L-ORTHOGONALITY, OCTAHEDRALITY AND
DAUGAVET PROPERTY IN BANACH SPACES

GINES LOPEZ-PEREZ AND ABRAHAM RUEDA ZOCA

ABSTRACT. We prove that the abundance of almost L-orthogonal vec-
tors in a Banach space X (almost Daugavet property) implies the abun-
dance of nonzero vectors in X** being L-orthogonal to X. In fact, we
get that a Banach space X verifies the Daugavet property if, and only
if, the set of vectors in X** being L-orthogonal to X is weak-star dense
in X**. In contrast with the separable case, we prove that the exis-
tence of almost L-orthogonal vectors in a nonseparable Banach space
X (octahedrality) does not imply the existence of nonzero vectors in
X** being L-orthogonal to X, which shows that the answer to an en-
vironment question is negative (see [7, Section 9] and [I3] Section 4]).
Also, in contrast with the separable case, we obtain that the existence of
almost L-orthogonal vectors in a nonseparable Banach space X (octa-
hedrality) does not imply the abundance of almost L-orthogonal vectors
in Banach space X (almost Daugavet property), which solves an open
question in [20]. Some consequences on Daugavet property in the setting
of L-embedded spaces are also obtained.

1. INTRODUCTION

The concept of orthogonality in the setting of Banach spaces has been
a central topic in the theory of Banach spaces. There are important and
different concepts of orthogonality in Banach spaces in the literature as the
given ones in [II] and [23]. For example, B. Maurey proved in [2I] that
a separable Banach space contains an isomorphic copy of ¢; if and only if,
there is a nonzero element z** € X™** being symmetric orthogonal to X, in
the terminology of [23], that is, ||z**+z| = ||z** —z]| for every z € X. One of
the strongest concepts of orthogonality is the L-orthogonality: two vectors
x and y in a Banach space X are called L-orthogonal if ||z +y|| = [|z||+ ||y]|-
An element x in X will be called L-orthogonal to a subspace Y of X if x
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is L-orthogonal to every element in Y. In the setting of Hilbert spaces, it
is well known that for every closed and proper subspace there is a non-zero
orthogonal vector to that subspace. In this sense, G. Godefroy proved in
[6, Theorem II.4] that a separable Banach space X containing isomorphic
copies of f1 can be equivalently renormed so that there is a vector x** in
the unit sphere of X** being L-orthogonal to X. The aim of this note is
to study the existence and abundance of vectors in the bidual space X**
of a Banach space X being L-orthogonal to X, in terms of the existence
and abundance of vectors in X which are almost L-orthogonal to finite-
dimensional subspaces of X. It is natural to say that a Banach space X
contains almost L-orthogonal vectors if, for every x1,...,x, vectors in the
unit sphere of X and for every € > 0, there is some vector x in the unit ball
of X such that ||x+z;|| > 2—e¢ for every 1 < ¢ < n. This is exactly equivalent
to say that the norm of X is octahedral, a concept considered by N. Kalton
and G. Godefroy in [7]. In fact, it was proved in [I6] that a Banach space X
containing isomorphic copies of #; can be equivalently renormed so that the
new bidual norm is octahedral, and so a bidual renorming of X™** contains
almost L-orthogonal vectors. Similarly, we will say that a Banach space X
has abundance of L- orthogonal vectors with respect to a norming subspace
Y of X* if, for every z1,...,x, vectors in the unit sphere of X, for every
nonempty o(X,Y)-open subset U of the unit ball of X and for every £ > 0,
there is some vector z in the unit ball of X such that ||z + x;|| > 2 — ¢ for
every 1 < i < n. This is exactly equivalent to say that X satisfies the almost
Daugavet property with respect Y (see [12 [13] and Lemma [2.4).

Recall that X has the Daugavet property with respect to Y if every rank
one operator T : X — X of the form T'=y* ® 2z, forz € X and y € Y,
satisfies the equation

1T+ 1] =1+ 71,

where I denotes the identity operator. If Y is a norming of X, we say that
X has the almost Daugavet property. We will say that X has the Daugavet
property if Y = X*.

It is then natural to ask if for Banach spaces X containing or having
abundance of almost L-orthogonal vectors one can find some or many ele-
ments in X** being L-orthogonal to X. For example, in the case that X
is separable, G. Godefroy and N. Kalton proved in [7, Lemma 9.1] that if
X contains almost L-orthogonal vectors, that is, the norm of X is octahe-
dral, then there are elements in X** being L-orthogonal to X, opening the
question in the nonseparable setting.

