vessiot ring of the differ-
ential K-vector space (M∗, ∂M∗). Notice that, as a differential K-algebra, (P , δ) is
not an extension of the differential K-algebra (U◦(M∗), ∂◦), because the Hopf ideal

〈s− t〉 is not necessarily ∂◦-stable.
Consider now the differential K-vector space (P ⊗K M

∗, ∂P⊗KM∗) with ∂P⊗KM∗

= δ⊗KM
∗+P⊗K∂M∗ (see [vPS, p. 44]). A direct check shows that the two elements

p0 := f00 ⊗K y
∗
0 + f10 ⊗K y

∗
1 and p1 := f01 ⊗K y

∗
0 + f11 ⊗K y

∗
1 ,

in P ⊗K M
∗ are k-linearly independent. Notice that {p0, p1} generates the two

dimensional k-vector space ker (∂P⊗KM∗) ⊆ P ⊗K V , which is the solution space

3Another notation that can be found in the literature for this category is 〈M〉⊗. See, for
instance, [D, §6.16]
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(in the sense of [vPS, p. 13]) of the linear differential matrix equation defined by
(M∗, ∂M∗).

The assignment ker (∂P⊗KM∗)→M∗, pi 7→ y∗i , clearly defines a monomorphism
of k-vector spaces. Moreover, when c0 6= 0 one can show that the k-vector space
ker (∂P⊗KM∗) is isomorphic to the following k-subspace of P :{

p ∈ P
∣∣∣∣ δ2(p) = c0p+

(
c1 +

∂ (c0)

c0

)
δ(p)

}
. (42)

Example 4.11. Assume that c1 = 0 and that c0 6= 0 is a constant element of K.
Take any non zero element p in the sub-space described by equation (42), that is,
0 6= p ∈ P such that δ2(p) = c0p. Then the element u = δ(p)p−1 in the field of
fractions of P is a solution of the equation ∂ (u)+u2 = c0. The converse is also true
when K = C(z) with the differential ∂/∂z. In this case the equation ∂ (u)+u2 = c0
is the so called Riccati equation. Assume now that K = C(z) and c1 6= 0. Denote
by δ the differential on the field of fractions of P as well. More generally, if p ∈ P
is a non-zero element of the Picard-Vessiot ring P , then u = δ(p)/p satisfies

δ

(
δ(p)

p

)
=
δ2(p)p− δ(p)2

p2
=
c0p

2 + (c1 + ∂(c0)
c0

)pδ(p)− δ(p)2

p2

= c0 +

(
c1 +

∂ (c0)

c0

)
δ(p)

p
−
(
δ(p)

p

)2

,

that is to say, u satisfies the (generalized) Riccati equation δ(u) = a(z)+b(z)u−u2

where a(z) = c0 and b(z) = c1 + ∂(c0)
c0

(see [R, Section I.1]). Conversely, assume
that u is a solution of the Riccati equation and consider y a solution of δ(y) = uy.
Then, we have

δ2(y)= δ(u)y+uδ(y)=a(z)y+b(z)uy−u2y+uδ(y)+u2y = c0y+

(
c1 +

∂ (c0)

c0

)
δ(y).

Remark 4.12. Since (M∗, ∂M∗) is the dual of (M,∂M ) in the category of differ-
ential modules, we have the bijective correspondences

HomK[∂] ((M,∂M ) , (P,δ))∼=HomK[∂] ((K, ∂), (P⊗K M
∗, ∂P⊗KM∗))

∼=ker (∂P⊗KM∗)
(43)

(see, for example, [vPS, p. 45]). The distinguished differential morphisms in
HomK[∂] (M, P) corresponding to the basis {p0, p1} of ker (∂P⊗KM∗) under the
isomorphism (43) are

q0 : M
� � // U◦(M∗)

// // P
y0

� // x00
� // f00

y1
� // x10

� // f10

q1 : M
� � // U◦(M∗)

// // P
y0

� // x01
� // f01

y1
� // x11

� // f11

.

