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Abstract: Mineralization processes in the Tell-Atlas of North Africa coincided with mag-
matism, extension, and lithospheric rejuvenation during the middle to late Miocene. This
review examines the lead isotope compositions and Pb-Pb age dating of ore deposits in
the region to elucidate the sources and timing of mineralization events. The data reveal a
predominantly radiogenic signature in the ores, indicating that the primary component
is from a crustal source, with a contribution from the mantle. Pb-Pb age dating suggests
the ranges of mineralization ages, with late Miocene events being particularly significant,
coinciding with proposed sub-continental mantle delamination following subduction of
the African lithosphere. In this context, polymetallic mineralizations formed related to
felsic magmatism, hydrothermalism driven by extensional faults, resulting in the formation
of Mississippi Valley-Type, and Sedimentary exhalative deposits within associated semi-
grabens and diapirism. The correlation between orogenic extensional collapse, magmatism,
and mineralization underscores the importance of understanding the specific geological
context of ore formation. The detachment of subducted slabs and subsequent influx of
hot asthenosphere play pivotal roles in creating conducive conditions for mineralization.
This study sheds light on the intricate interplay between tectonic mechanisms, mantle-
crust interactions, and mineralization events in the Tell-Atlas, offering insights for further
exploration in the region.

Keywords: mineralization; Atlas Mountains; lead isotopes; orogenic collapse; lithospheric
delamination; asthenosphere; Miocene; Tunisia

1. Introduction
Subcontinental mantle delamination and/or detachment has driven the upwelling of

hot asthenosphere under extending orogenic domains during the Neogene evolution of the
Western Mediterranean (e.g., [1–11]). The delamination and slab detachment mechanisms
renew the lithosphere, enhancing heat and fluid circulation within the thinned delaminated
regions, and hence favoring a diverse range of mineralization, often related to magma-
tism [2,12]. Furthermore, mineralizing fluids are driven through fault systems deeply
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rooted in the Earth’s crust, with a connection to the mantle that facilitates the circulation of
magmatic and crustal fluids containing metals [13–17]. These tectonic processes migrate
following retreating mantle slabs, producing various mineralizing mechanisms. These
processes include mantle flow and fertilization, lower-crustal melting, magmatism, the
extensional exhumation of metamorphic domes, hydrothermalism, topographic uplift, and
the formation of sedimentary basins [3,8–10,18,19].

Here, we review the role of mantle delamination or detachment in the formation of
the great diversity of ore deposits in the Nappes zone. Ore deposits within the Tellian
domain (Nappes zone) in Northern Tunisia are commonly attributed to structures formed
during the Tell orogenic evolution, such as strike-slip faulting, thrusting, or diapirism.
These mineralizations include the Oued Belif iron oxide-uranium (gold) deposit, which is
related to Iron Oxide Copper Gold-type deposits (IOCG-type) [20], SEDEX Pb-Zn deposits
of Sidi Driss and Douahria semi grabens [21], and Cu-rich sulfides of Ain El Bey and
Chouichia [22], as well as Mississippi Valley Type Pb-Zn-(Ba-Sr) deposits, Jebel Ghozlane,
and Ain Allega [23–25]. However, recent works have identified an extensional tectonic
setting coeval to Si-K rich and basaltic alkaline magmatism for the late Miocene evolution
of the region [9,10], leading to the reinterpretation for the genesis of some mineralization
within this context [15,16].

In the current review, we re-evaluate the origin and evolution of late Miocene mineral-
izations in Northern Tunisia, categorizing them according to the different settings identified
in the recently established extensional and lithospheric rejuvenation context. To achieve this
objective, we reviewed previously published lead isotope data from various ore deposits
within the Nappes zone, including MVT (e.g., Jalta. Jebel Ghozlane, Fedj Hassene, and Jebel
Hallouf [23,24,26,27]), SEDEX (e.g., Sidi Driss and Douahria [21]), mixed type (e.g., Oued
Maden [27]), and IOGC (e.g., Oued Belif hematite-rich breccia [20,28]). Additionally, we
have acquired new lead isotope geochemistry for Ain Allega. We compare these Pb isotope
datasets from ore deposits within the Nappes zone to shed light on the sources of Pb and
the timing of ore mineralization. This comparison extends to those in Northern Africa (Al-
geria and Morocco) and southeastern Spain, highlighting a possible relationship between
mineralization and Miocene extensional structures, as well as magmatism resulting from
mantle lithospheric delamination.

2. Regional Geology
The Maghrebian orogenic belt comprises two different domains: (i) the Alboran-

Kabylias-Peloritan-Calabria (AlKaPeCa; [29]) and (ii) the Tell-Rif external zone to the north
and the inverted Atlas belt to the south ([30]; Figure 1). The Alboran-Kabylias-Peloritan-
Calabria (AlKaPeCa; [29]) hinterland domain is of European origin and represents the
former northern margin of the Alpine Tethys [29,31–34]. The Tell-Rif Western Mediter-
ranean Alpine belts result from the closure of the Maghrebian branch of the Alpine Tethys
(Figure 1). The Atlas, belonging to the second domain, is an intra-continental asymmetric
system that includes both poorly deformed mountain belts (High and Middle Atlas in Mo-
rocco, the Saharan Atlas and Aurès Mountains in Algeria, and the Tunisian Atlas in Tunisia.
This system is characterized by the widespread distribution of older rocks (Paleozoic and
lower Mesozoic) in the western Maghreb and Cenozoic rocks that dominate in the eastern
part ([30,32]; Figure 1).
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Figure 1. Tectonic sketch of the western Mediterranean basins and orogens. Modified from [31]. 
The box shows the Nappes zone location. 
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bricated allochthonous nappes [9,10,74] and metamorphic flysch successions on the la 
Galite Island (North of Tunisia) and NE Algeria [35,75–77]. Neogene extensional basins, 
such as the Oued Douimis, Mejerda, and Mateur basins, with a thickness reaching up to 
1300 m, are present [9,10,78]. The Tellian units from top to bottom and from north to 
south include the Col de l’Adissa, Aïn Draham, Jebel Ed Diss, and Kasseb units, span-
ning from Maastrichtian to Oligocene ([35,79]; Figure 2). 

