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In our previous work [J. Chem. Phys. 159, 024127 (2023)], we applied three Machine

Learning (ML) models to predict the self-diffusion coefficient of spherical particles in-

teracting via the Mie potential. Here, we introduce an optimization approach using the

so-called Statistical Associating Fluid Theory for Mie segments (SAFT-VR Mie) and avail-

able vapor-liquid equilibria data to obtain molecular parameters for both Mie and Lennard-

Jones potentials to describe the diffusion coefficient of 16 molecules described as a single

sphere. Our ML models utilize these molecular parameters to predict the self-diffusion of

these molecules. We conduct a comparative analysis between the molecular parameters

derived from our thermodynamic approach and those obtained through direct fitting of the

experimental self-diffusion coefficients. Our findings indicate that the predictive accuracy

remains largely unaffected by the specific repulsive and attractive exponents of the Mie po-

tential employed, provided that the fitting of the molecular parameters is precise. The Mie

parameters obtained within a thermodynamic framework exhibit a higher coefficient of de-

termination (R2) and absolute average relative deviation (AARD) values compared to those

derived from molecular parameters derived from fitting the self-diffusion coefficient, indi-

cating their superior precision at higher values of the self-diffusion coefficient. Despite this

discrepancy, the overall precision of both methodologies remains comparable. Given the

abundance of precise thermodynamic data in contrast to self-diffusion data, we advocate

the thermodynamic fitting approach as the preferred method for acquiring accurate Mie

coefficients, essential to predict self-diffusion coefficients with ML and semi-empirical

models.

a)Electronic mail: carlos.avendano@manchester.ac.uk
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I. INTRODUCTION12

Understanding and predicting the thermophysical properties of fluids is fundamental for the13

design of multiple industrial and scientific applications, playing a key role in the optimization14

of processes, the design of advanced functional materials, as well as in energy applications1,2.15

However, while there is a large body of work to describe the thermodynamic properties of real16

fluids, accurate models to describe transport properties are not as common3. The self-diffusion17

coefficient D is a key transport property that measures the rate at which molecules or particles18

diffuse through identical counterparts. This coefficient is determined as the limit of the rate of19

change in mean-squared displacement (MSD) over time as20

D =
1

2d
lim
t→∞

d
〈
r2〉

dt
, (1)

where d is the dimensionality of the system, t is the time, and
〈
r2〉 is the MSD, respectively. The21

self-diffusion coefficient D0 of hard spheres of diameter σ and mass m in the infinite dilution22

regime can be obtained analytically from Chapman-Enskog kinetic theory4 and is given by23

D0 =
3
8

(
kBT
mπ

)1/2 1
ρσ2 , (2)

where T is the temperature, ρ is the number density and kB is the Boltzmann constant, respectively4,5.24

This expression is only valid at infinite dilution (low densities). At higher densities, the theoret-25

ical description of the self-diffusion coefficient of hard spheres is challenging due to many-body26

interactions6. Molecular dynamics (MD) simulations are frequently used to describe the transport27

properties of model potential and real fluids in different regimes7,8, thereby providing essential28

data for model development9–12. For the case of the self-diffusion coefficient, many of these29

models are often empirical correlations that represent the self-diffusion coefficient of model po-30

tentials and real fluids as a departure between the self-diffusion at infinite dilution D0 and the real31

value of the self-diffusion coefficient D7,8,13–19. However, these correlations require several fitting32

parameters to work over a wide range of conditions, and the parameters are system-dependent.33

Although the hard-sphere and Lennard-Jones potentials provide excellent reference potentials34

for understanding the physics of fluids, they are often not accurate in representing more compli-35

cated intermolecular interactions observed in real fluids, mainly due to the lack of control in the36

description of both the repulsive and attractive contributions of the potential. An alternative and37
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more accurate representation of the interaction between molecules is the so-called Mie potential,38

which is given by39

uMie(r) = C ε

[(
σ

r

)λr −
(

σ

r

)λa
]
, (3)

where40

C =
λr

λr −λa

(
λr

λa

)λa/(λr−λa)

, (4)

ε corresponds to the depth of the well of the potential, σ is the collision diameter, and λr and λa are41

the exponents controlling the repulsive and attractive contributions of the Mie potential, respec-42

tively. The Mie potential allows an accurate description of the properties of real substances as re-43

pulsive and attractive contributions can be modulated for different molecules, offering a much bet-44

ter representation of the thermophysical properties of many complex systems20–24. The Chapman-45

Enskog kinetic theory for the diffusion coefficient at infinite dilution for particles that interact via46

the Mie potential has also been published25.47

Recently, there have been several attempts to use machine learning (ML) to correlate and48

predict self-diffusion coefficients by harnessing vast datasets available in the literature. These49

methodologies have been applied to predict diffusion in various contexts, including hydrocarbons26,50

a range of molecular and atomic fluids27, the diffusion of organic compounds in supercritical51