Notice that the first one is induced by the canonical maps of Proposition 4.3.
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Remark 4.13. Under certain assumption (mainly on the generators fij of the
algebra P), one can connect the group of automorphisms of the differential vector
space (M,∂M ) (which, in the sense of [KS], is the dual space of solutions of equation
(41), see Remark 4.2) with the differential group of the differential ring (P, δ), i.e.,
the group of K-algebras automorphisms of P that commute with the derivation δ,
which we denote by Autalg-diff((P, δ)). Precisely, if we assume that any invertible
matrix (σij)i,j ∈ GL2(K) induces a K-algebra automorphism of P defined on the
generator fij by

σ : P −→ P,
(

(fij)0≤i,j≤1 7−→
(
σ00 σ01

σ10 σ11

)(
f00 f01

f10 f11

))
, (44)

then one shows that the group of automorphisms of the differential K-module
(M,∂M ) is in fact identified with a subgroup of the group Autalg-diff((P, δ)). Specif-
ically, let g be a K-linear automorphism of M such that g◦∂M = ∂M ◦g. We use the
above dual basis {y0, y1} of M , and we set g(yi) = g0iy0 + g1iy1, i = 0, 1, for some
(gij)0≤i,j≤1 ∈ GL2(K). Then, one can easily check that the matrix (gij)0≤i,j≤1

satisfies [(0 c0
1 c1

)
, (gij)i,j

]
= (∂gij)i,j ,

where the bracket stands for the Lie bracket (compare with [KS, Theorem 3.5]).
Now under the above assumption, we have a well defined monomorphism of groups
given by:

Autdiff((M∗, ∂M∗)) −→ Autalg-diff((P, δ)),
(

(gij)i,j 7−→ (gij)
T
i,j

)
,

where the matrix (gij)
T
0≤i,j≤1 is the transpose of (gij)0≤i,j≤1, and stands for an

automorphism as in (44).
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ments. Paolo Saracco expresses his heartfelt gratitude to the members of the De-
partment of Algebra of the University of Granada for their warm hospitality and
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Appendix.

A. Some technical details. This appendix contains some results that we used
along the paper but that we considered too technical for the main body. We report
them here for the sake of completeness and of the unaccustomed reader.

Lemma A.1. Let α ∈ DlinK be a differentially recursive sequence of order d (see
Definition 3.9). If there exists an operator L such that L(α)(n) = 0 for all n =
0, . . . , d− 1, then L(α) = 0. In particular, L(α) = 0 if and only if L(α)(n) = 0 for
all n = 0, . . . , d− 1.
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Proof. If α ∈ DlinK is a differentially recursive sequence of order d, then there
exists an operator Lα =

∑d
i=0 t(ai)N i such that 0 = Lα(α) = α / Pα(Y ), where

Pα(Y ) =
∑d
i=0 Y

iai. Assume that L′ =
∑e
i=0 t(ci)N i is another operator such

that
0 = L′(α)(n) = (α / P ′(Y )) (n) for all n = 0, . . . , d− 1. (45)

Consider fα = Φ−1(α) ∈ K[∂]∗ and f̃α ∈ (K[∂]/Pα(Y )K[∂])∗. Equation (45),
together with (19) and (20), entails that

f̃α (P ′(Y )Y n + Pα(Y )K[∂]) = fα (P ′(Y )Y n)
(19)
= Φ−1 (α / P ′(Y )) (Y n)

(20)
= L′(α)(n)

(45)
= 0 (46)

for all n = 0, . . . , d−1. Let us prove by induction on k ≥ 0 that L′(α)(d+k) = 0 as
well. For the sake of simplicity, write Pα(Y ) = Y d−Qα(Y ), with deg(Qα(Y )) < d.
For k = 0,

L′(α)(d)
(20)
= fL′(α)

(
Y d
) (19)

= fα
(
P ′(Y )Y d

)
= f̃α

(
P ′(Y )Y d + Pα(Y )K[∂]

)
= f̃α (P ′(Y )Qα(Y ) + Pα(Y )K[∂]) =

d−1∑
i=0

f̃α
(
P ′(Y )Y i + Pα(Y )K[∂]

)
qi

(46)
= 0.