The Nappes zone is cut by deep NE–SW faults bounding Tortonian-Messinian 
semi-grabens with km-scale displacements that exhumed the Tellian footwall series 
([9,10,80–82]; Figure 2). Pliocene-Quaternary reactivation as reverse faults [83], along 
with E-W dextral and NE-SW sinistral faults, modified the fault systems of Northern 
Tunisia [78,79,84,85]. The Cap Serrat–Ghardimaou NE-SW Fault [86,87] in the Nefza re-
gion, extending over 70 km, exhumes Triassic outcrops beneath tilted Numidian Oligo-
cene to early Miocene sediments [9] and shows Neogene volcanic extrusions such as Ras 
Rajel [87,88] with larger underlying magmatic bodies [69]. It is linked to Messinian 
high-angle extensional faults [9,10]. 

Neogene geodynamics of Northern Tunisia is influenced by NW-SE Africa– Eurasia 
convergence and slab rollback with back-arc basin opening [1,9,10,78,89,90]. Evidence of 
lithospheric delamination or detachment under the Tunisian Tell includes Serraval-

Figure 1. Tectonic sketch of the western Mediterranean basins and orogens. Modified from [31]. The
box shows the Nappes zone location.

The present-day relief of the Maghreb-Betic orogen evolved in the context of the
Cenozoic Eurasia-Africa collision [30,35,36] with the contribution of other mechanisms
including Neogene extension [9,10,34,37–40] driven primarily by deep mantle tectonic
mechanisms [8,18,41–43], dynamic topography due to slab pull and small-scale mantle
upwelling and flow [3,19,44–46], magmatic crustal accretion at volcanic arcs [9,31,47], and
recent contractional inversion [48–55]. The structure of the Atlas system is influenced
by the inversion of Early Mesozoic rifting faults of both the Central Atlantic and Alpine
Tethys [56].

The convergence of the Africa and Eurasia plates since the Late Cretaceous [57,58] led
to oceanic subduction and associated early Eocene metamorphism (with rutile U-Pb ages of
49 Ma) in the Tell Triassic dolerites [10], Kabylian flysch, and associated serpentinites [35,59].
This compressional tectonic event was followed by early Oligocene continental subduction,
resulting in ultrahigh-pressure (UHP) metamorphism in the African lower crust exhumed
at the Edough Massif, dated by rutile U-Pb at 32 Ma [60,61]. Crustal thickening also
induced high-pressure/low-temperature (HP-LT) metamorphism in hinterland units of the
Alboran domain, with 40Ar/39Ar white mica dating yielding ages of 38–28 Ma [62,63]. The
southeastward propagation of crustal thickening during the late Oligocene to early Miocene
occurred concurrently with the extensional collapse of the over-thickened lithosphere in a
back-arc supra-subduction setting, accompanied by associated tholeiitic and calc-alkaline
magmatism [38,64–66].

Northern Tunisia is part of the Maghrebian chain, which is characterized by two
distinct external domains: the Tellian Numidian zone (Nappes zone) in the north [67] and
the highly folded domain with NE-SW-trending Triassic outcrops, known as the Diapirs
zone, in the south (Figure 1). The deformed Tunisian Foreland lies further south in a more
external position. The Tellian zone in northern Tunisia consists of sedimentary and low-
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grade metamorphic rocks ranging in age from Triassic to Miocene [10,68]. The magmatic
evolution of the Tellian zone includes scattered outcrops of intrusive felsic and mafic
igneous rocks, related to the Alpine orogeny and emplaced in the La Galite, Mogods, and
Nefza areas during the Serravallian to Messinian [28,69].

3. Geological and Geodynamic Settings of the Nappes Zone
The Nappes zone includes the Oligocene-Miocene Numidian Flysch, overlying Tellian

and Atlas Mesozoic and Cenozoic sedimentary series from the North Maghrebian passive
margin ([23,67,70–73] Figure 2). It primarily features Triassic to Burdigalian imbricated
allochthonous nappes [9,10,74] and metamorphic flysch successions on the la Galite Island
(North of Tunisia) and NE Algeria [35,75–77]. Neogene extensional basins, such as the
Oued Douimis, Mejerda, and Mateur basins, with a thickness reaching up to 1300 m, are
present [9,10,78]. The Tellian units from top to bottom and from north to south include the
Col de l’Adissa, Aïn Draham, Jebel Ed Diss, and Kasseb units, spanning from Maastrichtian
to Oligocene ([35,79]; Figure 2).
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Channel [76], La Galite deposit is of vein and fracture-filling type [102]. The 
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Figure 2. Simplified geologic map of northern Tunisia (modified from [71–73]) with the distribution
of ore deposits, magmatic rocks, and deep-seated faults. GHCS: Ghardimaou-Cap Serrat Fault. RKTF:
Ras el Korane-Thibar Fault. ETF: El Alia-Teboursouk Fault. TEF: Tunis-Elles Fault. SD-DH-OB: Sidi
Driss-Douahria-Oued Belif, JA-AA: Jebel Arja-Ain Allega, RR: Ras Rajel, OM: Oued Maden, FH:
Fedj Hassene, AB-CH: Ain el Bey-Chouichia, SB-JH: Sidi Bouaouane-Jebel Hallouf, BZ: Bazina, SM;
Semmene, JL-BA: Jalta-Bir Afou, JG: Jebel Ghozlane.

The Nappes zone is cut by deep NE-SW faults bounding Tortonian-Messinian semi-
grabens with km-scale displacements that exhumed the Tellian footwall series ([9,10,80–82];
Figure 2). Pliocene-Quaternary reactivation as reverse faults [83], along with E-W dextral
and NE-SW sinistral faults, modified the fault systems of Northern Tunisia [78,79,84,85].
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The Cap Serrat-Ghardimaou NE-SW Fault [86,87] in the Nefza region, extending over
70 km, exhumes Triassic outcrops beneath tilted Numidian Oligocene to early Miocene
sediments [9] and shows Neogene volcanic extrusions such as Ras Rajel [87,88] with
larger underlying magmatic bodies [69]. It is linked to Messinian high-angle extensional
faults [9,10].