After some preliminary results in Section[2] we prove in Section [3|that the
above question has a negative answer (Theorem , exhibiting examples of
Banach spaces X containing almost L-orthogonal vectors, that is, Banach
spaces with an octahedral norm, whose bidual space lacks of nonzero vectors
being L-orthogonal to X. In contrast with the above, we also prove in
Section [3] that the abundance of almost L-orthogonal vectors in a Banach
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space X implies the abundance of vectors in X** being L-orthogonal to X
(Theorem [3.4). In other more precise words, if X is a Banach space with the
almost Daugavet property with respect to some norming subspace Y of X*,
then the set of elements in X** being L-orthogonal to X is o(X**,Y)-dense
in X**. Then, as an immediate consequence, we get that a Banach space
satisfies de Daugavet property if, and only if, the set of elements in X**
being L-orthogonal to X is w*-dense in X** (Theorem [3.5)).

We finish the Section [3] showing that the known equivalence of almost
Daugavet property and octahedrality is no longer true in the nonseparable
setting (Theorem, solving a question posed in [20]. That is, the existen-
ce of almost L-orthogonal elements does not imply the abundance of such
elements in the nonseparable setting.

In Section |4 we get some consequences on Daugavet property for Banach
spaces being L-embedded. In particular we get that X®,Y has the Dau-
gavet property, whenever X is an L-embedded Banach space and Y is a
nonzero Banach space such that either X** or Y has the metric approxi-
mation property (Theorem . Also we get that a Banach space with the
Daugavet property can not be an u-ideal in its bidual (Theorem 4.4)).

2. PRELIMINARIES

We will consider only real Banach spaces. Given a Banach space X, we
will denote the unit ball and the unit sphere of X by Bx and Sx respectively.
Moreover, given x € X and r > 0, we will denote B(z,r) = x+rBx = {y €
X ¢ |lz —y|| < r}. We will also denote by X* the topological dual of
X. If Y is a subspace of X* o(X,Y) will denote the coarsest topology
on X so that elements of Y are continuous. Also, Y is norming if ||z| =
SUpyey,||yl<1 |¥()|. Given a bounded subset C of X, we will mean by a slice
of C a set of the following form

S(C,z*,a) :={zeC:x"(x) >supx™(C) — a}

where z* € X* and o > 0. If X is a dual Banach space, the previous set
will be called a w*-slice if z* belongs to the predual of X. Note that finite
intersections of slices of C' (respectively of w*-slices of C') form a basis for
the inherited weak (respectively weak-star) topology of C.

According to [I0], a Banach space X is said to be an L-embedded space
if there exists a subspace Z of X** such that X** = X ®; Z. Examples
of L-embedded Banach spaces are Lj(u) spaces, preduals of von Neumann
algebras, duals of M-embedded spaces or the dual of the disk algebra (see
[10, Example IV.1.1] for formal definitions and details).

Given two Banach spaces X and Y we will denote by L(X,Y) (respec-
tively K(X,Y")) the space of all linear and bounded (respectively linear and
compact) operators from X to Y, and we will denote by X R,Y and X®.Y
the projective and injective tensor product of X and Y, respectively. More-
over, we will say that X has the metric approrimation property if there
exists a net of finite rank and norm-one operators S, : X — X such that
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Sa(z) — x for all x € X. See [25] for a detailed treatment of the tensor
product theory and approximation properties.

Let Z be a subspace of a Banach space X. We say that Z is an almost
isometric ideal (ai-ideal) in X if X is locally complemented in Z by almost
isometries. This means that for each € > 0 and for each finite-dimensional
subspace £ C X there exists a linear operator T : F — Z satisfying

(1) T(e) = e for each e € ENZ, and
2) (1= )llell < IT(Il < (1+¢)|e]l for each ¢ € E,

ie. Tis a (1 4 ¢) isometry fixing the elements of E. If the T satisfies only
and the right-hand side of we get the well-known concept of Z being
an ideal in X [§].

Note that the Principle of Local Reflexivity means that X is an ai-ideal
in X** for every Banach space X. Moreover, there are well known Banach
spaces properties, as the Daugavet property, octahedrality and all of the
diameter two properties, being inherited by ai-ideals (see [I] and [2]). Fur-
thermore, given two Banach spaces X and Y and given an ideal Z in X,
then Z®,Y is a closed subspace of X®,Y (see e.g. [22, Theorem 1]). It is
also known that whenever X** or Y has the metric approximation property
then X**®,Y is an isometric subspace of (X®,Y)** (see [I5, Proposition
2.3] and [22, Theorem 1]).