CO2
28 and a large selection of Mie fluids3,29. However, a notable drawback of these approaches52

is their lack of transparency in elucidating the relationships between inputs and outputs. Al-53

though ML methods offer predictive capabilities, they lack interpretability, making it challenging54

to discern the rationale behind their predictions. A novel ML technique that is gaining traction55

is Symbolic Regression (SR)30,31, which diverges from conventional approaches by providing an56

empirical equation as an outcome of the training process. The SR method has gained considerable57

attention for its ability to generate interpretable models, however, some of these regressions lack58

physical interpretation, however, new advances in SR algorithms have been able to describe the59

correct physics of the data and have been proven useful in discovering new physics32,33. Recently,60

SR models have been reported to describe the self-diffusion coefficients of the LJ31,34 and Mie29
61

potentials.62

In this study, we represent 16 molecular fluids as single spheres interacting via the Mie po-63

tential. The so-called SAFT-VR Mie equation of state (EoS), which can accurately describe the64
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thermodynamic properties of various Mie fluids, is used to determine the intermolecular parame-65

ters for each fluid22. The selection of the fluids used in this study is based on the availability of66

experimental transport data and the complexity of their properties. To model the fluids, we employ67

a fitting procedure to characterize their vapor-liquid equilibrium (VLE) and determine their corre-68

sponding Mie molecular coefficients. Subsequently, using these molecular coefficients, we predict69

their self-diffusion coefficients using our previously developed ML models29. Additionally, we70

explore the feasibility of calculating the Mie coefficients directly from fitting the self-diffusion co-71

efficient. These models enable us to assess the accuracy of thermodynamic coefficients compared72

to those of self-diffusion coefficients and gain insight into the molecular properties influencing73

more precise predictions.74

The structure of this paper is as follows. In Section II, we provide a detailed discussion of the75

simulation methods used to obtain the self-diffusion coefficient and fit the VLE. In Section III,76

we present the performance of the ML methods for the 16 molecular systems using both sets of77

molecular parameters to describe the self-diffusion coefficient. Finally, Section IV we provide a78

summary of the key findings and conclusions drawn from this study.79

II. METHODS80

In this work, we explore the idea of simultaneously predicting both thermodynamic and dy-81

namic properties across a diverse set of 16 fluids, which are represented as a single sphere. These82

molecules are classified into five distinct categories: light hydrocarbons and methanol (CH4, C2H6,83

C2H4, CH3OH), noble gases (Ar, Kr, Xe), halogenated methanes (CHF3, CH3F, CF4, CF3Cl), hy-84

drogen isotopes (H2, D2) and molecular fluids (CO2, SF6, NH3). These fluid selections represent85

a broad spectrum of substances exhibiting quasispherical geometry, diverse complex interactions,86

and anisotropic shapes. In addition, they boast a wealth of readily available transport data27, fa-87

cilitating a comprehensive exploration of the properties crucial for accurate property prediction.88

In this work, the intermolecular interactions of these fluids are described using the Mie potential89

(Equation 3).90

The Mie intermolecular parameters used to represent each molecular system are obtained by91

fitting the so-called SAFT-VR Mie (EoS)22 to available VLE data. The parameterization is done92

through the minimization of two objective functions. The first objective function F1 corresponds93

to the standard residuals of the vapor pressure and liquid densities21,22,35,36 and is given by94
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F1(σ ,ε,λr,λa) =
Np

∑
i=1

(
Psat(Ti;σ ,ε,λr,λa)−Psat,exp(Ti)

Psat,exp(Ti)

)2

+

+
Np

∑
i=1

(
ρL(Ti;σ ,ε,λr,λa)−ρL,exp(Ti)

ρL,exp(Ti)

)2

,

(5)

where Np is the number of experimental points, Ti is the absolute temperature at point i, Psat,exp and95

Psat correspond to the experimental and theoretical (SAFT-VR Mie EoS) values of the vapour, re-96

spectively, while ρL,exp and ρL correspond to the experimental and theoretical values of the liquid97

density, respectively. It has been shown that an improvement in the representation of second-order98

derivative properties and the critical region is achieved using additional properties during param-99

eter estimation. Therefore, the vapor pressure has also been considered in the second objective100

function F2, and is given by101

F2(σ ,ε,λr,λa) = F1 +
Np

∑
i=1

(
ρV(Ti;σ ,ε,λr,λa)−ρV,exp(Ti)

ρV,exp(Ti)

)2

, (6)

where ρV,exp and ρV correspond to the experimental and theoretical values of the vapor density.102

This additional objective function allows one to investigate the importance of the vapor density in103

the VLE fitting and self-diffusion coefficient prediction. The molecular parameters of the Mie po-104

tential are obtained by minimizing the two objective functions using the Nelder-Mead algorithm29.105

All experimental VLE properties used for optimization of the molecular parameters are taken from106

the NIST Chemistry WebBook37.107

In addition to employing this pair of objective functions to predict variables for the Mie po-108

tential, we utilize identical objective functions to compute the VLE fitting for the LJ potential by109

setting λr = 12 and λa = 6. Consequently, these fittings enable the derivation of four molecular110

models for each fluid under investigation, utilizing both the Mie and the LJ potentials. Using the111

ML algorithms trained on the complete dataset from our prior study, we obtain the self-diffusion112

coefficient for each model. These predictions are made solely based on the temperature T , density113