Neogene geodynamics of Northern Tunisia is influenced by NW-SE Africa-Eurasia con-
vergence and slab rollback with back-arc basin opening [1,9,10,78,89,90]. Evidence of litho-
spheric delamination or detachment under the Tunisian Tell includes Serravallian-Tortonian
and Messinian calc-alkaline rocks [29,91,92], rapid crustal exhumation [9,10,93], low-
velocity mantle at depths of 50–100 km below NE Algeria and Northern Tunisia [2,11,86–96],
and Neogene crustal thinning with anomalous high-velocity lower crust [97], which is in-
terpreted as underplated Neogene mafic magmatic rocks [10]. Furthermore, the occurrence
of SE-directed escape of the Tunisian Tell and Atlas, bounded by right-lateral strike-slip
faults, is interpreted as a Subduction Transfer Edge Propagator fault system along the
Southern Tunisian Atlas [9,98,99]. This region of anomalous low-velocity upper mantle
shows significant Miocene Pb-Zn-Fe hydrothermal mineralization, with minor Hg, Au, and
Sb [21,23,26–28,86,100–104].

Late Miocene-Pliocene extensional events during the Africa-Eurasia convergence led
to half-grabens formation, fault reactivation, and bimodal magmatism with mafic lavas
(7–8.5 Ma) and rhyodacite-granodiorite (8.5–12.5 Ma) in northern Tunisia [9,92]. In the later
Plio-Quaternary period, there was northwest to Southeast-directed shortening, leading to
the creation of inversion arrowhead structures, reverse faults, refolded extensional rollover
anticlines, and folding of the older extensional faults.

Neogene magmatism in Northern Tunisia is attributed to subduction and slab de-
lamination processes [42,105,106], as confirmed by tomography showing a detached slab
beneath Tunisia [94,97], separated from the underlying lithosphere at a depth of 150 km
since the late Miocene [94,107]. Other tomographic models show the slab extending even
deeper, overlying the 660 km discontinuity [108]. This body has been interpreted as being
formed from a stripped subcontinental lithospheric mantle attached to the African conti-
nental lithospheric mantle [109]. The continental nature of this slab would also explain the
fact that the slabs imaged by [94] represent an area larger than the possible oceanic slab
consumed by subduction since the Cretaceous [33].

Magmatic activity in the Nappes zone was initially calc-alkaline, with a subduction-
related signature, then, transitional mafic lavas, with a double signature of both intra-
plate and orogenic magmatism [92]. These are related to an extensional post-collisional
regime [92]. This evolution has been related to the progression of slab breakoff after tectonic
collision [2]. The magmatic activity is differentiated into four groups ([28,70,74,92,110–112];
Figure 2). The first group (middle-late Miocene phase) includes calc-alkaline rhyodacites
and granodiorites (12.9–8.2 Ma; [91]), and small lava flows (8.4–6.6 Ma; [87,91]) along
the ENE-WSW-trending Oued Belif fault, Nefza Basin. They are present in Oued Belif
(enclosing the Ragoubet el-Alia granodiorite and the Ragoubet Es-Seid) and also found in
Ain El Araar rhyodacites), Aïn Deflaïa, Jebel Haddada, and Oued Zouaraa. The second
group (late Miocene) comprises Mogods basalts. They consist of basaltic dykes and necks
in the Guelb Saad Moun (7–5.17 Ma; [87,91]) and rare basaltic lava flows and dykes in
the Oued Melah (6.9 Ma; [87]). The third group (late Miocene) involves Mokta el-Hadid
basalts (6.9 Ma; [28]) and Ras Rajel dacitic breccias [103], both emplaced along the NE-
SW Guardimaou-Cap Serrat fault. Lastly, the fourth is marked by a middle-late Miocene
granitoid batholith (14–10 Ma; [91]) in La Galite Archipelago [76,113].

It is worth mentioning that the first phase shows a component of lower-crustal melting
due to lithospheric delamination after the Tethyan slab roll-back [114,115]. Conversely,
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the second and third phases are attributed to an extensional post-collisional environ-
ment [92], while the fourth group is associated with an extensional tectonic event resulting
from slab break-off [76,77]. The observed temporal evolution could also be linked to a
slab break-off process [114,115] or lateral slab tearing and inboard subcontinental mantle
delamination [9,10].

4. Characteristics of Major Polymetallic Mineralization of the
Nappes Zone

The types and age range of magmatism, mineralization types, and isotopic compo-
sitions of ore districts in the Nappes zone are compiled in Figure 2 and Table S1 [20–
22,24,25,27,28,86,101,103,104,116,117]. These deposits can be divided into five groups of
ore zones or districts:

(i) Vein-Type Hydrothermal Copper sulfide deposits associated with the Neogene
calc-alkaline rocks in the La Galite Archipelago. They are located within the internal zone
of the Maghrebian Chain and belong to the crystalline massif zone [118]. Located 45 km off
Cap Serrat and 60 km north of the town of Tabarka in the Sardinia-Tunisia Channel [76], La
Galite deposit is of vein and fracture-filling type [102]. The Cu–Fe–Sb–Bi mineralization
is hosted by diorites, granodiorites, microgranites, and granites, which formed during
the middle to late Miocene and is associated with the La Galite ENE-WSW deep-seated
fault [102,119].

(ii) The Ghardimaou-Cap Serrat ore deposit (GCSOD) is associated with late Miocene
extensional faults, including the low-angle Nefza detachment, which is folded in the Oued
Belif dome, and high-angle normal faults such as the Ghardimaou-Cap Serrat fault. These
faults exhumed the Tellian units from under several kilometers of Numidian Flysch [9,10].
The activity of these faults also was coeval to Neogene magmatism, including the Aïn
Deflaia rhyodacite, Ras Rajel dacitic breccias, and Zouaraa rhyodacitic ignimbrites and
basalts, and also facilitated the diapirism of Triassic evaporites. Notably, the Ras Rajel Fe
oxides-(Ag-Au) deposit is the only occurrence directly associated with magmatic outcrops
along the Ghardimaou-Cap Serrat fault. This deposit, found in the dacitic breccias, contains
up to 48 g/t Ag, 0.3% Zn, 0.5% Pb, and 52 ppb Au, as reported by [116]. The deposits of
the GCSOD are characterized by two major types of mineralization: mixed type and MVT
(e.g., [102,105]). The primary ore deposits are polymetallic, featuring elements such as
Hg-Pb-Zn-As-Sb-Cu of Oued Maden mixed type, MVT of Jebel Arja [28,86,101], MVT Zn-
Pb-(Ba-Sr) of Ain Allega [101,104], and Zn-Pb-(Fe-As-Hg-Ba) MVT of Fedj Hassene [27,101].

