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Abstract: Consensus modeling aims to obtain collective agreement through group decision-
making (GDM), generally by building mathematical programming models. This paper
describes the use of optimization consensus modeling to explore theoretical
innovations regarding flexible carbon quota trading mechanisms, with basic allocation
schemes provided within a closed-loop trading system by simultaneously taking
revenue and fairness into account. A series of optimization consensus models are
constructed from the perspective of maximizing the corresponding revenue, resulting in
optimal/fair carbon quota allocation schemes that include detailed trading information,
e.g., participating individuals, transferred quantities, and unit transaction prices. To
solve these models, a relaxation method based on particle swarm optimization is
proposed. The inability to conduct real-life GDM usually stems from conflicts of interest
based on the decision-makers' mutual competition, thus, two practical strategies are
presented to deal with the resulting unfairness within the trading system. Finally, a
numerical example incorporating five regions demonstrates the effectiveness of the
proposed trading mechanisms. The results show that sufficient interactions among
decision-makers are of great significance in achieving fairness within a trading system.
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Dear editors and reviewers: 
 
We’d like to express our honest thanks to your critical comments and suggestions 
concerning our manuscript entitled “Optimization consensus modeling of a closed-
loop carbon quota trading mechanism regarding revenue and fairness”. We have spared 
no efforts to revise and improve the paper according to your constructive advices. 
 
Changes in the new version of our paper include but are not limited to: 
* The section of Introduction has been improved with some updated references; 
* Definition of variables are further clarified, so as to make the closed-loop trading 
mechanism more reasonable and feasible; 
* Several hypotheses have been added in the new version to strengthen the logic 
of the proposed optimization consensus models; 
* Regarding those issues raised by the four anonymous reviewers, we have 
revised some descriptions in the paper so as to be more accurate. 
 
For your convenience, all changes are marked in blue in the revised manuscript and 
they won’t damage the content and the framework of this paper. We earnestly appreciate 
Editor’s/ Reviewers’ constructive work, and hope all the corrections would meet with 
approval. Once again, thank you very much for your comments and suggestions! 
 
Best regards, 
Xiaoxia Xu, Zaiwu Gong, Weiwei Guo, Zhongming Wu, Enrique Herrera-
Viedma and Francisco Javier Cabrerizo 
 
Corresponding authors:  
Name: Zaiwu Gong and Xiaoxia Xu 
E-mail: zwgong26@163.com, xiaoxia_xu1991@163.com 
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Highlights: 
 
Carbon quota trading mechanism is explored by optimization consensus modeling. 
Flexible allocation schemes are derived by maximizing overall or individual revenue. 
Two strategies are raised to realize fairness within the carbon quota trading system. 
Relaxation method based on PSO algorithm is used to solve the proposed models. 
A numerical example is adopted to demonstrate the feasibility of the models. 

Highlights (for review)



Responses to Editor's and Reviewers' Comments 

Thank you very much for the letter and the four anonymous reviewers’ comments 
concerning our research paper entitled “Optimization consensus modeling of a closed-
loop carbon quota trading mechanism regarding revenue and fairness” (ID: CAIE-D-
21-00365). Your comments are of great significance to our research and have provided 
tremendous help for revising and improving our paper. All changes are marked in 
blue in the revised manuscript and detailed responses to editor’s and the four reviewers’ 
comments are as follows: 
 
 
Response to Editor: 
AE: The structure of the paper should be enhanced for more readability. Some minor 
issues (as reviewers' comments) should be addressed.  
Response: Thank you very much for your time and effort in dealing with our paper. We 
have carefully revised our paper according to all critical comments and suggestions. In 
this version, our revisions are including, but not limited to, some corrections regarding 
the variables in the proposed models (see pages 7 and 17), the reorganization of our 
introduction for more readability (see pages 2-4), adding several assumptions to 
strengthen the logic of the paper (see page 8), and updating some references with the 
latest information (see pages 38-41). Hope all corrections could meet with approval. 
 
 
Response to Reviewers: 
Reviewer #1: This paper uses optimization-based consensus models to discuss the 
allocation schemes (including optimal quantities and transaction prices) in a closed-
loop carbon quota trading system. Authors consider the principles of both revenue 
maximization and fairness, and put forward a PSO-based relaxation method to solve 
the newly proposed models. The work has certain theoretical innovations and practical 
values. But the following issues need to be focused on. 
Response: We sincerely appreciate your positive comment. We carefully considered all 
the issues you mentioned, and we have made revisions according to your suggestions 
one by one. Our detailed responses are as follows. 
 
1. The price variables of p_i and q_i are fixed in this paper, whether it is necessary to 
consider an unfixed case?  
Response: Thank you very much for raising this interesting and important issue! The 
unit price variables of 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 are actually decision variables in this paper, which 

Detailed Response to Reviewers



have been clarified in Models (3, 6, 7) (see pages 13, 17, 21), indicating that these 
variables are not really fixed. It just happens that the optimal values of the above 
variables in different consensus models (as shown in Section 5) are equal. However, 
combining with the comments from Reviewer #4, we did neglect one important 
hypothesis that prices fluctuate with time or the changes of supply and demand on the 
market. In fact, once taking the above hypothesis into consideration, the complexity of 
the proposed optimization-based consensus models will undoubtedly increase, and 
further increase the difficulty of solving these models. Currently, we mainly focus on 
the idea of incorporating consensus modeling into trading mechanisms regarding 
revenue and fairness, so we might have to ignore some influence factors (e.g., time) on 
price variables and simplify our problem to the greatest extent, however, we added a 
relevant assumption as “Variables of unit prices (i.e., 𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑖𝑖  and 𝑇𝑇𝑖𝑖𝑖𝑖 ) are static, 
meaning that they don't fluctuate with time, supply and demand, and etc.” on page 8 so 
as to strengthen the logic of our proposed models, also we considered this issue as one 
important direction of our subsequent research (see page 34). 
 
2. It is better to revise "Table 2 provides the initial carbon quota allocated to each 
region (i.e., o_i)" on page 7 into "Table 2 provides the initial carbon quota (i.e., o_i) 
allocated to each region".  
Response: Thank you so much! We revised our description as “Table 2 provides the 
initial carbon quota (i.e., 𝑜𝑜𝑖𝑖) allocated to each region along with its fixed unit revenue 
(i.e., 𝑟𝑟𝑖𝑖), from which the initial total revenue (i.e., 𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖) of each region can be obtained”, 
please see page 11. 
 
3. On page 8, how to calculate I_12=2, I_23=1.  
Response: Thanks a lot for this important comment! Actually, these values on page 12 
are not obtained through calculation here. In other words, all the discussions over Fig. 
1 on pages 11-12 are only served as a simple introduction to the modeling ideas 
proposed in this article. That’s why we made a statement as “Note that the elaborated 
example only corresponds to the aforementioned basic assumptions, and does not really 
involve the consensus modeling in the next section” (see the 2nd paragraph on page 11). 
However, these kinds of variables do be solved by the newly proposed optimization 
consensus models (see Section 5 on pages 23-33). Anyway, we replaced the phrase “are 
obtained as” by “are assumed to be obtained through mathematical modeling as” on 
page 12, so as to avoid confusion. 
 
4. As authors state that "the 80/20 Rule (i.e., the Pareto principle) implies that 20% 
input is critical and enough for 80% output. Therefore, we may wish to adjust the 
endpoints of the expected carbon quota interval by 20% of their initial values" on page 



19, please clarify what 80% and 20% correspond to in this paper?  
Response: We really appreciate this valuable comment! We added more discussion on 
80/20 rule as “Initially concluded from a phenomenon of 20% people possessing 80% 
of the wealth in the world, the 80/20 Rule (i.e., the Pareto principle) is now extended to 
a fact that an optimal ratio exists between the effort and gain. In other words, once we 
change 20% of the key factors, qualitative change will occur, implying that we can 
derive enough (like 80% of) expected results on that critical point”, thus we use this 
rule as a reference to determine the change amount of the original expected intervals in 
this paper (see page 29). In addition, we also provided some detailed explanation on 
how to obtain the adjusted intervals from the original ones by combining with the 
comment from Reviewer #4, please see page 29. 
 
5. Pay attention to the format of your references: "Chu, L. Y. & Shen, Z. - J. M. (2006). 
Agent competition double auction mechanism. Management science, 52 (8), 1215-
1222"; and "CO2" should be CO2 in "Duro, J. A. & Padilla, E. (2006). International 
inequalities in per capita CO2 emissions: a decomposition methodology by kaya factors. 
Energy Economics, 28(2), 170-187."  
Response: Thank you, and we fixed these issues according to your comments (see pages 
38-39). In addition, we updated some references with their latest information (see pages 
38-41). 
 
6. The following references are helpful: Joint decision of financing and ordering in an 
emission-dependent supply chain with yield uncertainty, CAIE, 2021; Optimal pricing 
strategy of competing manufacturers under carbon policy and consumer environmental 
awareness, CAIE, 2019; Integrated decisions for supplier selection and lot-sizing 
considering different carbon emission regulations in Big Data environment, CAIE, 
2020; A production inventory model with interval-valued carbon emission parameters 
under price-sensitive demand, CAIE, 2021.  
Response: We’d like to express our honest thanks to this comment! All the references 
mentioned above are of significant help for improving our paper, and we cited them 
mainly in the part of Introduction, please see pages 2-4 and 38-41. 
 
 
Reviewer #2: This paper deals with the up-to-date issue of optimal and fair allocation 
on closed-loop carbon quota trading through optimization consensus models, and those 
methods are plausible to be applied into real-life carbon markets. As the manuscript is 
oriented mainly on the theoretical aspects, it requires some revisions to provide a 
convincing and easy way to understand all the elements embodied in those models. 



Response: We appreciate a lot for your positive opinions, and we have carefully revised 
our manuscript, especially the definitions of the variables in the proposed models, so as 
to provide a more convincing and easier way for readers to understand. Hope you would 
satisfy all the corrections. 
 
Here are my detailed remarks:  
1. As for the keywords on page 1, I suggest to replace “Group decisions and 
negotiations” by “Group decision-making (GDM)”. 
Response: We totally agree with your suggestion, and we have replaced “Group 
decisions and negotiations” by “Group decision-making (GDM)”, please see page 1. 
 
2. The introduction on pages 2-4 is a bit lengthy, for example, the sentence seems 
irrelevant as “Namely, conventional trading mechanisms mainly rely on the interaction 
between multiple factors such as price, supply and demand, and competition, and 
eventually promote the harmonious development of a social economy through market 
players’ automatic adjustments to production and operation activities”, so I suggest to 
remove it. 
Response: Thank you so much! We removed all the lengthy sentences, and in order to 
improve the readability of this paper, we also made some revisions in Introduction, 
which are marked in blue on pages 2-4.  
 
3. Authors need to add some references about the influential factors on carbon trading 
markets, since they discussed them on page 2. 
Response: Thanks a lot for this important comment! We added some references (e.g., 
Lamba et al., 2019; Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021) regarding 
the influential factors on carbon trading markets, please see pages 3 and 38-41. 
 

4. On page 9, how about adding the constraint '
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=∑ ∑ into Model (3)? 

Response: Thank you so much for this valuable comment, but we insist not to add the 

constraint '
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=∑ ∑  into Model (3). This constraint means that the final total amount 

of carbon quota for all decision-makers (DMs) equals to all DMs’ initial total amount, 
which reflects that the total carbon quota amount in the closed-loop trading system is 
fixed. In fact, for all 𝑖𝑖 ∈ 𝑁𝑁, if we respectively add up the two sides of the Eq. (3-1), 

then we obtain the constraint as '
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=∑ ∑ . Given our original statements may be not 

clear enough, we made some revisions on page 13. 
 



5. In system (3) the conditions (3-2) and (3-3) are not needed. Without them, the 
system has the same solution (they are always satisfied in the optimal solution of the 
system without them). 
Response: Thank you so much for this important comment! Through careful 
consideration, we believe our original statements regarding the constraints in Model (3) 
are confusing and misleading, so we made some corrections (see page 13). However, 
we insist on maintaining Model (3) as its original form due to the following three 
reasons: (1) The transferred quantities (i.e., the decision variable of 𝐼𝐼𝑖𝑖𝑖𝑖) are actually 
constrained by price variables (see Theorem 6 on page 15), so if we remove constraints 
(3-2) and (3-3), decision variables of 𝐼𝐼𝑖𝑖𝑖𝑖 can’t be solved; (2) Unit price variables (i.e., 
𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖) are decision variables, however, due to insufficient constraints (e.g., the 
absence of specific transaction prices building connections with these variables), only 
the ranges of 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 instead of their optimal values can be obtained, and that’s the 
reason why we didn’t give their optimal values in its corresponding model (i.e., Model 
(9) in Section 5.2 on page 25), and also the reason why we made the previous wrong 
statement; and (3) the existence of conditions (3-2) and (3-3) in the benchmark Model 
(3) provides the theoretical foundations and the modeling reasons for those subsequent 
models. In conclusion, the conditions (3-2) and (3-3) are necessary in system (3). 
 

6. When explaining model (5), why uniform distribution is assumed to denote ijT ? 

Response: Thank you for raising this question! The reason why we chose uniform 
distribution to denote 𝑇𝑇𝑖𝑖𝑖𝑖 is that each point within the interval can be selected with 
equal possibility, which makes it easy to calculate, understand and be applied into real-
life GDM. However, as we pointed out in Section 6, we may incorporate game theory 
to more accurately determine these variables in our subsequent research (see page 34). 
To avoid confusion, we added relevant descriptions on page 16.  
 
7. In the process of carbon quota trading, there is a transaction cost. Why we need to 
take the transaction cost into consideration? 
Response: Thank you for this valuable comment! In this paper, we aim to achieve the 
optimal or fair allocation schemes through consensus modeling within a closed-loop 
carbon quota trading market. As far as the market is concerned, it is profit-oriented (i.e., 
simultaneously pursuing the maximization of revenue and the minimization of costs) 
(see the 1st paragraph on page 3), so the transaction cost is important and cannot be 
ignored. In other words, if we conduct analysis only from the revenue maximization 
perspective, it will make no sense. However, we do neglect other costs in real-life 
trading process, so we added one assumption concerning the cost perspective in the new 
manuscript, so as to be more logical (see page 8). 



Reviewer #3: 1. the authors should explain how have they set the value of δ in Eq.(8-
4)? how does the value of δ change the results of solution?  
Response: Thank you so much for this valuable comment! δ in Eq. (8-4) is the non-
Archimedean infinitesimal, viz. a sufficiently small positive value approaching zero 
(see Theorem 6 on page 15), normally it’s pre-determined, and we set this parameter as 
δ=10-6 (see page 25), which is small enough compared with other parameters in Section 
5. And the value of δ doesn’t change the results of solution. 
 