ρ , and the so-called cohesive parameter α , being the cohesive parameter of the Mie potential. In114

particular, α is defined as38
115

α ≡ C

(
1

λa −3
− 1

λr −3

)
. (7)

Once the molecular parameters of the Mie potential for every substance are determined using116

the two objectives functions given by Equations 5 and 6 using the SAFT-VR Mie EoS21,22, the117
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ML models developed in our previous work29 are used to predict the self-diffusion coefficient.118

The details of these ML models are presented in the Supplementary Information (SI). These ML119

models have been constructed using the Artificial Neural Network (ANN), k-Nearest Neighbors120

(KNN) and Symbolic Regression (SR) algorithms. On the one hand, ANN and KNN have been121

trained with accurate molecular dynamics simulation results for the diffusion coefficient D for122

different state conditions and different attractive and repulsive exponents, and only require as123

features (inputs) the reduced temperature T ∗ = kBT/ε , the reduced density ρ∗ = ρσ3, and the124

cohesive parameter α , while the output is obtained as the ratio D/D0. On the other hand, the125

SR method generates a correlation that facilitates the computation of the diffusion coefficient.126

Specifically, the correlation derived from SR is represented as29:127

D
D0

= exp(−ρ
∗/T ∗)exp(−|0.273log(log(1/ρ

∗))|) . (8)

It is important to stress that while this correlation lacks any physical meaning, it is convenient128

from the interpretability point of view and is applicable over a wide range of conditions in vapour,129

liquids and supercritical states. To numerically evaluate the performance of the models, we use the130

coefficient of determination R2 as well as the absolute average relative deviation (AARD), defined131

as132

AARD =
1
n

n

∑
i=1

|(yi − ŷi)|
yi

×100%, (9)

where n denotes the total number of samples, and yi and ŷi represent the experimental and predicted133

values for the i-th sample of property y, respectively. The reference experimental values for the134

self-diffusion coefficient are taken from the work of Allers et al.27. These evaluation metrics are135

used due to their sensitivity to different types of errors: while R2 is particularly responsive to136

variations in larger values, the AARD is more sensitive to errors occurring in smaller values.137

Finally, we have also optimized the intermolecular parameters of the Mie potential by using138

direct experimental values of the diffusion coefficient obtained from the literature to refine the139

model for characterizing the self-diffusion coefficient. To this end, we minimize an objective140

function representing the residual of the diffusion coefficient, defined as:141

FD(σ ,ε,λr,λa) =

( N

∑
i=1

D(Ti,ρ;σ ,ε,λr,λa)−Dexp(Ti)

Dexp(Ti)

)2
 , (10)
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where Dexp and D correspond to the experimental and theoretical values (molecular dynamics)142

of the self-diffusion coefficient. To explore the effect of the cohesive parameter on the accuracy143

of the prediction and to investigate the consistency between the thermodynamic and diffusion144

approaches, we optimize the above function for all values of the cohesive parameter α in the range145

0.25 ≤ α ≤ 1 in steps of ∆α = 0.05.146

III. RESULTS147

A. Fitting of molecular parameters148

The molecular parameters ε and σ of both Mie and LJ potentials have been obtained by fitting149

experimental vapor-liquid equilibria using the SAFT-VR Mie EoS. This fitting procedure employs150

the two objective functions described in the previous section (cf. Eqs. 5 and 6), and the results are151

presented in Figures 1 and 2. The Mie parameters derived from the objective function FMie
1 are152

detailed in Table I, while the results for other parameters can be found in the SI.153

Before assessing the accuracy of the models in representing the VLE data, we discuss the Mie154

coefficients obtained. As discussed in the preceding section, the Mie potential represents a more155

versatile form of the LJ potential, where the LJ potential can be viewed as a special case of the156

Mie potential with λr = 12 and λa = 6. The selection of λr = 12 was somewhat arbitrary, although157

it aligns well with the Pauli exclusion principle. In contrast, λa = 6 is theoretically derived from158

London forces39. In addition, setting λr = 2λa helps reduce the computational intricacies associ-159

ated with the potential. It should be noted that the value of λa can increase to greater numbers if160

there are quadrupole interactions within the molecule40. For most of the fluids studied, the Mie pa-161

rameters obtained include λa ≈ 6 for molecules without quadrupoles, while λa ≈ 10 is observed for162

molecules possessing quadrupoles, such as CO2 and SF6. This observation validates our derived163

potential parameters in comparison to theoretical expectations.164

First, we discuss the thermodynamic fittings of light hydrocarbons and methanol, as shown in165

the upper rows of Figures 1 and 2. The VLE of methane shows excellent agreement with both LJ166

and Mie potentials using the two objective functions F1 and F2. This agreement extends across167

the entire tested range of temperatures and densities, reflecting a robust representation of VLE168

and saturation pressure. Moreover, the Mie coefficients obtained align closely with the results169

reported by Lafitte et al.22. For ethane and ethene, the Mie potentials offer robust representa-170
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FIG. 1. Results for the saturation densities as function of the temperature using the SAFT-VR Mie EoS.