(iii) The Nefza ore deposit (NOD) is marked by a suite of Pb-Zn-Fe-REE polymetal-
lic mineralizations, associated with magmatism and hosted by Mio-Pliocene volcano-
sedimentary and Messinian–Zanclean siliciclastic rocks filling semigrabens. These deposits
include the IOGC of Oued Belif-Boukhchiba Fe-REE-U-Zn-Pb-(Au) mineralization [20], the
Oued Belief Fe ores skarn [20,120], and the Messinian Zn-Pb-(Ba-Sr) SEDEX deposits of
Sidi Driss and Douahria [21].

(iv) The Neogene basin ore deposits (NBOD), located on the edge of the Mogods,
are characterized by a series of small polymetallic ore deposits scattered along and near
the Bled El Aouana-Bizerte Fault [81,115]. The formation of these ore deposits is linked
to Miocene extensional faults, such as the Ghezala low-angle normal fault. Some ore
deposits are found near basalt lava flows and dyke outcrops in Guelb Saad Moon, Oued
Melah, Jebel Jebs, and Jebel Sboua. These MVT mineralizations are hosted in Mio-Pliocene
conglomerates with Pb-Zn-(Ba-As) at Jalta and Semene [23,26,121], which are cut and
tilted over the Ghezala low-angle normal fault [9]. Other host rocks include Cretaceous
carbonates with Pb-Zn-(F-Cu) at Kef El Fadjel and with Fe-Pb-Zn of El Ghreffa [122],
Triassic dolostones with Pb–Zn at Jebel Zebs and Bazina [122], and in Eocene carbonates
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with Pb-Zn of Jebel Ghozlane [23,24]. Additional Pb-Zn-(As-Sb) mineralizations occur
without magmatic rock outcrops. These MVT deposits are hosted in lacustrine limestones
and continental conglomerates of the Mejerda late Miocene extensional basin at Sidi Bou
Aouane and El Haouaria in Beja [100,102], as well as in Late Cretaceous at Jebel Hallouf,
and Khanguet Kef Tout [27,121].

(v) The El Haïrech-Ichkeul ore districts (HIOD) occur in the footwall and fault rock
of extensional detachments that contributed to the exhumation of mid-crustal rocks in the
core of the massifs [10]. Mixed type Fe-Cu rich-sulfides and Au mineralization at Ain El
Bey, Chouichia, and Kef El Agueb deposits occur in the HIOD along faults that bound
metamorphic outcrops of the early Mesozoic series of the Jebel el Hairech and Fe-Cu of
Jebel Ichkeul [102,123]. The Chouichia, Kef El Agueb, and Ain El Bey mineralizations
are hosted along faults that cut through marine Eocene limestones, Oligocene-Miocene
silty clays, and sandstones, as well as in the unconformably overlying sandstones [123].
The paragenesis consists of siderite-ankerite (gangue), pyrite, marcasite, arsenopyrite, and
various copper sulfides [117,123].

The study of fluid inclusions in gangue minerals (quartz, fluorite, dolomite, siderite,
calcite) from ore deposits (GCSOD, NOD, NBOD, HIOD) reveals ore-forming fluids with
a wide range of temperature (110–300 ◦C) and salinity (23.2–42 wt% NaCl), responsible
for the deposition of sulfides and sulfosalts containing Cu, As, Sb, Bi, and Ni [101,120,122].
These fluids were responsible for the genesis of various ore deposit types [101,117,120,122].

5. Methodology
For Pb isotope measurements, 2–3 mg of galena sample was dissolved using ultrapure

(double distilled) HCl. The Pb isotope compositions were analyzed using a Nu Instru-
ments™ multi-collector inductively coupled plasma mass spectrometer instrument within
the Radiogenic Isotope facility at the University of Bern (Switzerland). Sample aliquots
were subsequently mixed with ~1.5 mL of a 2% HNO3 solution spiked with the NIST SRM
997 Thallium standard (2.5 ppb), and aspirated (~100 mL/min) into the ICP source using
an ApexTM desolvating nebulizer (Nu Instruments Ltd., Wrexham, UK). Simultaneous
measurements of all the Pb and Tl isotopes and 202Hg ion signals were achieved by using
seven Faraday collectors. The 205Tl/203Tl ratio was measured to correct for instrumental
mass bias (exponential law; 205Tl/203Tl = 2.4262). Upon sample introduction, data acquisi-
tion consisted of 2 half-mass unit baseline measurements prior to each integration block
and 3 blocks of 20 scans (10 s integration each) for isotope ratio analysis. 204Hg interference
(on 204Pb) was monitored and corrected using 202Hg. At the beginning of the analytical
session, a 25 ppb solution of the NIST SRM 981 Pb standard, which was also spiked with
the NIST SRM 997 Tl standard (1.25 ppb), was analyzed. The external reproducibility of
individual analytical sessions was ca. 1 × 10−4.

For the genetic classification, the method for calculating ∆γ and ∆β according
to [124] is (∆β = [β/βM(t) − 1] × 1000; ∆γ = [γ/γM(t) − 1] × 1000; β = 207Pb/204Pb;
γ = 208Pb/204Pb; βM(t) = 15.33; γM(t) = 37.47).