Throughout the text we will make use of the following two results, which
we include here for the sake of completeness and for easy reference.

Theorem 2.1. [2, Theorem 1.4] Let X be a Banach space and let Z be an
almost isometric ideal in X. Then there is a linear isometry ¢ : Z* — X*
such that

p(z7)(2) = 2%(2)
holds for every z € Z and z* € Z* and satisfying that, for everye > 0, every
finite-dimensional subspace E of X and every finite-dimensional subspace F
of Z*, we can find an operator T : E — Z satisfying
(1) T(e) =e for everye € ENZ,
(2) (X —9)|lell < |IT(e)|| < (L+¢€)lle|| holds for every e € E, and;
(3) f(T(e)) = p(f)(e) holds for every e € E and every f € F.

Following the notation of [I], to such an operator ¢ we will refer as
an almost-isometric Hahn-Banach extension operator. Notice that if ¢ :
Z* — X* is an almost isometric Hahn-Banach extension operator, then
@* X* — Z** is a norm-one projection.

Another central result in our main theorems will be the following, coming
from [Il Remark 2.3]

Theorem 2.2. Let X be a Banach space, let'Y be a subspace of X such that
dens(Y) = v and let W C X* be such that dens(W) < a. Then there exists
an almost isometric ideal Z in X containing Y and an almost isometric
Hahn-Banach extension operator ¢ : Z* — X* such that o(Z*) D W.
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According to [7], given a Banach space X, the ball topology, denoted by
bx, is defined as the coarsest topology on X so that every closed ball is
closed in bx. As a consequence, a basis for the topology bx is formed by
the sets of the following form

n
X\ | B@i, ),

i=1

where z1,...,z, are elements of X and rq,...,r, are positive numbers.
Let us end by giving a pair of technical results which will be used in the

proof of Theorem The first one can be seen as a kind of generalisation
of the classical Bourgain Lemma [5, Lemma II.1], which asserts that, given a
Banach space X, then every non-empty weakly open subset of Bx contains
a convex combination of slices of Bx. The following result already appeared
in [13] without a complete proof. However, let us provide a proof here for
the sake of completeness.

Lemma 2.3. Let X be a Banach space and Y C X* be a norming subspace
for X. Let U be a non-empty o(X,Y) open subset of Bx. Then U contains
a convex combination of o(X,Y)-slices of Bx.

Proof. Let U be the o(X**,Y)-open subset of By« defined by U. Notice
that
By-- = 0" (Ext(Bx--)) € c0”™"¥) (Ext(Bx--)

by Krein-Milman theorem, so we can find a convex combination of extreme
points Y 1" \ie; € U. Since the sum in X** is o(X**,Y) continuous we can
find, for every i € {1,...,n}, a o(X™,Y) open subset of Bx= such that
e; € V; holds for every ¢ and such that Y ;" | \;V; C U. Since the following
chain of inclusions hold

Z)\i(vimBX) - (Z)\lvz) N Bx QUOBX:U’

i=1 i=1
the following claim finishes the proof.
Claim: Giveni € {1,...,n} we can find a slice S; such that S; C V;NBx.

Proof of the Claim. By the definition of the o(X**,Y’) we can assume that

k;
Vi = () T; where every T} is a o(X**,Y)-slice of Bx«+. Since ¢; € V;
j=1

k;
it follows that e; ¢ |J Bx+ \ Tj. Now e; is an extreme point of By
j=1

J
closed in the o(X**,Y)-compact space Bx=«« for every j and, since it is

ki
and then e; ¢ co( |J Bx+ \T; |. Notice that By« \ T} is o(X**,Y)-
=1

ki
additionally convex, it follows that co | |J Bx«= \ Tj> is o(X™**,Y) compact

7j=1
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k;
too. Since e; ¢ co (U By \Tj> then we can find = € Bx such that x ¢
7j=1

ki
co(XY) U Bx+ \Tj |. By a separation argument we can find y* € Sy
j=1
and o > 0 such that
y*(z) > a > supy”(2)
2€Z

k;
for Z = | (Bx++ \Tj) N Bx. If we define
j=1

S;i:={z€ Bx:y"(z) > a}
it follows that S; a o(X,Y)-slice. Furthermore, given z € S; it follows that
k.

y*(2) > a,so0 z € ﬁ T; N Bx = V; N Bx, which completes the proof of the
=1
claim. =

Let us end by giving a brief sketch of proof of the following lemma, which
is an easy extension of [12), Corollary 3.4].