Circles denote the results obtained with the LJ potential, while diamonds represent those obtained with

the Mie potential. Magenta symbols correspond to the potentials derived using the objective function F1,

whereas blue symbols denote those obtained with F2. Green solid curves represent the VLE data obtained

from the NIST Chemistry WebBook37, while the dashed curves denote the complete VLE obtained from

the SAFT-VR Mie EoS.

tion, while the LJ potentials tend to overpredict pressures and critical points. This discrepancy171

is expected considering that the LJ potential was initially tailored as approximations for noble172

gases, whereas the more intricate structures and interactions of ethane and ethene require a more173

nuanced approach. The excellent performance of the Mie potential to capture thermodynamic174

properties is noteworthy, despite modeling molecules as single spheres. In contrast, a single-site175
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FIG. 2. Results for the vapour-pressure using the SAFT-VR Mie EoS. Circles denote the results obtained

with the LJ potential, while diamonds represent those obtained with the Mie potential. Magenta symbols

correspond to the potentials derived using F1, whereas blue symbols denote those obtained with F2. Green

lines represent the vapour pressure data obtained from the NIST Chemistry WebBook37. The inset contains

a plot of lnP against 1/T to highlight the results are low temperatures.

model fails in representing the VLE of methanol over the entire temperature range regardless of176

the method tested, with only the Mie potential model using the objective function F1 showing a177

good representation at low temperatures. This outcome is unsurprising, given the multitude of178

interactions inherent in methanol that are not adequately represented in our model, notably the179

intricate directional hydrogen bonding between oxygen and hydrogen atoms and the polar nature180

of the molecule. Additionally, methanol’s highly nonspherical molecular shape poses challenges181
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TABLE I. Summary of the Mie intermolecular parameters obtained by the FMie
1 and FMie

2 objective func-

tions. The results are obtained by the use of the Nelder-Mead algorithm fitting the SAFT Mie EoS to VLE

data obtained from NIST.

FMie
1 FMie

2

Fluid σ/Å (ε/kB)/K λr λa α σ /Å (ε/kB)/K λr λa α

CH4 3.748 154.14 12.66 6.03 0.85 3.754 160.53 14.15 5.98 0.80

C2H6 4.291 298.83 18.33 6.00 0.69 4.281 299.88 18.15 6.04 0.68

C2H4 4.147 278.78 18.94 6.02 0.67 4.136 281.30 19.70 6.00 0.66

CH3OH 4.082 747.77 27.64 7.02 0.44 3.879 683.33 33.19 5.93 0.55

Ar 3.405 126.54 10.13 7.06 0.80 3.429 126.67 14.23 5.99 0.80

Kr 3.655 158.01 14.98 5.40 0.93 3.663 176.34 14.28 5.98 0.80

Xe 3.981 228.14 14.12 5.67 0.88 3.996 224.93 17.48 5.28 0.89

CHF3 4.224 352.82 31.47 5.93 0.56 4.222 357.90 29.99 6.09 0.54

CH3F 3.888 346.16 22.55 5.97 0.63 3.902 346.56 25.54 5.84 0.62

CF4 4.344 256.87 28.85 6.00 0.56 4.380 265.77 29.74 6.20 0.53

CF3Cl 4.668 329.43 24.82 5.98 0.60 4.652 324.17 28.59 5.73 0.61

H2 3.409 10.33 5.69 5.67 2.15 3.440 16.40 7.92 5.93 1.30

D2 3.196 18.40 6.68 6.25 1.47 3.190 17.29 6.46 6.15 1.57

CO2 3.818 449.44 18.24 10.03 0.35 3.741 353.55 23.00 6.66 0.52

NH3 3.443 485.01 30.41 6.04 0.54 3.442 558.57 17.92 8.64 0.42

SF6 4.902 468.11 18.06 10.04 0.36 4.956 458.31 31.62 7.71 0.37

for accurate modeling compared to other hydrocarbons examined.182

The noble gases, namely Ar, Kr, Xe, depicted in the three leftmost subplots of the second row183

in Figures 1 and 2, demonstrate excellent agreement in all approaches. Although the critical point184

is overpredicted by approximately 5% in all fitting models, the overall fitting performance is very185

good. This outcome was anticipated because noble gases exhibit a spherical symmetry and lack186

additional intermolecular forces apart from London dispersion forces. These forces are effectively187

captured by the LJ potential and its extension, the Mie potential. The calculated LJ coefficients ε188

and σ , as shown in the SI, are closely aligned with those reported by Dufal et al.41.189

The VLEs of halogenated methanes are not well represented by the Mie potential, and we ob-190

11



serve even worse performance using the LJ potential, as shown in the bottom rows of Figures191

1 and 2. Among halogenated methanes, CF4 and CF3Cl are the molecules best represented by192

the Mie potential. This observation may be attributed to the absence of hydrogen bonding be-193

tween halogen atoms compared to that of hydrofluorocarbons, rendering these fluids to be more194

spherosymmetric. An intriguing observation pertains to the variations in CF4 using the LJ models,195

where FLJ
1 predicts ρL with notably higher accuracy; the inclusion of the term ρv in the objective196

function appears to have adversely impacted the accuracy of the VLE in the liquid branch. In con-197

trast, the hydrofluorocarbons are described accurately using the Mie potentials. However, owing to198

the increased intermolecular forces, the critical point tends to be overpredicted to a greater extent199

compared to molecules devoid of such forces.200

The modeling of hydrogen isotopes varies due to their quantum mechanical effects, as depicted201

in the two left sub-figures in the third rows of Figures 1 and 2. The LJ models demonstrate202

poor performance, notably underpredicting the VLE and critical points. This discrepancy suggests203

that the potentials for hydrogen molecules are softer than the LJ potential, with αH2 > 1.3 and204