6. Lead Isotope Compositions
6.1. Signature and Sources of Metals

The Pb isotope data from 39 galena samples from the Nappes zone in Northern Tunisia,
compiled from previous studies [20,23,24,26–28] and supplemented with new data (Ain
Allega), are listed in Table S2 and displayed in traditional Pb isotope covariance diagrams
(Figure 3). Pb isotope data from Miocene felsic magmatic rocks in the Nefza area, North
Africa Neogene granitoids [28,125], and Miocene volcanic rocks of the Betics and Alboran
Sea [126] are also plotted for comparison. The average crustal Pb growth curves from [127]
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are included for reference in Figure 3. The Pb isotope ratios for all galena samples range
from 18.695 to 18.894 for 206Pb/204Pb, 15.660 to 15.686 for 207Pb/204Pb, and 38.895 to 39.000
for 208Pb/204Pb. The Pb isotope compositions of galena samples from each deposit group
are homogenous, with narrow Pb isotope ranges (Figure 3, Table S2; [24,26–28]). However,
when compared to each other, they show heterogeneity, as illustrated in the uranogenic
and thorogenic diagrams (Figure 3).
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Nefza-La Galite-Algeria Neogene magmatic rocks [28,125], and Alboran sea volcanic rocks [126].
Sources of data for Tunisian ore deposits (see Table S2).
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All Pb isotopic data of all types align between the orogen and upper crustal curves
of [127] (Figure 3) but are closer to the latter. This suggests that the Pb is derived from
an upper crustal source [128]. The Oued Maden (Group 2, mixed type) deposit exhibits
distinctly more radiogenic Pb isotope signatures, with high µ values (9.84), suggesting
a greater contribution from evolved continental crustal materials. These signatures are
consistent with fluids that may have leached metals from upper crustal reservoirs influ-
enced by magmatic or hydrothermal processes. The crustal Pb isotopic signature could also
reflect contributions from metamorphic fluids derived from deeper crustal levels presently
exhumed by extensional faults in northern Tunisia. The involvement of various processes
aligns with its classification as a mixed-type deposit, where metals are primarily sourced
from the crust, but magmatic and metamorphic activity may have indirectly contributed by
providing heat or fluids that facilitated the mobilization and transport of these metals [129].
In contrast, the Fedj Hassene and Ain Allega (Group 2) MVT deposits display less radio-
genic Pb isotope compositions, indicating that the lead is derived from juvenile crustal
reservoirs. The SEDEX type (Sidi Driss, Douahria; Group 3) deposits exhibit Pb isotopic
signatures that overlap with both the MVT deposits (Fedj Hassene, Ain Allega, Jalta, Jebel
Hallouf) and the magmatic field associated with the Nefza-La Galite-Algeria magmatic
rocks and the LREE-enriched volcanic rocks of the Alboran Sea (Figures 3 and 4). This
suggests a mixed source for the metals, where deep formational saline brines interacted
with rock cover and basement, acquiring their isotopic signatures. Magmatic heat may have
enhanced fluid circulation, facilitating the interaction of these saline fluids with various
rock types. This is consistent with the SEDEX model, where metals are sourced from the
basement and transported by brines into the sedimentary basin. The IOCG (Oued Belif
(Group 3) also shows Pb isotopic signatures that primarily overlap with magmatic fields.
This implies a potential influence from magmatic activity, possibly as a heat source or a
minor metal contributor. The magmatic processes and fluid circulation driven by the Nefza
extensional detachment may have provided the necessary conditions for the mobilization
and transport of metals, highlighting the significant role of magmatism and hydrothermal
activity in an extensional setting, typical in the genesis of these deposits.

The Pb isotopic composition of Jebel Ghozlane (Group 4) (MVT) stands out as the
least radiogenic among the studied deposits. This suggests the involvement of crustal lead
with a less evolved radiogenic signature, indicating a unique fluid pathway or source (i.e.,
unradiogenic lead) compared to other MVT and SEDEX deposits in the area.

The ∆γ–∆β diagram (Figure 4) (with the detail of the calculation of ∆γ and ∆β is
described in the method of [124]) shows that the calculated ∆γ and ∆β values for galena
samples predominantly fall within the magmatic field (3a), corresponding to a mixed
upper crust-mantle source characteristic of subduction processes (Figure 4). This suggests
a magmatic-hydrothermal-metamorphism influence on the ore-forming systems in the
study area. However, the involvement of other fluids, such as highly saline fluids typ-
ical of SEDEX systems and basinal brines typical of MVT systems, also contributed to
ore deposition to varying degrees across different deposits. Magmatic centers, particu-
larly active during the Miocene, may have served as primary drivers by providing heat
that initiated the circulation of deep-seated saline and basinal brines within sedimentary
basins. These brines could have scavenged metals from sedimentary or basement rocks,
contributing to ore deposition. Moreover, the overlap of Pb isotope compositions with the
field of Nefza-La Galite-Algeria Neogene magmatic rocks, as well as the middle to late
Miocene LREE-enriched volcanic rocks of the Alboran Sea, further supports a magmatic
influence. This overlap suggests that a magmatic source either directly contributed metals
or facilitated the flow of fluids, which passed through various rocks and scavenged metals
from magmatic sources (Figure 4). The Pb-Sr-Nd of La GaliteAlgeria granites suggest
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mixing processes involving anatectic melts and differentiated Island Arc-type magmas or
melting of crustal terranes intruded by mantle-derived igneous rocks [125]. The Nefza gra-
nodiorites and rhyodacites, as highlighted by [28,106], exhibit enrichment of LILE, LREE,
Pb, and W, indicative of felsic magmatism driven by calc-alkaline magma mixed at depth
with predominant peraluminous crustal melts in post-collisional conditions [28,114]. Such
magmatic systems likely provided both metals and the thermal energy required to drive
fluid circulation. Additionally, the LREE-enriched volcanic rocks of the Alboran, enriched
in fluid-mobile elements such as Rb, Th, U, K, and Pb, may have formed [126] through
the mixing of MORB melts with 10–50% crustal melts, as represented by the cordierite-
bearing volcanic rocks from southern Spain or through the addition of sediment melts to the
mantle source.
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Figure 4. ∆γ–∆β genetic classification diagram after [124] showing lead isotope composition of
Nappes zone ores (1: mantle lead, 2: upper crustal lead, 3: mixed upper crustal and mantle lead-
3a: magmatism, 3b: sedimentation, 4: chemical deposit lead, 5: submarine hydrothermal lead, 6:
medium-high grade metamorphic lead, 7: hypometamorphic lower crustal lead, 8: orogenic belt lead,
9: ancient shale upper crustal lead, and 10: retrograde metamorphic lead) (∆β = [β/βM(t) − 1] ×
1000; ∆γ = [γ/γM(t) − 1] × 1000; β = 207Pb/204Pb; γ = 208Pb/204Pb; βM(t) = 15.33; γM(t) = 37.47).

Lead isotope data for ore deposits from the Tunisian Nappes zone are also plotted
in Figure 5, alongside comparative data from (1) Algerian Tell ores [130], (2) the Morocco
Rif ore deposits [131], and (3) ore deposits from southeastern Spain [132]. The Pb isotope
compositions of the Nappes zone ores show strong similarity to those of the Algeria-
Morocco Tell-Rif ores and southeastern Spain ones, suggesting comparable metal source
and fluid pathways.



