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1. Introduction

We will describe the motivations behind our work and how the Mackey formula for

groupoids fits into the contemporary mathematical framework. Thereafter, we will

briefly describe our main result.

1.1. Motivations and overview

The classical Mackey formula, which deals with linear representations of finite

groups, appeared for the first time in [19, Theorem 1]. Roughly speaking, this

formula involves simultaneously the restriction and the induction functors (with

respect to two different subgroups) and gives a decomposition, as direct sum,

∗Corresponding author.
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of their composition, although in a noncanonical way. As was explained in [24,

Sec. 7.4], the Mackey formula is a key tool in proving Mackey irreducibility criterion,

which gives necessary and sufficient conditions for the irreducibility of an induced

representation, and proves to be useful to study linear representations of a semidi-

rect product by an abelian group, see [24, Proposition 25]. Another formulation of

the classical Mackey formula, using modules over groups algebras, was stated in [8,

Theorem 44.2]. Successively, in [20, Theorems 7.1 and 12.1], the Mackey formula was

extended to the context of locally compact groups (with opportune hypotheses), and

used to prove a generalization of the Frobenius Reciprocity Theorem, see [20, The-

orems 8.1, 8.2 and 13.1]. Later on, many variants and different formulations of the

Mackey formula have been investigated. For example, in [1, 2, 25] Taylor and Bon-

nafé proved opportune versions of this formula for algebraic groups. The importance

of Mackey formula version in this context had already been made clear in [9] and pre-

vious work had been done in [10, Theorem 6.8; 18, Lemma 2.5] and [11, Theorem 7].

Apparently, classical Mackey formula is so intuitive that it can be applied,

somehow in a nontrivial way, in more general and different contexts. In this di-

rection, motivated by the study of the structure of biset functors over finite groups

(see [3, Definitions 3.1.1, 3.2.2] for pertinent definitions), Serge Bouc proved in [3,

Lemma 2.3.24] a different kind of the classical Mackey formula in the framework

of group-bisets. The gist is that, given two groups H and G and a field F, an

(H,G)-biset (of groups) is a left H-invariant and right G-invariant F-basis of an

(FH,FG)-bimodule. Since the classical Mackey formula on linear representations

can be rephrased using bimodules, and bimodules induce bisets, the Mackey for-

mula can be reformulated using an isomorphism of group-bisets (see the end of [3,

Sec. 1.1.5]) which is furthermore reformulated in [3, Lemma 2.3.24]. We have to

mention that, in [4], Bouc himself proved an additional version of the Mackey for-

mula, which is expressed using bimodules and group-bisets.

Groupoids are natural generalization of groups and prove to be useful in different

branches of mathematics, see [5, 6] and [26] (and the references therein) for a brief

survey. Specifically, a groupoid is defined as a small category whose every morphism

is an isomorphism and can be thought as a “group with many objects”. In the same

way, a group can be seen as a groupoid with only one object. As explained in [5],

while a groupoid in its very simple facet can be seen as a disjoint union of groups,

this forces unnatural choices of base points and obscures the overall structure of the

situation. Besides, even under this simplicity, structured groupoids, like topological

or differential groupoids, cannot even be thought like a disjoint union of topological

or differential groups, respectively. Different specialists realized (see for instance [5]

and [7, p. 6–7]) in fact that the passage from groups to groupoids is not a trivial

research and have its own difficulties and challenges. Thus extending a certain well-

known result in groups context to the framework of groupoids, is not an easy task

and there are often difficulties to overcome.

The research of this paper fits in this context. Thus, our main aim here is to

extend the formula in [3, Lemma 2.3.24] to groupoid-bisets and apply it to the
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particular case of groupoids of equivalence relations. The paper is written in very

elementary set-theoretical language, in order to make its content accessible to all

kinds of readers.

1.2. Description of the main result

A right groupoid-set over a groupoid G, is a set X with two maps: the structure map

ς : X → G0 and the action map ρ : X ς× t G1 → X , satisfying pertinent conditions

(see Definition 2.5 below). A morphism of groupoid-sets (or G-equivariant map) is

a map which commutes with both structure and action maps. Left groupoid-sets

are defined by interchanging the source with the target, and both categories are

isomorphic. In this way a goupoid-biset is nothing but a set endowed simultaneously

with left and right actions, which are compatible in the obvious sense. Moreover, as

in the case of group, any groupoid-biset leads to a left (or right) groupoid-set over

a cartesian product of the involved groupoids, and vice-versa (see Proposition 3.12

below for the complete proof of this fact).

The category of (left or right) groupoid-sets over a fixed groupoid is in fact a

monoidal symmetric category. In the case of right groupoid-sets, this category is

equivalent to the category of functors from the opposite groupoid to the (core) of

the category of sets. Formally, there should not be a more advantageous choice

between these two definitions. Nevertheless, for technical reasons, which we will

explain in Remark 2.6 below, we will not adopt here the functorial approach to

groupoid-set; indeed we will work with the above elementary definition.

Let H, G and K three groupoids and consider M and L two subgroupoids of

K×H and H×G, respectively, with M0 = K0 ×H0 and L0 = H0 ×G0. Let (
K×H
M )L

and (H×G
L )L be the corresponding left cosets of M and L, respectively (see the left

version of Definition 3.6, equation (9)).

Consider the following (M,L)-biset, see Proposition 4.7:

X =

{
(w, u, h, v, a) ∈ K0 ×H0 ×H1 ×H0 × G0

∣∣∣∣ (w, u) ∈ M0, (v, a) ∈ L0,

u = t(h), v = s(h)

}
.

Denote by rep
(M,L)

(X) a fixed set of representatives of the orbits of X as (M,L)-
biset. For each element (w, u, h, v, a) ∈ rep

(M,L)
(X), we define as in Definition 4.4,

the subgroupoid M(w,u) ∗((h,ιa)L(u,a)) (with only one object) of the groupoid K×G.
Our main result stated as Theorem 4.8 below says:

Theorem A (Mackey Formula for groupoid-bisets). There is a (noncanoni-

cal) isomorphism of bisets(K ×H
M

)L

⊗H

(H× G
L

)L

∼=
⊎

(w,u,h,v,a)∈rep(M,L)(X)

( K × G
M(w,u) ∗ ((h,ιa)L(u,a))

)L

,

(1)

1950109-3



April 20, 2019 9:48 WSPC/S0219-4988 171-JAA 1950109

L. El Kaoutit & L. Spinosa

where the symbol — ⊗H — stand for the tensor product over H, and where the

right-hand side term in the formula is a coproduct in the category of (M,L)-bisets
of left cosets.

Since the proof of this formula is technical and for the sake of completeness,

we decided to include most of the details of the proof, as well as the notions in-

volved therein. At the end of the paper (subsection 5.2), we provide an elemen-

tary application of this formula involving groupoids of equivalence relations (see

Example 2.3).

2. Abstract Groupoids: General Notions and Basic Properties

In this section, we will recall from [16] the basic notions and properties that will

be used in the forthcoming sections, as well as some motivating examples. We will

expound the main concepts regarding groupoid actions: equivariant maps, orbit sets

and stabilizers.

2.1. Notations, basic notions and examples

A groupoid is a small category where each morphism is an isomorphism. That is, a

pair of two sets G := (G1,G0) with diagram of sets

G1
s ��
t �� G0
ι�� ,

where s and t are respectively the source and the target of a given arrow, and ι

assigns to each object its identity arrow; together with an associative and unital

multiplication G2 := G1s×t G1 → G1 as well as a map G1 → G1 which associated to

each arrow its inverse. Notice, that ι is an injective map, and so G0 is identified with

a subset of G1. A groupoid is then a small category with more structure, namely,

the map which send any arrow to its inverse. We implicitly identify a groupoid

with its underlying category. Interchanging the source and the target will lead to

the opposite groupoid which we denote by Gop.

Given a groupoid G, consider two objects x, y ∈ G0. We denote by G(x, y) the

set of all arrows with source x and target y. The isotropy group of G at x is then

the group:

Gx := G(x, x) = {g ∈ G1 | t(g) = s(g) = x}. (2)

Clearly each of the sets G(x, y) is, by the groupoid multiplication, a left Gy-set and

right Gx-set. In fact, each of the G(x, y) sets is a (Gy,Gx)-biset, in the sense of [3].

A morphism of groupoids φ : H → G is a functor between the underlying cat-

egories. Obviously any one of these morphisms induces homomorphisms of groups

between the isotropy groups: φy : Hy → Gφ0(y), for every y ∈ H0. The family of

homomorphisms {φy}y∈H0 is referred to as the isotropy maps of φ. For a fixed

object x ∈ G0, its fiber φ−1
0

({x}), if not empty, leads to the following “star” of
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homomorphisms of groups:

Gx Hy

Hy
Hy

Hy

Hy

Hy
Hy Hy

where y runs in the fiber φ−1
0 ({x}).

Example 2.1 (Trivial and product groupoids). Let X be a set. Then the

pair (X,X) is obviously a groupoid (in fact a small discrete category, i.e. with only

identities as arrows) with trivial structure. This is known as the trivial groupoid.

The product G × H of two groupoids G and H is the groupoid whose sets of

objects and arrows, are respectively, the Cartesian products G0 ×H0 and G1 ×H1.

The multiplication, inverse and unit arrow are canonically given as follows:

(g, h)(g′, h′) = (gg′, hh′), (g, h)−1 = (g−1, h−1), ι(x,u) = (ιx, ιu).

Example 2.2 (Action groupoid). Any group G can be considered as a groupoid

by taking G1 = G and G0 = {∗} (a set with one element). Now if X is a right G-set

with action ρ : X×G→ X , then one can define the so called the action groupoid G

whose set of objects is G0 = X and its set of arrows is G1 = X ×G; the source and

the target are s = ρ and t = pr
1
, the identity map sends x �→ (x, e) = ιx, where e

is the identity element of G. The multiplication is given by (x, g)(x′, g′) = (x, gg′),
whenever xg = x′, and the inverse is defined by (x, g)−1 = (xg, g−1). Clearly the

pair of maps (pr2, ∗) : G = (G1, G0) → (G, {∗}) defines a morphism of groupoids.

For a given x ∈ X , the isotropy group Gx is clearly identified with the stabilizer

StabG(x) = {g ∈ G | gx = x} subgroup of G.

Example 2.3 (Equivalence relation groupoid). We expound here several ex-

amples ordered by inclusion.

