DIAMETER TWO PROPERTIES AND POLYHEDRALITY
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ABSTRACT. We give two examples of polyhedral Banach spaces failing
all the diameter two properties, showing that there is not any connection
between polyhedrality and the diameter two properties.

1. INTRODUCTION

Recall that a Banach space is said to have the slice diameter two property
(slice-D2P) (respectively diameter two property (D2P), strong diameter two
property (SD2P)) if every slice (respectively non-empty relatively weakly
open subset, convex combination of slices) of the unit ball has diameter
two. These three geometrical properties, which are extremely opposite to
the isomorphic ones given by the Radon-Nikodym property (respectively
convex point of continuity property, strong regularity), have shown to be
different in a extreme way [2, 3|.

It is a natural question how diameter two properties affect to the geometry
of the unit ball of a Banach space. In this setting, very recent results have
appeared (see e.g. [1]) dealing with the problem of how convex and smooth
can a Banach space with any diameter two property be. For instance, there
exists an example of Banach space enjoying the D2P and being midpoint
lacally uniformly rotund and it is known that the bidual of a Banach space
with the SD2P can not be neither smooth nor strictly convex (see [1] and
references therein).

In this paper we will continue exploring this connection in an opposite
way. Roughly speaking, we wonder if a Banach space whose unit sphere is
formed by big faces can fail the diameter two properties. This face structure
can be encoded by the concept of polyhedral Banach spaces.

According to [5], we shall give the following definition.

Definition 1.1. Let X be a Banach space.
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(1) We will say that X is I-polyhedral if
(E.EtBX*)l g {O},

where the last accumulation 1s considered on the weak-star topology
of X* and Fxt(Bx«) denotes the set of all extreme points of By«.
(2) We will say that a Banach space X is II-polyhedral if

(E':L'tBX*)l - ‘I'B)(*,

for some 0 < r < 1, where the last accumulation is considered on
the weak-star topology of X*.
(3) We will say that a Banach space X is IIl-polyhedral if

(FxtBx-« Y C int(Bx+),

where the last accumulation is considered on the weak-star topology
of X*.

(4) We will say that X is IV-polyhedral if f(x) < 1 whenever x € Sx
and f € Ext(Bx+)'.

(5) We will say that X is V-polyhedral if sup{f(z) : f € Ext(Bx+)\
D(x)} < 1 for each z € Sx where

D(z) :==A{f € Sx~ : f(z) = 1}.

(6) We will say that X is VI-polyhedral if each x € Sx has a neighbor-
hood V satisfying

yeVnSx=[z,y] CV.
(T) We will say that X is VII-polyhedral if the set
{x € Sx : max({D(x),v) < 0}
is open in Sy for each v € Sx, where

(D(z),v) :=={f(v) : f € D(z)} CR.
(8) We will say that X is K-polyhedral if the unit ball of every finite-

dimensional subspace is a polytope, that is, the convex hull of a finite
sct.

It is known that each of the previous polyhedrality notions implies the
following one and that no reverse implication holds [5]. It is also known that
if X is a I-polyhedral Banach space then it is isometric to a subspace of ¢y(T"),
for I' = dens(XX) [5, Theorem 1.2]. Since every polyhedrality condition is
inherited by closed subspaces then every infinite-dimensional I-polyhedral
Banach space is a non-reflexive M-embedded Banach space [6, Example
II1.1.4] and, as a consequence of the proof of [7, Corollary 2.5, these spaces
have the SD2P. Summarising, I-polyhedral Banach spaces enjoy the SD2P.
However, it is not clear at all whether the rest of notions of polyhedrality
imply any diameter two property.

The aim of this note is to provide examples of polyhedral Banach spaces
failing the diameter two properties. Indeed, by giving a slight modification
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of [5, Example 4.1], we prove in Theorem 2.1 that, for each £ > 0, there ex-
ists a II-polyhedral Banach space whose unit ball contains slices of diameter
smaller than e, proving in Proposition 2.2 that this theorem can not be im-
proved. We will also prove in Proposition 2.3 that there are VII-polyhedral
Banach space whose dual unit ball contain a point of Fréchet differentiabil-
ity by analysing [5, Example 4.5]. This result proves that K-polyhedrality,
which is the most natural and classical generalisation of polyhedrality to an
infinite-dimensional framework, is not related at all with the diameter two
properties.
Notation: We will consider only real Banach spaces. Given a Banach
space X, we will denote the closed unit ball and the unit sphere by Bx and
'x respectively. We will also denote by X* the topological dual of X. By a
slice of a bounded subsét C of X we will mean a sét of the following form:

S(C, f,a) :={2€C: f(z) >sup f(C) —a},

where f € X* and a > 0. When X is itself a dual Banach space, the
previous set will be a w*-slice if f belongs to the predual of X.
Given a Banach space X and a point x € X, we say that x is a point of
Fréchet differentiability if, for every h € X, the following limit exists
th|| ||z

ol thl] ~ e

t—0 t
and it is uniform for A € Sx. It is known that z is a point of Fréchet
differentiabity of X if, and only if, in% diam(S(Bx+,z,a)) = 0 [4, Lemma

«>

8.4]. Finally, we refer to [6] for a a detailed treatment about theory of
M-embedded spaces.

2. MAIN RESULTS

As we have seen in Section 1, infinite-dimensional I-polyhedral Banach
space are non-reflexive AM-embedded Banach spaces and, as a consequence,
this class of spaces enjoys the SD2P. However, it is not so clear whether
a similar statement can be formulated in relation to the rest of notions
of polyhedrality. Indeed, the next theorem proves that the unit ball of a
II-polyhcdral Banach space can cven have slices of small diamcter.