2. Given that, the proposed model had been solved by using PSO algorithm. How do 
the authors will be sure about the optimality of solutions? it means to check the quality 
of the PSO algorithm which is an algorithm tailored to optimize the proposed model.  
Response: We really appreciate for this helpful comment! It should be noted that the 
proposed model in our paper is nonconvex, which means it is difficult to obtain the 
global optimal solution. Due to this, we adopt the PSO algorithm that is a classic and 
promising approach. Based on the initial point and stopping criteria, it must find a local 
optimal solution. Furthermore, if the selection of parameters (e.g., initial points) is 
appropriate, a global optimal solution can be found. We added some references in the 
paper which can guarantee the optimality of the solution obtained from PSO algorithm, 
please see (Campana et al., 2010; Sun et al., 2012) on page 22. 
 
3. How did the authors control the feasibility of constraints regarding PSO algorithm? 
it works based on random search. (Handling constraints) 
Response: Thank you so much for this important question! Although PSO algorithm is 
a random search method, it works and searches the solution within the feasible domain 
at each iteration, where the feasible domain is constructed by the constraints in our 
proposed models.  
 
4. The assumptions of model need to reinforcement.  
Response: Thank you so much for this valuable suggestion! Currently, this paper mainly 
focuses on how to use consensus modeling to derive the optimal or fair allocation 
schemes within a closed-loop carbon quota trading system, and we simplify the problem 
to the greatest extent, so as to reduce the computational complexity of the proposed 
models. However, it is really necessary for us to add some assumptions to strengthen 
the logic of the constructed models considering all reviewers’ comments, thus, on page 
8, we made some clarifications as: 
 
“To be noted, this paper aims to describe the most essential trading behavior within a 
carbon quota market by consensus modeling. Meanwhile, in order to reduce the 
computational complexity of the subsequent models, we currently simplify the problem 



to the greatest extent. Therefore, several basic assumptions need to be clarified as: 
 1. The carbon quota market discussed remains stable during a certain period, and 
DMs can freely participate in the trading system; 
 2. Price variables (i.e., 𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖 and 𝑇𝑇𝑖𝑖𝑖𝑖) are static, meaning that they don't fluctuate 
with time, supply and demand, and etc; 
 3. Unit revenue of 𝑑𝑑𝑖𝑖 's carbon quota (i.e., 𝑟𝑟𝑖𝑖 ) is a constant, which is only 
determined by 𝑑𝑑𝑖𝑖 's own inherent characteristics rather than 𝑜𝑜𝑖𝑖, indicating the standard 
law of diminishing returns assumption is not considered; 
 4. Factors regarding costs within the profit-oriented trading system are implicit in 
𝑑𝑑𝑖𝑖 's initial unit revenue, which means we only need to conduct analysis from the 
perspective of revenue maximization. 

Actually, assumptions listed above are all to reduce the complexity of our GDM 
problem, and every point could be an interesting topic in our subsequent research.” 
 
5. How have the authors set the parameters of PSO algorithm?  
Response: Sorry for missing the information on the parameters’ setting of our algorithm. 
We added some relevant descriptions in Section 5.3 on page 27. 
 
 
Reviewer #4: This paper attempts to explore the theoretical innovation of a flexible 
carbon quota trading mechanism within a closed-loop trading system. A series of 
optimization consensus models are constructed to ensure both overall revenue 
maximization and fairness. The problem considered in the paper is interesting and 
useful. However, I have several concerns as follows: 
Response: Thank you so much for your interest on our paper, and we hope all the 
revisions could resolve your concerns. 
 
1. (P. 5) In Table 1, symbol pi represents selling price of di’s CQ. It should be clearly 
defined that it represents the unit price or the total price. Similarly, the symbols of qi 
and Ti,j should be clarified. 
Response: Thank you for this helpful suggestion, and we feel sorry for the previous 
imprecise statements. We made new clarifications on these variables (see Table 1 on 
page 7), and we also made revisions regarding this issue throughout the manuscript. 
 
2. (p. 6) In the proof of Theorem 1, the authors described “To sum up, once DM di 
buys (sells) carbon quota from (to) dj, he/she will no longer sell (buy) carbon quota to 
(from) dj.”. 
What if the time or price changes? This statement is inappropriate. 
Response: We really appreciate this important comment! In our previous manuscript, 



we did neglect these important features. As you know, this paper aims to incorporate 
consensus modeling into obtaining the optimal or fair allocation schemes within a 
trading system, meanwhile, we want to keep the proposed models as essential as 
possible, so we simplify the problem to the greatest extent. However, it is really 
necessary for us to emphasize some features attached to these variables, thus, we added 
several hypotheses in Section 3 to strengthen the logic of our paper (see page 8), also 
to make Theorem 1 more appropriate (see page 9).  

 
3. (P. 9) In Model3, the authors mentioned that “Note that no matter with or without 
conditions (3-2) and (3-3), the above system may have the same solution 
mathematically, but these constraints must be retained, so as to fully show the trading 
behaviors within the closed-loop system.” However, placing irrelevant conditions in the 
model increases complexity and can easily confuse readers. It is recommended to 
separate practical model from descriptions showing the trading behaviors within the 
closed-loop system. Same for subsequent models. 
Response: We appreciate this significant comment! Through careful consideration, we 
had to admit that our original statements regarding the constraints in Model (3) are 
confusing and misleading, so we made some corrections (see page 13). However, we 
insist to keep Model (3) as its original form due to the following three reasons: (1) The 
transferred quantities (i.e., the decision variable of 𝐼𝐼𝑖𝑖𝑖𝑖) are actually constrained by price 
variables (see Theorem 6 on page 15), so if we remove constraints (3-2) and (3-3), 
decision variables of 𝐼𝐼𝑖𝑖𝑖𝑖 can’t be solved; (2) Unit price variables (i.e., 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖) are 
decision variables, but due to insufficient constraints (e.g., the absence of specific 
transaction prices building connections with these variables), only the ranges of 𝑝𝑝𝑖𝑖 and 
𝑞𝑞𝑖𝑖 instead of their optimal values can be obtained, and that’s the reason why we didn’t 
give their optimal values in its corresponding model (i.e., Model (9) in Section 5.2 on 
page 25), and also the reason why we made the previous wrong statement; and (3) the 
existence of conditions (3-2) and (3-3) in the benchmark Model (3) provides the 
theoretical foundations and the modeling reasons for those subsequent models. Thus, 
the conditions (3-2) and (3-3) are actually necessary in Model (3). 
 
4. (P. 9) In the proof of Theorem 4, “…Theorem 2 implies that there is no Iij >= 0 
that would further increase the objective function. Thus, the solution at this time is 
exactly the optimal solution, and the objective function becomes …” 
This proof should be described and verified more clearly and in detail. 
Response: Thank you so much for this important suggestion! To make the proof of 
Theorem 4 clear enough, we added some detailed clarifications as “there exists no 𝐼𝐼𝑖𝑖𝑖𝑖 >
0 to further increase the objective function. That is, except 𝑑𝑑𝑚𝑚, all DMs have reached 



their critical points of their expected carbon quota intervals (i.e., [𝑜𝑜𝑖𝑖−, 𝑜𝑜𝑖𝑖+]), either the 
lower limit of 𝑑𝑑𝑖𝑖 (1≤ i≤ 𝑚𝑚-1) or the upper limit of 𝑑𝑑𝑖𝑖 (m+1≤ i ≤ n), making DMs 
with a location index smaller than 𝑚𝑚 cannot further sell carbon quota while DMs with 
a location index larger than 𝑚𝑚 cannot further buy carbon quota, based on the given 
condition as 𝑟𝑟1 ≤ 𝑟𝑟2 ≤ ⋯ ≤ 𝑟𝑟𝑛𝑛. In a nutshell, if 𝐼𝐼𝑖𝑖𝑖𝑖> 0, the objective function of Model 

(3) increases to f*= f +(𝑟𝑟𝑖𝑖-𝑟𝑟𝑖𝑖)∗ 𝐼𝐼𝑖𝑖𝑖𝑖, where f is the total revenue before the transaction. 

Due to 𝑟𝑟𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖, (i < j), we get f*≥ f, indicating that if and only if 𝐼𝐼𝑖𝑖𝑖𝑖=0, the value of 

the objective function no longer increases and becomes the optimal value” on page 14, 
and we hope our revisions can resolve your concerns. 
 
5. (P. 12) In Model 3, the decision variables should be clearly defended. Is variable 
m a given value? If so, how do we get the value of m? 
Response: Thank you for this helpful comment! Actually, m is a decision variable rather 
than a given parameter, so we made some clarifications concerning the decision 
variables in Model (6) (see page 17).  
 
6. (P. 15) In Model 8, a relaxation model was developed to replace Model 6 because 
Model 6 is a non-convex optimization problem with many decision variables to be 
determined. Then, PSO algorithm was applied to solve the model. The effect of using 
the original model and the relaxation model on the results should be further analyzed 
or discussed. 
Response: We really appreciate you for this important suggestion! Actually, Model (8) 
is the sub-problem of Model (6), thus the solution of the original Model (6) can be 
directly obtained after solving Model (8). From Algorithm 1, we can see that PSO 
algorithm is applied to solve the sub-problem of Model (6) (i.e., Model (8)), and 
Algorithm 1 is designed to solve the original Model (6). Meanwhile, the relaxation 
model can be seen as a sub-model of Model (6), so it does not affect the solution of the 
original model. Some relevant discussions were added on page 22. 
 
7. (P. 15) The title of Section 5.1 shows “Flowchart of the research on carbon quota 
trading mechanism”. However, no flowchart can be found in this section. 
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Optimization consensus modeling of a closed-loop carbon quota trading
mechanism regarding revenue and fairness

Abstract

Consensus modeling aims to obtain collective agreement through group decision-making (GDM), generally by build-

ing mathematical programming models. This paper describes the use of optimization consensus modeling to explore

theoretical innovations regarding flexible carbon quota trading mechanisms, with basic allocation schemes provided

within a closed-loop trading system by simultaneously taking revenue and fairness into account. A series of opti-

mization consensus models are constructed from the perspective of maximizing the corresponding revenue, resulting

in optimal/fair carbon quota allocation schemes that include detailed trading information, e.g., participating in-

dividuals, transferred quantities, and unit transaction prices. To solve these models, a relaxation method based

on particle swarm optimization is proposed. The inability to conduct real-life GDM usually stems from conflicts

of interest based on the decision-makers’ mutual competition, thus, two practical strategies are presented to deal

with the resulting unfairness within the trading system. Finally, a numerical example incorporating five regions

demonstrates the effectiveness of the proposed trading mechanisms. The results show that sufficient interactions

among decision-makers are of great significance in achieving fairness within a trading system.

Keywords: Group decision-making (GDM); Consensus; Revenue and fairness; Carbon quota trading mechanism;

Allocation scheme

1. Introduction

Group decision-making (GDM) refers to a process in which multiple individuals participate in decision-making

analysis and make a final choice based on their collective wisdom: Clark & Stephenson (1995) have pointed out that

GDM represents a collective recall of information. Generally, communication and negotiation effectively promote the

interactions among decision-makers (DMs) (Hirokawa & Poole, 1996) and the flow of information within the group.

Moreover, technological innovations have significantly updated the means of group communication and decision-

making (Kiesler & Sproull, 1992). Without loss of generality, three stable states of fragmentation, polarization, or
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consensus may finally be achieved by rational DMs considering their own interests (Hegselmann & Krause, 2002;

Liang et al., 2020; Zhao et al., 2016). Among them, consensus usually requires multiple rounds of communication,

coordination, preference modification, and even concessions or compromises within the group. Only in this way can

a relatively consistent collective agreement be obtained (Cabrerizo et al., 2014; Liu et al., 2019; Wu & Chiclana,

2014; Wu et al., 2018; Zhang et al., 2020a,b). For example, if a new allocation scheme of resources is obtained

through GDM within a trading system, which is widely accepted by the whole group, then a consensus is reached.

Liang et al. (2020) clarified that the consensus-reaching process (CRP) does not mean that an optimal solution

must be achieved. Instead, CRP is more like a decision tool or a synthesizing process that assists DMs in building

connections and communicating with each other, thereby providing a more effective way for the group to find unity

on how to proceed (Susskind et al., 1999).

Considering that cost, which may be embodied as human, material, financial, time and other resources, is an

important influencing factor in GDM, Ben-Arieh & Easton (2007) first proposed the concept of minimum cost

consensus, and acquired the optimal collective opinion with a linear/quadratic cost function (Ben-Arieh et al.,

2009). Since then, other scholars have made further extensions to their minimum cost consensus models (MCCMs)

by taking various factors into account, such as uncertain preference structures (Gong et al., 2021; Guo et al., 2021),

aggregation rules (Zhang et al., 2011), measurement of consensus effectiveness (Labella et al., 2020) or parameter

improvements of initial models (Cheng et al., 2018; Lu et al., 2021; Zhang et al., 2020a). Since unit costs are

difficult to objectively determine in advance, and DMs’ opinions are hard to modify during GDM, Dong et al.

(2010) proposed minimum adjustment consensus models (MACMs) with an ordered weighted average operator,

which preserve the DMs’ initial preference information as much as possible. Similarly, their modeling idea has also

been widely explored (del Moral et al., 2018; Dong et al., 2016; Gong et al., 2020; Yu et al., 2021; Zhang et al.,

2018), especially under social networks (Cheng et al., 2020; Wu et al., 2018) or opinion evolution contexts (Chen

et al., 2021; Liang et al., 2020). Moreover, Zhang et al. (2020b) summarized the original and basic consensus models

based on feedback mechanisms with a minimum cost/adjustment and reviewed diverse consensus modeling under

some complicated GDM scenarios.

Different from the above consensus modeling with a minimum cost/adjustment, this paper was partially inspired

by the construction of consensus models that aim to maximize the total revenue. By introducing linear primal-dual
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theory, various MCCMs (including hard and soft consensus (Herrera-Viedma et al., 2014; Zhang et al., 2011)) with

specific preference structures (e.g., DM’s opinion denoted by crisp numbers or interval values) were adopted as the

primal models, and then their corresponding dual forms (i.e., the optimization maximum compensation consensus

models) along with their economic significance were deeply explored by Gong et al. (2015a,b) and Zhang et al.