(1) One can associated to a given set X the so called the groupoid of pairs (called

fine groupoid in [5] and simplicial groupoid in [13]), its set of arrows is defined

by G1 = X ×X and the set of objects by G0 = X ; the source and the target

are s = pr2 and t = pr1, the second and the first projections, and the map of

identity arrows ι is the diagonal map x �→ (x, x). The multiplication and the

inverse maps are given by

(x, x′)(x′, x′′) = (x, x′′), and (x, x′)−1 = (x′, x).

(2) Let υ : X → Y be a map. Consider the fiber product Xυ×υ X as a set of arrows

of the groupoid X υ×υ X
pr2 ��
pr1 �� X,ι�� where as before s = pr

2
and t = pr

1
, and

the map of identity arrows ι is the diagonal map. The multiplication and the

inverse are clear.
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(3) Assume that R ⊆ X × X is an equivalence relation on the set X . One can

construct a groupoid R pr2 ��
pr1 �� X,ι�� with structure maps as before. This is an

important class of groupoids known as the groupoid of equivalence relation (or

equivalence relation groupoid). Obviously (R, X) ↪→ (X ×X,X) is a morphism

of groupoid, see for instance [12, Example 1.4, p. 301].

Notice, that in all these examples each of the isotropy groups is the trivial group.

Example 2.4 (Induced groupoid). Let G = (G1,G0) be a groupoid and ς : X →
G0 a map. Consider the following pair of sets:

Gς
1 := X ς×t G1s×ς X = {(x, g, x′) ∈ X × G1 ×X | ς(x) = t(g), ς(x′) = s(g)},

Gς
0 := X.

Then Gς = (Gς
1,Gς

0) is a groupoid, with structure maps: s = pr3, t = pr1,

ιx = (ς(x), ις(x), ς(x)), x ∈ X . The multiplication is defined by (x, g, y)(x′, g′, y′) =
(x, gg′, y′), whenever y = x′, and the inverse is given by (x, g, y)−1 = (y, g−1, x).

The groupoid Gς is known as the induced groupoid of G by the map ς , (or the pull-

back groupoid of G along ς , see [13] for dual notion). Clearly, there is a canonical

morphism φς := (pr2, ς) : Gς → G of groupoids. A particular instance of an induced

groupoid, is the one when G = G is a groupoid with one object. Thus for any group

G one can consider the Cartesian product X × G × X as a groupoid with set of

objects X .

2.2. Groupoid actions and equivariant maps

The following definition is a natural generalization to the context of groupoids, of

the usual notion of group-set, see for instance [3]. It is an abstract formulation

of that given in [21, Definition 1.6.1] for Lie groupoids, and essentially the same

definition based on the Sets-bundles notion given in [23, Definition 1.11].

Definition 2.5. Let G be a groupoid and ς : X → G0 a map. We say that (X, ς) is a

right G-set (with a structure map ς), if there is a map (the action) ρ : X ς×t G1 → X

sending (x, g) �→ xg and satisfying the following conditions:

(1) s(g) = ς(xg), for any x ∈ X and g ∈ G1 with ς(x) = t(g).

(2) xις(x) = x, for every x ∈ X .

(3) (xg)h = x(gh), for every x ∈ X , g, h ∈ G1 with ς(x) = t(g) and t(h) = s(g).

In order to simplify the notation, the action map of a given right G-set (X, ς) will
be omitted from the notation. A left action is analogously defined by interchanging

the source with the target and similar notations will be employed. In general a set

X with a (right or left) groupoid action is called a groupoid-set, we also employ the

terminology: a set X with a left (or right) G-action.
Obviously, any groupoid G acts over itself on both sides by using the regular

action, that is, the multiplication G1s×t G1 → G1. This means that (G1, s) is a right

G-set and (G1, t) is a left G-set with this action.

1950109-6
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Given a groupoid G, let (X, ς) be a right G-set with action map ρ. Then the pair

of sets

X � G := (X ς×t
G1, X)

is a groupoid with structure maps s� = ρ, t� = pr
1
and ιx = (x, ις(x)) for each

x ∈ X . The multiplication and the inverse maps are defined as follows: For each

(x, g), (y, h) ∈ X ς×t
G1 such that t�(y, h) = s�(x, g) the multiplication is given by

(x, g)(y, h) = (x, gh).

That is, for any pairs of elements in X ς×t G1 as before, we have

ς(x) = t(g), s�(x, g) = ρ(x, g) = xg, t�(x, g) = pr
1
(x, g) = x,

ς(x) ς(xg)
g��

and

ς(y) = t(h), s�(y, h) = ρ(y, h) = yh, t�(y, h) = pr1(y, h) = y,

ς(y) ς(yh).
h��

So, the multiplication is explicitly given by

y = t�(y, h) = s�(x, g) = xg,

ς(x) ς(xg) = ς(y)
g�� ς(yh) = ς(xgh)

h��

gh

��

and schematically can be presented by

x xg = y
(x,g)�� yh = xgh.

(y,h)��

(x, gh)

��

For each (x, g) ∈ X ς×t
G1 the inverse arrow is defined by (x, g)−1 = (xg, g−1).

The groupoid X�G is called the right translation groupoid of X by G. Furthermore,

there is a canonical morphism of groupoids σ : X � G → G, given by the pair of

maps σ = (ς, pr2).

The left translation groupoids are similarly defined and denoted by G�Z when-

ever (Z, ϑ) is a left G-set.
A morphism of right G-sets (or G-equivariant map) F : (X, ς) → (X ′, ς ′) is a

map F : X → X ′ such that the diagrams

X
ς

�����
��
�

F

��

G0

X ′ς′

��������

X ς× t G1
��

F × id

��

X

F

��
X ′

ς′× t G1
�� X ′

(3)
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commute. We denote by HomG-Sets(X,X ′) the set of all G-equivariant maps from

(X, ς) to (X ′, ς ′). Clearly any such a G-equivariant map induces a morphism of

groupoids F : X � G → X ′ � G. A subset Y ⊆ X of a right G-set (X, ς), is said to

be G-invariant whenever the inclusion Y ↪→ X is a G-equivarint map.

Remark 2.6. A right G-set can be defined also as a functor X : Gop → Sets to

the core of the category of sets. Thus to any functor of this kind, we can attach

to it a set X =
⊎

a∈G0
X (a) with the canonical map ς : X → G0 and action

� : X ς×t G1 → X sending (x, g) �→ xg := X (g)(x). Notice that, if none of the fibers

X (a) is an empty set, then the induced map ς is surjective. However, this is not

always the case, see the example expound in Sec. 5.3.

Any natural transformation between functors as above leads to a G-equivariant
map between the associated right G-sets. This in fact establishes an equivalence of

categories between the category of the functors of this form (i.e. functors Gop to the

core category of the category of sets) and the category of right G-sets. The functor,
which goes in the opposite direction, associates to any right G-set (X, ς) the functor
X : Gop → Sets which sends any object a ∈ G0 to the fiber ς−1({a}), and any arrow

g in Gop to the bijective map ς−1({t(g)}) → ς−1({s(g)}), x �→ xg.

Formally, there should not be a more advantageous choice between these two

definitions. Nevertheless, in our opinion, for technical reasons it is perhaps better

to deal with groupoid-sets as given in Definition 2.5, instead of the aforementioned

functorial approach. Specifically, the latter approach presents an inconvenient, since

one is forced to distinguish, in certain “local” proofs, between the cases when the

fiber is empty and when it is not. There is no such difficulty using Definition 2.5,

as we will see in the sequel.

Example 2.7. Let φ : H → G be a morphism of groupoids. Consider the triple

(H0 φ0
×t G1, pr1, ς), where ς : H0φ0

×t G1 → G0 sends (u, g) �→ s(g), and pr1 is the

first projection. Then the following maps

(H0 φ0× t G1) ς× t G1
�� H0 φ0× t G1,

((u, g′), g) � �� (u, g′)↽g := (u, g′g)

H1 s× pr1
(H0 φ0× t G1) �� H0 φ0× t G1,

(h, (u, g))
� �� h⇁(u, g) := (t(h), φ(h)g),

(4)

define, respectively, a structure of right G-sets and that of left H-set. Analogously,

the maps

(G1 s× φ0
H0) pr2× t H1

�� G1 s× φ0
H0

((g, u), h)
� �� (g, u)↼h := (gφ(h), s(h))

G1 s×ϑ (G1 s× φ0
H0) �� G1 s× φ0

H0,

(g, (g′, u)) � �� g⇀(g′, u) := (gg′, u),
(5)

where ϑ : G1s×φ0
H0 → G0 sends (g, u) �→ t(g), define a left H-set and right G-set

structures on G1s×φ0
H0, respectively. This in particular can be applied to any mor-

phism of groupoids of the form (X,X) → (Y ×Y, Y ), (x, x′) �→ ((f(x), f(x)), f(x′)),
where f : X → Y is any map. On the other hand, if f is a G-equivariant map, for

some a group G acting on both X and Y , then the above construction applies to

the morphism (G ×X,X) → (G × Y, Y ) sending ((g, x), x′) �→ ((g, f(x)), f(x′)) of
action groupoids, as well.

The proofs of the following useful Lemmas are immediate.

1950109-8
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Lemma 2.8. Given a groupoid G, let (X, ς) be a right G-set with action ρ and

let be (X ′, ς ′) be a right G-set with action ρ′. Let F : (X, ς) → (X ′, ς ′) be a G-
equivariant map with bijective underlying map. Then F−1 : (X ′, ς ′) → (X, ς) is also

G-equivariant.

Lemma 2.9. Given a groupoid G, let (X, ς) be a right G-set with action ρ and let

be Y ⊆ X. We define

ς ′ = ς |Y : Y → G0 and ρ′ = ρ|Y
ς′×t

G1 : Y ς′×t
G1 → X

and let’s suppose that for each (a, g) ∈ Y ς′×tG1, we have ρ(a, g) ∈ Y . Then (Y, ς ′)
is a right G-set with action map ρ′. In particular Y is a G-invariant subset of X.

2.3. Orbit sets and stabilizers

Next, we recall the notion (see, for instance, [14, p. 11]) of the orbit set attached to

a right groupoid-set. This notion is a generalization of the orbit set in the context

of group-sets. Here we use the (right) translation groupoid to introduce this set.