Now, assume that L′(α)(d+ k) = 0 holds for all k = 0, . . . , h− 1. Then

L′(α)(d+ h)= f̃α
(
P ′(Y )Y d+h+Pα(Y )K[∂]

)
= f̃α

(
P ′(Y )Qα(Y )Y h + Pα(Y )K[∂]

)
=
d−1∑
i=0

f̃α
(
P ′(Y )Y iqiY

h + Pα(Y )K[∂]
)

(9)
=

d−1∑
i=0

h∑
j=0

(
h

j

)
f̃α
(
P ′(Y )Y i+j + Pα(Y )K[∂]

)
∂h−j (qi)

=

d−1∑
i=0

h∑
j=0

(
h

j

)
L′(α)(i+ j)∂h−j (qi) = 0

and so, by induction, L′(α)(n) = 0 for every n ∈ N. 2

Proposition A.2. Let α ∈ H(K) be a sequence and d ≥ 1. The (non-linear)
system of d equations

0 = L (α) (n) =
d∑
i=0

n∑
k=0

(
n

k

)
∂k (xi)α(n− k + i), 0 ≤ n ≤ d− 1,

in the d+ 1 unknowns x0, . . . , xd is equivalent to the homogeneous (linear) system

d∑
i=0

xi

(
n∑
k=0

(
n

k

)
(−1)k∂k (α(n− k + i))

)
= 0, 0 ≤ n ≤ d− 1.
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Proof. For every n ∈ N, denote by En the expression

En :=

d∑
i=0

n∑
k=0

(
n

k

)
∂k (xi)α(n− k + i)

and by Fn the expression

Fn :=
d∑
i=0

xi

(
n∑
k=0

(
n

k

)
(−1)k∂k (α(n− k + i))

)
.

Let us prove by induction on n ≥ 0 that if Fi = 0 for all i = 0, . . . , n, then
En+1 = Fn+1. For n = 0,

d∑
i=0

xiα(i) = E0 = F0 = 0

and

E1 =
d∑
i=0

xiα(i+ 1) +
d∑
i=0

∂ (xi)α(i) =
d∑
i=0

xiα(i+ 1)−
d∑
i=0

xi∂ (α(i)) + ∂(E0)

=

d∑
i=0

xi (α(i+ 1)− ∂ (α(i))) = F1.

Assume that the claim holds for k = 0, . . . , n − 1 and let us prove it for k = n.
Since Fs = 0 for s < n, ∂n−s(Fs) = 0, that is to say,

0 = ∂n−s(Fs) =
d∑
i=0

n−s∑
j=0

s∑
k=0

(
s

k

)(
n− s
j

)
(−1)k∂j (xi) ∂

n−s−j+k (α(s− k + i)) .

(47)
Therefore, a very technical but otherwise straightforward computation shows that

En
(47)
= En −

n−1∑
s=0

(n
s

)
∂
n−s

(Fs)

=
d∑
i=0

n∑
k=0

(n
k

)
∂
k

(xi)α(n− k + i)+

−
n−1∑
s=0

d∑
i=0

n−s∑
j=0

s∑
k=0

(n
s

)(s
k

)(n− s
j

)
(−1)

k
∂
j

(xi) ∂
n−s−j+k

(α(s− k + i))

=


d∑
i=0

n∑
k=0

(n
k

)
∂
k

(xi)α(n− k + i)−
n−1∑
s=0

d∑
i=0

s∑
k=0

(n
s

)(s
k

)
(−1)

k
xi∂

n−s+k
(α(s− k + i)) +

−
n−1∑
s=0

d∑
i=0

n−s∑
j=1

s∑
k=0

(n
s

)(s
k

)(n− s
j

)
(−1)

k
∂
j

(xi) ∂
n−s−j+k

(α(s− k + i))



=


d∑
i=0

n∑
k=0

(n
k

)
∂
k

(xi)α(n− k + i)−
n−1∑
s=0

d∑
i=0

s∑
k=0

(n
s

)(s
k

)
(−1)

k
xi∂

n−s+k
(α(s− k + i)) +

−
n∑
j=1

n−j∑
s=0

d∑
i=0

s∑
k=0

(n
s

)(s
k

)(n− s
j

)
(−1)

k
∂
j

(xi) ∂
n−s−j+k

(α(s− k + i))