Lemma 2.4. Let X be a Banach space and assume that X has the almost
Daugavet property with respect to a norming subspace Y C X*. Then, for
every xi,...,&, € Sx, every ¢ > 0 and every non-empty o(X,Y)-open
subset U of Bx there exists z € U such that

lxi +z|| >2—¢
for every i € {1,...,n}.

Proof. We will prove the lemma by induction on n. The case n = 1 is just
[12, Corollary 3.4].

Hence, assume by induction that the lemma holds for n, and let us prove
it for n + 1. To this end, pick z1,...,2p+1 € Sx, € > 0 and U to be a
non-empty o(X,Y)-open subset of Bx. By induction hypothesis we can
find z € U such that .
2
holds for every i € {1,...,n}. For every i € {1,...,n} choose f; € Sy such
that fi(x; +2) >2— 5. Since z € U and f; € Y, it follows that

lzi + 2| >2—

n
€
zeW:=UnN QS(BX,fZ-, 5)-
1=
Since W is a non-empty o(X,Y’) open subset of Bx we can find u € W such
that
|Tnt1 +ul| >2—e.
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Also, given i € {1,...,n}, since fi(x;) > 1—5 and fi(u) > 1—§ we get that
lx; + ul|| = fi(zi +u) >2—c¢,

which concludes the proof. m

3. MAIN RESULTS

Our first goal will be to show that, in contrast with the result in [7, Lemma
9.1], where it is proved that octahedrality of a separable Banach space X is
equivalent to the existence of elements in X** being L-orthogonal to X, this
is no longer true in the nonseparable setting. That is, the existence of almost
L-orthogonal vectors in a Banach space X, as defined in the introduction,
does not imply the existence of nonzero vectors in X** being L-orthogonal
to X. For this, we need the following result.

Proposition 3.1. Let X be a uniformly smooth Banach space. Assume that
there exists an element T € (X®:01)* = (X*®@L5)* = L(X*, £*) such that
|IT|| =1 and such that

T+ S| =2

for every norm-one element S € X®.0; = K(X* t1). Then T is an isome-
try.

Proof. Pick an arbitrary z* € Sy« and let us prove that || T(«*)|| = 1. This
is enough in view of the homogeneity of T'. To this end, pick z € Sx such
that 2*(z) = 1. Define S := x ® e1, which is a norm-one element of X®./;.
By assumptions we have that |7+ S|| = 2 so we can find, for every n € N,
an element x* € Sx« such that

2 - % < (T + S) @) < NT (@)l + [z (2)]-

From the previous inequality it is clear that | T(x})| — 1 and |z} (z)| — 1.
Now, up taking a suitable subsequence, we can assume that the sign of ' (z)
is constant, so x} (x) converges to 1 or to —1. Since X is uniformly smooth
we deduce that either 7 — x* or x; — —x*. With no loss of generaly,
assume that z) — z*. Now T'(z}) — T(z*) which in turn implies that
T ()| — || T(z*)||. Since ||T'(z})]] — 1 then ||T(z*)|| = 1, so the lemma
follows. m

The previous lemma together with [I7, Theorem 3.2] yield the desired
counterexample.

Theorem 3.2. Let I be an infinite set with card(I) > dens({]*) and let
2 < p < 0o. Then the norm of £,(I)®:l1 is octahedral but there is no
T € (by(I)®cl1)** such that |T| = 1 and such that

1T+ S5 =1+]S5]
for every S € £y(I)®:ly.
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Proof. Since 2 < p < oo it follows that ¢,(I) is finitely representable in ¢,
where %%—% = 1, and has the MAP. By [17, Theorem 3.2] it follows that the
norm of £,(I)®.¢; is octahedral. However, notice that there is no isometry
T : Ly(I) — 7" since dens({y(1)) > card(l) > dens(¢7*): According to
Proposition there is no T' € Sy 1y _¢,)+~ such that |IT + S|| = 2 holds

for every S € 0o(1) so we are done. m

®5€1 ?

Now, our goal will be to get nonzero vectors in the bidual of a Banach
space X being L-orthogonal to X from the existence of almost L-orthogonal
vectors in X. Let us show the main result of the paper.