First, we recall the notion of the orbit set of a given groupoid. The orbit set of a

groupoid G is the quotient set of G0 by the following equivalence relation: take an

object x ∈ G0, define

Ox := t(s−1({x})) = {y ∈ G0 | ∃ g ∈ G1 such that s(g) = x, t(g) = y}, (6)

which is equal to the set s(t−1({x})). This is a nonempty set, since x ∈ Ox. Two

objects x, x′ ∈ G0 are said to be equivalent if and only if Ox = Ox′ , or equivalently,

two objects are equivalent if and only if there is an arrow connecting them. This

in fact defines an equivalence relation whose quotient set is denoted by G0/G. In
others words, this is the set of all connected components of G, which we denote by

π0(G) := G0/G.
Given a right G-set (X, ς), the orbit set X/G of (X, ς) is the orbit set of the

(right) translation groupoid X � G, that is, X/G = π0(X � G). For an element

x ∈ X , the equivalence class of x, called the the orbit of x, is denoted by

OrbX�G(x) =

{
y ∈ X

∣∣∣∣ ∃(x, g) ∈ (X � G)1 such that

x = t�(x, g) and y = s�(x, g) = xg

}

=
{
xg ∈ X | t(g) = ς(x)

}
:= [x]G.

Let us denote by repG(X) a representative set of the orbit set X/G. For instance,
if G = (X×G,X) is an action groupoid as in Example 2.2, then obviously the orbit

set of this groupoid coincides with the classical set of orbits X/G. Of course, the

orbit set of an equivalence relation groupoid (R, X), see Example 2.3, is precisely

the quotient set X/R.

The left orbits sets for left groupoids sets are analogously defined by using the

left translation groupoids. We will use the following notation for left orbits sets:
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Given a left G-set (Z, ϑ) its orbit set will be denoted by G\Z and the orbit of an

element z ∈ Z by G[z].
Let (X, ς) be a right G-set with action ρ : X ς×t

G1 → X . The stabilizer StabG(x)

of x in G is the groupoid with arrows

(StabG(x))1 = {g ∈ G1 | ς(x) = t(g) and xg = x}
and objects

(StabG(x))0 = {u ∈ G0 | ∃g ∈ G1(ς(x), u) : xg = x} ⊆ Oς(x).

Note that xις(x) = x so ς(x) ∈ (StabG(x))0. Besides that, using the first condition

of the right G-set, if t(g) = ς(x) and g ∈ (StabG(x))1, then s(g) = ς(xg) = ς(x).

Therefore

(StabG(x))0 = {ς(x)}, StabG(x)
ς(x) ≤ Gς(x)

and as a groupoid with only one object ς(x), the set of arrow is:

(StabG(x))1 =
{
g ∈ G1 | s(g) = t(g) = ς(xg) and xg = x

}
.

Henceforth, the stabilizer of an element x ∈ X is the subgroup of the isotropy group

Gς(x) consisting of those loops g which satisfy xg = x. The following lemma is then

an immediate consequence of this observation:

Lemma 2.10. Let (X, ς) be a right G-set and consider its associated morphism of

groupoids σ : X � G → G, given by the pair of maps σ = (ς, pr2). Then, for any

x ∈ X, the stabilizer StabG (x) is the image by σ of the isotropy group (X � G)x.
The left stabilizer for elements of left groupoids sets are similarly defined and

enjoy analogue properties as in Lemma 2.10.

3. Groupoid-Bisets, Translation Groupoids, Orbits and Cosets

In this section, we recall from [16] (with sufficient details) the notions of groupoid-

biset, two-sided translation groupoid, coset by a subgroupoid and tensor product of

bisets. After that, we will discuss the decomposition of a set, with a groupoid acting

over it, into disjoint orbits. Moreover, we will prove the bijective correspondence

between groupoid-bisets and left sets over the product of the involved groupoids.

3.1. Bisets, two sided translation groupoids and (left) cosets

Let G and H be two groupoids and (X,ϑ, ς) a triple consisting of a set X and two

maps ς : X → G0, ϑ : X → H0. The following definitions are abstract formulations

of those given in [14, 22] for topological and Lie groupoids. In this regard, see

also [16].

Definition 3.1. The triple (X,ϑ, ς) is said to be an (H,G)-biset if there is a left

H-action λ : H1s×ϑX → X and right G-action ρ : X ς×t G1 → X such that
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(1) For any x ∈ X , h ∈ H1, g ∈ G1 with ϑ(x) = s(h) and ς(x) = t(g), we have

ϑ(xg) = ϑ(x) and ς(hx) = ς(x).

(2) For any x ∈ X , h ∈ H1 and g ∈ G1 with ς(x) = t(g), ϑ(x) = s(h), we have

h(xg) = (hx)g.

The triple (X,ϑ, ς) is referred to as a groupoid-biset, whenever the two groupoids

H and G are clear.

For simplicity the actions maps of a groupoid-bisets are omitted in the notions.

The two-sided translation groupoid associated to a given (H,G)-biset (X,ϑ, ς) is

defined to be the groupoid H�X�G whose set of objects is X and set of arrows is

H1s×ϑX ς×s G1 = {(h, x, g) ∈ H1 ×X × G1 | s(h) = ϑ(x), s(g) = ς(x)}.
The structure maps are:

s(h, x, g) = x, t(h, x, g) = hxg−1 and ιx = (ιϑ(x), x, ις(x)).

The multiplication and the inverse are given by:

(h, x, g)(h′, x′, g′) = (hh′, x′, gg′), (h, x, g)−1 = (h−1, hxg−1, g−1).

Example 3.2. Given two groups G and H and a group-biset U , the category 〈U〉
defined by Bouc in [4, Notation 2.1] is the translation groupoid of the (H,G)-biset
V , where H, respectively G, is the groupoid with only one object and isotropy group

H , respectively G, and V is exactly U considered as a groupoid-biset.

The orbit space of the two translation groupoid is the quotient set X/(H,G)
defined using the equivalence relation x ∼ x′, if and only if, there exist h ∈ H1

and g ∈ G1 with s(h) = ϑ(x) and t(g) = ς(x′), such that hx = x′g. We will also

employ the notation H\X/G := X/(H,G) and denote by rep
(H,G)

(X) one of its

representative sets.

Example 3.3. Let φ : H → G be a morphism of groupoids. Consider, as in Exam-

ple 2.7, the associated triples (H0φ0
×t G1, ς, pr1) and (G1s×φ0

H0, pr2, ϑ) with actions

defined as in Eqs. (4) and (5). Then these triples are an (H,G)-biset and a (G,H)-

biset, respectively.

Proposition 3.4. Let (X,ϑ, ς) be an (H,G)-biset with actions λ : H1s×ϑX → X

and ρ : X ς×t G1 → X. Then H\X is a right G-set with structure map and action

as follows :

ς̂ : H\X → G0

H[x] → ς̂(H[x]) = ς(x)
and

ρ̂ : (H\X)ς̂×t
G1 → H\X

(H[x], g) → ρ̂(H[x], g) = H[xg] = H[ρ(x, g)].

Proof. Let be x1, x2 ∈ X such that H[x1] = H[x2]. Then by definition of orbit

there is h ∈ H1 such that x1 = hx2 and ϑ(x2) = s(h). One of the biset conditions

says that ς(x1) = ς(hx2) = ς(x2). This shows that ρ̂ is well defined. Now let be
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g ∈ G1, x1, x2 ∈ X such that H[x1] = H[x2], ς̂(H[x1]) = t(g) and ς̂(H[x2]) = t(g).

We have

ς(x1) = ς̂(H[x1]) = t(g) = ς̂(H[x2]) = ς(x2)

and

ρ(x1, g) = x1g = (hx2)g = h(x2g) = hρ(x2, g)

so H[x1g] = H[x2g] which shows that ρ̂ is well defined.

Now we only have to check the axioms of right G-set but this is easy and is

left to the reader. As a consequence, we have proved that H\X is a right G-set as
stated.

The left version of Proposition 3.4 also holds true. Precisely, given an (H,G)-
biset (X, ς, ϑ); since X is obviously a (Gop,Hop)-biset, applying Proposition 3.4, we

obtain that Gop\X is right Hop-set, that is, X/G becomes a left H-set.

Next, we deal with the left and right cosets attached to a morphism of groupoids.

So let us assume that a morphism of groupoids φ : H → G is given and denote by
φH(G) = H0φ0

×
t
G1 the underlying set of the (H,G)-biset of Example 3.3. Then the

left translation groupoid is given by

H� φH(G) = H � (H0φ0
×

t
G1) = (H1s×pr1

(H0φ0
×

t
G1),H0φ0

×
t
G1),

where the source s� is the action ⇁ described in Eq. (4) and the target t� is

the second projection. The multiplication of two objects (h1, a1, g1), (h2, a2, g2) ∈
H1s×pr1

H0φ0
×

t
G1 such that s�(h1, a1, g1) = t�(h2, a2, g2), is given as follows: First,

we have

(t(h1),φ1(h1)g1) = h1⇁(a1, g1) = s�(h1, a1, g1) = t�(h2, a2, g2) = (a2, g2)

and s(h2) = pr1(a2, g2) = a2 = t(h1) so we can write h2h1. Second, we have

t�(h1, a1, g1) = (a1, g1) and s�(h2, a2, g2) = h2⇁(a2, g2) = (t(h2),φ1(h2)a2),

and so

(a1, g1)
(
h1⇁(a1, g1)

)
= (t(h1), φ1(h1)g1)

(h1,a1,g1)��
(
h2⇁(a2, g2)

)(h2,a2,g2)��

= (t(h2), φ1(h2)g2) = (t(h2h1), φ1(h2)φ1(h1)g1) = (t(h2h1), φ1(h2h1)g1) = ((h2h1)⇁(a1, g1)).

Thus,

(h1, a1, g1)(h2, a2, g2) = (h2h1, a1, g1).

Definition 3.5. Given a morphism of groupoids φ : H → G, we define

(G/H)R
φ
:= π0(H� φH(G))

the orbit set H\φH(G) and, for each (a, g) ∈ H0φ0
×

t
G1, we set

φH[(a, g)] = {(h⇁(a, g)) ∈ φH(G) |h ∈ H1, s(h) = a}.
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If H is a subgroupoid of G, that is, φ := τ : H ↪→ G is the inclusion functor, we

use the notation

(G/H)R = H\(H0τ0
×

t
G1) = H(G) = τH(G)

and

H[(a, g)] = τH[(a, g)] =
{
(h⇁(a, g)) ∈ H(G) |h ∈ H1, s(h) = a

}
, (7)

where (a, g) ∈ H0τ0
×

t
G1. On the other hand, for each (h, a, g) ∈ H1s×pr1

H0τ0
×

t
G1,

we have

(h⇁(a, g)) = (t(h),φ1(h)g) = (t(h), hg) and s(h) = a = φ0(a) = t(g)

so, for each (a, g) ∈ H0τ0
×

t
G1, we have

H[(a, g)] =
{
(t(h), hg) ∈ H(G) |h ∈ H1, s(h) = t(g)

}
.