αD2 > 1.4, compared to αLJ = 0.89. The coefficients obtained differ significantly from those205

reported by Aasen et al., which could be attributed to fixed values λr and λa
42, as well as the206

limitations of our minimization algorithm and the large influence of quantum mechanical effects207

on H2. For H2, the best model is obtained using the parameters derived from the objective function208

FMie
1 , where the increased importance of the liquid branch and the saturation pressure result in209

a closer approximation. Deuterium, being heavier and less influenced by quantum-mechanical210

effects, is equally well approximated by both sets of parameters using the Mie potential. The211

molecular parameters for D2 show better agreement with their counterparts in Aasen’s work with212

AARDε (H2,D2) = 73.6%,15.2% and AARDσ (H2,D2) = 4.4%,1.3% .213

The molecular fluids, despite their highly diverse compositions, exhibit remarkably similar214

modeling results. CO2 and SF6, depicted in the right-hand subplots of rows two and three of215

Figures 1 and 2, are very well modeled using both Mie potentials. In particular, the use of FMie
2216

appears to yield a slightly more accurate critical point for these fluids, although the differences are217

marginal. On the other hand, NH3 is less satisfactorily modeled, with an over-predicted critical218

point. This discrepancy could potentially be attributed to hydrogen bonding between ammonia219

molecules, as illustrated in the third subfigure in the third row of Figures 1 and 2. The LJ potential220

does not represent these fluids well, displaying a substantial overprediction of the critical point for221

CO2 and SF6. Moreover, the LJ model for NH3 does not accurately capture both the critical point222
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FIG. 3. Parity plots for the self-diffusion coefficients of SF6 using the 4 model potentials. The ANN model

is presented by magenta circles, KNN by blue circles, and SR by green circles.

and the liquid branch of the VLE.223

B. Prediction of self-diffusion coefficients224

We now compare the prediction of the self-diffusion coefficient in real fluids through two pri-225

mary avenues. First, we assess the self-diffusion coefficient of each fluid using all four different226

thermodynamic models. Specifically, we evaluate the performance of the ML models in predicting227

the self-diffusion coefficient of SF6 using the four molecular parameters obtained using the Mie228

and LJ potential models. We chose SF6 for this comparison due to the significant differences be-229

tween the LJ and Mie potentials, as well as the notable observable effect on the parity plots. The230

parity plots for SF6 are presented in Figure 3, while the parity plots for the 16 molecules obtained231

from the objective function FMie
1 are shown in Figure 4. More detailed figures for the remaining232

fluids are provided in the SI.233

In the parity plots shown in Figure 3, one can observe that all four sets of parameters obtained234

via the SAFT-VR Mie EoS offer a good representation of the self-diffusion coefficient of SF6235

using the three ML methods developed in our previous work, particularly in the region of high236

values of the self-diffusion coefficient. The performance of these models can also be observed in237

the AARD and R2 values presented in Table II, where all models show R2 ≥ 0.994. This outcome238

is not entirely surprising, given that the model obtained via SR indicates that the self-diffusion239

coefficient does not explicitly depend on α , suggesting that the value of α may not be essential240

to achieve a good model for the self-diffusion coefficient when fluid interactions are described241

using the Mie potentials. This hypothesis is supported by the substantial increase in AARD for242
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TABLE II. Summary of the AARD and R2 descriptors of different ML methods applied in this work to

predict the self-diffusion coefficient of SF6 using the four objective functions. The reference self-diffusion

coefficient data used is obtained from Allers et al.27

ANN KNN SR

Objective Function AARD R2 AARD R2 AARD R2

FMie
1 25.54% 0.9979 25.37% 0.9951 23.95% 0.9948

FMie
2 28.96% 0.9980 28.65% 0.9950 26.86% 0.9940

FLJ
1 20.44% 0.9958 28.24% 0.9981 75.27% 0.9967

FLJ
2 21.66% 0.9958 29.32% 0.9982 76.35% 0.9967

FLJ functions obtained by SR. Furthermore, the significance of α becomes more apparent in the243

region of high liquid densities, which coincides with deviations observed along the middle of the244

parity line. These deviations are attributed to the strong correlation due to the intermolecular forces245

in the liquid state where low values of the self-diffusion coefficient are observed. With respect to246

these high-density states, the accuracy of the predictions varies depending on the potentials used.247

Specifically, ANN demonstrates better prediction performance for LJ potentials, while KNN and248