(2019). Subsequently, taking the essential architecture of Stackelberg’s game into account, Zhang et al. (2020a)

presented a bi-level optimization consensus model that depicts the interaction between DMs and the moderator,

and divided the DM’s total return into a modification component (also known as external compensation) provided

by the moderator for the DM’s initial preference adjustment and a recognition component based on the similarity

between the DM’s original opinion and the final consensus. It is well known that the market is profit-oriented (i.e.,

simultaneously pursuing the maximization of revenue and the minimization of costs) and its operating mechanism

is mostly affected by pricing strategy, participants’ competition, supply and demand, and etc. (Lamba et al., 2019;

Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Therefore, in discussing closed-loop trading mechanisms,

the revenue maximization of either the whole group or a single DM is set as our objective function in this paper,

and constraints such as supply and demand or prices are introduced. A series of optimization consensus models are

then constructed as a means of deriving the optimal resource allocation schemes within a trading system.

Rapid industrialization and economic growth have led to significant increases in emissions of carbon dioxide

and other greenhouse gases, and have rendered environmental pollution and extreme weather events increasingly

serious and frequent, resulting in severe negative impacts on economic development and human health (Wang et al.,

2017). Therefore, mitigating the impact of human activities on the environment through reductions in carbon

emissions has gradually become a global consensus. Diaz-Rainey & Tulloch (2018) conducted the first empirical

analysis of New Zealand’s carbon trading scheme using allowance importation and exportation data, and found

that the imports of offsets are the major carbon price determinant, with small trading systems able to reap benefits

from imposing quantitative import restrictions. Aiming at developing sustainable supply chain, joint decisions were

made under various carbon emission regulatory policies, with respect to different influence factors, such as inventory,

pricing, financing and ordering (Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Furthermore, carbon issues

combined with decision-making technology has also been investigated (Gong et al., 2021; Huang & Xu, 2020; Lamba

et al., 2019). For instance, Lamba et al. (2019) proposed a mixed-integer nonlinear program for supplier selection
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and the right lot-sizes determination under a dynamic background with multiple periods, products and suppliers,

and evaluated different costs of carbon emissions under three regulating policies (viz. cap-and-trade, strict cap on

emissions and carbon tax) using big data technology. Huang & Xu (2020) constructed a bi-level multi-objective

programming model to solve the carbon emission quota allocation problem with co-combustion of coal and sewage

sludge, and formulated the interaction between authorities and coal-fired power plants before examining a real case

demonstrating the trade-off between economic development, energy conservation, and renewable energy utilization.

Setting targets for carbon emissions in different countries/regions (i.e., operating collective schemes for optimal

carbon quota allocation) is one of the main obstacles to reaching a comprehensive agreement on global warming.

This is exacerbated by long-term tensions between industrialized and developing countries regarding unfairness

issues on burden-sharing, with industrialized countries pleading special circumstances and seeking differentiation in

their obligations (Rose et al., 1998). Fairness concerns, gained widespread attention in the supply chain management

(Liu et al., 2021; Zheng et al., 2019), are also critical for GDM (Du et al., 2021), because participants are motivated

by not only the final results, but also the fairness they feel compared with others (Adams, 1963). Under a fixed

total carbon quota, the scientific allocation of binding carbon allowances for different regions is a complex and

arduous task, because it directly involves the economic development rights of each region. In general, the fairness

of carbon emissions quotas is measured using the Atkinson index (Hedenus & Azar, 2005), Theil index (Duro &

Padilla, 2006), and Gini coefficient (Chen et al., 2017). The traceability method, which uses historical carbon

emissions as the relevant feature of the initial carbon quota allocation (i.e., the free distribution principle), has

been criticized by Fromm & Hansjürgens (1996) and Sijm et al. (2007) for being inconsistent with the “polluter

pays” principle and lacking fairness from the perspective of society as a whole. In addition, Van Steenberghe (2004)

found that the so-called fair rule to allocate greenhouse gas emission permits is not beneficial for all nations, with

some countries being worse off under global agreement than under non-cooperative contexts. Under the framework

of the Kyoto Protocol, Gomes & Lins (2008) adopted the zero-sum gains data envelopment analysis method to

provide a fair carbon emissions allocation plan for various countries, which not only stabilizes the concentration of

greenhouse gases in the atmosphere, but also achieves carbon quota trading with no impact on global emissions.

The above studies have mostly considered the fairness of carbon quota allocations at the global level, ignoring the

interest-driven issues of individual/regional perspectives. Therefore, the analysis of carbon trading mechanisms
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through consensus modeling with all participators’ interests taken into account is of great significance.

Although many studies have investigated carbon issues, there has been few research on carbon quota trading

mechanisms, and consensus decision-making theory has not been adopted to deal with the design of carbon trading

mechanisms and their resulting unfairness issues. That is, using optimization consensus models to assist DMs in

exchanging carbon quotas and the development of fair connections among them within a closed-loop trading system

are neglected. Hence, the main contributions of this study are as follows: (i) By referring to conventional market

trading mechanisms, a benchmark consensus model with the aim of overall revenue maximization is presented

to derive the optimal carbon quota allocation scheme. (ii) By building a two-stage programming model, new

allocation schemes are acquired that focus on different single DM’s revenue maximization, allowing detailed trading

information such as the transferred quantities, DM’s unit selling and buying prices, and unit transaction prices

to be acquired. (iii) Two strategies based on individual/group development indices are proposed to deal with the

unfairness issue within the trading system. (iv) A relaxation method based on particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995) is proposed to solve the above consensus models. And (v) numerical analysis of a

trading system composed of five regions is conducted to verify the effectiveness of the proposed models.

The rest of this paper is organized as follows. Section 2 briefly reviews the optimization consensus models,

then Section 3 presents some assumptions of the trading mechanisms, and justifies the rationality of the hypothesis

through theoretical deduction. Section 4 constructs a series of new consensus models from which optimal/fair allo-

cation schemes are obtained within the closed-loop trading system, and further proposes an optimization algorithm

to solve these models. A numerical example is reported in Section 5 to demonstrate the feasibility of the proposed

mechanisms. Finally, Section 6 gives some concluding remarks and identifies future research directions.

2. Preliminaries on optimization consensus modeling

To better understand the subsequent construction of optimization closed-loop carbon trading consensus models,

this section briefly reviews theoretical GDM models for obtaining the optimal consensus. However, before introduc-

ing the basic consensus models, we define some related notation. Let D = {d1, d2, · · · , dn} be the set of all DMs,

where di denotes the i-th DM and i ∈ N = {1, 2, · · · , n}. Let O = {o1, o2, · · · , on} and O
′
= {o′

1, o
′

2, · · · , o
′

n} be the

sets of initial and final preferences (i.e., opinions, judgements) of the group, where oi, o
′

i denote di’s initial and final

5



opinions, respectively. The existing forms of expressions for DMs include, but are not limited to, linear uncertainty

preferences (Gong et al., 2020, 2021), linguistic preferences (Cabrerizo et al., 2013; Wu et al., 2018; Yu et al., 2021),

fuzzy preference (Herrera-Viedma et al., 2014; Wu & Chiclana, 2014; Zhang et al., 2018). Nevertheless, aiming to

solve real-life GDM problems, we adopt traditional forms, i.e., positive and real numbers, to denote DM’s opinions

in this paper. Let ωi denote the unit cost provided by the moderator for di adjusting his opinions, i ∈ N . In

fact, the modeling mechanisms are similar for both MCCM (Ben-Arieh & Easton, 2007; Ben-Arieh et al., 2009) and

MACM (Dong et al., 2016, 2010). If all DMs’ unit costs satisfy wi = wj ,∀i, j ∈ N, i ̸= j, then the former reduces to

the latter (Zhang et al., 2020b). A general framework of the minimum cost/adjustment consensus model provided

by Zhang et al. (2011) can be introduced as:

min
n∑

i=1

wi ∗ d(o
′

i, oi)

s.t.


oc = F (o

′

1, o
′

2, · · · , o
′

n) (1− 1)

CD(o
′

i, o
c) ≤ α, ∀i ∈ N (1− 2)

(1)

In Model (1), d(o′

i, oi) represents the distance or deviation between di’s initial and final (or adjusted) opinions

(del Moral et al., 2018), which is generally given by the Manhattan distance (Ben-Arieh & Easton, 2007) or Euclidean

distance (Ben-Arieh et al., 2009). Constraint (1-1) means that the collective opinion (i.e., consensus) oc should be

obtained by the aggregation function F over all DMs’ final opinions {o′

1, o
′

2, · · · , o
′

n}, which corresponds to various

social selections; and constraint (1-2) measures the consensus level CD attached to di’s adjusted opinion o
′

i and

the consensus oc, where α is a pre-defined threshold that is usually employed when solving soft consensus problems

(Herrera-Viedma et al., 2014; Zhang et al., 2011, 2019).

The above model is an optimization consensus model with a minimum cost/adjustment from the moderator’s

perspective. However, individuals in GDM always expect some compensation for adjusting their opinion, the more

the better. Hence, introducing linear primal-dual theory, Gong et al. (2015a,b) and Zhang et al. (2019) explored the

dual forms of Model (1) in specific contexts so as to obtain the maximum compensation for all DMs. In particular,

Zhang et al. (2019) provided a concise form of the maximum compensation consensus models (i.e., Model (2)),

where R means the set of real numbers, and yi is the unit compensation expected by di. As discussed earlier, Zhang

et al. (2020a) divided the objective function of Model (2) into a modification return provided by the moderator for
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the DM’s opinion adjustment and a recognition return based on the similarity between the DM’s initial opinion

and the final consensus. However, their model is omitted here due of space limitations.

max
n∑

i=1

yi ∗ (oi − oc)

s.t. yi ∈ R, i ∈ N

(2)

The optimal collective opinion oc can always be obtained, regardless from the minimum cost perspective (i.e.,

Model (1)) or the maximum compensation perspective (i.e., Model (2)). Therefore, the idea of discussing the closed-

loop carbon quota trading mechanism with an objective function that maximizes the overall revenue is feasible. In

addition, the above two models obtain the optimal collective opinion oc, whereas this paper aims to derive all DMs’

optimal adjusted opinions (i.e., the set of O
′) during the trading process. Thus, in the following discussion, we

introduce some influential factors into the conventional market trading mechanisms and build a series of optimization

consensus models that provide optimal or fair carbon quota allocations within a closed-loop trading system.

3. Assumptions for carbon quota trading mechanisms

This paper explores how to develop a satisfactory carbon quota allocation scheme under the goal of maximizing

the revenue for either the whole group or a single DM through market trading mechanisms. To facilitate a better

understanding, Table 1 presents the main notation used in this paper. Suppose that multiple DMs (e.g., companies,

regions, nations) form a closed-loop trading system with a fixed total carbon quota. Let ri be di’s initial fixed unit

revenue and r1 ≤ r2 ≤ ... ≤ rn, where ri is determined by each DM’s unique qualities, such as social and economic

development, natural conditions, resource endowments, industrial structures, and energy usage rates.

Table 1 Summary of notation used in this paper
Notation Meaning Notation Meaning

di The i-th DM Iij Quantity transferred from di to dj

ri Initial fixed unit revenue of di’s CQ Tij Unit transaction price between di and dj

pi Unit selling price of di’s CQ δ Non-archimedean infinitesimal
qi Unit buying price of di’s CQ γ Fairness threshold
oi di’s initial CQ α Fairness measure variable
o
′
i di’s final CQ Z1 Obj to maximize overall revenue

o−i Lower limit of di’s IECQI Z2 Obj to maximize a specific DM’s revenue
o+i Upper limit of di’s IECQI Z3 Obj regarding revenue and fairness
Hi Individual development index H̄ Group development index

Note: CQ, IECQI and Obj are short for carbon quota, initially expected carbon quota interval and the objective function, respectively.
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To be noted, this paper aims to depict the most essential trading behavior within a carbon quota market by

consensus modeling. Meanwhile, in order to reduce the computational complexity of the subsequent models, we

currently simplify the problem to the greatest extent. Therefore, several basic assumptions need to be clarified as:

1. The carbon quota market discussed remains stable during a certain period, and DMs can freely participate

in the trading system;

2. Variables of unit prices (i.e., pi, qi, Tij) are static, meaning that they don’t fluctuate with time, supply and

demand, and etc.;

3. Unit revenue of di’s carbon quota (i.e., ri) is a constant, which is only determined by di’s own inherent char-

acteristics rather than oi, meaning that the standard law of diminishing returns assumption is not considered;

4. Factors regarding costs within the profit-oriented trading system are implicit in di’s initial unit revenue, which

means we only need to conduct analysis from the perspective of revenue maximization.

Actually, assumptions listed above are all to reduce the complexity of our GDM problem, and each point could

be an interesting topic in our subsequent research. Anyway, the final results obtained from the closed-loop trading

system through consensus modeling should satisfy two main objectives:

• Goal 1: Each DM’s total revenue derived from the trading is no less than his initial fixed total revenue;

• Goal 2: The sum of all DMs’ revenue acquired from the closed-loop trading system should be maximized.

Goal 1 is set from the DM’s perspective, and aims to maximize each DM’s economic benefits. All DMs are as-

sumed to be rational (that is, once the carbon quota trading is conducted, they must benefit themselves); otherwise,

the transactions are invalid. This corresponds to real-life market trading and can be understood as the effectiveness

of the trading mechanisms. On the contrary, Goal 2 is set from the collective angle. In general, the representative

for the collective benefit is the participant who determines the initial carbon quota for all DMs, and also the one

who plays the role as a moderator in GDM problems (Ben-Arieh & Easton, 2007; Gong et al., 2021), such as local

governments or world organizations. For those representatives, the primary goal is to maximize the overall revenue.

To realize Goal 1, we have the following constraints: (1) pi ≥ ri, (2) qi ≤ ri, where pi denotes the unit selling

price, qi represents the unit buying price, and ri is the original fixed revenue for one unit of di’s carbon quota.

Let the quantity transferred from di to dj be Iij , and their final unit transaction price be Tij . Then, the following
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statement holds: If pi ≤ qj , then the one-way carbon quota transaction from di to dj can be realized, that is, di

can sell a carbon quota to dj , and so Iij ≥ 0 and the unit transaction price Tij ∈ [pi, qj ], which indicates there is a

negotiable space in the trading process between di and dj . At the same time, we derive Iji = 0, since Iij ∗ Iji = 0

holds under the premise of one-way trading.

The above constraint indicates that there is a directionality in the carbon quota trading between any two DMs.