Definition 3.6. Let H be a subgroupoid of G via the injection τ : H ↪→ G. The
right coset of G by H is defined as:

(G/H)R = {H[(a, g)] | (a, g) ∈ H0τ0
×

t
G1}, (8)

where each class H[(a, g)] is as in Eq. (7).

Keeping the notation of the previous definition, we can state:

Lemma 3.7. Given (a1, g1), (a2, g2) ∈ H0τ0
×

t
G1, we have H[(a1, g1)] = H[(a2, g2)]

if and only if there is h ∈ H(a2, a1) such that h = g1g
−1
2 .

Proof. We have H[(a1, g1)] = H[(a2, g2)] if and only if (a1, g1) ∈ H[(a2, g2)], if and

only if there is h ∈ H1 such that s(h) = t(g2) and (a1, g1) = (t(h), hg2), if and only

if there is h ∈ H1 such that {
t(g1) = a1 = t(h),

g1 = hg2,

if and only if there is h ∈ H1 such that s(h) = t(g2) = a2, t(h) = t(g1) = a1,

h = g1g
−1
2 , if and only if there is h ∈ H(a1, a2) such that h = g1g

−1
2 .

The left coset of G by H is defined using the (G,H)-biset H(G)τ := G1s×τ0
H0 of

Example 3.3 with actions maps as in Eq. (5). If τ : H → G is the inclusion functor,

then we use the notation

(G/H)L = H(G)τ/H = {[(g, u)]H| (g, u) ∈ H(G)τ} (9)

and, for each (g, u) ∈ H(G)τ,

[(g, u)]H = {(gh, s(h)) ∈ H(G)τ := G1s×τ0
H0 |h ∈ H1, s(g) = t(h)}.

The following is an analogue of Lemma 3.7
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Lemma 3.8. If τ : H → G is an inclusion functor, then for each (g1, u1), (g2, u2) ∈
G1s×τ0

H0, we have [(g1, u1)]H = [(g2, u2)]H if and only if g−1
2 g1 ∈ H1.

Proof. Is similar to that of Lemma 3.7.

As a corollary of Proposition 3.4, we obtain:

Corollary 3.9. Let H be a subgroupoid of G via the injection τ : H ↪→ G. Then
(G/H)R becomes a right G-set with structure map and action given as follows:

ς : (G/H)R → G0

H[(a, g)] → s(g)
and

ρ : (G/H)Rς×tG1 → (G/H)R

(H[(a, g1)], g2) → H[(a, g1g2)].
(10)

In a similar way, the left coset (G/H)L becomes a left G-set with a structure and

action maps given by:

ϑ : (G/H)L → G0

[(g, u)]H → t(g)
and

λ : G1s×ϑ(G/H)L → (G/H)L

(g1, [(g2, u)]H) → [(g1g2, u)]H.
(11)

The following crucial proposition characterizes, as in the classical case of groups,

the right cosets by the stabilizer subgroupoid.

Proposition 3.10. Let (X, ς) be a right G-set with action map ρ : X ς×t
G1 → X.

Given x ∈ X, let us consider H = StabG(x) its stabilizer as a subgroupoid of G (see

Sec. 2.3). Then the following map

ϕ : (G/H)
R �� [x]G

H[(a, g)] � �� xg

establishes an isomorphism of right G-sets. Likewise, a similar statement is true for

left cosets. That is, for a given left G-set (Y, ϑ) with action λ, we have, for every

y ∈ Y, an isomorphism of left G-set
ψ : (G/H)L �� G[y]
[(u, a)]H � �� ay,

where H = StabG(y) is the stabilizer of y.

Proof. We only show the right side of the statement. Given H[(a, g)] ∈ (G/H)R,

we have a ∈ H0 = {ς(x)} and, since (a, g) ∈ H0τ0
×

t
G1, where τ : H → G is

the inclusion functor, we have t(g) = a = ς(x) and we can write xg. Now con-

sider (a1, g1), (a2, g2) ∈ H0τ0
×

t
G1 (that is, a1 = t(g1) and a2 = t(g2)) such

that H[(a1, g1)] = H[(a2, g2)]. Then, by Lemma 3.7, there exists h ∈ H1 such

that s(h) = a2, t(h) = a1 and h = g1g
−1
2 . Since H = StabG(x), we have

a1 = a2 = ς(x) and xh = x so x = xh = xg1g
−1
2 , whence xg2 = xg1. This

shows that ϕ is well defined. Now let H[(a1, g1)],H[(a2, g2)] ∈ (G/H)R such that

ϕ(H[(a1, g1)]) = ϕ(H[(a2, g2)]). Then we have

xg1 = ϕ(H[(a1, g1)]) = ϕ(H[(a2, g2)]) = xg2,
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so xg1g
−1
2 = x, which means that g1g

−1
2 ∈ StabG(x) = H. Therefore H[(a1, g1)] =

H[(a2, g2)] and ϕ is then injective. Now consider an element xg ∈ [x]G, by definition,

we have ϕ(H[(ς(x), g)]) = xg, so ϕ is a surjective map. Therefore, ϕ is bijective.

By Corollary 3.9 and Lemma 2.9, it follows that (G/H)R and [x]G are right G-
sets. We denote by ςx and ρx the structure and the action maps of [x]G, respectively.
To prove that ϕ is a morphism of right G-set, we have to prove that the following

two diagrams are commutative:

(G/H)R ς̂×t
G1

ρ̂ ��

ϕ× IdG1

��

(G/H)R

ϕ

��
([x]G)ςx×t

G1

ρx �� [x]G

and (G/H)R

ϕ

��

ς̂ �� G0

[x]G,
ςx

����������������

where we used the notation ς̂ and ρ̂ for the structural and the action maps given

in (10). Let us check the commutativity of the triangle. So take H[(a, g)] ∈ (G/H)R,

using the definition of right action, we have

ςxϕ(H[(a, g)]) = ςx(xg) = ς(xg) = s(g) = ς̂(H[(a, g)])

since t(g) = a = ς(x). As for the rectangle, take an arbitrary element

(H[(a, g)], g1) ∈ (G/H)R ς̂×tG1, we have

ρx(ϕ× IdG1)(H[(a, g)], g1) = ρx(ϕ(H[(a, g)]), g1)

= ρx(xg, g1) = ρ(xg, g1) = (xg)g1 = x(gg1)

= ϕ(H[(a, gg1)]) = ϕρ̂(H[(a, g)], g1).

Therefore, ϕ is compatible with the action and by using Lemma 2.8, we conclude

that ϕ is an isomorphism of right G-set as desired.

Corollary 3.11. Let (X, ς) be a right G-set. Then there is an isomorphism of right

G-sets :
X ∼=

⊎
x∈repG(X)

(G/ StabG(x))
R.

where the right-hand side is the coproduct in the category of right G-sets and with

repG(X), we indicate a set of representatives of the orbits of the right G-set X.

Proof. Immediate from Proposition 3.10, considering the fact that a right G-set is
a disjoint union of its orbits.

3.2. Groupoid-bisets versus (left) sets

In this subsection, we give the complete proof of the fact that the category of

groupoids (H,G)-bisets is isomorphic to the category of left groupoids (H×Gop)-sets

(equivalently right (Hop × G)-sets). Here, the structure groupoid of the (cartesian)

1950109-15



April 20, 2019 9:48 WSPC/S0219-4988 171-JAA 1950109

L. El Kaoutit & L. Spinosa

product of two groupoids is the one given by the product of the underlying categories

as described in Example 2.1.

Proposition 3.12. Given a set X and two groupoids H and G. Then there is a

bijective correspondence between structures of (H,G)-bisets on X and structures of

left (H× Gop)-sets on X.

Proof. Let X be an (H,G)-biset with actions and structures map as follows:

ϑ : X → H0

λ : H1s×ϑX → X
and

ς : X → G0

ρ : X ς×t
G1 → X.

We define the structure map and action as follows:

α : X → (H× Gop)0

x �→ (ϑ(x), ς(x))
and

β : (H× Gop)1s×αX → X

((h, g), x) �→ h(xg).

Now the verification that (X,α) is a left (H× Gop)-set is obvious.

Conversely, let X be an (H× Gop)-left set with

α : X → (H× Gop)0 and β : (H× Gop)1s×αX → X

as structure map and action. Let be p1 and p2 the canonical projections

p1 : (H× Gop)0 → H0

(h, g) �→ h
and

p2 : (H× Gop)0 → G0

(h, g) �→ g.

We define a structure of left H-set as follows:

ϑ : X → H0

x �→ p1α(x)
and

λ : H1s×ϑX → X

(x, g) �→ β((h, ις(x)), x)

and a structure of right G-set as follows:
ς : X → G0

x �→ p2α(x)
and

ρ : X ς×t G1 → X

(x, g) �→ β((ιϑ(x), g), x).

For each (h, x) ∈ H1s×ϑX , we have

α(x) = (ϑ(x), ς(x)) = (s(h), t(ις(x))) = s(h, ις(x))

so λ is well defined. Now the verification that (X,ϑ) is a left H-set is obvious. As

for the right action, for each (x, g) ∈ X ς×t G1, we have

α(x) = (ϑ(x), ς(x)) = (s(ιϑ(x)), t(g)) = s(ιϑ(x), g)

so ρ is well defined. The verification that (X, ς) is a right G-set is also obvious. Now

we only have to verify the properties of a biset but this is easy and it is left to the

reader. As a consequence, X is an (H,G)-biset. Lastly, it is clear that these two

constructions are mutually inverse and this completes the proof.
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A similar proof to that of Proposition 3.12, works to show that there is a one-to-

one correspondence between right (Hop ×G)-set structure and (H,G)-set structure.
Furthermore, any (H,G)-equivariant map (i.e. any morphism of (H,G)-bisets) is

canonically transformed, under this correspondence, to a left (H×Gop)-equivariant

map. In this way, we have the following corollary.

Corollary 3.13. Let H and G be two groupoids. Then there are canonical isomor-

phisms of categories between the category of (H,G)-bisets, left (H × Gop)-sets and

right (Hop × G)-sets.

3.3. Orbits and stabilizers of bisets and double cosets

We will use the notations of the proof of Proposition 3.12. Let X be an (H,G)-biset:
it becomes an (H× Gop)-left set, so we have

(Stab(H, G)(x))0 = (Stab(H ×Gop)(x))0 = {(ϑ(x), ς(x))}
and

(Stab(H,G)(x))1 = (Stab(H ×Gop)(x))1

=

{
(h, g) ∈ H1 × Gop

1

∣∣∣∣ s(h, g) = t(h, g) = α(x)

(h, g)x = x

}

=

(h, g) ∈ H1 × Gop

1

∣∣∣∣∣∣∣∣
s(h) = t(h) = ϑ(x)

s(g) = t(g) = ς(x)

hxg = x

.
For a given elements x ∈ X , the orbit set of x is given by

Orb(H,G)(x) = H[x]G = {hxg = (h, g)x ∈ X | s(h) = ϑ(x), ς(x) = t(g)}.