Theorem 3.3. Let X be a Banach space with the almost Daugavet property
with respect to the morming subspace Y C X*. Let u € Bx+«. Then, for
every almost isometric ideal Z in X and for every {gg : f < a} C Sy such
that gg € ©(Z*) for every B < a, where a = dens(Z), we can find v € Sx«-
satisfying the following two assertions:

(1) |lz+v|| =1+ ||z|| for every z € Z.
(2) v(gs) = ulgp) for every B < av.

Proof. The proof will be done by induction in o = dens(Z2).
Case a = wy.

Let {gn : n € N} C Sy and let Z be a separable almost isometric ideal
in X and ¢ : Z* — X* such that {g,, : n € N} C ¢(Z*). Let us construct
vq. To this end, since Z is separable, there exists a basis {O,, : n € N} of
the by-topology restricted to By. For every n € N consider O,, to be the

kn
bx-open subset of Bx which defines O,, (i.e. if O, := [ Bz \ B(2},r;) then
i=1

~ kn,
Op := () Bx \ B(#]",7i)). Since X has the Daugavet property with respect

i=1
to Y it follows that, for every n € N, there exists by Lemma an element

no n 1
T : - — 5.
ve N0 () {oe B lonto) — uta)l < -}
k=1 k=1
Now, for every § > 0, there exists a J-isometry
T:FE:=span{zi,...,2k,,Tn} — Z

such that T'(z;) = z; and that gx(T(v)) = ¢(gx)(v) holds for every v € E
and every k € {1,...,n}. Taking into account the property defining x,, and
the fact that § can be taken as small as we wish we can ensure the existence

of
€ (10N ) { € Bz :l¢™ (90)(2) — ulg)] < ;}
k=1 k=1
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Now [7, Lemma 9.1] ensures the existence of a suitable w*-cluster point
Uq € Sx=+ of {z,} such that

1z 4+ ual = 1+ ||2]
holds for every z € Z. If we take v, € (¢*) ! (uq) then we have that
[+ vall = [[¢"(x + va)ll = |2 + uall = 1+ [|l2|

holds for every z € X. Also, it is clear, by definition of the sequence {x,,}
and the fact that u is a w*-cluster point, that v, (gx) = u(gx) holds for every
k € N. This completes the case a = wy.

Assume now that wy < « < dens(X) and that the thesis of the theo-
rem holds for every almost-isometric ideal in X whose density character is
smaller than «.

Let Z be an almost isometric ideal in X of density character equal to

a and let ¢ : Z* — X* be a almost isometric Hahn-Banach extension

operator such that {gs : § < a} C ¢(Z*) N Sy. In order to construct v,

pick {zg : f < a} C Sx to be a dense subset of Sz. Let us construct by

transfinite induction on wy < B < « a family {(Zg, v3,{fs,y : 7 < B}, v5 :
B < a} satisfying the following assertions:

(1) Zgs is an almost isometric ideal in X containing |J Z, U {zg} and

v<p
such that dens(Zg) = card(/3).

(2) ¢ Z; — X* is an almost isometric Hahn-Banach operator such
that {fys:0 <y <pB}tU{g,:v< B} C cp/g(Zg;).
(3) vz € Sx=+ satisfies that

Iz +vpll = 1+ 2]

for every z € Zg and {f3, : v < 8} C Sy is norming for Zg & Rug.
(4) For every 6 < v < 8 < a it follows

v8(fy.6) = vy(fr.6),

and

V() = u(gy)-

The construction of the family will be completed by transfinite induction on
B. To this end, notice that the case = wg runs similarly to the case that
Z is separable. So, assume that (Z,, ¢, {fys: 6 € v}, v,) has already been
constructed for every v < 3, and let us construct (Z3, vg, {fs~ : 7 € B}, vg).
Pick v to be a w*-cluster point of the net {vy : v < 8} (where the order in
[0, B[ is the classical order). Notice that, by induction hypothesis, for every
do < Yo < v < B we have that

U’Y(f”/o,%) = Uy (f“/0,50)'
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Then, since v is a w*-cluster point of {v,},<5, we get that

(3'1) v(f’yoﬁo) = Uvo(f’yoﬁo)‘

Because of the same reason we obtain that

(3.2) v(gp) = vy+1(gy) = ulgy)
for every v < 5. Now

card({fy,s : 6 <7 < B)U{gy : v € B}) < max{card(5xf3), card(5)} = card(3).