590



The Hopf algebroid structure of differentially recursive sequences

=



d∑
i=0

xi

(
α(n+ i)−

n−1∑
s=0

s∑
k=0

(n
s

)(s
k

)
(−1)

k
∂
n−s+k

(α(s− k + i))

)
+

+
d∑
i=0

n∑
k=1

∂
k

(xi)

(n
k

)
α(n− k + i)−

n−k∑
s=0

s∑
h=0

(n
s

)(s
h

)(n− s
k

)
(−1)

h
∂
n−s−k+h

(α(s− h+ i))





=



d∑
i=0

xi

(
α(n+ i)−

n−1∑
s=0

s∑
k=0

(n
s

)(s
k

)
(−1)

k
∂
n−s+k

(α(s− k + i))

)
+

+

d∑
i=0

n∑
k=1

(n
k

)
∂
k

(xi)

α(n− k + i)−
n−k∑
s=0

s∑
h=0

(n− k
s

)(s
h

)
(−1)

h
∂
n−s−k+h

(α(s− h+ i))



 .

Let us focus first on

α(n− k + i)−
n−k∑
s=0

s∑
h=0

(
n− k
s

)(
s

h

)
(−1)h∂n−s−k+h (α(s− h+ i)) =

= α(q + i)−
q∑
s=0

s∑
h=0

(
q

s

)(
s

h

)
(−1)h∂q−s+h (α(s− h+ i))

= α(q + i)−
q∑
s=0

s∑
k=0

(
q

s

)(
s

s− k

)
(−1)s−k∂q−k (α(k + i))

= α(q + i)−
q∑

k=0

q∑
s=k

(
q

s

)(
s

s− k

)
(−1)s−k∂q−k (α(k + i))

= α(q + i)−
q∑

k=0

(
q−k∑
t=0

(
q

t+ k

)(
t+ k

t

)
(−1)t

)
∂q−k (α(k + i))

= α(q + i)−
q∑

k=0

(
q

k

)(q−k∑
t=0

(
q − k
t

)
(−1)t

)
∂q−k (α(k + i))

= α(q + i)− α(q + i) = 0

and then on

α(n+ i)−
n−1∑
s=0

s∑
k=0

(
n

s

)(
s

k

)
(−1)k∂n−s+k (α(s− k + i))

= α(n+ i)−
n−1∑
s=0

s∑
t=0

(
n

s

)(
s

s− t

)
(−1)s−t∂n−t (α(t+ i))

= α(n+ i)−
n−1∑
t=0

n−1∑
s=t

(
n

s

)(
s

s− t

)
(−1)s−t∂n−t (α(t+ i))

= α(n+ i)−
n−1∑
t=0

(
n−1−t∑
h=0

(
n

h+ t

)(
h+ t

h

)
(−1)h

)
∂n−t (α(t+ i))

= α(n+ i)−
n−1∑
t=0

(
n

t

)(n−1−t∑
h=0

(
n− t
h

)
(−1)h

)
∂n−t (α(t+ i))
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= α(n+ i)−
n−1∑
t=0

(
n

t

)(n−t∑
h=0

(
n− t
h

)
(−1)h − (−1)n−t

)
∂n−t (α(t+ i))

= α(n+ i) +
n−1∑
t=0

(
n

t

)
(−1)n−t∂n−t (α(t+ i))

=
n∑
t=0

(
n

t

)
(−1)n−t∂n−t (α(t+ i)) .

Thus,

En =

d∑
i=0

xi

(
n∑
t=0

(
n

t

)
(−1)n−t∂n−t (α(t+ i))

)
= Fn.

This implies the following. If {xi} is a solution of En = 0 for n = 0, . . . , d − 1
then F0 = E0 = 0 and, by the inductive argument above, Fn = En = 0 for
n = 0, . . . , d − 1. Conversely, If {xi} is a solution of Fn = 0 for n = 0, . . . , d − 1
then, by the same argument, En = Fn = 0 for n = 0, . . . , d− 1. 2
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