SR prove to be superior predictors when the Mie potential is used.249

The results for the self-diffusion coefficient for all molecules using the molecular parameters250

obtained using the FMie
1 objective function are shown in Figure 4 and the corresponding values251

of AARD are presented in Table III. In Figure 4, we can observe that for methane, ethane, and252

ethene, all models exhibit well-predicted self-diffusion coefficients in the region of high values253

of D. However, for the region of low values of D, the parity plots deviate from the diagonal,254

a phenomenon also observed in our previous work29. Specifically, ANN tends to underestimate255

the self-diffusion coefficient, while SR and KNN tend to overestimate it. For methane, this high-256

density region is relatively small due to the compact shape of the VLE, resulting in more points257

closer to the parity line. Interestingly, in the parity plot for C2H4, ANN predicts the value of D258

very accurately and does not show such a pronounced decaying tail. In contrast, the predictions of259

the self-diffusion coefficients of CH3OH form a cloud around the parity line. It is evident that at260

intermediate values of D, the prediction lines for ANN and KNN fall below the parity line before261

diverging from it. This highlights the fact that a single Mie potential does not adequately capture262

the complex interactions of methanol.263
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FIG. 4. Parity plots for the self-diffusion coefficients of the fluids studied in this work, modelled with

the Mie potential with molecular parameters obtained by the FMie
1 objective function. The ANN model is

presented by magenta circles, KNN by blue circles, and SR by green circles. Self-diffusion coefficient data

were obtained from Allers et al.27.

All noble gases are predicted with remarkable accuracy. Two notable features in the parity264

plots warrant discussion: the underpredictions of ANN at low D and the straight perpendicular265

line visible in the parity plot for argon. The under-predictions predicted by ANN are intriguing,266

particularly because this phenomenon is not observed in the equivalent branch of KNN and SR.267

Under-prediction may be more noticeable on a logarithmic scale, but further investigation is re-268

quired to validate this claim. The perpendicular line observed in the argon parity plot may be269

due to issues with the experimental data. The temperatures, densities, and phases used to derive270
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TABLE III. Summary of the AARD and R2 descriptors for all fluids predicted by the different ML methods

applied in this work using the model obtained from the FMie
1 objective function for the self-diffusion coef-

ficients collected by Allers et al.27.

Fluid ANN KNN SR

AARD R2 AARD R2 AARD R2

CH4 25.16% 0.9978 26.98% 0.9977 47.94% 0.9960

C2H6 73.15% 0.9992 38.51% 0.9955 54.00% 0.9981

C2H4 38.76% 0.9997 28.99% 0.9989 43.24% 0.9963

CH3OH 532.22% 0.9960 120.08% 0.9951 93.79% 0.9939

Ar 20.62% 0.9984 36.41% 0.9903 73.92% 0.9861

Kr 23.52% 0.9897 25.94% 0.9633 48.53% 0.9773

Xe 23.75% 0.9997 20.31% 0.9997 37.68% 0.9999

CO2 25.28% 0.9974 25.88% 0.9957 29.81% 0.9856

H2 117.26% 0.9753 40.08% 0.9928 105.93% 0.9924

D2 125.67% 0.9873 48.80% 0.9980 57.05% 0.9979

NH3 136.57% 0.9980 33.63% 0.9933 47.71% 0.9865

SF6 25.54% 0.9979 25.37% 0.9951 23.95% 0.9948

CHF3 204.51% 0.8886 55.23% 0.9148 116.98% 0.6404

CH3F 125.47% 0.9851 40.74% 0.9756 89.90% 0.7925

CF4 29.37% 0.9948 21.69% 0.9923 49.15% 0.9959

CF3Cl 32.77% 0.9824 23.89% 0.9664 42.81% 0.9883

these D values probably do not correspond to the correct phase under experimental conditions, as271

verified by the NIST database.272

CF4 is predicted exceptionally well by all three ML methods. The deviations at low D are273

minimal, and the parity is maintained consistently along the parity line. Similarly, CF3Cl is well274

predicted, although the deviations at low D are slightly more pronounced. In contrast, CH3F and275

CHF3 are poorly predicted by the three ML methods. The parity line is surrounded by a cloud of276

points, indicating a very low accuracy. However, it should be noted that there is no experimental277

data for the self-diffusion coefficient at high values available for these fluids. Therefore, direct278

comparisons of R2 and AARD to other fluids may not be entirely appropriate. Compared with the279
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exact range of self-diffusion coefficients for other fluids, the observed deviations are consistent280

with the expected deviations at those values of D.281

In contrast to the fit of the thermodynamic properties, the self-diffusion coefficients for H2 and282

D2 are well predicted. In particular, there is a discernible overprediction by the ANN model at283

high values of D, a deviation not observed in previous parity plots or other models. Intriguingly,284

no notable deviations are observed in the other plots at high values of D. This discrepancy may be285

due to the high values of D for hydrogen and deuterium that fall outside the training region for ML286

methods. This suggests that the SR and KNN models may be better suited for extrapolation. How-287

ever, despite these deviations, it is crucial to emphasize that these accurate transport predictions288

were obtained using a thermodynamic model that failed to accurately model the thermodynamic289

properties. Interestingly, this discrepancy did not translate into predictions of the self-diffusion290

coefficient, as the values of D were accurately modeled.291

Finally, the self-diffusion coefficients of molecular fluids are predicted quite accurately. The292

most significant deviations are observed for low values of D for NH3, where ANN exhibits con-293

siderable deviation. However, the rest of the parity line for NH3, as well as the parity lines for294