Proposition 3.14. Given a groupoid H, let A and B be subgroupoid of H. We

define

X = A0×t Hs× B0 = {(a, h, b) ∈ A0 ×H1 × B0 | a = t(h), s(h) = b}.
Then X is an (A,B)-biset with structure maps

ϑ : X → A0

(a, h, b) �→ a
and

ς : X → B0

(a, h, b) �→ b

and action maps

λ : A1s×ϑX → X

(r, (a, h, b)) �→ (t(r), rh, b)
and

ρ : X ς×t
B1 → X

((a, h, b), q) �→ (a, hq, s(q)).
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Proof. We have to check the properties of a groupoid right action.

(1) For each (a, h, b) ∈ X and q ∈ B1 such that ς(a, h, b) = t(q), we have

ς((a, h, b)d) = ς(a, hq, s(q)) = s(q).

(2) For each (a, h, b) ∈ X , we have

(a, h, b)ις(a,h,b) = (a, h, b)ιb = (a, hιb, s(ιb)) = (a, h, b).

(3) For each (a, h, b) ∈ X anq q, q′ ∈ B1 such that ς(a, h, b) = t(q) anq s(q) = t(q′),
we have

((a, h, b)q)q′ = (a, hq, s(q))q′ = (a, hqq′, s(q′)) = (a, hqq′, s(qq′)) = (a, h, b)(qq′).

The properties of the left action are similarly proved. Now, we have to check the

compatibility conditions of a biset. For each (a, h, b) ∈ X , r ∈ A1 and q ∈ B1 such

that ϑ(a, h, b) = s(a) and ς(a, h, b) = t(q), we have

ϑ((a, h, b)q) = ϑ(a, hq, s(q)) = a = ϑ(a, h, b),

ς(r(a, h, b)) = ς(t(r), rh, b) = b = ς(a, h, b)

and

r((a, h, b)q) = r(a, hq, s(q)) = (t(r), rhq, s(q)) = (t(r), rh, b)q = (r(a, h, b))q,

and this finishes the proof.

3.4. The tensor product of groupoid-bisets

Next, from [22, p. 161], [12, Chap. III, §4, 3.1] and [15, Définition 1.3.1, p. 114],

we recall the definition of the tensor product of two groupoid-bisets and show its

universal property. Fix three groupoids G, H and K. Given (Y,κ, �) a (G,K)-biset

and (X,ϑ, ς) an (H,G)-biset. Considering the triple (X ς×t G1s×κ Y, ϑ, �), where

ϑ : X ς×t G1s×κ Y → H0, ((x, g, y) �→ ϑ(x));

� : X ς×t G1s×κ Y → K0, ((x, g, y) �→ �(y)),

we have that (X ς×t G1s×κ Y, ϑ, �) is an (H,K)-biset with actions:

(X ς×t G1s×κ Y )�×t K1 → X ς×t G1s×κ Y, (((x, g, y), k) �→ (x, g, yk))

H1s×ϑ (X ς×t G1s×κ Y ) → X ς×t G1s×κ Y, ((h, (x, g, y)) �→ (hx, g, y)).

On the other hand, consider the map ω : X ς×κ Y → G0 sending (x, y) �→ κ(y) =
ς(x). Then the pair (X ς×κ Y,ω) admits a structure of right G-set with action

(X ς×κ Y )ω×t G1 → (X ς×κ Y ), (((x, y), g) �→ (xg, g−1y)).

Following the notation and the terminology of [16, Remark 2.12], we denote by

X ⊗G Y := (X ς×κ Y )/G the orbit set of the right G-set (X ς×κ Y,ω). We refer to

X ⊗G Y as the tensor product over G of X and Y . It turns out that X ⊗G Y admits
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a structure of (H,K)-biset whose structure maps are given as follows. First, denote

by x⊗G y the equivalence class of an element (x, y) ∈ X ς×κ Y . That is, we have

xg ⊗G y = x⊗G gy, for every g ∈ G1 with κ(y) = t(g) = ς(x).

Second, one can easily check that the maps

�̃ : X ⊗G Y → K0, (x⊗G y �→ �(y)); ϑ̃ : X ⊗G Y → H0, (x⊗G y �→ ϑ(x))

are well defined, in such a way that the following maps

(X ⊗G Y )�̃×t K1 → X ⊗G Y, ((x⊗G y, k) �→ x⊗G yk)

H1s×ς̃ (X ⊗G Y ) → X ⊗G Y, ((h, x⊗G y) �→ hx⊗G y)

induce a structure of (H,K)-biset on X ⊗G Y .

The following describes the universal property of the tensor product between

groupoid-bisets, see also [17, Remark 2.2].

Lemma 3.15. Let G,H and K be three groupoids and (X,ϑ, ς), (Y,κ, �) the above

groupoid-bisets. Then the following diagram:

X ς× t G1 s×κ Y
ρ× 1X ��

1Y ×λ
�� X ς×κ Y �� �� X ⊗G Y (12)

is the co-equalizer, in the category of (H,K)-bisets, of the pair of morphisms (ρ ×
1X, 1Y × λ).

Proof. Straightforward.

4. Mackey Formula for Groupoids

Now we will explain and prove the main result of this work. Before doing this,

however, we have to introduce some particular groupoid-bisets and prove their

properties. We will also have to define a specific kind of product of two subgroupoids.

4.1. Orbits of products and cosets

Let G and H be two groupoids and L a subgroupoid of the product H×G. Consider
the set of equivalence classes (H×G

L )L as in Eq. (9). An element in this set is an

equivalence class of a fourfold element (h, g, u, v) ∈ L(H × G)τ = (H1 × G1)s×τ0
L0,

where τ : L ↪→ H× G is the inclusion functor, that is,

[(h, g, u, v)]L = {(hh1, gg1, s(h1), s(g1)) ∈ L(H× G)τ | (h1, g1) ∈ L1 with

t(h1) = s(h), t(g1) = s(g)}.
Lemma 4.1. Given two groupoids G and H, let L be a subgroupoid of H×G. Then
the left L-coset

X =

(H× G
L

)L
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is an (H,G)-biset with structure maps

ϑ : X → H0

[(h, g, u, v)]L �→ t(h)
and

ς : X → G0

[(h, g, u, v)]L �→ t(g)

and actions

λ : H1s×ϑX → X

(h1, [(h, g, u, v)]L) �→ [(h1h, g, u, v)]L
and

ρ : Xς×tG1 → X

([(h, g, u, v)]L, g1) �→ [(h, g−1
1 g, u, v)]L.

Proof. Let us first check that ϑ and ς are well defined maps. So given two represen-

tatives of the same equivalence class [(h, g, u, v)]L = [(h′, g′, u′, v′)]L, by Lemma 3.8,

we know that (h′, g′)−1(h, g) ∈ L1. From which one obtains t(h′) = t(h) and

t(g′) = t(g). As for λ and ρ, take h1 ∈ H1 and g1 ∈ G1 such that s(h1) = ϑ([(h, g,

u, v)]L) = t(h), t(g1) = ς([(h, g, u, v)]L) = t(g) and [(h, g, u, v)]L = [(h′, g′, u′, v′)]L.
Then, as before, we have

L1 � (h′, g′)−1(h, g) = (h′−1h, g′−1g) = (h′−1h−1
1 h1h, g

′−1g1g
−1
1 g)

= (h1h
′, g−1

1 g′)−1(h1h, g
−1
1 g),

which also shows that

[(h1h, g
−1
1 g, u, v)]L = [(h1h

′, g−1
1 g′, u′, v′)]L.

Therefore, λ and ρ are well defined. The verification that (X,ϑ, ς) is a biset is now

easy and is left to the reader.

Lemma 4.2. Given two groupoids H and G, let (X,ϑ, ς) be an (H,G)-biset and

take x ∈ X. We define

(Lx)1 = {(h, g) ∈ H× G | s(h) = ϑ(x), t(g) = ς(x), hx = xg} (13)

and

(Lx)0 = {(ϑ(x), ς(x))}. (14)

Then Lx is a subgroupoid of the groupoid H× G.

Proof. It is immediate, since by using the first axiom of a biset, we know that, for

every (h, g) ∈ (Lx)1, we have

ϑ(x) = ϑ(xg) = ϑ(hx) = t(h) and ς(x) = ς(hx) = ς(xg) = s(g).

Thus, Lx is a subgroup of the isotropy group (H×G)(ϑ(x),ς(x)) and then a sub-

groupoid with only one object {(ϑ(x), ς(x))}.

Proposition 4.3. Given two groupoids H and G, let X be an (H,G)-biset and take

x ∈ X. We define:

(Lx)0 = (Kx)0 = {(ϑ(x), ς(x))},
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(Lx)1 = {(h, g) ∈ H × G |hx = xg, ϑ(x) = s(h), t(g) = ς(x)},
(Kx)1 = {(h, g) ∈ H × G |hxg = x, ϑ(x) = s(h), t(g) = ς(x)},

that is, K = Stab(H,G)(x). Then

φx :

(H× Gop

Kx

)L

→
(H× G

Lx

)L

, ([(h, g, ϑ(x), ς(x))]Kx �→ [(h, g−1, ϑ(x), ς(x))]Lx)

is a well-defined isomorphism of (H,G)-bisets with structure given as in Lemma 4.1.

Proof. For each h′, h ∈ H1 and g′, g ∈ G1 with s(h) = ϑ(x) = s(h′) and s(g) =

ς(x) = s(g′), we have

[(h′, g′, ϑ(x), ς(x))]Kx = [(h, g−1, ϑ(x), ς(x))]Kx

if and only if

(h−1h′, g′g−1) = (h−1h′, g−1 op· g′) = (h, g)−1(h′, g′) ∈ (Kx)1,

if only if h−1bxag−1 = x, if and only if h−1h′x = xg−1, if and only if

(h, g−1)−1(h′, g′−1) = (h−1h′, gg′−1) ∈ Lx,

if and only if

[(h′, g′−1, ϑ(x), ς(x))]Kx = [(h, g−1, ϑ(x), ς(x))]Kx.

Therefore φx is well defined and injective. For each h′ ∈ H1 and g′ ∈ G1, we have

φx([(h
′, g′−1, ϑ(x), ς(x))]Kx) = [(h′, g′, ϑ(x), ς(x))]Lx

hence φx is surjective.