Also dens( |J Z,) = card(B). Then, by [I, Remark 2.3] there exists an
v<p
almost isometric ideal Zz in X containing |J Zy U {zg} and an almost
¥<B
isometric Hahn-Banach extension operator ¢g : Zg — X™ such that

0p(Z5) D {fre:0 <y <BrU{gy v < B}
Let us construct vg. To this end, consider ¢3(v) € Z5*. Since dens(Zg) =

card(f5) < a, then the induction hypothesis applies. Consequently, we can
find vg € Sx= such that

(1) |lz +vg|| = 1+ ||z|| for every z € Zg, and
(2) va(fy,5) = v(fy,s) for 6 <~ < B, and v5(gy) = v(g,) for every v < f5.
Take {fg~ : v < 8} C Sy being norming for Zg ® Ruvg. It follows as before

that {(Zy, ¢y, {©y(fy,5) : 0 <7}, vy) 1 v < B} satisfies our purposes.
Now consider v, to be a w*-cluster point of {vg}geqo. Let us prove that
v, satisfies the desired properties.

(1) Let us prove that va(gg) = u(gg) for every f < a. To this end
pick € > 0 and find v > 8 + 1 so that |[(vqa — vy)(gg)| < €. Since
v5(gg) = u(gp) holds for every § > 5+ 1 it follows that

[(va — u)(gp)| = |(v —vy)(gp)] <&

Since € > 0 was arbitrary we are done.
(2) Given x € Sy it follows that

o+l = 2.

To this end, pick e > 0. Since {3 : 8 < a} is dense in Sz find 8 < «
such that ||z — zg|| < §. Since ||z + vg|| = 2 find v < B such that

(25 +vp)(foy) > 2 — %

Now, given any /3’ > 3 we have that
€
(25 +vp)(f5,7) = (25 + vs) () > 2~ 3.
Since v is a w*-cluster point of {vg : f < a} we obtain that

g 9
2— 5 <+ 0)(fa) < llo ol < flz ol + 5,
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so [z + v|| > 2 —¢e. Since € > 0 was arbitrary we also conclude
that ||« + v|| = 2. Finally, since x € Sz was arbitrary, a convexity
argument yields that

2+ vll =1+ =]
holds for every x € Z.

This completes the proof of the theorem by transfinite induction on o =
dens(X). m

Since every Banach space is trivially an almost isometric ideal in itself,
the following result follows.

Theorem 3.4. Let X be a Banach space with the almost Daugavet property
with respect to Y C X*. Let u € Bx« and {gs : B < a} C Sy, where
a = dens(Z). Then we can find v € Sx=« satisfying the following two
assertions:

(1) [z +v|| =1+ |z| for every z € X.

(2) v(gg) = u(gp) for every B € a.

As a consequence we obtain the following strenghtening of the Daugavet
property, which extends [24, Theorem 3.2] to the non-separable case.

Theorem 3.5. Let X be a Banach space. The following assertions are
equivalent:

(1) X has the Daugavet property, that is, for every x € Sx, every non-
empty relatively weakly open subset of Bx and every ¢ > 0 there
erists y € W such that ||z +y|| > 2 —¢.

(2) For every non-empty relatively weakly-star open subset W of By
there exists v € Sx« N W such that

2 +vf] = 1+ [|]|
holds for every x € X.

Proof. (2)=(1) is obvious. For the converse, take a non-empty weakly-star
open set W of BX** and u € W N Sx»«. With no loss of generality we can

assume that W = ﬂ S(Bx++, fi,;), for suitable f; € X* and a; > 0. By

Theorem [3.4] we can ﬁnd an element v € Sx++ such that
(1) ||z +v|| =1+ ||z|| for every z € X and,
(2) v(fi) = u(f;) for every i € {1,...,n}.

Now condition (2) above implies that v € W since u € W, so we are done. =

Notice that, from the results of [13] together with [7, Lemma 9.1], it is
known that, given a separable Banach space X, then the following assertions
are equivalent:

(1) X has the almost Daugavet property.
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(2) There exists an element u € Sx+« such that
[+ uf = 1+ [l]

holds for every z € X.
(3) The norm of X is octahedral.

Notice that a consequence of Theorem is that implies , which in
turn implies (3). Note also that from the results [13] it is unclear whether the
implication implies holds in the non-separable context (it is indeed
explicitly posed as an open question in [20, P. 89]). Note that Theorems
and imply that does not imply . However, as application of
Theorem we even obtain that does not imply , as the following
theorem shows.

Theorem 3.6. Let a be a cardinal number so that o > dens(¢7*). Then
X =0 &1 la(«) fails the almost Daugavet property.