CO2 and SF6, are well predicted by the three ML methods. Although there is a slight increase in295

deviations towards the region of low values of D, these discrepancies are overall minor.296

C. Fitting the self-diffusion coefficient297

Having obtained the Mie molecular parameters from the thermodynamics of the molecular298

fluids, we investigated whether there exist better coefficients that could produce more accurate299

self-diffusion coefficients. As detailed in Section II, we calculated the Mie molecular parameters300

that would best fit the self-diffusion coefficients for each fluid within the range of 0.25 ≤ α ≤ 1.301

The resulting values of ε and σ , along with their associated errors using the KNN algorithm302

(AARD and R2), are presented for SF6 in Figure 5. The plots and values for all the fluids are303

provided in the SI.304

The results of this investigation reveal surprising disparities between the values of σ and ε305

obtained from the thermodynamic properties and those obtained from fitting to the self-diffusion306

coefficient. Although the values obtained from thermodynamics generally fall within the same307

range as those obtained by fitting the self-diffusion coefficient, there are notable differences. In308

many cases, the difference between the values exceeds half of the range presented in σ , with a309
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FIG. 5. The results of fitting the self-diffusion coefficients at different values of α using the ANN algo-

rithm to obtain the optimal Mie intermolecular parameters σ and ε for SF6. The obtained intermolecular

parameters are depicted in the top plot, where σ is represented in red and ε in blue. Additionally, the av-

erage absolute relative deviation (AARD) is depicted in purple, and the coefficient of determination (R2)

is shown in green. In the bottom plot, the errors corresponding to σ and ε are illustrated. The solid black

line represents the α values of the LJ potential, while the dashed and dash-dot vertical lines represent the

potentials used in the previous section, namely FMie
1 and FMie2, respectively. Furthermore, the intermolec-

ular parameter and error values obtained from the previous section are also presented for F1 (circles) and

F2 (diamonds).

similar behavior observed for ε , albeit to a lesser extent. Interestingly, within the range of α inves-310

tigated, most fluids exhibit very low error variation. For most potentials, the AARD range is much311

smaller than the lowest AARD value and R2 exceeds 0.9. It is noteworthy that the values obtained312

from thermodynamic fitting appear to have a larger AARD and R2 compared to those obtained in313

this investigation. This suggests that the thermodynamic method exhibits better accuracy at high314

values of D but is less accurate for low values of D.315

Let us first focus on the results for the light hydrocarbons and methanol in detail, which are316

presented in the SI. Methane exhibits an excellent representation throughout the α range, with a317
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consistently high value of R2. The best fitting is observed around α ≈ 0.3, coinciding with the318

minimum AARD. In particular, this value of α is significantly harder than the thermodynamically319

obtained value, where α > 0.8. For C2H6, an effective representation is achieved with potentials320

that are harder than the one obtained at α ≈ 0.67. At higher values of α , the best coefficients in321

terms of R2 are obtained from the thermodynamic fit, suggesting better approximations for high322

D. The self-diffusion coefficient of C2H4 is consistently predicted well across the studied range,323

with AARD ≈ 30% and R2 > 0.98. There is a notable decrease at α = 0.4, leading to a drastic324

reduction in AARD. However, methanol is not well predicted in the range by either metric, with325

R2 < 0.6 and AARD exceeding 40%. Unlike other fluids studied, thermodynamic methods provide326

better predictions for the high D range. Noble gases exhibit high-accuracy predictions for most327

of the α range. For argon and krypton, optimal predictions are found around α ≈ 0.4, with the328

AARD increasing for higher values of α . Similarly, the predictions for xenon are similar within329

the range 0.5 < α < 0.9, with the best predictions achieved at α = 0.5. Interestingly, all the330

optimal predictions for noble fluids are observed at values of α much lower than those predicted331

thermodynamically, typically falling within the range of 0.8 < α < 0.9.332

The precision of the predictions for the halogenated methanes varies widely. The best predicted333

fluids, such as CF4 and CF3Cl, as previously observed, exhibit better accuracy when fitting the self-334

diffusion coefficient rather than relying on thermodynamic values. This is evidenced by an increase335

in R2 and a significant decrease in AARD. For both of these fluids, the best results are found in the336

range α < 0.65. In contrast, hydrofluorocarbons (CHF3 and CH3F) are predicted very poorly for337

many values of α , with the best predictions falling within the ranges of 0.55 < α < 0.8 for CHF3338

and α > 0.6 for CH3F. In particular, for CH3F at α = 0.6, there is an apparent transition from a339

good predictive region to a poor predictive region, coinciding with a transition in the calculated340

value of ε . This suggests that the algorithm may have converged to a poor local minimum at that341

value of ε , resulting in poor predictions. Another explanation could be the absence of high D state342

points for these fluids in the dataset, which might affect the predictions.343

The first notable observation with respect to hydrogen and deuterium is the absence of observ-344

able best-fit lines from F1 and F2. This is attributed to the values obtained of α , where αH2 ≥ 1.3345

and αD2 > 1.45. Despite the high predicted values of α , it is surprising that for both fluids, the best346

predictions were found at α ≈ 0.4. H2 exhibits good predictions within the studied range, with347