Minerals 2025, 15, 31 11 of 24

Minerals 2025, 15, x FOR PEER REVIEW 13 of 28 
 

 

intermediate redox conditions, reflected in the coexistence of sulfosalts (e.g., tetrahe-
drite) and arsenopyrite. These variations in fO2 align with the broader tectonic and 
magmatic framework, where mantle delamination and crustal extension generated the 
thermal and structural conditions to drive diverse fluid systems, accommodating both 
oxidized magmatic fluids and reduced basinal brines. Together, these observations em-
phasize the critical role of fO2 in controlling mineral assemblages and ore-forming pro-
cesses across the region. 

 
Figure 5. Lead isotope compositions of galena from selected Tunisian Nappes zone ore deposits 
plotted on a 207Pb/204Pb vs. 206Pb/204Pb diagram for comparison together with the ores of Algerian 
Tell [131], Morocco Rif [132], and southeastern Spain [133]. 
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The calculated average values 238U/204Pb (µ = 9.50), 232Th/204Pb (ω = 36.86), and
232Th/238U (κ = 3.88) for the galena samples from the Nappes zone ore deposits, relative
to the equation of [133], indicate notable deviations from the average crustal Pb evolution
curve (µ = 9.74, ω = 36.84, and κ = 3.78; [134]). Specifically, the µ values are slightly lower,
while the ω and κ values are higher. This suggests that the metals originated from a hybrid
source, involving contributions from both the mantle and a dominant crustal component.
The high 207Pb/204Pb ratios (>15.55) observed in these deposits provide further support for
a predominantly upper continental crust origin for Pb [135], consistent with the findings
from ∆γ–∆β diagrams.

As shown in Figure 6A, there is a positive correlation between 207Pb/204Pb and µ,
suggesting spatial and temporal variation in Pb sources. For example, deposits in the Oued
Maden region (SW) exhibit higher 207Pb/204Pb and µ values, reflecting a more evolved
lead source with a stronger upper crustal component [136]. In contrast, deposits in the NE,
such as those in the Jebel Ghozlane and Nefza districts, show lower µ values, indicative
of a less evolved source with possible mantle-derived contribution and/or a reservoir of
low Pb radiogenic signature. Further analysis, presented in Figure 6B, reveals a strong
correlation between µ values and model ages of mineralization, indicating that variations
in 207Pb/204Pb and µ are primarily time-dependent, i.e., lead source evolved over time.
These findings suggest that as the tectonic system evolved, Pb isotope compositions became
increasingly influenced by upper crustal sources, resulting in more radiogenic signatures
in younger mineralization. Despite the dominance of upper crustal signatures, some
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deposits with lower µ values point to a mantle influence and/or a reservoir of unradio-
genic crustal signature, highlighting the complexity of the metal sources in the region.
Two potential sources for this unradiogenic lead are the young Miocene felsic rocks and
mafic rocks. This hybrid system, involving contributions from both magmatic and crustal
sources, is consistent with the broader regional context described in the Pb isotope and
∆γ–∆β diagrams.
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While Pb isotopic variations provide an insight into the sources of metals, mineral
paragenesis offers complementary evidence on the redox conditions under which these
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metals were transported and deposited. The mineral paragenesis across the studied de-
posits (Table S1) provides valuable insights into the oxygen fugacity (fO2) conditions during
ore formation, highlighting distinct redox environments. IOCG deposits, such as Oued
Belif, are characterized by oxidized conditions (high fO2), as indicated by the dominance
of hematite and goethite, which suggest a strong influence of magmatic-hydrothermal
fluids. In contrast, SEDEX and MVT deposits, such as Sidi Driss, Ain Allega, and Fedj
Hassene, formed under reduced conditions (low fO2), as evidenced by sulfide-dominated
assemblages, including galena, sphalerite, and pyrite, typical of basinal brines. Mixed-
type deposits, such as Oued Maden and Chouichia-Ain el Bey, exhibit intermediate redox
conditions, reflected in the coexistence of sulfosalts (e.g., tetrahedrite) and arsenopyrite.
These variations in fO2 align with the broader tectonic and magmatic framework, where
mantle delamination and crustal extension generated the thermal and structural conditions
to drive diverse fluid systems, accommodating both oxidized magmatic fluids and reduced
basinal brines. Together, these observations emphasize the critical role of fO2 in controlling
mineral assemblages and ore-forming processes across the region.

6.2. Pb-Pb Age Dating of Ores

The extraction time of lead from its reservoir can correspond to the crystallization
time of Pb-rich minerals, such as galena. Therefore, the model age can reflect the timing of
ore genesis. This assumption holds true because most ore deposits are hosted in Miocene
rocks, where reworking of lead sources is minimal, supporting the concept of a closed
system during mineralization. The model ages of polymetallic ore deposits associated
with the Ghardimaou-Cap Serrat Fault (e.g., Fedj Hassene, Ain Allega, and Oued Maden
mineralizations) average 6.10 Ma, 13.6 Ma, and −0.73 Ma, respectively (Table S1). The
Fedj Hassene ores correspond to the late Tortonian-Messinian age, consistent with the
age of basalts in nearby basins such as Mokta el-Hadid, Boulanague, and Zouaraa Basin
(8 ± 1 Ma: [89,137]; 8.4 ± 0.4 Ma: [91]; 6.6 Ma: [87]; Figure 7). Similarly, the Ain Allega
mineralization aligns with a middle Miocene age (average 13.6 Ma), consistent with the
emplacement of the La Galite granitoids (14–10 Ma; [91]; Figure 7). In contrast, the Oued
Maden mineralization records negative model ages, which are likely due to the mixing of
varying amounts of radiogenic lead into the system [138,139]. The Pb model ages of Zn-Pb-
(Fe-Ba-Sr) deposits associated with Neogene magmatism (e.g., Sidi Driss, Douahria, and
Oued Belif) range from 5.7 to 14.5 Ma, with an average value of 9.89 Ma (Table S2). These
values align with the K-Ar age of 8–12 Ma for the Nefza felsic magmatic rocks ([91,137];
Figure 7) and the 9.1–9.4 Ma for the Oued Belif rhyodacite ([20]; Figure 7). Collectively,
these data suggest a late Tortonian-early Messinian age for the remobilization of lead
from source rocks and its fixation in galena, as confirmed by ([21,103]. The model age
calculations for Pb-Zn-Ba-Sr-(As-Sb) deposits hosted in Neogene and Mesozoic carbonates
and continental conglomerates (e.g., Jebel Hallouf, Jebel Ghozlane, and Jalta) range from
7 from 18.2 Ma (Table S2). Two distinct average model age values can be identified:
17.16 Ma for Jebel Ghozlane, corresponding to the early Miocene and 5.01 Ma for the
remaining ore deposits Jalta and Jebel Hallouf, corresponding to the late Miocene-Pliocene.
The 5.01 Ma age is consistent with the emplacement late Miocene to Pliocene Basaltic
dykes and necks widely distributed across the Mogods area (e.g., Guelb Saad Moun:
7–5.17 Ma; ([68,87]; Figure 7); Oued Melah area: 6.9 Ma; [87]). The model Pb ages of galena
of most deposits, except Oued Maden, align with the timing of magmatism in the Nappes
zone during the late Miocene extensional event. This Miocene age is also consistent with
other regional deposits, including the Tell Algerian ores [130], the Cabo de Gata deposits
from southeastern Spain (9.2 Ma, [132]), and the Moroccan Rif Melilla-Nador peninsula
deposits (7.8 Ma, [131]). The Miocene magmatism in the Nappes zone is interpreted to
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have been derived from the subcontinental lithospheric mantle metasomatized during
earlier subduction events and mixed with partial melts from the African crust [9,28,114].
This melting has been attributed to asthenospheric mantle upwelling due to lithospheric
detachment [114] or delamination [5,9]. The subduction-related origin is further supported
by the high 207Pb/204Pb values (>15.65–15.71) [47].
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7. Evolution and Tectonic Model of the Nappes Zone Atlas Belt
The detachment of a subducted slab, leading to orogenic collapse, is a significant