Proof. Assume by contradiction that X has the almost Daugavet property
with respect to a norming subspace Y of X*. Notice that dens(X) = a =
w* — dens(X™). Since any dense subset of Sy is dense for X we obtain
that dens(Y’) > a. Pick a cardinal number § so that dens((7*) < 8 < a.
By transfinite induction together with Riesz lemma [4, Lemma 1.23] we can
find a set {f, : v < B} € Sy so that dist(fy,5pan{fs : 06 < v}) > 1/2.
Consequently, by Hahn-Banach theorem we can get, for every v < (5, an
element u € Sx»» such that u,(f5) =0 for every § < v and u,(f,) > 3. By
Theorem we can find, for every v < 3, an element v, € Sy« such that

[+ oy[| = 1+ [|]

for every € X and such that v, = u, on {fs : § < v}. Notice that the
first condition implies, from the equality X** = £7* ®1 f2(«a), that {vy : 7 <
B} C ¢7*. On the other hand, given § < 7 arbitrary we get that

1
loy = vsll = [(vy = v)(fs)l = lvs(fs)] = 5-
This implies that card({f, : v < 8}) = B < dens(¢]"), which entails a con-
tradiction with the choice of 5. Consequently, X fails the almost Daugavet
proeprty, as desired. =

Now some comments are pertinent.

Remark 3.7. Notice that the space X exposed in Theorem [3.6] which fails
to enjoy the almost Daugavet property, is a Banach space whose norm is
octahedral (see e.g. [9] Corollary 2.3]). Consequently, octahedrality of the
norm does not imply almost Daugavet property, which gives a negative
answer to [20, Section VI8]. Furthermore, since X** = (7* @; la(a), we
obtain even that :> is false.

Remark 3.8. Let X and Y be two Banach spaces with the almost Daugavet
property. S. Lucking proved in [I8, Proposition 2.2|, by making use of the
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characterisation of the almost Daugavet property given in [13], that if X
and Y are separable and X has the almost Daugavet property then X &Y
has the almost Daugavet property. However, Theorem shows that this
result is not longer true if we remove separability assumption on the space

Y.

Remark 3.9. In [19, Corollary 3.3] it is proved that if Y is a non-reflexive
separable subspace of a non-reflexive L-embedded Banach space X then
Y has the almost Daugavet property. Note that this result is not true in
the non-separable context since the space X considered in Theorem is
L-embedded by [10, Example IV.1.1 and Proposition IV.1.5].

4. DAUGAVET PROPERTY AND L-EMBEDDED SPACES

In order to obtain more consequences from Theorem [3.5 we consider the
following characterisation of the Daugavet property in L-embedded spaces,
which is an extension to the non-separable case of [24, Theorem 3.3].

Theorem 4.1. Let X be an L-embedded Banach space. Assume that X** =
X ®1 Z. Then, the following are equivalent:

(1) X* has the Daugavet property.
(2) X has the Daugavet property.
(3) By is weak-star dense in Bx««.

Proof. :> is obvious.

:> . Let W be a non-empty weakly-star open subset of Bx«+ and
let us prove that By N W # (). By Theorem we can find u € W N Sxx«
such that

2+ ull =1+ [l
for every x € X. Since u € X* we can find x € X and z € Z such that
u=1x+ z. Now

L2zl =l =2+ (z+2)[| =1 + [

This implies that x = 0 and, consequently, v € Bz. So W N Bz # (), as
desired.
@= follows from [3, Theorem 2.2]. =

This result generalises [3, Theorem 3.2], where the authors proved that a
real or complex JBW*-triple X has the Daugavet property if, and only if,
its predual X, (which is an L-embedded Banach space) has the Daugavet
property.

Now, following word-by-word the proof of [24], Theorem 3.7, we get the
next result, which gives an affirmative answer to [24, Problem 5.2]

Theorem 4.2. Let X be an L-embedded Banach space with the Daugavet
property and let Y be a non-zero Banach space. If either X** orY has the
metric approzimation property then X®,;Y has the Daugavet property.
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Proof. Assume with no loss of generality that X** = X @1 Z. We will follow
the ideas of [24, Theorem 3.7]. To this end, pick G € Sp(x,y+) and a > 0
and, to prove the theorem, it suffices to find an element u € Sx=+ and y € Sy
such that u(y o G) > 1 — a and such that

2+ u®yll xg,pye = 1+ 2]

for every z € X®,Y. To do so, by the assumption that either X** or Y has
the MAP, it follows that X**®,Y is an isometric subspace of (X®,Y)** by
[15, Proposition 2.3], so it suffices to prove that

Iz +u@yllyeg,y =1+

for every z € X®,Y. To this end, find z € Sx and y € Sy such that
G(z)(y) > 1 — a. This means that

x € S(Bx,yoG,a).