R2 > 0.9 and AARD< 25%. On the other hand, the predictions for D2 show a higher R2 across348

the entire range studied and a lower AARD by approximately 4%. SF6 emerges as the molecular349
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fluid predicted best and ranks among the top two predicted fluids overall, alongside krypton. The350

optimal prediction occurs at α = 0.5, a value higher than the thermodynamically derived α . This351

deviation is unique among the fluids studied, possibly due to the lower thermodynamically fitted352

values of α for molecular fluids compared to other fluids, except methanol. CO2 demonstrates the353

best predictions when α = 0.7, while NH3 exhibits a stable prediction range of 0.4 < α < 0.7,354

with the best predictions found at α = 0.6.355

IV. CONCLUSION356

In summary, we have derived the molecular parameter for the Mie potential for 16 fluids by357

fitting their thermodynamic properties, resulting in four different models. We conducted a com-358

parative analysis to assess the efficacy of the Mie and LJ potentials in modeling both the thermo-359

dynamic and transport properties. Moreover, we examined two objective functions, one with and360

one without a vapor density term, to gauge their impact on the fitting process. Our investigation361

revealed that Mie potentials outperformed LJ potentials in fitting VLE and vapor pressure data.362

This superiority can be attributed to the greater flexibility of Mie potentials, which allow for more363

subtle adjustments to interparticle interactions. Across most fluids, the Mie potentials obtained364

exhibited remarkable similarity, with exceptions noted for CH3OH and H2, where the objective365

function of F1 produced a superior fit. In particular, the inclusion of vapor densities in the objec-366

tive function F2 improved the fit for the vapor branch but led to some compromise in the fit for the367

liquid branch.368

By using the acquired Mie parameters, we applied our preexisting ML models to predict the369

self-diffusion coefficients of the fluids. The predictions were notably accurate for self-diffusion370

coefficients greater than 10−7m2 s−1, across various methods and coefficients. This reiterates our371

previous findings, suggesting that at higher values of the self-diffusion coefficient, the specific372

form of the potential has minimal impact on the accuracy of the prediction. However, at lower373

values of the self-diffusion coefficient, stronger intermolecular forces come into play, which may374

not be fully captured by the Mie potential or the spherical shape assumptions employed in our375

training data.376

The similarity in the predictive performance across all potentials prompted us to explore the377

relationship between the cohesion parameter α and the predictive precision of the KNN algorithm378

for self-diffusion coefficients. In contrast to our previous approach, we fitted the Mie parameters379
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directly to the self-diffusion coefficient. Interestingly, we observed that for most of the fluids stud-380

ied, the predictive precision of D remained consistent throughout the entire range of α investigated381

(0.25 < α < 1). Surprisingly, the differences in predictive accuracy were not correlated with the α382

values obtained from the thermodynamic fitting. Strikingly, we found that the thermodynamically383

fitted potentials exhibited higher R2 and AARD compared to the self-diffusion coefficient fitted384

potentials. This suggests that the fitting method used for the self-diffusion coefficient placed more385

emphasis on improving the accuracy for low values of D, while the thermodynamic fitting method386

provided better approximations for high values of D.387

The disparities in errors between both fitting methods were noticeable, but not significant.388

Although each method exhibited different strengths, only the thermodynamically fitted coefficients389

yielded a satisfactory approximation of the VLE. This was evident from the differences observed390

between the obtained Mie and LJ coefficients for VLE fitting, where the accuracy of the cohesion391

parameter played a crucial role. In contrast, all four sets of parameters resulted in equally accurate392

predictions of transport properties. Given that the thermodynamic fitting method yielded accurate393

representations of both transport and thermodynamic properties, we argue that this method is394

superior for deriving Mie coefficients for small molecular fluids. Using the NIST database and395

the ML methods outlined here, we propose a reliable and straightforward approach for estimating396

self-diffusion coefficients in small molecular fluids devoid of hydrogen bonding.397

The overall accuracy of the ML models appears to be independent of the selection of Mie398

coefficients for the fluids studied. This observation is similar to our previous finding29, where we399

observed that Mie potentials with the same value of the cohesive parameter α exhibit not only400

the same VLE envelope but also the same values of the self-diffusion coefficient. This points401

to a similar three-parameter corresponding states model for the self-diffusion coefficient found402

for VLE38. Looking ahead, further improvements in accuracy could be achieved by applying a403

more refined model to the obtained Mie coefficients, leading to enhanced predictions of the self-404

diffusion coefficients. One potential avenue for improvement involves training the model on a405

larger dataset comprising higher-density state points. This would offer deeper insights into the406

transport behavior of dense Mie fluids. Such insights could prove invaluable for analyzing the407

transport properties of real fluids under similar conditions, thereby enabling further refinement of408

the models.409
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V. SUPPLEMENTARY INFORMATION410

In the SI, we report the list of molecular parameters for the Mie and Lennard-Jones potentials411

using the SAFT-VR EoS and the two optimization strategies discussed in Section II, the results412

for the prediction of the self-diffusion coefficient using the molecular parameters from the ther-413

modynamic fitting, and the list of molecular parameters obtained from fitting available data for the414

self-diffusion coefficient.415
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