geological mechanism influencing mineralization in the Atlas Mountains of North Africa
(Figure 8). This collapse occurs due to either the sinking of a thick, unstable lithospheric
root or the detachment of a relatively cold subducted slab. In both scenarios, the subse-
quent rise of the hot asthenosphere into shallower depths enhances heat transfer within the
continental lithosphere. This increased heat promotes the generation of felsic and mafic
melts, intensifies fluid activity, and creates favorable geochemical conditions for the genesis
of various ore deposit types (e.g., MVT, SEDEX, IOCG deposits; Figure 8). Slab detachment,
followed by lithospheric delamination, is the primary driver behind the orogenic collapse,
facilitating heat and fluid influx from the hot mantle wedge asthenosphere at shallower
levels. This crustal-mantle interaction likely facilitated devolatilization in deeper regions,
generating metamorphic fluids that contributed to ore-forming systems. These processes
not only contribute directly to ore formation but also indirectly by driving hydrothermal
fluid circulation, creating metal-enriched systems linked to regional tectonic activity. This
tectonic mechanism explains the observed spatial correlation between late-stage mineral-
ization, involving metals such as mercury, antimony, arsenic, copper, silver, and potentially
gold, with areas of orogenic collapse and shallow, low-velocity mantle zones [2,11]. The
Pb-Pb isotopic ages of ore deposits directly reflect these tectonic events.
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The magmatic, mineralization, and tectonic events in the Nappes Zone Atlas (NZA)
belt during Neogene times can be summarized as follows (Figure 8):

• Late Miocene extension and magmatism in the westernmost Mediterranean and Tell
(~9–5 Ma): Throughout the Cenozoic, the Western Mediterranean experienced alter-
nating extensional and shortening events, including in regions such as the Alboran do-
main, Valencia Trough, and Kabylies. Similar tectonic events likely occurred in north-
ern Tunisia, with a potential crustal extension between Eocene and early Miocene short-
ening events or coeval with shortening in the footwall [10]. By Langhian-Serravallian
times, as the E-W extension progressed in the Algerian basin [140], magmatism re-
lated to slab tearing propagated westwards and eastward along the Mediterranean
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Maghreb margin [114]. Magmatism in northeastern Algeria and the Tunisian Tell
between the early to late Miocene (16–6 Ma) likely involved significant mafic under-
plating under the northernmost coastal regions, as indicated by Vp velocities between
7.5 and 6.9 km/s at the base of the crust along the N-S EGT’85 line [97]. Concur-
rently, the Alboran volcanic arc formed with tholelitic to calc-alkaline magmatism
due to the eastward subduction of Tethys oceanic lithosphere beneath the Alboran
basin [125,141,142]. During the Serravallian-Tortonian, slab tearing or break-off, along
with related Si-K-rich magmatism, continued westward into the Rif and eastwards into
the Tunisian Tell [10,127,142]. The magmatism persisted into the Tortonian-Messinian
period [141,143], remaining active and widespread as extension neared its end. Poly-
metallic mineralizations in the Betics evolved during this late Miocene volcanic and
extensional context [144]. This mineralization event is initially related to early Torto-
nian subduction calc-alkaline magmatism, exemplified by the Rodalquilar mine [145]
and later associated with late Tortonian Si-K shoshonitic magmatism. Late Tortonian
volcanogenic mineralizations in the Betics include the Herrerías Fe-Ba-Zn-Ag de-
posit [146,147]. This later magmatism, equivalent in age and context to the rhyodacitic
magmatism of the Nefza district in Tunisia, has been associated with lower-crustal
melting and mixing with mantle melts after subcontinental lithospheric delamina-
tion [9,10]. In the Tunisian region, polymetallic mineralizations were formed in the
Nappes zone ore districts (GCSOD, NOD, NBOD, HIOD) during the development of
late Miocene basins, coeval with active extension and associated magmatism. Dur-
ing the late Miocene (Tortonian-Messinian, 9–5 Ma), the NZA experienced extensive
magmatism, especially in regions such as Nefza and Mogods. Pb isotope model ages
for ore deposits along the Ghardimaou-Cap Serrat Fault system (e.g., Fedj Hassene),
indicate ore emplacement around 6.1 Ma, concurrent with the late Miocene period
of crustal extension and volcanic activity. These ages are consistent with the regional
basaltic and felsic magmatism (8–6 Ma) recorded in nearby basins. Zn-Pb-Fe-Ba-Sr
mineralizations at Sidi Driss, Douahria, and Oued Belif yield Pb isotope ages between
5.7 and 14.5 Ma, with an average of 9.89 Ma, matching the regional magmatic events
(8–12 Ma) in the Nefza district. This further indicates that the ore deposits formed as
part of a larger metallogenic event linked to Neogene magmatism. The Pb isotope ages
of galena from other deposits, such as Jalta, Jebel Hallouf, and Jebel Ghozlane, range
from 7 Ma to 18.2 Ma, with two distinct average values: 17.16 Ma (Early Miocene) for
Jebel Ghozlane and 5.01 Ma (late Miocene-Pliocene) for Jalta and Jebel Halouf. The
younger ages align with the final stages of extension and magmatism associated with
basaltic dykes and volcanic necks widespread in the region, such as Guelb Saad Moun.
Additionally, the first occurrence of intraplate alkaline volcanism that took place in
the Atlas during this time is represented by the Siroua volcano.