Specifically, once a carbon transaction occurs between di and dj , the transferred quantity sold by di to dj is Iij ,

and we get ri ≤ pi ≤ qj ≤ rj . Moreover, because the unit transaction price satisfies pi ≤ Tij ≤ qj , we have that

ri ≤ pi ≤ Tij ≤ qj ≤ rj . Thus, di’s revenue is TijIij − riIij ≥ 0, whereas dj ’s revenue is rjIij − TijIij ≥ 0. This

trading mechanism guarantees that every carbon transaction that occurs is profitable for both parties, implying

that each DM’s final revenue after the carbon trading is no less than their initial total fixed revenue. Thereby, Goal

1 is always met.

Theorem 1. Iij ∗ Iji = 0 and Iij ≥ 0, Iji ≥ 0 (i ̸= j, i, j ∈ N), if and only if pi = qi = pj = qj = ri = rj, Iij ≥ 0,

and Iji ≥ 0 hold simultaneously. At this time, the unit selling and buying prices, as well as the initial fixed unit

revenue for both di and dj, are equal. In this case, the transaction does not bring about a change in revenue, so it

has no economic significance.

Proof. As pi ≥ ri and qi ≤ ri, we have pi ≥ ri ≥ qi. When Iij ≥ 0 and Iji ≥ 0 hold simultaneously, pi ≤ qj

and pj ≤ qi are obtained, that is, ri ≤ pi ≤ qj ≤ rj ≤ pj ≤ qi ≤ ri. So when pi = qi = pj = qj = ri = rj , both

Iij ≥ 0 and Iji ≥ 0 hold. Under other situations, if Iij ≥ 0, we have Iji = 0; on the contrary, if Iji ≥ 0, we get

Iij = 0. To sum up, based on the aforementioned four assumptions, once DM di buys (sells) carbon quota from

(to) dj , he/she will no longer sell (buy) carbon quota to (from) dj .

Theorem 1 guarantees that the transactions between any two DMs in the closed-loop carbon quota trading system

are one-way. When the initial parameters provided by the two DMs (including unit buying and selling prices as

well as their initial fixed unit revenue) are all equal, their transaction has no direction constraint. However, any

transaction realized under these conditions cannot increase the DMs’ revenue, so it has no economic value.

Theorem 2. Suppose ri is di’s initial fixed unit revenue and r1 ≤ r2 ≤ ... ≤ rn, if i ≤ j, Iij ≥ 0 holds; if i > j and

ri ̸= rj, Iij = 0 holds; and if i > j and ri = rj, Iij ≥ 0 holds.
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Proof. If i ≤ j, we have ri ≤ rj , and because pi ≥ ri, qj ≤ rj , there must exist pi, qj such that ri ≤ pi ≤ qj ≤ rj ,

then Iij ≥ 0. Besides, if i > j and ri ̸= rj , then ri > rj , and since pi ≥ ri, qj ≤ rj , that is, pi ≥ ri > rj ≥ qj , thus

there exist no pi, qj such that pi ≤ qj , thereby we have Iij = 0. Similarly, if i > j and ri = rj , then pi ≥ ri = rj ≥ qj .

Clearly, only if pi = ri = rj = qj , Iij ≥ 0 holds, otherwise, we have Iij = 0.

Theorem 2 takes the basic hypothesis of this paper into consideration: all DMs are arranged in order based on

the relationships among their original fixed unit revenues, that is, r1 ≤ r2 ≤ ... ≤ rn. The quantity of the carbon

quota that is transferred is not only affected by the DM’s location index, but also by the size of the DM’s fixed

unit revenue. This theorem implies that carbon quota trading can only be carried out from one DM with a smaller

fixed unit revenue to another with a larger unit revenue. Therefore, DMs with small fixed unit revenues have to sell

their carbon quota to increase their total revenue, because pi ≥ ri. On the contrary, DMs with large unit revenues

can only improve their revenue by purchasing carbon quotas, because qi ≤ ri.

Theorem 3. Let di’s final carbon quota be o
′

i. Considering that some uncertainty exists during the trading process,

the above final carbon quota is represented by an interval value, denoted as [o−i , o
+
i ], whose endpoints satisfy:

n∑
i=1

o−i ≤
n∑

i=1

oi ≤
n∑

i=1

o+i

Proof. Since o−i ≤ o
′

i ≤ o+i , we have
∑n

i=1 o
−
i ≤

∑n
i=1 o

′

i ≤
∑n

i=1 o
+
i . Meanwhile, because the total carbon

quota in the closed-loop trading system is fixed, namely
∑n

i=1 o
′

i =
∑n

i=1 oi, then
∑n

i=1 o
−
i ≤

∑n
i=1 oi ≤

∑n
i=1 o

+
i .

Theorem 3 is based on the assumption that the total carbon quota in the closed-loop trading system is fixed,

which complies with the provisions of the clean development mechanism. That is, under the premise of fixed global

carbon emission levels, high-emission countries can finance some projects in low-emission countries to reach their

established limit (i.e., compensatory reduction) (Gomes & Lins, 2008). In short, the so-called “carbon market” can

reduce the economic impact on high-emission countries and achieve the overall goal of reducing carbon emissions.

In addition, for rational DMs, threshold constraints attached to their final carbon quota can better exhibit the

uncertainties during the trading process (Ruidas et al., 2021); for the moderator, there is no need to grasp all

transaction details, namely, the moderator only needs to have overall control of the total amount, that is, the lower
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limit of the final total carbon quota is no greater than the initial total amount, while the upper limit should be no

less than the sum of all DMs’ original carbon quotas.

An example of carbon quota trading conducted by three regions is presented below to preliminarily clarify our

modeling ideas. Initial information is listed in Table 2, while the trading results, including the final carbon quota,

and the corresponding revenue, are shown in Table 3. Meanwhile, the specific trading process is exhibited in Fig. 1.

Note that the elaborated example only corresponds to the aforementioned basic assumptions, and does not really

involve the consensus modeling in the next section.

Table 2 Example of the initial information provided
by three regions

d1 d2 d3

oi 10 10 10
ri 50 80 120
rioi 500 800 1200

Table 3 Example of the final carbon quotas through
the trading conducted by three regions

d1 d2 d3

o
′
i 3 11 16
ri 50 80 120
rio

′
i 150 880 1920

Trading revenue 530 -35 -495
Total revenue 680 845 1425

Table 2 provides the initial carbon quota (i.e., oi) allocated to each region along with its fixed unit revenue (i.e.,

ri), from which the initial total revenue (i.e., rioi) of each region can be obtained. As d1 has the smallest unit

revenue r1, this DM can only increase his revenue by selling a carbon quota; as d3 has the largest unit revenue r3,

this DM can only increase his total revenue by purchasing a carbon quota. For d2, revenue may be increased by

selling, purchasing, or combining both trading behavior (see Fig. 1).

Fig. 1 Schematic diagram of carbon quota trading among three regions

To make the trading mechanism effective and feasible, DM’s unit selling price should be no less than his initial
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unit revenue (i.e., pi ≥ ri), while the unit buying price should be no larger than the fixed unit revenue (i.e., qi ≤ ri).

Take d2 as an example for detailed analysis: the total revenue for d2’s initial carbon quota is 10 ∗ 80 = 800, and

suppose through optimization consensus modeling, d2’s unit selling and buying prices are derived as p2 = 90 and

q2 = 70, respectively. The parameters for other regions see Fig. 1. Since Tij ∈ [pi, qj ], here we might as well let

the unit transaction price be Tij =
pi+qj

2 , then we derive T12 = 65, T23 = 95, and the transferred carbon quota

quantities related to d2 are assumed to be obtained through mathematical modeling as I12 = 2, I23 = 1. As a result,

d2’s total carbon quota is 10 + 2− 1 = 11, and the new fixed revenue for holding his carbon quota is 11 ∗ 80 = 880,

while the transaction revenue (i.e., the difference between the income from selling carbon quotas and the cost of

buying quotas) is 1 ∗ 95 − 2 ∗ 65 = −35, making d2’s final total revenue of 880 − 35 = 845 be larger than the

initial total revenue of 800. Results in Tables 2 and 3 demonstrate that the final revenue of every region in the

closed-loop trading system has increased with respect to their initial total revenue, indicating that the proposed

trading mechanism is feasible.

4. Optimization consensus modeling concerning carbon quota trading mechanism

Chu & Shen (2006) indicated that the purpose of designing a trading mechanism is to provide a method

for ensuring that the allocation decisions and pricing decisions in decision-making processes result in the desired

outcomes. They also found that, once the allocation principle is set in a truthful mechanism, the prices are

determined; similarly, once the pricing rule is determined, the allocation is settled. Different from the extant

research on the carbon market (Diaz-Rainey & Tulloch, 2018; Gomes & Lins, 2008; Lamba et al., 2019; Ruidas

et al., 2021; Van Steenberghe, 2004; Zhou et al., 2020b; Zou et al., 2021), this section takes the maximization of the

overall revenue or a single DM’s revenue as the objective function, and uses optimization consensus modeling to

determine the allocation scheme (i.e., determination of variables o
′

i, Iij) and the pricing scheme (i.e., determination

of variables pi, qi, Tij) in the carbon quota trading system.
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4.1. Benchmark carbon trading consensus model with overall revenue maximization

To realize Goal 2 (as defined in Section 3), we build the following optimization consensus model (i.e., Model

(3)) to maximize the sum of the revenues of all DMs within the closed-loop trading system as:

max Z1 =
n∑

i=1

rio
′

i

s.t.



o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (3− 1)

qi ≤ ri ≤ pi, i ∈ N (3− 2)
Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

(3− 3)

o−i ≤ o
′

i ≤ o+i , i ∈ N (3− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, i, j ∈ N (3− 5)

(3)

The objective function Z1 in Model (3) attempts to maximize the final total revenue for all DMs within the carbon

quota trading system. Constraint (3-1) is the expression of di’s final quota, which is equal to the initial quantity

minus all the sold quantities
n∑

j=1,j ̸=i

Iij and plus all the purchased quantities
n∑

j=1,j ̸=i

Iji, where Iij denotes the

carbon quota quantity transferred from di to dj . Since the sum of all transfer-out quantities equals to the sum

of all transfer-in quantities, we can easily obtain
∑n

i=1 o
′

i =
∑n

i=1 oi through constraint (3-1), corresponding to

the fact that the total carbon quota amount in the closed-loop trading system is fixed. Constraint (3-2) is the

threshold constraint attached to the unit selling price pi and the unit buying price qi based on the pre-defined

initial fixed unit revenue ri. Constraint (3-3) specifies the achievable conditions of the carbon trading between any

two DMs. Namely, only when the seller’s location index is smaller than the purchaser’s index, and the unit selling

price pi is no greater than the unit buying price qj , will the transaction from di to dj be achieved (i.e., Iij ≥ 0).

Constraint (3-4) assumes that di’s final quota is located in his own expected interval provided initially. Constraint

(3-5) indicates that all variables are nonnegative. Hence, Model (3) explores the optimal carbon quota allocation

problem under the maximization of the overall revenue of the trading system, where Z1, o
′

i, Iij , pi, qi, (i ∈ N) are

decision variables and ri, oi, o
−
i , o

+
i are known parameters. In fact, due to insufficient constraints (e.g., the absence

of specific transaction prices building connections with the unit price variables), only the ranges of pi and qi instead
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of their optimal values can be obtained through Model (3).

Theorem 4. There must exist an m-th DM such that
m−1∑
i=1

o−i + o
′

m +
n∑

i=m+1

o+i =
n∑

i=1

oi and o−m ≤ o
′

m ≤ o+m. By

then, the optimal value for the objective function of Model (3) is
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i and the optimal

solution is o
′

i = o−i (1 ≤ i ≤ m− 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m+ 1 ≤ i ≤ n).

Proof. First, when o
′

i = o−i (1 ≤ i ≤ m − 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m + 1 ≤ i ≤ n), there

exists no Iij > 0 to further increase the objective function. That is, except dm, all DMs have reached their critical

points of their expected carbon quota intervals (i.e., [o−i , o+i ]), either the lower limit of di (1 ≤ i ≤ m − 1) or the

upper limit of di (m + 1 ≤ i ≤ n), making DMs with a location index smaller than m cannot further sell carbon

quota while DMs with a location index larger than m cannot further buy carbon quota, based on the given condition

as r1 ≤ r2 ≤ ... ≤ rn. In a nutshell, if Iij > 0, the objective function of Model (3) increases to f∗ = f+(rj−ri)∗Iij ,

where f is the total revenue before the transaction. Due to rj ≥ ri, (i < j), we get f∗ ≥ f , indicating that if and only

if Iij = 0, the value of the objective function no longer increases and becomes the optimal value. Thus, the solution

at this point is exactly the optimal solution, and the objective function becomes
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i .

Next, we prove that this critical DM with the m-th location index always exists. Because o−i ≤ o
′

i ≤ o+i ,

we have
n∑

i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i . If m = 1, then r1o

−
1 +

n∑
i=2

rio
+
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i . If m = 2, then

2∑
i=1

rio
−
i +

n∑
i=3

rio
+
i ≤

n∑
i=1

rio
′

i ≤ r1o
−
1 +

n∑
i=2

rio
+
i . In the same way, if m = n, then

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n−1∑
i=1

rio
−
i +

rno
+
n . Therefore, once m takes a specific value within the set N ,

n∑
i=1

rio
′

i can take any value from the interval

[
n∑

i=1

rio
−
i ,

n∑
i=1

rio
+
i ], and so the known constraint

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i means that dm must exist such that

o
′

i = o−i (1 ≤ i ≤ m− 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m+ 1 ≤ i ≤ n) hold.

Theorem 5. When Model (3) reaches its maximum value, we obtain
n∑

j=1,j ̸=i

Iij−
n∑

j=1,j ̸=i

Iji = oi−o−i (1 ≤ i ≤ m−1),

n∑
j=1,j ̸=m

Imj −
n∑

j=1,j ̸=m

Ijm = om −
n∑

i=1

oi +
m−1∑
i=1

o−i +
n∑

i=m+1

o+i ,
n∑

j=1,j ̸=i

Iij −
n∑

j=1,j ̸=i

Iji = oi − o+i (m+ 1 ≤ i ≤ n).

Proof. Theorem 4 implies that once Model (3) reaches its maximum value, and if 1 ≤ i ≤ m−1, then o
′

i = o−i

holds, meantime, due to o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, we have
n∑

j=1,j ̸=i

Iij −
n∑

j=1,j ̸=i

Iji = oi − o−i (1 ≤ i ≤ m− 1).

Similar analysis can be conducted for the rest situations.