Now given y = [(h′, g′, ϑ(x), ς(x))]Kx ∈ (H×Gop

Kx
)L, h ∈ H1 and g ∈ G1 such that

s(h) = ϑ(y) and ς(y) = t(g), we have

φx(hyg) = ϕx([(hh
′, g

op· g′, ϑ(x), ς(x)])Kx) = φx([(hh
′, g′g, ϑ(x), ς(x)])Kx)

= [(hh′, g−1g′−1, ϑ(x), ς(x))]Lx = h([(h′, g′−1, ϑ(x), ς(x))]Lx)g = hφx(y)g

thus φx is an isomorphism of (H,G)-bisets as stated.

Definition 4.4. Given groupoids G, H and K, let L be a subgroupoid of H × G
and M be a subgroupoid of K ×H. We define

(M∗L)1 = {(k, g) ∈ K1 × G1 | ∃h ∈ H1 such that (k, h) ∈ M1 and (h, g) ∈ L1}
and

(M∗L)0 = {(v, a) ∈ K0 × G0 | ∃u ∈ H0 such that (v, u) ∈ M0 and (u, a) ∈ L0}.
Notice that, if pr2(M) ∩ pr1(L) = ∅, where pr1 and pr2 are the first and second

projections, then (M∗L)0 is obviously an empty set.
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Lemma 4.5. Given groupoids G, H and K such that H has only one object, let

L be a subgroupoid of H × G and M be a subgroupoid of K × H. Then M∗ L, as
defined in Definition 4.4, is a subgroupoid of K× G.

Proof. Given (k, g) ∈ (M∗L)1, then there is h ∈ H1 such that (k, h) ∈ M1 and

(h, g) ∈ L1 so (k−1, h−1) ∈ M1 and (h−1, g−1) ∈ L1 thus (k, g)−1 ∈ (M∗L)1.
Now let be (k1, g1), (k2, g2) ∈ (M∗L)1 such that s(k1, g1) = t(k2, g2). There are

h1, h2 ∈ H1 such that (ki, hi) ∈ M1 and (hi, gi) ∈ L1 for each i ∈ {1, 2}. Since H
has only one object we have s(h1) = t(h2) thus, we can write h1h2 and we have

(k1, h1)(k2, h2) = (k1k2, h1h2) ∈ M1, (h1, g1)(h2, g2) = (h1h2, g1g2) ∈ L1.

Therefore (k1, g1)(k2, g2) = (k1k2, g1g2) ∈ (M∗L)1, and this completes the proof.

Example 4.6. Given groupoids K, H and G such that H has only one object ω,

we consider subgroupoids D ≤ K, C ≤ H, B ≤ H and A ≤ G where C and B are

not empty, that is, have exactly the object ω. Then M = D×C is a subgroupoid of

K×H and L = B×A is a subgroupoid of H×G. For each d0 ∈ D0 and a0 ∈ A0 we

have (d0, ω) ∈ M0 and (ω, a0) ∈ L0 thus (d0, a0) ∈ (M∗L)0. We have ιω ∈ C1 ∩ B1

so for each d1 ∈ D1 and a1 ∈ A1, we have (d1, ιω) ∈ M1 and (ιω, a1) ∈ L1 therefore

(d1, a1) ∈ (M∗L)1. As a consequence, we have Di ×Ai ⊆ (M∗L)i for i = 0 and

i = 1. For each i ∈ {0, 1} and for each (ki, gi) ∈ (M∗L)i there is hi ∈ Hi such

that (ki, hi) ∈ Mi = Di × Ci and (hi, gi) ∈ Li = Bi ×Ai, thus ki ∈ Di and gi ∈ Ai,

therefore (ki, gi) ∈ Di×Ai and (M∗L)i ⊆ Di×Ai. This shows that M∗L = D×A
is not an empty groupoid if both D and A are not so.

Proposition 4.7. Given groupoids K, H and G, let M be a subgroupoid of K×H
and L be a subgroupoid of H× G. Let be

X =

{
(w, u, h, v, a) ∈ K0 ×H0 ×H1 ×H0 × G0

∣∣∣∣ (w, u) ∈ M0, (v, a) ∈ L0,

u = t(h), v = s(h)

}
. (15)

Then X is a (M,L)-biset with structure maps

ϑ : X → M0

(w, u, h, v, a) �→ (w, u)
and

ς : X → L0

(w, u, h, v, a) �→ (v, a),

left action

λ : M1s×ϑX → X

((k, h′), (w, u, h, v, a)) �→ (t(k), t(h′), h′h, v, a)

and right action

ρ : X ς×t
L1 → X

((w, u, h, v, a), (h′′, g)) �→ (w, u, hh′′, s (h′′) , s(g)).
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Proof. We only check the properties of a right action, since a similar proof shows

the left action properties.

(1) For each y = (w, u, h, v, a) ∈ X and (h′′, g) ∈ L1 such that ς(y) = t(h′′, g), we
have

ς(y(h′′, g)) = ς(w, u, hh′′, s(h′′), s(g)) = (s(h′′), s(g)) = s(h′′, g)

(2) For each y = (w, u, h, v, a) ∈ X , we have

yις(y) = yι(v,a) = y(ιv, ιa) = (w, u, hιv , s(ιv), s(ιa)) = y.

(3) For each y = (w, u, h, v, a) ∈ X and (h1, g), (h2, g
′) ∈ L1 such that ς(y) =

t(h1, g) and s(h1, g) = t(h2, g
′) we have

(y(h1, g))(h2, g
′) = (w, u, hh1, s(h1), s(g))(h2, g

′) = (w, u, hh1h2, s(h2), s(g
′))

= (w, u, hh1h2, s(h1h2), s(gg
′)) = y(h1h2, g, g

′)

= y((h1, g) · (h2, g′)).
Now we have to check the properties of a biset on X , that is, condition (2) in

Definition 3.1 for the stated actions λ and ρ. So, for each y = (w, u, h, v, a) ∈ X ,

(k, h′) ∈ M1 and (h′′, g) ∈ L1 such that s(k, h′) = ϑ(y) and ς(y) = t(h′′, g), we have

ϑ(y(h′′, g)) = ϑ(w, u, hh′′, s(h′′), s(g)) = (w, u) = ϑ(y),

ς((k, h′)y) = ς(t(k), t(h′), h′h, v, a) = (v, a) = ς(y)

and

(k, h′)(y(h′′, g)) = (k, h′)(w, u, hh′′, s(h′′), s(g))

= (t(k), t(h′), h′hh′′, s(h′′), s(g)) = (t(k), t(h′), h′h, v, a)(h′′, g)

= ((k, h′)y)(h′′, g),

and this gives the desired properties, which finishes the proof.

4.2. The main result

Let’s keep the notations of Proposition 4.7 and let’s assume we are given w ∈ K0,

u ∈ H0 and a ∈ G0 such that (w, u) ∈ M0 and (u, a) ∈ L0. Under these assumptions,

we can apply Lemma 4.5 to the groupoids K(w,w), H(u,u) and G(a,a) by taking the

subgroupoids M(w,u) of K(w,w) ×H(u,u) and L(u,a) of H(u,u) ×G(a,a). Of course, here,

we are identifying the isotropy groups M(w,u) and L(u,a) with groupoids having only

one object (w, u) and (u, a), respectively. In this way, we obtain that

M(w,u) ∗ ((h,ιa)L(u,a)) (16)

is a subgroupoid of K(w,w) × G(a,a), for every (h, ιa) ∈ L1 with s(h) = t(h) = u, and

where we have used the notation gG = gGg−1 to denote the conjugation class of a
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given element g in a group G. Since we know that K(w,w) × G(a,a) is a subgroupoid

of K × G, we have that M(w,u) ∗ ((h,ιa)L(u,a)) is a subgroupoid of K × G. This will

be used implicitly in the sequel.

Our main result is the following.

Theorem 4.8 (Mackey formula for bisets). Let K, H, G, M and L be as

in Proposition 4.7. Consider the biset X defined in Eq. (15) and the subgroupoids

M(w,u) ∗ ((h,ιa)L(u,a)) of Eq. (16). Assume that M0 = K0 ×H0 and L0 = H0 × G0,

then there is a (noncanonical) isomorphism of bisets(K×H
M

)L

⊗H

(H× G
L

)L

∼=
⊎

(w,u,h,v,a)∈rep(M,L)(X)

( K × G
M(w,u) ∗ ((h,ιa)L(u,a))

)L

,

(17)

where rep(M,L)(X) is a set of representatives of the orbits of X as (M,L)-biset.

Proof. Notice that under assumptions the denominator in the right-hand side of

Eq. (17) is a well defined subgroupoid of K×G and thus the right hand side of this

formula is well defined as well. For simplicity let us denote

V :=

(K ×H
M

)L

and U :=

(H× G
L

)L

.

As expounded in Lemma 4.1, V is a (K,H)-biset with structure maps

Θ: V → K0

[(k, h, w, u)]M �→ t(k)
and

Ξ: V → H0

[(k, h, w, u)]M �→ t(h)

and U is an (H,G)-biset with structure maps

Υ: U → H0

[(h, g, v, a)]L �→ t(h)
and

Λ: U → G0

[(h, g, v, a)]L �→ t(g).

Therefore, following Sec. 3.4, the tensor product V⊗HU in the left-hand side of (17)

makes sense and it is a (K,G)-biset by Lemma 3.15. The orbit of a given element

[(k, h, w, u)]M⊗H [(h′, g, v, a)]L in V⊗HU will be denoted by K[([(k, h, w, u)]M⊗H

[(h′, g, v, a)]L)]G. If y ∈ K\(V ⊗H U)/G is an element in the set of orbits of V ⊗H U ,
then we will use the following notations, similar to the ones already used in Sec. 3.3

and in Proposition 4.3:

(Stab(K,G)(y))0 = ((K,G)y)0 = {(Θ(y),Λ(y))},
((K,G)y)1 = {(k, g) ∈ K1 × G1 | ky = yg,Θ(y) = s(k), t(g) = Λ(y)},

(Stab(K,G)(y))1 = {(k, g) ∈ K1 × G1 | kyg = y,Θ(y) = s(k), t(g) = Λ(y)}.
Since, by Lemma 3.11 and Proposition 3.12, every biset is the disjoint union of its

orbits. By Proposition 4.3, we obtain the following isomorphisms of (K,G)-bisets:

V ⊗H U ∼=
⊎

y∈rep(K,G)(V⊗HU)

( K× G
Stab(K,G)(y)

)L

∼=
⊎

y∈rep(K,G)(V⊗HU)

( K × G
(K,G)y

)L

.
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Consider the map

ϕ : K\(V ⊗H U)/G → M\X/L
K[([(k, h, w, u)]M⊗H [(h′, g, v, a)]L)]G �→ M[(w, u, h−1h′, v, a)]L.