• Tectonic inversion and magmatism: Extensional tectonics in the Western Mediter-
ranean, primarily driven by slab dynamics, was followed by a post-late Miocene
tectonic inversion of the Algerian basin margins due to continued NW-SE Africa-
Eurasia convergence [53–55]. This inversion reactivated late Miocene normal faults
as reverse faults, folding low-angle extensional systems in Tunisia during the Plio-
Quaternary [9,84].

In conclusion, the delamination processes and associated slab dynamics in the Nappes
zone created the thermal and geochemical conditions essential for various ore deposit types,
either directly through magmatic and metamorphic activity or indirectly by driving fluid
circulation and crustal extension. These processes define a metallogenic evolution strongly
tied to regional tectonic, magmatic, and metamorphic events during the late Miocene.
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8. Alpine Belt and Atlas Belt
The European Alpine Belt (EAB), which includes the Inner Carpathians and Basque-

Cantabrian basin, and the Atlas Belt in Northern Tunisia, Algeria, and Morocco are integral
parts of the Tethyan Zinc-Lead metallogenic province (e.g., [23,24,26,27,130–132]). These
regions host numerous polymetallic deposits, making them part of one of the most sig-
nificant metallogenic provinces globally [147]. Mineralization in these belts occurs within
collisional orogens, where hydrothermal processes are associated with orogen-scale faulting
in the upper, rigid part of Earth’s crust. These faulting events, often linked to gravitational
instability in subducted slabs during the waning phases of convergence, involve processes
such as slab roll-back and slab break-off (e.g., [2,148,149]). Late Cenozoic mineralization,
orogenic collapse, and slab detachment in the European Alpine Belt share similarities
with the metallogenic evolution related to mantle delamination beneath Northern Tunisia
during the Neogene. In the Alpine Belt, mineralization is primarily associated with ex-
tensional settings during the late stages of collision, often in the absence of significant
contemporaneous magmatism [2]. Notable spatial associations exist between Late Ceno-
zoic mineralization, regions of orogenic collapse, and underlying low-velocity mantle zones
in the Alpine Belt [2,11]. This mineralization includes vein and replacement deposits of
metals such as Hg, Sb, Au, Zn, Pb, and Ag, along with porphyry copper systems hosted
within Late Cenozoic calc-alkaline to alkaline volcanic belts. The metallogenic evolution in
Northern Tunisia during the Neogene is marked by late Miocene events, coinciding with
lithospheric delamination and subduction-related mantle interactions (Figure 8). These
processes created favorable geochemical and thermal conditions for ore genesis by driving
mantle upwelling, fluid influx, and crustal extension, which directly or indirectly facilitated
the mobilization and concentration of metals. Lead isotope signatures from galena samples
in the Nappes zone provide key evidence linking mineralization to magmatic processes.
Specifically, the Pb isotope data overlap with those of Neogene magmatic rocks in the
Nefza region and the Alboran Sea, indicating significant mantle-crust interactions. This
suggests that mantle-derived fluids and melts played a crucial role in the genesis of ore
deposits. The comparison between the Alpine and Atlas belts reveals similarities in late-
stage mineralization processes despite differences in their geological settings. Both regions
display late-stage mineralization associated with extensional tectonics, closely linked to
mantle mechanisms such as subduction, delamination, and/or slab detachment. Addition-
ally, the spatial correlation between mineralization and orogenic collapse underscores the
role of slab detachment in creating conditions conducive to ore formation. In Northern
Tunisia, similar dynamics during the late Miocene facilitated ore formation. The Pb iso-
tope compositions in Northern Tunisia indicate that metals were sourced from a mixture
of upper crustal and mantle-derived magmas. However, as highlighted by the ∆γ–∆β

diagram (Figure 4), the isotopic data show a predominant upper crustal signature with
a minor mantle-derived component. This pattern reflects a hybrid metallogenic process,
where mantle contributions primarily acted as thermal and fluid drivers, while metals
were predominantly sourced from the upper crust. This underscores the critical role of
subduction-related mantle-crust interactions in ore formation, as observed in the European
Alpine Belt during the Late Cenozoic. These findings highlight the complex interplay of
tectonics, mantle-crust dynamics, and mineralization in ore formation and exploration.

9. Conclusions
The geological processes driving mineralization in the Tell-Atlas Mountains of North

Africa are complex and multifaceted, encompassing a range of ore deposit types including
MVT, SEDEX, and IOCG. Pb isotope compositions reveal a hybrid metallogenic system
with metals primarily sourced from the upper crust with mantle contributions.
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The Pb isotope overlap of all deposits with Neogene magmatic rocks and middle to late
Miocene volcanic rocks suggests that these metals are linked to tectonic mechanisms such
as slab tearing and delamination following the subduction of the Maghrebian lithosphere.

These mechanisms rejuvenated the lithosphere, leading to orogenic collapse, mag-
matism, and fluid circulation, driving magmatic-hydrothermal fluid systems through
extensional faults and their interaction with cogenetic late Miocene sedimentary basins.
This structural reorganization created pathways for the movement of basinal brines (MVT
deposits) and saline fluids (SEDEX), alongside magmatic-hydrothermal fluids responsible
for IOCG mineralization. The contribution of metamorphic fluids highlights the significance
of extensional fault systems in the mobilization and transport of metals to depositional
sites. This underscores the role of mantle-crust dynamics and highlights the significance of
tectonic and fluid dynamics in ore genesis.

Overall, this study underscores the complex interplay between tectonics, mantle-
crustal interactions, and mineralization events in the Tell-Atlas Mountains. Further research
into the spatial and temporal evolution of these processes will deepen our understanding
of mineralization dynamics and support the exploration of mineral resources in the region.
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Nappes zone ore deposits.
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