Theorems 4 and 5 indicate that the optimal solution of Model (3) and the maximum value of the objective
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function exist and are unique. Therefore, the optimal allocation for all DMs’ carbon quotas is determined. In other

words, by solving Model (3), we obtain all information about carbon quota transfers within the trading system.

However, note that only the feasible regions can be obtained by Model (3), rather than the optimal values of the

decision variables pi, qi.

Theorem 6. The achievable constraints of the carbon quota trading mechanism are determined by di’s unit selling

price pi and dj’s unit buying price qj as:


Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

which is equivalent to


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(4)

where δ is the non-Archimedean infinitesimal, viz. a sufficiently small positive value approaching zero (Charnes

et al., 1994; Mehrabian et al., 2000).

Proof. If i < j, i, j ∈ N , then carbon quota trading between the seller di and the purchaser dj is achievable,

so Iij ≥ 0 holds. Next, we discuss the effect of prices on the transferred quantity: when pi < qj , according to Eq.

(4), we have Iij <
2(qj − pi)

δ
, and because δ is the non-Archimedean infinitesimal, Iij < +∞, that is, Iij ≥ 0 holds;

when pi ≥ qj , based on Eq. (4), we have Iij = 0. In addition, if i ≥ j, i, j ∈ N , the one-way transaction from di to

dj cannot be achieved, so we have Iij = 0. This completes the proof of Theorem 6.

Theorem 6 states the achievable conditions for a closed-loop trading system. Specifically, carbon quota trading

can only be achieved when the unit selling price of one DM with a small location index is no greater than the unit

buying price of another DM with a large location index; otherwise, their carbon quota transaction fails.

4.2. Carbon trading consensus models with single DM’s revenue maximization

The competition mechanism refers to the struggle among market practitioners to maximize their own economic

benefits, so it focuses more on individual standpoints than the collective perspective. The model developed in
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Section 4.1 only maximizes the overall revenue of the trading process, and ignores the individual DM’s interests and

the resulting unfairness issues. This section considers individual DMs as the research object, and uses optimization

consensus models to derive detailed information about the trading process, including the participating DMs, trans-

ferred quantities, and the final unit transaction prices. That is, when the group realizes its optimal allocation by

considering every DM’s revenue maximization, this section attempts to determine not only di’s final carbon quota

o
′

i from its expected interval [o−i , o
+
i ], but also each DM’s psychological expected unit selling and buying prices

(i.e., pi, qi) and the transferred quantity Iij along with the best achievable unit transaction price Tij . Based on the

above principles, a two-stage programming model is built as:

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(5− 1)



Max
n∑

i=1

rio
′

i

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N

qi ≤ ri ≤ pi, i ∈ N
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

o−i ≤ o
′

i ≤ o+i , pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N

(5− 2)

(5)

Model (5) introduces constraint (5-1) into Model (3), that is, adding the expression of the unit transaction price

Tij between DMs di and dj , which is a range bounded by di’s unit selling price pi and dj ’s unit buying price qj . As

stated in Section 3, only the location indices satisfy i < j, i, j ∈ N , and pi ≤ qj holds, can the unit transaction price

between di and dj be denoted as Tij ∈ [pi, qj ]. Here, the unit transaction price Tij obeys a uniform distribution

by default, as each point within the interval [pi, qj ] can be selected with equal possibility, which makes it easy to

calculate, understand and be applied into real-life GDM. The objective function in Model (5) is the sum of di’s

final carbon quota holding revenue (i.e., rio
′

i) and the transaction revenue for selling or buying carbon quotas (i.e.,
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji), and this value the larger the better. Model (5) indicates that maximizing a single

DM’s revenue is not unconstrained; instead, it should be carried out within the context of maximizing the overall
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revenue for the whole group (i.e., constraint (5-2)). Referring to Theorem 4, Model (5) can be further transformed

into Model (6), where constraints (6-2)–(6-9) provide the analytical formula of constraint (5-2). The definitions of

other variables and constraints in Model (6) are consistent with those in Models (3) and (5).

Theorem 4 states that the optimal solution of Model (3) exists and is unique. Thus, there must exist feasible

solutions for Model (6). Actually, constraints (6-6)–(6-8) in Model (6) provide the analytical formula for the DM’s

final carbon quota o
′

i, and are acquired by solving Model (3). Hence, variables Z2, Iij , pi, qi, Tij and m in Model

(6) are decision variables, while ri, oi, o
−
i , o

+
i , δ are known parameters. In short, under the premise of maximizing

the overall revenue, and by further adding the expression of the unit transaction prices, Model (6) determines

the optimal values for di’s unit selling and buying prices (i.e., pi and qi), and further obtains detailed trading

information including the quantity Iij transferred from di to dj and their corresponding unit transaction price Tij .

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(6− 1)

n∑
i=1

rio
′

i =
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i (6− 2)

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (6− 3)

qi ≤ ri ≤ pi, i ∈ N (6− 4)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(6− 5)

o
′

i = o−i , 1 ≤ i ≤ m− 1 (6− 6)

o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o−m ≤ o
′

m ≤ o+m (6− 7)

o
′

i = o+i ,m+ 1 ≤ i ≤ n (6− 8)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j,m ∈ N (6− 9)

(6)

4.3. Identification and adjustment rules for discordant DMs

In Section 4.2, we considered the case in which every single DM pursues the maximization of his own revenue,

which inevitably results in unfairness (e.g., the unbalanced growth of the DMs’ revenue). Therefore, this section
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examines the potential to achieve a relatively balanced state within the closed-loop carbon quota trading system by

adjusting some DMs’ initial parameters. Once fairness is achieved, DMs with too much revenue growth or too little

revenue growth should no longer exist in the final stage of carbon trading. Any such DMs are collectively referred to

as discordant DMs in the trading system. During CRP, if the DMs’ improper initial parameters can be modified

as early as possible, systemic losses (e.g., cost, time) will be significantly reduced. In short, an earlier intervention

during GDM is more advantageous (Liang et al., 2020). Compared with extant research adopting utility function

(Du et al., 2021) or fuzzy theory (Liu et al., 2021) to characterize the fairness concerns, this paper defines two

indicators to directly judge whether the GDM results are fair, so as to further identify discordant DMs and make

some corresponding adjustments.

Definition 1. An individual development index is defined as a relative proportion of the DM’s final revenue

obtained through the carbon quota trading process with respect to their initial fixed revenue, that is,

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N

Definition 2. The group development index is defined as a relative proportion of the final total revenue obtained

through the carbon quota trading process with respect to the initial fixed total revenue of the group, that is,

H̄ =

n∑
i=1

rio
′

i

n∑
i=1

rioi

This section follows the idea of fair development of all DMs in the trading system. By default, the difference

between the individual development index Hi and the group development index H̄ should be within a certain

range, otherwise DMs will be identified as discordant DMs with too much or too little revenue growth. These two

development indices mainly depend on the DM’s final carbon quota o
′

i, which further depends on the endpoints

of the expected interval [o−i , o+i ] provided by DM di. Here, we choose interval values instead of crisp numbers to

denote di’s expected carbon quota quantity due to various uncertainties (Ruidas et al., 2021). Hence, by adjusting

the expected carbon quota range [o−i , o
+
i ] of discordant DMs, an equilibrium state with a minimum loss can be

achieved within the trading system (see Fig. 2(c)). Let a discordant DM be dk, k ∈ {0, 1, · · · , n}, and his expected
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final carbon quota be adjusted from [o−k , o
+
k ] to [o

′−
k , o

′+
k ] through the following adjustment rules.

• When Hk << H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and << denotes far less than, dk

is identified as a discordant DM with too little revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(a), and his adjustment rules are:

– If k > m, then the amount purchased is too little, and so o+k needs to be increased;

– If k < m, then the amount sold is too little, and so o−k needs to be further decreased;

– If k = m, then the current expected interval is improperly set, and we need to simultaneously reduce o−k

and increase o+k .

• When Hk >> H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and >> means far more than, dk

is identified as a discordant DM with too much revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(b), and his adjustment rules are:

– If k > m, then the quantity purchased is too great, and so o+k needs to be decreased;

– If k < m, then the amount sold is too great, and so o−k should be increased;

– If k = m, then the current interval of the DM’s expected carbon quota is inappropriate, and we need to

increase o−k and decrease o+k at the same time.

Through the above adjustment rules, a set of updated trading information for all DMs can always be acquired.

Based on the individual/group development indices, we obtain the values of all |Hi − H̄| based on Model (6) so

as to determine the threshold for the variable γ, as well as the difference value |Hi − Hj | between any two DMs.

By repeating the calculations of Models (3) and (6), it is then possible to verify whether the above adjustments

are effective or not. The above rules are used to identify discordant DMs and provide the corresponding direction

of adjustments. However, the identification parameter γ needs to be manually set, and the specific adjustment

range for each DM cannot be accurately specified, that is, we cannot determine by how much each discordant DM

needs to adjust the upper and lower limits of their initial expected carbon quota intervals. To overcome these

deficiencies, a fairness measure variable α is introduced in the next section, and the optimal carbon quota allocation

scheme considering fairness is directly acquired through consensus modeling. Furthermore, by applying a sensitivity

analysis to the variable α, we can obtain flexible allocation schemes according to specific GDM scenarios.
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Fig. 2 Identification of non-equilibrium states in closed-loop carbon trading system

4.4. Carbon trading consensus model regarding fairness and revenue

When only a single DM’s revenue is considered, the overall revenue cannot be maximized; moreover, when

only the overall revenue is taken into account, there can be large gaps between the total revenue of different DMs,

highlighting the unfairness issues. Thus, this section introduces a fairness constraint (that is, the difference between

any two individual development indices should be within a certain acceptable threshold) under the premise of

ensuring the maximization of the overall revenue. Specifically, the fairness constraint is expressed as |Hi −Hj | ≤

α(α ≥ 0, i < j, i, j ∈ N), and the optimization carbon quota consensus model considering both revenue and fairness
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is built as follows:

max Z3 =
n∑

i=1

rio
′

i

s.t.



o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (7− 1)

qi ≤ ri ≤ pi, i ∈ N (7− 2)
pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(7− 3)


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(7− 4)

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N (7− 5)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (7− 6)

o−i ≤ o
′

i ≤ o+i , qi ≥ 0, pi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (7− 7)

(7)

Z3 in Model (7) aims to maximize the overall revenue after carbon quota trading under the premise that each DMs’

revenue has been fairly developed. Constraint (7-1) is the expression of di’s final carbon quota, which guarantees
n∑

i=1

o
′

i =
n∑

i=1

oi. Constraint (7-2) sets di’s optimal psychological expected unit selling price pi and unit buying price

qi based on his own initial fixed unit revenue ri. Constraint (7-3) denotes the unit transaction price between any

two DMs, and (7-4) provides the achievable conditions for carbon quota trading considering both the DMs’ location

indices (i.e., i, j) and the relationships between pi and qj . Constraint (7-5) defines the individual development index

(i.e., Definition 1), and (7-6) specifies the fairness constraints attached to different DMs, where α ≥ 0 is the fairness

measure variable that is pre-determined from the differences among individual development indices (see Section

4.3). Finally, (7-7) provides the thresholds for all variables. Variables Z3, o
′

i, Iij , pi, qi, Tij ,Hi, (i ̸= j, i, j ∈ N) in

Model (7) are to be solved, while ri, oi, o
−
i , o

+
i , α, δ, (i ∈ N) are determined in advance.

4.5. Solution method to solve carbon trading consensus models

Clearly, Model (6) is a non-convex optimization problem with many decision variables to be determined. As

the pricing decisions (i.e., variables pi, qi) have no direct effect on the objective function Z2, we remove these two
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variables using constraints (6-1), (6-4), and (6-5), thus obtaining the following relaxation model:

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




Tij = 0, if i ≥ j, i, j ∈ N

ri ≤ Tij ≤ rj , if i < j, i, j ∈ N

(8− 1)

n∑
i=1

rio
′

i = max Z1 (8− 2)

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (8− 3)
Iij = 0, if i ≥ j, i, j ∈ N

Iij ≤
2(rj − ri)

δ
, if i < j, i, j ∈ N

(8− 4)

o−i ≤ o
′

i ≤ o+i , Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N (8− 5)

(8)

where Z1 is the maximum value obtained from Model (3), and definitions of other variables and constraints refer to

Model (6). Without loss of generality, Model (6) is the original problem, and the relaxation model (i.e., Model (8))

is its sub-problem, thus the solution of Model (6) can be directly obtained after solving Model (8). In other words,

as the submodel of Model (6), the solution of the relaxation Model (8) doesn’t affect the results of Model (6).

To our knowledge, PSO algorithm was put forward to optimize nonlinear functions based on the initial point

and stopping criteria (Kennedy & Eberhart, 1995), and has been proven to be an effective tool for streamlining

decision making (Cabrerizo et al., 2013; Zhou et al., 2020a). In this paper, a relaxation method based on the PSO

algorithm (i.e., Algorithm 1) is proposed for determining the optimal solution of Model (6). In specific, Algorithm

1 is proposed to solve the original problem (i.e., Model (6)), while PSO algorithm is used to solve its sub-problem

(i.e., Model (8)). Note that, if the selection of parameters (e.g., initial points) is appropriate, a global optimal

solution can be found (Campana et al., 2010; Sun et al., 2012). Generally, the above-mentioned non-convex models

can be linearized and solved using standard exact solvers, but linearization only obtains an approximate solution,

while our proposed relaxation method can derive the equivalent form of the original problem. By adopting similar

principles, a fine-tuning algorithm can be used to solve Model (7), but it is omitted here due to space limitations.
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Algorithm 1 Relaxation method based on PSO algorithm for solving Model (6).
Input: Number of DMs, N ; di’s initial carbon quota, oi; di’s initial fixed unit revenue, ri; di’s expected carbon quota

interval, [o−i , o+i ]; the maximum overall revenue obtained from Model (3), Z1; the maximal number of iterations, limit;
population size, M .

Output: di’s final carbon quota, o′
i; di’s unit selling and buying prices, pi, qi; the transferred quantity, Iij ; the unit trans-

action price, Tij ; the specific DM’s maximum total revenue, Z2.
Step 1: Remove decision variables pi, qi to obtain a relaxation optimization model (see Model (8)), based on constraints

(6-1), (6-4) and (6-5);
Step 2: Use PSO algorithm to solve Model (8);

1: Set current iteration as t = 0;
2: for each particle i do
3: Initialize velocity Vi and position Xi for particle i;
4: Evaluate particle i by the defined fitness function and set pBesti = Xi;
5: end for
6: gBest=min {pBesti};
7: while t<limit do
8: for i = 1 to M do
9: Update the velocity and position of particle i;

10: Evaluate particle i by the defined fitness function;
11: if fit(Xi) < fit(pBesti) then return pBesti=Xi;
12: end if
13: if fit(pBesti) < fit(gBest) then return gBest = pBesti;
14: end if
15: end for
16: end while
17: Z2= –fit(gBest);
18: return Best solution of o′

i, Iij , Tij , Z2.
Step 3: Derive the optimal values of pi, qi based on relaxation constraints (6-1) and (6-5) .