We have to check that ϕ is well defined. So let us choose two representatives for

the same orbit, that is, let us assume that we have an equality of the form:

K[[(k, h, w, u)]M⊗H [(h′, g, v, a)]L]G
= K[[(l, e, r, n)]M⊗H [(e′, f,m, b)]L]G ∈ K\(V ⊗H U)/G

the orbits set of V ⊗H U , where [(k, h, w, u)]M, [(l, e, r, n]M ∈ V and

[(h′, g, v, a)]L, [(e′, f,m, b)]L ∈ U . By definition this equality means that there are

k1 ∈ K1 and g1 ∈ G1 such that s(k1) = t(l), t(l) = t(g1) and

[(k, h, w, u)]M⊗H [(h′, g, v, a)]L = k1([(l, e, r, n)]M⊗H [(e′, f,m, b)]L)g1
= [(k1l, e, r, n)]M⊗H [(e′, g−1

1 f,m, b)]L
Thus, there is h1 ∈ H1 such that t(e) = t(h1), t(h1) = t(e′) and

([(k, h, w, u)]M, [(h′, g, v, a)]L)
= ([(k1l, h

−1
1 e, r, n)]M, [(h−1

1 e′, g−1
1 f,m, b)]L) ∈ V × U .

This means that {
[(k, h, w, u)]M = [(k1l, h

−1
1 e, r, n)]M

[(h′, g, v, a)]L = [(h−1
1 e′, g−1

1 f,m, b)]L.
As a consequence, from one hand, there is (k2, h2) ∈ M1 such that s(k2, h2) =

(w, u), t(k2, h2) = (r, n) and

(k, h, w, u) = (k1l, h
−1
1 e, r, n)(k2, h2) = (k1lk2, h

−1
1 eh2, s(k2), s(h2)). (18)

On the other hand, there is (h3, g2) ∈ L1 such that s(h3, g2) = (v, a), t(h3, g2) =

(m, b) and

(h′, g, v, a) = (h−1
1 e′, g1f,m, b)(h3, g2) = (h−1

1 e′h3, g1fg2, s(h3), s(g2)). (19)

Therefore, we obtain the following equalities from Eqs. (18) and (19)

k2 = l−1k−1
1 k, h2 = e−1h1h, and h3 = e′−1h1h

′, g2 = f−1g−1
1 g.

Thus

(k2, h2)(w, u, h
−1h′, v, a)(h3, g2)−1 = (s(k2), t(h2), h2h

−1h′h−1
3 , t(h3), t(g2))

= (w, n, e−1h1hh
−1h′h′−1h−1

1 e′,m, b)

= (w, n, e−1e′,m, b),

which shows that M[(w, u, h−1h′, v, a)]L = M[(w, n, e−1e′,m, b)]L in the orbits set

M\X/L. Henceforth, ϕ is a well defined map.
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In other direction, we have a well defined map given by

ψ : M\X/L → K\(V ⊗H U)/G
M[(w, u, h, v, a)]L → K[[(ιw, ιu, w, u)]M⊗H [(h, ιa, v, a)]L]G.

Let us check that ϕ and ψ are one the inverse of the other. So, for each orbit

K[[(k, h, w, u)]M⊗H [(h′, g, v, a)]L]G ∈ K\(V ⊗H U)/G
we have

ψ ◦ ϕ(K[[(k, h, w, u)]M⊗H [(h′, g, v, a)]L]G)
= ψ(M[(w, u, h−1h′, v, a)]L)
= K[[(ιw , ιu, w, u)]M⊗H [(h−1h′, ιa, v, a)]L]G
= K[(k([(ιw , ιu, w, u)]M)h−1 ⊗H ([(h′, ιa, v, a)]L)g−1)]G
= K[[(k, h, w, u)]M⊗H [(h′, g, v, a)]L]G,

which shows that ψ ◦ ϕ = id.

Conversely, for each element M[(w, u, h, v, a)]L ∈ M\X/L, we have

ϕ ◦ ψ(M[(w, u, h, v, a)]L) = ϕ(K[[(ιw , ιu, w, u)]M⊗H [(h, ιa, v, a)]L]G)
= M[(w, u, ι−1

u
h, u, a)]L

= M[(w, u, h, u, a)]L,
whence ϕ ◦ ψ = id. Therefore ϕ is bijective with inverse ψ.

Let us check that, for every element of the form

y = [(ιw, ιu, w, u)]M⊗H [(h, ιa, v, a)]L ∈ [K\(V ⊗H U)/G],
there is the following equality of subgroupoids

(K,G)y = M(w,u) ∗ (h,ιa)L(u,a).

So, taking (k3, g3) ∈ K1 × G1 such that s(k3) = t(k3) = w and s(g3) = t(g3) = a

we have k3y = yg3 if and only if

y = [(k3, ιu, w, u)]M⊗H [(h, g3, u, a)]L,
if and only if there exists h4 ∈ H1 such that s(h4) = t(h4) = u and

([(ιw , ιu, w, u)]M, [(h, ιa, u, a)]L) = (([(k3, ιu, w, u)]M)h4, h
−1
4 ([(h, g3, u, a)]L))

= ([(k3, ιuh
−1
4 , w, u)]M, [(h−1

4 h, g3, u, a)]L)
= ([(k3, h

−1
4 , w, u)]M, [(h−1

4 h, g3, u, a)]L) ∈ V × U .
This holds true, if and only if, there exists h4 ∈ H(u, u) such that{

[(ιw, ιu, w, u)]M = [(k3, h
−1
4 , w, v)]M ∈ V ,

[(h, ιa, u, a)]L = [(h−1
4 h, g3, u, a)]L ∈ U ,
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if and only if there exists h4 ∈ H(u, u) such that{
(k3, h

−1
4 ) ∈ M(w,u)

(h, ιa)
−1(h−1

4 , g3)(h, ιa) = (h, ιa)
−1(h−1

4 h, g3) ∈ L(v,a),

if and only if there exists h4 ∈ H(u, u) such that{
(k3, h

−1
4 ) ∈ M(w,u)

(h−1
4 , g3) ∈ (h, ιa)L(u, a),

if and only if

(k3, g3) ∈ M(w,u) ∗ (h,ιa)L(u,a).

As a consequence, we get the following isomorphisms of (K,G)-bisets:

V ⊗H U ∼=
⊎

y∈rep(K,G)(V⊗HU)

( K × G
(K,G)y

)L

∼=
⊎

(w,u,h,v,a)∈rep(M,L)(X)

( K × G
M(w,u) ∗ (h,ιa)L(u,a)

)L

,

which depends on the choice of a representatives set of the orbits of the biset X ,

and this finishes the proof.

As a final remark of this section, note that, as it has been done in [3, Re-

mark 4.1.6], the Mackey formula could be used to characterize the admissible sub-

categories of the biset category of finite groupoids, once this has been opportunely

defined. We do not go into the details because it would be very technical and it will

be published elsewhere.

5. Examples Using the Equivalence Relation Groupoid

In this section, we will give a simple application of Theorem 4.8, using the case

of groupoids of equivalence relations as subgroupoids of groupoids of pairs, see

Example 2.3. In other words, we want to test this formula for this case. As we will

see at the end of Sec. 5.2, this result is not surprising, although not immediate to

decipher.

5.1. Subgroupoids and equivalence relations

Given a set H , consider as in Example 2.3 the groupoid of pairs H = (H ×H,H)

and let R be an equivalence relation on H . Given the groupoid of equivalence

relation R = (R,H), we can consider the inclusion of groupoids

R = (R,H) ↪→ H = (H ×H,H). (20)
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Following Eq. (9), we know that(H
R
)L

= {[(a, u)]R| (a, u) ∈ R(H)τ = H1s×τ0
R0}

where a ∈ H1, s(a) = u ∈ R0 = H and where

[(a, u)]R = {(ar, s(r)) ∈ R(H)τ | r ∈ R1, s(a) = t(r)}
with r ∈ R1; so there are h3, h4 ∈ H (in the same equivalence class) such that

r = (h3, h4), and we also have a = (h1, h2) ∈ H1 with h1, h2 ∈ H . In particular, we

have h2 = s(a) = t(r) = h3, h4 = s(r) ∈ R0 = H , h2 = s(a) = u ∈ R0 and

ar = (h1, h2)(h3, h4) = (h1, h4).

As a consequence

[(a, u)]R = [((h1, h2), h2)]R = {((h1, h4), h4) ∈ H1s×τ0
R0 = (H ×H)×H}

and (H
R
)L

= {[((h1, h2), h2)]R|h1, h2 ∈ H}.

Lemma 5.1. Let H/R be the quotient set of H by the equivalence relation R.

Then H × (H/R) becomes a left H-set with structure map and action given by

ς : H × H

R
→ H0 = H

(h1, h2) → h1

and
H1s×ς

(
H × H

R

)
→ H × X

R

((h3, h1), (h1, h2)) → (h3, h2),

where for every h ∈ H, h denotes the equivalence class of h modulo the relation R.

Proof. It is immediate.

The following lemma is also straightforward.

Lemma 5.2. Given h1, h2, h3, h
′
1, h

′
2, h

′
3 ∈ H, we have that ((h1, h2)h2) ∼

((h′1, h′2), h′2), as representative elements of the coset [((h1, h2), h2)]R, if and only

if h1 = h′1 and h2 = h′2 as equivalence classes in H/R.

Now we have the following isomorphism of groupoid-sets:

Proposition 5.3. Using the morphism of groupoids (20), we consider (H/R)L as

a left H-set with structure map and action given explicitly in Eq. (11). Then, there

is an isomorphism of left H-set

ψ :

(H
R
)L

→ H × H

R

[((h1, h2), h2)]R → (h1, h2).
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Proof. The map ψ is well defined and injective thanks to Lemma 5.2, and the

surjectivity is obvious. Therefore, we only have to check that ψ is a homomorphism

of left H-set. The condition on the structure maps is trivial so we only have to check

the condition on the actions. Henceforth, take (y1, h1) ∈ H1 and [((h1, h2), h2)]R ∈
(H/R)L: using the action of Eq. (11), we compute

(y1, h1) · [((h1, h2), h2)]R = [((y1, h2), h2)]R
and we apply ψ to obtain (y1, h2). Now we apply again ψ to [((h1, h2), h2)]R, we

obtain (h1, h2) and finish by applying the action once again to obtain (y1, h1) ·
(h1, h2) = (y, h2).