Theorem 2.1. For every e > 0 there exists a II-polyhedral Banach space X
such that By contains slices of diameter smaller than e.

Proof. Pick € > 0 and choose 0 < r < 5. Define
U* :=co (B(f1€BocR)* U {(O, 1+ T') ; (0, -1 - r)}) ,

which is clearly a weak* compact set in (cg 1 R)*. Consequently, there is a
norm ||| - ||| on ¢y & R whose unit ball is

U:={(z,8) €cog®R:¢(z,8) <1 forall p € U™}
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Consider X := (co @ R, ||| - |||), and let us prove that X satisfies the desired
requirements. First of all, the same argument of [5, Example 4.1] shows that
X is a II-polyhedral Banach space. Indeed, it is clear that

Ext(U*) = {(0,2 (L + 7))} U{(en,¥1):n e Nand §,¢ € {-1,1}}.
Therefore, (0,0) ¢ Ext(U*) = {(0,£1)} C 1—}JU*. Let us now prove

that Bx contains a slice of diameter smaller than €. For this, notice that
Boowrk S U™ € (1+7)ByguR, SO
1
T+r
Consequently, for each pair (2. 8) € X, it follows

(2.1) I, A)llx < M@, A < @ +7)ll, )l
Now consider § > 0 such that
(2.2) 2r+ 36 < e.

Define S := S(Bx, (0,1 +r),0), and let us prove that diam(S) < e. To this
aim pick (z,8) € S. Then

BCOEBNR cUc BcoGBlR*

: 1 1-6
1> (1418 = (0,1 +)(z, 1—-6= —— >8> .
> (1498 = O,1+7)@H) >1-6= —— >8> 7
The previous inequality joint to (2.1) yields
. 1-6
12>l A= W, B)lls = Nall + 181> llzll + 7

I

so |lz| < ﬁs,. Finally, given (y,7) € S, we have

1((, 8) = (w, VIl < A +1)lI(z, B) = (Ml = L+ 7)(llz = yll + 18 =)

(2.2)
<2r+d8)+6=2r+35 < e

From the arbitrariness of (z,8),(y,v) € S we conclude that diam(S) < ¢
s0 we are done. m

In view of the above theorem, a natural question is whether the unit ball
of a II-polyhedral Banach space can be dentable. The answer is negative,
which proves that the conclusion of Theorem 2.1 is sharp.

Propbsition 2.2. Let X be an 'mﬁnite—dimensional II—po’lQhedml Banach
space. Then By does not have slices of arbitrarily small diameter.

Proof. Since X is Tl-polyhedral there exists r < 1 such that

(2.3) (Ext(Bx+)' C rBx.

Let us prove that each slice of Bx has diameter, at least, 2(1 — r). To this

aim pick a slice § := S(Bx,g,a) and a point z € S. Notice that (2.3) joint
to the weak-star compactness of Bx+ implies that the set

A :={f € Ext(Bx+) : f(z) > r}
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is finite. Hence, we can consider y € [ ker(f) Nker(g) N Sx. Let us prove
feA
that £+ (1 —r)y € S. On the one hand, we have

gzt (l-r)y)=g(z)>1-a
because x € S. On the other hand, we have

lz+(1—ryl=suwp fl@)£Q-r)fly)=
feExt(Byx)

max {supf(a;):l:(l -7 fy), sup f(z) :I:(l—r)f(y)} :
feA

fEEﬂ)t(Bxx)\f\
From the definition of A and the assumptions on y we deduce that the

previous estimate is smaller than or equal to 1. Summarising we have proved
that z &+ (1 —r)y € S, so diam(S) > 2(1 —r), as desired. m

The next proposition proves that we can even go further when considering
a more relaxed notion of polyhedrality.

Proposition 2.3. There exists a VII-polyhedral Banach space whose dual
unit ball contains points of Fréchet differentiability.

Proof. Let {wn}n>2 be a sequence in ]%,1] such that {wn,} — 1. Define
X := (co, ||| - ||]), where the norm ||| - ||| is defined by
1 1
|[|2]|| ;= max < max |z(n)|, max |£(1)| + z|x(n)|,sup wn|z(1)| + 5 |z(n)| ¢ -
n>2 n>2 3 n>2 2

Then X is an example of VII-polyhedral Banach space which is not a VI-
polyhedral Banach space [5, Example 4.5]. Our aim is to show that Bx-
has a point of Fréchet differentiability. Note that, from the definition of the
norm of X, it follows that e; € Sx and e} € Sx-. Pick € > 0 and consider

S. = S(Bx,e€l,¢).
Given z,y € S; we have that
: : 1 1
1- : 1> >n — >1-— —1nax [z(n)|.
e <a(l) =12 |llzlll 2 maxiz(D)] + gla(n)] 2 1 — e + gmax|a(n)]
Thus mg,;qw(n)[ < 3¢ and mg,%<|y(n)| < 3e. Hence |z(1) — y(1)] < e and
n> n>
max |2(n) — y(n)| < 6¢. Keeping in mind the above estimate we get
n>
Iz — y||] € max{e, 3e,4e} = 4e.
Hence diam(S(Bx,e7,¢)) < 4e, and thus
lim diam(S(Bx.,e].€)) = 0.
e—0 -

Consequently, By« contains a point of Fréchet differentiability, so we are
done. =
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