5. Numerical analysis

To verify the feasibility of the optimization consensus models proposed in this paper, this section presents a

numerical case study. Suppose there are five regions (d1, d2, d3, d4, d5) in a closed-loop carbon quota trading

system (i.e., N = {1, · · · , 5}). The initial information provided by each region is summarized in Table 4.

Table 4 Summary of the initial trading information provided by five regions
Regions ri oi o−i o+i rioi

d1 12 16 13 19 192
d2 15 20 16 24 300
d3 23 34 27 41 782
d4 34 18 14 22 612
d5 40 12 10 26 480

Total — 100 80 132 2366
Note: di is the i-th region; ri denotes the initial fixed unit revenue; oi is di’s initial carbon quota; o−i and o+i are the lower and upper

limit of di’s initially expected interval, respectively; and rioi is di’s initial carbon quota holding revenue.
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5.1. Steps of the research on carbon quota trading mechanism

To clarify the construction mechanism described in this paper, five steps are presented below.

Step 1: Referring to Model (3), an optimization carbon trading model is built to achieve overall revenue

maximization, i.e., to obtain the optimal carbon quota allocation scheme for different regions from the collective

perspective. Specifically, the carbon quota quantities transferred among regions and the maximum value of the

final total revenue of the system are acquired.

Step 2: Using the maximum overall revenue obtained in Step 1, and by adding the constraint of the unit

transaction price, a series of optimization consensus models are built based on Model (6). Hence, a total of n

allocation schemes are derived by maximizing each region’s revenue, and detailed information such as di’s unit

buying and selling prices, transferred quantities, and unit transaction prices is obtained.

Step 3: Through a comparison of the individual/group development indices, it can be determined whether

regions have developed fairly or not. If not, some discordant regions are identified by a pre-defined threshold γ,

then their initial parameters are adjusted accordingly. Next, the calculations in Steps 1 and 2 are repeated until

the allocation scheme satisfies the fairness requirement.

Step 4: Introduce the fairness measure variable α to build consensus models based on Model (7), so as to directly

obtain fair carbon quota allocation schemes for the five regions in terms of the maximum overall revenue, quantities

of carbon quota transferred, and the unit transaction prices. Additionally, a sensitivity analysis is applied to α to

provide flexible suggestions for authorities involved in the trading system.

Step 5: Conduct a comparison and discussion based on the results obtained in each step.
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5.2. Analysis of the overall revenue maximization model

Based on Model (3), we obtain a closed-loop carbon quota trading system involving the five regions listed in

Table 4. Aiming to maximize the overall revenue, an optimization consensus model is constructed:

max Z1 = 12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5

s.t.





o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(9− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (9− 2)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(9− 3)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (9− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, δ > 0, i, j ∈ N (9− 5)

(9)

The objective function in Model (9) aims to maximize the total holding revenue for all five regions through the

carbon quota trading process, where o
′

i, i ∈ N is the final quota for the i-th region, which is restricted by both (9-1)

and (9-4). Constraints (9-2)–(9-3) concern the unit selling and buying prices, and the transferred quantity for each

region. δ in constraint (9-3) is a non-Archimedean infinitesimal, and hereafter it is set as δ = 10−6. The optimal

solution of Model (9) is presented in Table 5.

Table 5 Optimal solution of Model (9) with overall revenue maximization
Regions ri o

′
i rio

′
i Iij Value-I

d1 12 13 156 (1,5) 3
d2 15 16 240 (2,5) 4
d3 23 27 621 (3,5) 7
d4 34 18 612
d5 40 26 1040

Total — 100 2669 — —
Note: di denotes the i-th region; ri denotes the initial fixed unit revenue of carbon quota; o′i is di’s final carbon quota; rio

′
i is di’s final

carbon quota holding revenue; and Iij denotes the quantity transferred from di to dj .

The results in Table 5 show that the maximum value of the objective function in Model (9) is 2669. According to

Theorem 4, the critical region within the trading system is d4, namely, m = 4. When i < m, the regions with small
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original fixed unit revenues are d1, d2, d3. These regions can increase their revenue by selling carbon quotas, and

their final quotas are the lower limit of their original expected intervals, namely 13, 16, and 27, respectively (i.e.,

o−i in Table 4). When i > m, i.e., for d5, the only way to increase revenue is to purchase carbon quotas, and the

final quota for this region is the upper limit of the original interval, namely 26 (i.e., o+i in Table 4). Moreover, the

final quota for d4 is located in the initial range, and the data of Iij show that region d4 does not become involved

in the trading. In summary, Theorem 4 has been verified. Region d1 sold three carbon quota units to d5; region

d5 bought three, four, and seven carbon quota units from regions d1, d2, d3, respectively, making its total buying

quantity 3 + 4 + 7 = o
′

5 − o5 = 26− 12 = 14. The transferred quantities for the remaining regions can be obtained

in the same way. Thus, Theorem 5 has also been verified. Note that the revenue for each region in Table 5 only

involves the fixed revenue for holding a certain carbon quota, while the transaction revenue from the trading of

carbon quotas is not included.

5.3. Analysis of the single-region revenue maximization model

Model (9) can only provide feasible regions for variables pi, qi, (i ∈ N), rather than their optimal values (see

Section 4.1). Therefore, we construct Model (10) to acquire these optimal values under the objective of maximizing

the revenue of individual regions, which follows the research ideas of Models (5) and (6). Obviously, we obtain five

allocation schemes, one for each of the five regions taking part in the carbon quota trading process. For brevity,
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only the model that maximizes revenue for d4 is illustrated here.

max Z2 = 34 ∗ o′

4 +
5∑

j=1,j ̸=4

T4jI4j −
5∑

j=1,j ̸=4

Tj4Ij4

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(10− 1)

12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5 = 2669 (10− 2)

o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(10− 3)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (10− 4)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(10− 5)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (10− 6)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i ∈ N (10− 7)

(10)

The objective function Z2 in Model (10) is the maximum total revenue that can be achieved by region d4 through

carbon trading. This is composed of fixed revenue for holding carbon quotas (i.e., 34 ∗ o′

4) and transaction revenue

for trading behavior (i.e.,
5∑

j=1,j ̸=4

T4jI4j−
5∑

j=1,j ̸=4

Tj4Ij4). Constraint (10-2) ensures that the above trading is carried

out under the premise of maximizing the overall revenue, where 2669 is the maximum value obtained by solving

Model (9). Other definitions see Model (9). Using Algorithm 1, the optimal solution of Model (10) is presented in

Table 6, while the results of maximizing the revenue for other regions see Table A1. Here, all the demand parameters

in Algorithm 1 are set as N = 5, Z1 = 2669, limit = 5000 and M = 50. In addition, the values for oi, ri, o
−
i , o

+
i

refer to Table 4 and the parameters regarding the PSO algorithm are set in Matlab R2016a by default.

The decision variable o
′

i in Model (6) is directly given by constraints (6-6)–(6-8), but needs to be solved under

constraints (10-3) and (10-6) in Model (10). The results in Tables 6 and A1 indicate that, regardless of which region’s

revenue is maximized, the optimal allocation scheme is fixed and consistent with the results obtained in Section

5.2, that is, o′

1 = 13, o
′

2 = 16, o
′

3 = 27, o
′

4 = 18, o
′

5 = 26. Moreover, the unit selling and buying prices of each region
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Table 6 Optimal solution of Model (10) with d4’s revenue maximization
Regions o

′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915
d2 16 15 15 (2,4) 4 15 1.0000 0.1281
d3 27 23 23 (3,4) 7 23 1.0000 0.1281
d4 18 34 34 (4,5) 14 40 1.4951 0.3670
d5 26 [40,+∞) 40 1.0000 0.1281

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.

are also consistent, although the transferred quantities, corresponding unit transaction prices, and the individual

development indices differ in each model. Note that, the values of p5, q1 are intervals due to the reason that they

are subjected to unilateral constraints of corresponding Tij . In fact, these are auxiliary variables for realizing the

trading process, because d1 cannot purchase carbon quotas and d5 cannot sell carbon quotas considering their fixed

order of unit revenues. Optimal values of all Tij , (i, j ∈ N) are provided during the calculation, but most are

omitted here because they don’t affect our analysis on the results.

The relationship between the individual development index Hi and the group development index H̄ is now

analyzed to identify whether there exist some discordant regions with too much or too little revenue growth.

First, based on
∑5

i=1 rioi = 2366 in Table 4 and
∑5

i=1 rio
′

i = 2669 in Table 5, we derive the group development

index as H̄ =
2669

2366
= 1.128064. Based on the data in Tables 4, 5, and 6, individual development indices for

each region can then be computed. Taking d4 as an example, H4 =
r4o

′

4 + T45I45 − T14I14 − T24I24 − T34I34
r4o4

=

34 ∗ 18 + 14 ∗ 40− 3 ∗ 12− 4 ∗ 15− 7 ∗ 23
34 ∗ 18

= 1.4951. The individual development indices in Tables 6 and A1 can

be derived using a similar calculation method.

5.4. Identification and parameter adjustment of discordant regions

Using the individual development indices Hi in Table A1, we obtain the absolute values of the differences in

development indices between each region and the group (i.e., |Hi − H̄|) or the absolute difference between any two

regions (i.e., |Hi − Hj |). Generally, in actual GDM problems, we can always judge whether the development of

different regions is balanced, namely, we can always pre-determine a threshold γ to identify discordant regions.

To determine the value of the parameter γ, Table 7 summarizes various development indices based on Table A1,

including the maximum, minimum, and mean for the abovementioned difference values. Numbers in bold font
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indicate relatively large values in each column, which require more attention.

Table 7 Summary of the development indices under the region’s revenue maximization
Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3094 0 0.1461 0.4375 0 0.2336
0.4853 0.0396 0.1692 0.6133 0 0.2789
0.2594 0.1281 0.1543 0.3875 0 0.1550
0.3670 0.1281 0.1759 0.4951 0 0.1980
0.5032 0.1281 0.2031 0.6313 0 0.2525

Referring to the adjustment rules designed in Section 4.3, the initial parameters provided by discordant regions,

namely, their predetermined expected carbon quota interval [o−i , o+i ], will be adjusted accordingly. If we set γ = 0.5,

then only d5 is identified as a discordant region with too much revenue growth. However, if the difference between

the development indices of any two regions is considered, the corresponding maximum values for d2, d5 should be

considered, as they are both greater than 0.6. Thus, the threshold for the parameter is adjusted to γ = 0.45. Liang

et al. (2020) concluded that the shorter the time required to reach a consensus, the more necessary it is to make

greater adjustments to the initial opinions. Initially concluded from a phenomenon of 20% people possessing 80%

of the wealth in the world, the 80/20 Rule (i.e., the Pareto principle) is now extended to a fact that an optimal

ratio exists between the effort and gain. In other words, once we change 20% of the key factors, qualitative change

will occur, implying that we can derive enough (like 80% of) expected results on that critical point. Therefore, we

may wish to adjust the endpoints of the expected carbon quota interval by 20% of their initial values. Because d2

sold too much of his quota, the quota interval is adjusted from [16, 24] to [20, 24]; and as d5 purchased too much

carbon quota, his expected range is adjusted from [10, 26] to [10, 23.6]. Here, taking d2 as an instance for specific

explanation. Acted as a seller, d2 needs to decrease its sales volum to reduce its revenue growth, so d2 increases

its lower limit by adding 20% of its initial carbon quota (i.e., o2), thus we derive the adjusted lower limit of d2’s

expected interval as 16 + 20% ∗ 20 = 20. Distinguished from d2, the buyer d4 should decrease its upper limit so as

to possess less carbon quota at the end.

After repeating the calculations of Models (3) and (6), new allocation schemes are obtained. For brevity, the

specific calculation models are omitted here. Using updated information, the new optimal allocation scheme for

overall revenue maximization is as presented in Table 8; the schemes maximizing different region’s revenue are
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presented in Table A2. Table 9 provides an updated summary of the development indices after adjusting the initial

parameters of d2, d5 by 20% of their initial carbon quotas.

Table 8 Optimal solution for maximizing overall revenue after adjusting the initial parameters of d2, d5
Regions ri o

′
i rio

′
i Iij Value-I

d1 12 13 156 (1,2) 3
d2 15 20 300 (2,5) 3
d3 23 27 621 (3,5) 7
d4 34 16.4 557.6 (4,5) 1.6
d5 40 23.6 944

Total — 100 2578.6 — —
Note: Definitions of notation see Table 5.

Table 9 Summary of the development indices under the region’s revenue maximization after adjusting the initial
parameters of d2, d5

Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3476 0.0064 0.1211 0.4375 0 0.2073
0.1901 0.0064 0.0896 0.2800 0 0.1443
0.1697 0.0699 0.1018 0.2596 0 0.1078
0.2575 0.0899 0.1234 0.3474 0 0.1390
0.3531 0.0899 0.1425 0.4429 0 0.1772

Results in Tables 7 and 9 show that the unfairness in the system is ameliorated by adjusting the initial parameters

of d2, d5. Specifically, the maximum difference between the individual and group development indices drops from

0.5032 to 0.3531, while the maximum difference between any two regions drops from 0.6313 to 0.4429. In fact, if

policy-makers are not satisfied with the results in Table 9, they may repeat the above calculations. The maximum

value of each region’s revenue declines in most scenarios because the total transaction amount decreases as the

overall revenue drops from 2669 to 2578.6 (see column Z2 in Tables A1 and A2). Note that the identification of

discordant regions, adjustment of their parameters, and fairness of the final result all depend on the experience of

the policy-makers. In addition, the adjustment range of the initial parameters for those discordant regions has a

significant influence on the number of adjustments and the final allocation scheme of the trading system. Obviously,

the “fairness” reached through the above strategy is effective, but subjective and rather complicated.