5.2. Equivalence relations and Mackey formula

Given sets H , K and G, let us consider the groupoids of pairs H = (H ×H,H),

K = (K ×K,K) and G = (G×G,G). We have the isomorphisms of groupoids

(they’re just a switch)

K ×H = (K ×K ×H ×H,K ×H) ∼= (K ×H ×K ×H,K ×H) =: A
and

H× G = (H ×H ×G×G,H ×G) ∼= (H ×G×H ×G,H ×G) =: B
that we call

γ1 : K ×H → A and γ2 : H× G → B,
respectively. Note that A is the groupoid of pairs with respect to the set K×H and

B is the groupoid of pairs with respect to the set H ×G. Let R be an equivalence

relation on K ×H and Q be an equivalence relation on H × G: we have R ⊆ A1

and Q ⊆ B1 and we can consider the inclusion of groupoids

R := (R,K ×H) ↪→ A and Q = (Q,H ×G) ↪→ B.
Defined the groupoids M = γ−1

1 (R) and L = γ−1
2 (Q), we clearly have the

isomorphisms (K ×H
M

)L

∼=
(A
R
)L

and

(H× G
L

)L

∼=
(B
Q
)L

of (K,H)-bisets and of (H,G)-bisets, respectively. In this way, we get an other

isomorphism of (K,G)-bisets(K ×H
M

)L

⊗H

(H× G
L

)L

∼=
(A
R
)L

⊗H

(B
Q
)L

where, in the right-hand term, the structure map and the action are opportunely

defined.

On the other hand, we know that(A
R
)L

= {[((k1, h1, k2, h2), (k2, h2))]R|h1, h2 ∈ H, k1, k2 ∈ K}
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and (B
Q
)L

= {[((h3, g1, h4, g2), (h4, g2))]Q|h3, h4 ∈ H, g1, g2 ∈ G}.

Lemma 5.4. The following Cartesian product of sets

(K ×H)×
(
K ×H

R

)
admits a structure of a (K,H)-biset.

Proof. The fact that it is a left K-set can be proved like in Lemma 5.1. Therefore,

we only have to show that it is a right H-set. The structure map is given by

ϑ : (K ×H)×
(
K ×H

R

)
→ H

((k1, h1), (k2, h2)) → h1

and action is defined by

(K ×H)×
(
K ×H

R

)
ϑ×s H1 → (K ×H)×

(
K ×H

R

)
(((k1, h1), k2, h2), (h1, h3)) → ((k1, h3), (k2, h2).)

Now we have to prove the action conditions. The neutral element conditions and

the associativity are trivial. Regarding the other condition, let be

(((k1, h1), (k2, h2)), (h1, h3)) ∈
(
(K ×H)×

(
K ×H

R

))
ϑ×tH1 :

we have

ϑ((k1, h3), (k2, h2)) = h3 = s(h1, h3).

Lastly, the compatibility conditions of the left and right actions are immediate to

verify.

Proposition 5.5. Keeping the above notations, we have the following isomorphism

of (K,H)-bisets

ϕ :

(A
R
)L

→ (K ×H)× K ×H

R

[((k1, h1, k2, h2), (k2, h2))]R → ((k1, h1), (k2, h2)).

Proof. As a map of left K-sets, ϕ is an isomorphism thanks to Proposition 5.3

applied to the set K × H . So we just have to prove that it is an homomorphism

of right H-sets. The condition on the structure map is obvious. Regarding the
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condition on the action maps, given x = [((k1, h1, k2, h2), (k2, h2))]R ∈ (A/R)L and

(h1, h3) ∈ H1, we have

x · (h1, h3) = [((k1, h3, k2, h2), (k2, h2))]R � ϕ �� ((k1, h3), (k2, h2)).

On the other hand, we have

ϕ(x) · (h1, h3) = ((k1, h1, (k2, h2))) · (h1, h3) = ((k1, h3), (k2, h2)),

and this finishes the proof.

Since a similar proposition is true also for (B/Q)L, we have the following iso-

morphism of (K,G)-bisets:(A
R
)L

⊗H

(B
Q
)L

→
(
(K ×H)×

(
K ×H

R

))
⊗H

(
(H ×G)×

(
H ×G

Q

))
.

(21)

The typical element of the right-hand side of formula (21) is

y = ((k1, h3), (k2, h2))⊗H (h3, g1), (h4, g2)) (22)

for k1, k2 ∈ K, h2, h3, h4 ∈ H and g1, g2 ∈ G. Notice that, by the definition of

the tensor product over H, the element h3 should appear in both factors of the

tensor product. Therefore, there is the following isomorphism of (K,G)-bisets given
explicitly by:(

(K ×H)×
(
K ×H

R

))
⊗H

(
(H ×G)×

(
H ×G

Q

))
→ K × K ×H

R
× H ×G

Q
×G

((k1, h3), (k2, h2))⊗H ((h3, g1), (h4, g2)) → (k1, (k2, h2), (h4, g2), g1).

This gives us the left-hand side of the Mackey formula (17) in the situation under

consideration.

Let us pass to the right-hand side of the formula (17). Consider the biset X

given in Eq. (15), and fix a representative set rep(M,L)(X). Using the notations of

Proposition 4.7, we have

X =

{
(w, u, h, v, a) ∈ K0 ×H0 ×H1 ×H0 × G0

∣∣∣∣ (w, u) ∈ M0, (v, a) ∈ L0,

u = t(h), v = s(h)

}
.

In our case, it is clear that X is identified, as a (M,L)-biset with

Y = {(k, (h1, h2), g) ∈ K ×H ×H ×G} = K ×H1 ×G.
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Therefore, one can choose a bijection between their representative sets rep(M,L)(X)

and rep(M,L)(Y ). As a consequence, we obtain the following isomorphism of (K,G)-
bisets: ⊎

(k,h1,(h1,h2),h2,g)∈rep(M,L)(X)

( K ×H
M(k,h1) ∗ (((h1 ,h2),ιg)L(h2,g))

)L

∼=
⊎

(k,(h1,h2),g)∈rep(M,L)(Y )

( K ×H
M(k,h1) ∗ (((h1 ,h2),ιg)L(h2,g))

)L

. (23)

On the other hand, given k, k′ ∈ K, h1, h2, h
′
1, h

′
2 ∈ H and g, g′ ∈ G, we have

(k, (h1, h2), g) ∼ (k′, (h′1, h
′
2), g),

as elements of the (M,L)-biset Y , if and only if there are m = (k, k′, h1, h′1) ∈ M1

and l = (h2, h
′
2, g, g

′) ∈ L1 such that

(k, (h1, h2), g) = m(k′, (h′1, h
′
2), g

′)l,

if and only if (k, k′, h1, h′1) ∈ M1 and (h2, h
′
2, g, g

′) ∈ L1, if and only if

(k, h1)R(k
′, h′1) and (h2, g)Q(h′2, g

′). Therefore, we have a bijection

rep(M,L)(Y ) � K ×H

R
× H ×G

Q
. (24)

Let us now decipher the denominator parts of the right-hand side of Eq. (23).

For any element (k, (h1, h2), g) ∈ Y , we have

M(k,h1) = {(k, k, h1, h1)}, L(h2 , g) = {(h2, h2, g, g)}
and, using the multiplication of groupoids of pairs, we get

((h1 ,h2),ιg )L(h2 ,g) = ((h1 ,h2),(g,g))L(h2 ,g)

= {((h1, h2), (g, g))((h2, h2), (g, g))((h1, h2), (g, g))−1}
= {((h1, h2)(h2, h2)(h2, h1), (g, g)(g, g)(g, g))}
= {((h1, h1), (g, g))} = {(h1, h1, g, g)}.

As a consequence, we have

M(k,h1) ∗ (((h1 ,h2),ιg)L(h2 ,g)) = {(k, k, g, g)} = (K × G)(k,g),

which leads to the following isomorphism of (K,G)-biset( K ×H
M(k,h1) ∗ (((h1 ,h2),ιg)L(h2 ,g))

)L

∼= {(k1, k, g1, g) ∈ K ×K ×G×G | (k1, g1) ∈ K ×G}.
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Combining with formula (23), we arrive to the isomorphism of (K,G)-bisets⊎
(k,h1,(h1,h2),h2,g)∈rep(M,L)(X)

( K ×H
M(k, h1) ∗ (((h1 ,h2),ιg)L(h2,g))

)L

∼=
⊎

(k,(h1, h2),g)∈rep(M, L)(Y )

(K ×G).

Therefore, using the bijection of Eq. (24), in this case the Mackey formula can

be read as the following isomorphism of (K,G)-bisets

K × K ×H

R
× H ×G

Q
×G ∼=

⊎
K×H

R ×H×G
Q

(K ×G),

where the right-hand side is the coproduct of K×H
R × H×G

Q times K × G in the

category of (K,G)-bisets.

5.3. A right groupoid-set with a non surjective structure map

We will give an example of a right G-set whose structure map is not surjective,

completing by this the observations made in Remark 2.6. Given a set S, let be

∅ �= S′ � S and let R be an equivalence relation on S. Assume that there is

x0 ∈ S\S′ such that for every y ∈ S′, (x0, y) /∈ R. Let’s define RS′ = R∩ (S′ × S′),
that is, the restriction of R to S′. It is clear that RS′ is an equivalence relation

on S′.
We have the following two groupoids of equivalence relation: G = (R,S) and

H = (RS′ , S′) with the inclusion τ : H ↪→ G of groupoids. Let us define X :=

H0τ×s G1 = S′
τ×tR. Note that we have to choose S′ �= ∅ otherwise X would be

empty. The set X becomes a right G-set with structure map

ς : X → G0

(s′, (a, b)) → s(a, b) = b

and action

X ς×s
G1 → X

((s′, (a, b)), (b′, d)) → (s′, (a, b)(b′, d)) = (s′, (a, d).),

where

b = ς(s′, (a, b)) = t(b′, d) = b′.

The axioms of right G-set are not difficult to verify.

Now, we want to prove that ς is not surjective. By contradiction, let us assume

that ς is surjective. Therefore, there is (s′, (a, b)) ∈ X = S′
τ×tR such that x0 =

ς(s′, (a, b)) = b: in particular a = t(a, b) = τ0(s
′) = s′, hence (s′, x0) = (a, b) ∈ R,

with s′ ∈ S′, which contradicts our assumption. As a consequence x0 doesn’t belong
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to the image of ς in G0 and ς is not surjective. As a particular implementation of

this example, we can choose S = R, S′ = Q, x0 =
√
2 and for every s1, s2 ∈ S we

can define s1Rs2 if and only if s1 − s2 ∈ Z.
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