Since S(Bx=+,yo G, ) is a non-empty weakly-star open subset of Bx«+ and
X is an L-embedded Banach space with the Daugavet property then by
Theorem we can find u € Sz such that u(y o G) > 1 — a.. Let us prove
that

Iz +u@yllyeg,y =1+

for every z € X®,Y. To this end pick z € X®,Y, ¢ > 0, and take T &
Sr(x,v+) such that T'(z) = ||z[|. Since [Jul| = 1 choose z* € Sx+ such that
w(z*) > 1 —e. Pick y* € Sy~ such that y*(y) = 1 and define 7' : X** =
X &1 Z — Y™ by the equation

T(x+z)=T(x)+ z(z")y"
It is not difficult to prove that ||7'|| = 1. Hence

[z +u@ylxmg y 2 T(z+u®y) =T(2) +u(@)y"(y) = 1 +u(z")
>2—¢.

Since £ > 0 was arbitrary we conclude the theorem. =

Let us end with some consequences about u-structure in Banach spaces
with the Daugavet property. To this end, according to [§], given a Banach
space X and a subspace Y, we say that Y is a u-summand in X if there
exists a subspace Z of X such that X =Y & Z and such that the projection
P : X — X such that P(X) C Y satisfies that || — 2P| < 1 (in such a
case we say that P is a u-projection). We say that Y is an u-ideal in X if
there exists a u-projection P : X* — Y* such that Ker(P) = Y. Finally,
we say that X is an u-ideal if X is an w-ideal in X** (under the canonical
inclusion).

Let us end the section with the following two consequences of Theorem
about v structure in Banach spaces.
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Proposition 4.3. Let X be a Banach space with the Daugavet property.
Assume that X is an u-summand in its bidual, say X*™* = X & Z. Then Z
is w*-dense in X*.

Proof. By Theorem [3.5]it is enough to prove that every u € Sx++ such that
[+ ull =1+ [l

holds for every x € X satisfies that v € Z. To this end, pick such an
element u € Sx+. By the decomposition X*™ = X & Z we get that there
exist (unique) x € X and z € Z such that w = x 4+ 2. Let us prove that
x = 0. Notice that

L+ 2zl = flu = 22] = [lu = 2P(u)[| < [T - 2P| < 1.

By the above inequality we obtain ||z|| = 0 or, equivalently, that u = z € Z,
as we wanted. m

Theorem 4.4. Let X be a Banach space with the Daugavet property. Then
X can not be an u-ideal in its bidual.

Proof. Assume, by contradiction, that there exists P : X*™* — X*** a u-
projection such that Ker(P) = X*. Pick x € Sx. Since X has the Daugavet
property then X* has the almost Daugavet property with respect to the
norming subspace X of X** [I4, Lemma 2.1], so an application of Theorem
implies the existence of an element u € Sy« such that u(z) = 1 and
such that
2% +ul = 1+ [|lz7]]

holds for every x* € X. Let us prove that P(u) = 0. Indeed,

1+2[|P(u)]| = llu = 2P(u)|| < [T - 2P|| < 1,

so P(u) = 0. This implies that u € Ker(P) = X', which entails a contra-
diction with the fact that u(x) = 1. Consequently, X can not be a u-ideal
in its bidual. =

Remark 4.5. In [8, Theorem 5.1] it is proved that if a separable Banach space
X contains f; then X can not be a strict u-ideal. The previous theorem
makes use of the (quite stronger) assumption that X has the Daugavet
property. However, the separability assumption is removed. Also, it is
proved that X can not be even a u-ideal in its bidual.

As L1]0,1] is an L-embedded space with the Daugavet property, the above
theorem fails in the setting of L-embedded spaces. However, we don’t know
if there is an L-embedded dual space satisfying the Daugavet property. From
Theorem this is equivalent to ask about the existence of an L-embedded
dual space X so that its L-complement in X** has a w*-dense unit ball in
the unit ball of X**. Also, the above is again equivalent, from Theorem (4.1
to the existence of a Banach space X whose dual space, X*, is L-embedded
and so that X** satisfies de Daugavet property. Recall that the existence of
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a bidual space with the Daugavet property is unknown (see [26, Section 6,
Question (2)]).
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