5.5. Analysis regarding both fairness and revenue

Based on Table 4 and Model (7), this section considers the optimization consensus model (i.e., Model (11)) for

obtaining a relatively fair carbon quota allocation scheme with the goal of maximizing the final overall revenue
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within the closed-loop trading system.

max Z3 = 12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5

s.t.





o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(11− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (11− 2)
pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(11− 3)


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(11− 4)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (11− 5)

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N (11− 6)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (11− 7)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0,Hi ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (11− 8)

(11)

Z3 in Model (11) maximizes the overall revenue of the carbon quota trading system. Constraint (11-1) describes the

relationship between the final quotas and the carbon quotas transferred by each region, and
n∑

i=1

o
′

i = 100. Constraints

(11-2)–(11-4) concern the unit buying and selling prices, the unit transaction prices and transferred quantities, where

δ is a pre-determined non-Archimedean infinitesimal. Constraint (11-5) is the threshold for decision variable o
′

i,

and (11-6) defines the individual development index. Constraint (11-7) is the fairness restriction, where α is the

pre-determined fairness measure variable. Other variables are consistent with those in Model (7).

Table 10 presents the solution set for Model (11) when the fairness measure variable α = 0. At this time, the

trading system achieves an absolutely fair state, that is, all individual development indices are equal to the group

development index of 1.1281. The results of a sensitivity analysis of α are given in Table B1, and show that any

value of α in the interval [0,0.5] gives an optimal value of the objective function of 2669. The final carbon quotas

for all regions are also fixed to o
′

1 = 13, o
′

2 = 16, o
′

3 = 27, o
′

4 = 18, o
′

5 = 26.
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Table 10 Solutions to Model (11) when α = 0

�� pi qi Iij Value-I Value-T Iij Value-I Value-T Hi

d1 15 [0,12] (1,2) 0.09 15 (2,5) 1.82 36.15 1.1281
d2 15 15 (1,3) 1.54 23 (3,4) 5.36 34 1.1281
d3 34 23 (1,4) 1.37 17.36 (3,5) 3.51 34 1.1281
d4 36.15 34 (2,3) 0.32 15 (4,5) 8.68 36.15 1.1281
d5 [40,+∞) 36.15 (2,4) 1.95 15 1.1281

Note: Definitions of notation see Table 6.

Tables 10 and B1 show that, as the fairness measure variable α gradually decreases, although the final carbon

quota of each region o
′

i is fixed, the transaction frequency significantly increases, implying that carbon quotas are

fully traded within the system. Besides, when α is greater than 0.1, the variables pi, qi for each region are fixed,

but when α ≤ 0.1, those pricing decisions change. Overall, the introduction of the fairness measure changes the

allocation schemes by increasing the number of trading paths in the system. Clearly, as the closed-loop carbon

quota trading mechanism gradually complicates the transaction process, a state of absolute fairness is finally reached,

namely, sufficient interactions among regions are achieved as the fairness measure variable decreases to zero.

5.6. Discussion

To verify the rationality and effectiveness of the proposed models in the paper, this section has considered the

example of carbon quota trading among five regions. Our optimization consensus models can derive the optimal

allocation scheme from the global perspective (i.e., the moderator’s perspective in GDM), and can also obtain

allocation schemes from different DM’s perspectives, in which the maximization of each region’s revenue is the

modeling goal. The following findings can be elicited from our results:

• Consensus modeling to maximize the overall revenue can obtain the optimal allocation scheme for the whole

group, but cannot identify specific pricing decisions. Moreover, the final carbon quotas of different regions

obtained from the models that maximize each region’s revenue are the same as those obtained from the former

modeling mechanism. That is, the optimal values of o′

i are fixed. However, detailed trading information, such

as the trading regions involved and the unit transaction prices, change with the specific region being studied

(see Tables 5, A1, 8, and A2).

• The unit selling and buying prices of each region (i.e., variables pi, qi) derived from the proposed optimization

consensus models do not change according to which region’s revenue is being maximized (see Tables A1 and
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A2) and do not depend on the value of the fairness measure variable (see Table B1). This indirectly implies

that the carbon quota trading mechanism discussed in this paper is robust to some extent.

• For the two strategies proposed to deal with the unfairness issue within the trading system, adjusting the initial

parameters of discordant regions is effective (see Tables 7 and 9), but complicated in practice. In addition, the

parameter γ for identifying discordant regions, the adjustment range for each region, and whether the final

allocation scheme meets the GDM requirements are all subjective (see Section 5.4). In contrast, the strategy

of directly introducing the fairness measure variable α is convenient and effective, and further sensitivity

analysis enables feasible allocation schemes to be obtained (see Tables 10 and B1).

• The introduction of the fairness measure variable increases the number of trading paths among different regions

(see Tables 10 and B1), meaning that absolute fairness within the closed-loop system is realized only when

carbon quotas are fully traded among different regions. Thus, sufficient interactions among participators are

highly significant in achieving consensus or the pursuit of DMs’ balanced development during a GDM process.

6. Conclusion

This paper has described the use of optimization consensus modeling theory to explore theoretical innovations

regarding flexible carbon trading mechanisms. Specifically, we have investigated essential carbon quota allocation

schemes within a closed-loop trading system with the aim of ensuring both revenue maximization and fairness.

First, the optimal carbon quota allocation scheme was derived by maximizing the overall revenue through Model (3).

Then, its analytical formula and the achievable conditions for successful trading were provided through theoretical

deduction. Next, simultaneously taking the group revenue maximization and the competition mechanism into

account, models for deriving the optimal allocation schemes by maximizing individual’s revenues were constructed

as Models (5) and (6). Since conflicts of interest are the main reasons for the failure of GDM in the real world,

individual/group development indices were defined as Definitions (1) and (2), and two fairness strategies were

further presented. The former is based on calculating the difference between the development indices, with fairness

achieved through the identification of discordant DMs and the adjustment of their initial parameters. The latter

introduces a fairness measure variable, allowing fair allocation schemes to be directly obtained from Model (7).

Finally, a numerical example was conducted to demonstrate the performance of the proposed models.
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The results show that the final carbon quotas of all regions can be determined through the proposed consensus

models, but detailed trading information (including the participating regions and the unit transaction prices) can

only be acquired through the models that focus on single-region revenue maximization. In addition, the strategies

for dealing with the unfairness issue are both practical and effective, but the second strategy of directly introducing

a fairness measure variable is more objective and easier to operate. Finally, the results of a sensitivity analysis of

the fairness measure variable show that, as the variable decreases to zero, that is, when the group approaches the

state of absolute fairness, the frequency of DMs’ transactions within the group increases significantly, corresponding

to the fact that reaching fairness within a group requires sufficient interactions among DMs.

In the future, some varaibles in our proposed models will be comprehensively determined to be more in line

with real-life, for example, price variables are no longer static and could be accurately positioned by combining

with game theory (Liu et al., 2021; Zheng et al., 2019). In addition, trading mechanisms should also focus on some

critical factors, such as risk or utility (Zheng & Chang, 2021) in practical markets, rather than only considering

the allocation and pricing decisions from the revenue maximization perspective. Moreover, with large-scale GDM

problems (Dong et al., 2018; Zhang et al., 2017), especially under social network contexts (Liu et al., 2019; Wu

et al., 2019), attracting increased attention, the use of artificial intelligence methods (Ding et al., 2020) to solve

large-scale trading issues will also be a focus of our subsequent research.

Appendix A. Results with single region’s revenue maximization

Based on Sections 4.2 and 4.3, Table A1 lists the optimal solutions (including o
′

i, pi, qi, Iij , Tij , and Z2) to Model

(6) and the values of the development indices (including Hi and |Hi − H̄|) in the case of each region maximizing

its revenue (note: the specific region discussed in Model (6) is marked with ⋆ in the first column in Table A1).

Moreover, Table A2 exhibits the corresponding results after the initial parameters of d2, d5 have been adjusted by

20% of their initial carbon quotas.

Appendix B. Sensitivity analysis of the fairness measure variable

If the fairness measure variable α in Model (11) is decreased from 0.5 at intervals of 0.1, then the optimal

solutions of the above optimization consensus model are as listed in Table B1.
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Table A1 Optimal solution of Model (6) with different region’s revenue maximization
Regions o

′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

⋆d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3094

276
d2 16 15 15 (2,4) 2.10 15 1.0000 0.1281
d3 27 23 23 (2,5) 1.90 15 1.0000 0.1281
d4 18 34 34 (3,4) 3.50 23 1.1280 0
d5 26 [40,+∞) 40 (3,5) 3.50 23 1.2930 0.1650
– – – – (4,5) 5.60 34 – –
d1 13 12 [0,12] (1,2) 3 12 1.0000 0.1281

484
⋆d2 16 15 15 (2,5) 7 40 1.6133 0.4853
d3 27 23 23 (3,4) 3.50 23 1.0000 0.1281
d4 18 34 34 (3,5) 3.50 23 1.0629 0.0652
d5 26 [40,+∞) 40 (4,5) 3.50 34 1.1677 0.0396
d1 13 12 [0,12] (1,3) 3 12 1.0000 0.1281

1085
d2 16 15 15 (2,3) 4 15 1.0000 0.1281
⋆d3 27 23 23 (3,5) 14 40 1.3875 0.2594
d4 18 34 34 1.0000 0.1281
d5 26 [40,+∞) 40 1.0000 0.1281
d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915
d2 16 15 15 (2,4) 4 15 1.0000 0.1281
d3 27 23 23 (3,4) 7 23 1.0000 0.1281
⋆d4 18 34 34 (4,5) 14 40 1.4951 0.3670
d5 26 [40,+∞) 40 1.0000 0.1281
d1 13 12 [0,12] (1,5) 3 12 1.0000 0.1281

783
d2 16 15 15 (2,5) 4 15 1.0000 0.1281
d3 27 23 23 (3,5) 7 23 1.0000 0.1281
d4 18 34 34 1.0000 0.1281
⋆d5 26 [40,+∞) 40 1.6313 0.5032

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table A2 Optimal solution of Model (6) with different region’s revenue maximization after adjusting the initial
parameters of d2, d5

Regions o
′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

⋆d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3476

276
d2 20 15 15 (3,4) 4.64 23 1.0000 0.0899
d3 27 23 23 (3,5) 2.36 23 1.0000 0.0899
d4 16.4 34 34 (4,5) 6.24 34 1.0835 0.0064
d5 23.6 [40,+∞) 40 1.1615 0.0716
d1 13 12 [0,12] (1,2) 3.00 12 1.0000 0.0899

384
⋆d2 20 15 15 (2,5) 3.00 40 1.2800 0.1901
d3 27 23 23 (3,4) 4.64 23 1.0000 0.0899
d4 16.4 34 34 (3,5) 2.36 23 1.0835 0.0064
d5 23.6 [40,+∞) 40 (4,5) 6.24 34 1.1615 0.0716
d1 13 12 [0,12] (1,3) 3 12 1.0000 0.0899

985
d2 20 15 15 (3,5) 10 40 1.0000 0.0899
⋆d3 27 23 23 (4,5) 1.6 34 1.2596 0.1697
d4 16.4 34 34 1.0000 0.0899
d5 23.6 [40,+∞) 40 1.0200 0.0699
d1 13 12 [0,12] (1,4) 3 12 1.0000 0.0899

824.6
d2 20 15 15 (3,4) 7 23 1.0000 0.0899
d3 27 23 23 (4,5) 11.6 40 1.0000 0.0899
⋆d4 16.4 34 34 1.3474 0.2575
d5 23.6 [40,+∞) 40 1.0000 0.0899
d1 13 12 [0,12] (1,5) 3 12 1.0000 0.0899

692.6
d2 20 15 15 (3,5) 7 23 1.0000 0.0899
d3 27 23 23 (4,5) 1.6 34 1.0000 0.0899
d4 16.4 34 34 1.0000 0.0899
⋆d5 23.6 [40,+∞) 40 1.4429 0.3531

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table B1 Sensitivity of the results to the fairness measure variable α

Regions pi qi Iij Value-I Value-T Hi α

d1 12 [0,12] (1,5) 3 40 1.4375

0.5
d2 15 15 (2,5) 4 40 1.3333
d3 23 23 (3,5) 7 40 1.1522
d4 34 34 1.0000
d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 0.42 23 1.4000

0.4
d2 15 15 (1,5) 2.58 40 1.3333
d3 23 23 (2,5) 4 40 1.1614
d4 34 34 (3,5) 7.42 40 1.0000
d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 1.55 23 1.3000

0.3
d2 15 15 (1,5) 1.45 40 1.3000
d3 23 23 (2,5) 4 37.5 1.1859
d4 34 34 (3,5) 8.55 40 1.0000
d5 [40,+∞) 40 1.0208

d1 12 [0,12] (1,3) 2.68 23 1.2000

0.2
d2 15 15 (1,5) 0.32 40 1.2000
d3 23 23 (2,5) 4 30 1.2000
d4 34 34 (3,5) 9.68 39.15 1.0000
d5 [40,+∞) 40 1.1004

d1 15 [0,12] (1,3) 1.15 23 1.0946

0.1
d2 23 15 (1,4) 1.85 15 1.1358
d3 34 23 (2,5) 4 25.19 1.1186
d4 40 34 (3,4) 1.93 34 1.0946
d5 [40,+∞) 40 (3,5) 6.22 34.51 1.1946
— — — (4,5) 3.78 40 —

Note: di denotes the i-th region; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with Value-I
as its specific value and Value-T as the corresponding unit transaction price; Hi is the individual development index; and α is the

fairness measure variable.
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Optimization consensus modeling of a closed-loop carbon quota trading
mechanism regarding revenue and fairness

Abstract

Consensus modeling aims to obtain collective agreement through group decision-making (GDM), generally by build-

ing mathematical programming models. This paper describes the use of optimization consensus modeling to explore

theoretical innovations regarding flexible carbon quota trading mechanisms, with basic allocation schemes provided

within a closed-loop trading system by simultaneously taking revenue and fairness into account. A series of opti-

mization consensus models are constructed from the perspective of maximizing the corresponding revenue, resulting

in optimal/fair carbon quota allocation schemes that include detailed trading information, e.g., participating in-

dividuals, transferred quantities, and unit transaction prices. To solve these models, a relaxation method based

on particle swarm optimization is proposed. The inability to conduct real-life GDM usually stems from conflicts

of interest based on the decision-makers’ mutual competition, thus, two practical strategies are presented to deal

with the resulting unfairness within the trading system. Finally, a numerical example incorporating five regions

demonstrates the effectiveness of the proposed trading mechanisms. The results show that sufficient interactions

among decision-makers are of great significance in achieving fairness within a trading system.

Keywords: Group decision-making (GDM); Consensus; Revenue and fairness; Carbon quota trading mechanism;

Allocation scheme

1. Introduction

Group decision-making (GDM) refers to a process in which multiple individuals participate in decision-making

analysis and make a final choice based on their collective wisdom: Clark & Stephenson (1995) have pointed out that

GDM represents a collective recall of information. Generally, communication and negotiation effectively promote the

interactions among decision-makers (DMs) (Hirokawa & Poole, 1996) and the flow of information within the group.

Moreover, technological innovations have significantly updated the means of group communication and decision-

making (Kiesler & Sproull, 1992). Without loss of generality, three stable states of fragmentation, polarization, or
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consensus may finally be achieved by rational DMs considering their own interests (Hegselmann & Krause, 2002;

Liang et al., 2020; Zhao et al., 2016). Among them, consensus usually requires multiple rounds of communication,

coordination, preference modification, and even concessions or compromises within the group. Only in this way can

a relatively consistent collective agreement be obtained (Cabrerizo et al., 2014; Liu et al., 2019; Wu & Chiclana,

2014; Wu et al., 2018; Zhang et al., 2020a,b). For example, if a new allocation scheme of resources is obtained

through GDM within a trading system, which is widely accepted by the whole group, then a consensus is reached.

Liang et al. (2020) clarified that the consensus-reaching process (CRP) does not mean that an optimal solution

must be achieved. Instead, CRP is more like a decision tool or a synthesizing process that assists DMs in building

connections and communicating with each other, thereby providing a more effective way for the group to find unity

on how to proceed (Susskind et al., 1999).

Considering that cost, which may be embodied as human, material, financial, time and other resources, is an

important influencing factor in GDM, Ben-Arieh & Easton (2007) first proposed the concept of minimum cost

consensus, and acquired the optimal collective opinion with a linear/quadratic cost function (Ben-Arieh et al.,

2009). Since then, other scholars have made further extensions to their minimum cost consensus models (MCCMs)

by taking various factors into account, such as uncertain preference structures (Gong et al., 2021; Guo et al., 2021),

aggregation rules (Zhang et al., 2011), measurement of consensus effectiveness (Labella et al., 2020) or parameter

improvements of initial models (Cheng et al., 2018; Lu et al., 2021; Zhang et al., 2020a). Since unit costs are

difficult to objectively determine in advance, and DMs’ opinions are hard to modify during GDM, Dong et al.

(2010) proposed minimum adjustment consensus models (MACMs) with an ordered weighted average operator,

which preserve the DMs’ initial preference information as much as possible. Similarly, their modeling idea has also

been widely explored (del Moral et al., 2018; Dong et al., 2016; Gong et al., 2020; Yu et al., 2021; Zhang et al.,

2018), especially under social networks (Cheng et al., 2020; Wu et al., 2018) or opinion evolution contexts (Chen

et al., 2021; Liang et al., 2020). Moreover, Zhang et al. (2020b) summarized the original and basic consensus models

based on feedback mechanisms with a minimum cost/adjustment and reviewed diverse consensus modeling under

some complicated GDM scenarios.

Different from the above consensus modeling with a minimum cost/adjustment, this paper was partially inspired

by the construction of consensus models that aim to maximize the total revenue. By introducing linear primal-dual
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theory, various MCCMs (including hard and soft consensus (Herrera-Viedma et al., 2014; Zhang et al., 2011)) with

specific preference structures (e.g., DM’s opinion denoted by crisp numbers or interval values) were adopted as the

primal models, and then their corresponding dual forms (i.e., the optimization maximum compensation consensus

models) along with their economic significance were deeply explored by Gong et al. (2015a,b) and Zhang et al.

(2019). Subsequently, taking the essential architecture of Stackelberg’s game into account, Zhang et al. (2020a)

presented a bi-level optimization consensus model that depicts the interaction between DMs and the moderator,

and divided the DM’s total return into a modification component (also known as external compensation) provided

by the moderator for the DM’s initial preference adjustment and a recognition component based on the similarity

between the DM’s original opinion and the final consensus. It is well known that the market is profit-oriented (i.e.,

simultaneously pursuing the maximization of revenue and the minimization of costs) and its operating mechanism

is mostly affected by pricing strategy, participants’ competition, supply and demand, and etc. (Lamba et al., 2019;

Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Therefore, in discussing closed-loop trading mechanisms,

the revenue maximization of either the whole group or a single DM is set as our objective function in this paper,

and constraints such as supply and demand or prices are introduced. A series of optimization consensus models are

then constructed as a means of deriving the optimal resource allocation schemes within a trading system.

Rapid industrialization and economic growth have led to significant increases in emissions of carbon dioxide

and other greenhouse gases, and have rendered environmental pollution and extreme weather events increasingly

serious and frequent, resulting in severe negative impacts on economic development and human health (Wang et al.,

2017). Therefore, mitigating the impact of human activities on the environment through reductions in carbon

emissions has gradually become a global consensus. Diaz-Rainey & Tulloch (2018) conducted the first empirical

analysis of New Zealand’s carbon trading scheme using allowance importation and exportation data, and found

that the imports of offsets are the major carbon price determinant, with small trading systems able to reap benefits

from imposing quantitative import restrictions. Aiming at developing sustainable supply chain, joint decisions were

made under various carbon emission regulatory policies, with respect to different influence factors, such as inventory,

pricing, financing and ordering (Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Furthermore, carbon issues

combined with decision-making technology has also been investigated (Gong et al., 2021; Huang & Xu, 2020; Lamba

et al., 2019). For instance, Lamba et al. (2019) proposed a mixed-integer nonlinear program for supplier selection
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and the right lot-sizes determination under a dynamic background with multiple periods, products and suppliers,

and evaluated different costs of carbon emissions under three regulating policies (viz. cap-and-trade, strict cap on

emissions and carbon tax) using big data technology. Huang & Xu (2020) constructed a bi-level multi-objective

programming model to solve the carbon emission quota allocation problem with co-combustion of coal and sewage

sludge, and formulated the interaction between authorities and coal-fired power plants before examining a real case

demonstrating the trade-off between economic development, energy conservation, and renewable energy utilization.

Setting targets for carbon emissions in different countries/regions (i.e., operating collective schemes for optimal

carbon quota allocation) is one of the main obstacles to reaching a comprehensive agreement on global warming.

This is exacerbated by long-term tensions between industrialized and developing countries regarding unfairness

issues on burden-sharing, with industrialized countries pleading special circumstances and seeking differentiation in

their obligations (Rose et al., 1998). Fairness concerns, gained widespread attention in the supply chain management

(Liu et al., 2021; Zheng et al., 2019), are also critical for GDM (Du et al., 2021), because participants are motivated

by not only the final results, but also the fairness they feel compared with others (Adams, 1963). Under a fixed

total carbon quota, the scientific allocation of binding carbon allowances for different regions is a complex and

arduous task, because it directly involves the economic development rights of each region. In general, the fairness

of carbon emissions quotas is measured using the Atkinson index (Hedenus & Azar, 2005), Theil index (Duro &

Padilla, 2006), and Gini coefficient (Chen et al., 2017). The traceability method, which uses historical carbon

emissions as the relevant feature of the initial carbon quota allocation (i.e., the free distribution principle), has

been criticized by Fromm & Hansjürgens (1996) and Sijm et al. (2007) for being inconsistent with the “polluter

pays” principle and lacking fairness from the perspective of society as a whole. In addition, Van Steenberghe (2004)

found that the so-called fair rule to allocate greenhouse gas emission permits is not beneficial for all nations, with

some countries being worse off under global agreement than under non-cooperative contexts. Under the framework

of the Kyoto Protocol, Gomes & Lins (2008) adopted the zero-sum gains data envelopment analysis method to

provide a fair carbon emissions allocation plan for various countries, which not only stabilizes the concentration of

greenhouse gases in the atmosphere, but also achieves carbon quota trading with no impact on global emissions.

The above studies have mostly considered the fairness of carbon quota allocations at the global level, ignoring the

interest-driven issues of individual/regional perspectives. Therefore, the analysis of carbon trading mechanisms
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through consensus modeling with all participators’ interests taken into account is of great significance.

Although many studies have investigated carbon issues, there has been few research on carbon quota trading

mechanisms, and consensus decision-making theory has not been adopted to deal with the design of carbon trading

mechanisms and their resulting unfairness issues. That is, using optimization consensus models to assist DMs in

exchanging carbon quotas and the development of fair connections among them within a closed-loop trading system

are neglected. Hence, the main contributions of this study are as follows: (i) By referring to conventional market

trading mechanisms, a benchmark consensus model with the aim of overall revenue maximization is presented

to derive the optimal carbon quota allocation scheme. (ii) By building a two-stage programming model, new

allocation schemes are acquired that focus on different single DM’s revenue maximization, allowing detailed trading

information such as the transferred quantities, DM’s unit selling and buying prices, and unit transaction prices

to be acquired. (iii) Two strategies based on individual/group development indices are proposed to deal with the

unfairness issue within the trading system. (iv) A relaxation method based on particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995) is proposed to solve the above consensus models. And (v) numerical analysis of a

trading system composed of five regions is conducted to verify the effectiveness of the proposed models.

The rest of this paper is organized as follows. Section 2 briefly reviews the optimization consensus models,

then Section 3 presents some assumptions of the trading mechanisms, and justifies the rationality of the hypothesis

through theoretical deduction. Section 4 constructs a series of new consensus models from which optimal/fair allo-

cation schemes are obtained within the closed-loop trading system, and further proposes an optimization algorithm

to solve these models. A numerical example is reported in Section 5 to demonstrate the feasibility of the proposed

mechanisms. Finally, Section 6 gives some concluding remarks and identifies future research directions.

2. Preliminaries on optimization consensus modeling

To better understand the subsequent construction of optimization closed-loop carbon trading consensus models,

this section briefly reviews theoretical GDM models for obtaining the optimal consensus. However, before introduc-

ing the basic consensus models, we define some related notation. Let D = {d1, d2, · · · , dn} be the set of all DMs,

where di denotes the i-th DM and i ∈ N = {1, 2, · · · , n}. Let O = {o1, o2, · · · , on} and O
′
= {o′

1, o
′

2, · · · , o
′

n} be the

sets of initial and final preferences (i.e., opinions, judgements) of the group, where oi, o
′

i denote di’s initial and final

5



opinions, respectively. The existing forms of expressions for DMs include, but are not limited to, linear uncertainty

preferences (Gong et al., 2020, 2021), linguistic preferences (Cabrerizo et al., 2013; Wu et al., 2018; Yu et al., 2021),

fuzzy preference (Herrera-Viedma et al., 2014; Wu & Chiclana, 2014; Zhang et al., 2018). Nevertheless, aiming to

solve real-life GDM problems, we adopt traditional forms, i.e., positive and real numbers, to denote DM’s opinions

in this paper. Let ωi denote the unit cost provided by the moderator for di adjusting his opinions, i ∈ N . In

fact, the modeling mechanisms are similar for both MCCM (Ben-Arieh & Easton, 2007; Ben-Arieh et al., 2009) and

MACM (Dong et al., 2016, 2010). If all DMs’ unit costs satisfy wi = wj ,∀i, j ∈ N, i ̸= j, then the former reduces to

the latter (Zhang et al., 2020b). A general framework of the minimum cost/adjustment consensus model provided

by Zhang et al. (2011) can be introduced as:

min
n∑

i=1

wi ∗ d(o
′

i, oi)

s.t.


oc = F (o

′

1, o
′

2, · · · , o
′

n) (1− 1)

CD(o
′

i, o
c) ≤ α, ∀i ∈ N (1− 2)

(1)

In Model (1), d(o′

i, oi) represents the distance or deviation between di’s initial and final (or adjusted) opinions

(del Moral et al., 2018), which is generally given by the Manhattan distance (Ben-Arieh & Easton, 2007) or Euclidean

distance (Ben-Arieh et al., 2009). Constraint (1-1) means that the collective opinion (i.e., consensus) oc should be

obtained by the aggregation function F over all DMs’ final opinions {o′

1, o
′

2, · · · , o
′

n}, which corresponds to various

social selections; and constraint (1-2) measures the consensus level CD attached to di’s adjusted opinion o
′

i and

the consensus oc, where α is a pre-defined threshold that is usually employed when solving soft consensus problems

(Herrera-Viedma et al., 2014; Zhang et al., 2011, 2019).

The above model is an optimization consensus model with a minimum cost/adjustment from the moderator’s

perspective. However, individuals in GDM always expect some compensation for adjusting their opinion, the more

the better. Hence, introducing linear primal-dual theory, Gong et al. (2015a,b) and Zhang et al. (2019) explored the

dual forms of Model (1) in specific contexts so as to obtain the maximum compensation for all DMs. In particular,

Zhang et al. (2019) provided a concise form of the maximum compensation consensus models (i.e., Model (2)),

where R means the set of real numbers, and yi is the unit compensation expected by di. As discussed earlier, Zhang

et al. (2020a) divided the objective function of Model (2) into a modification return provided by the moderator for
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the DM’s opinion adjustment and a recognition return based on the similarity between the DM’s initial opinion

and the final consensus. However, their model is omitted here due of space limitations.

max
n∑

i=1

yi ∗ (oi − oc)

s.t. yi ∈ R, i ∈ N

(2)

The optimal collective opinion oc can always be obtained, regardless from the minimum cost perspective (i.e.,

Model (1)) or the maximum compensation perspective (i.e., Model (2)). Therefore, the idea of discussing the closed-

loop carbon quota trading mechanism with an objective function that maximizes the overall revenue is feasible. In

addition, the above two models obtain the optimal collective opinion oc, whereas this paper aims to derive all DMs’

optimal adjusted opinions (i.e., the set of O
′) during the trading process. Thus, in the following discussion, we

introduce some influential factors into the conventional market trading mechanisms and build a series of optimization

consensus models that provide optimal or fair carbon quota allocations within a closed-loop trading system.

3. Assumptions for carbon quota trading mechanisms

This paper explores how to develop a satisfactory carbon quota allocation scheme under the goal of maximizing

the revenue for either the whole group or a single DM through market trading mechanisms. To facilitate a better

understanding, Table 1 presents the main notation used in this paper. Suppose that multiple DMs (e.g., companies,

regions, nations) form a closed-loop trading system with a fixed total carbon quota. Let ri be di’s initial fixed unit

revenue and r1 ≤ r2 ≤ ... ≤ rn, where ri is determined by each DM’s unique qualities, such as social and economic

development, natural conditions, resource endowments, industrial structures, and energy usage rates.

Table 1 Summary of notation used in this paper
Notation Meaning Notation Meaning

di The i-th DM Iij Quantity transferred from di to dj

ri Initial fixed unit revenue of di’s CQ Tij Unit transaction price between di and dj

pi Unit selling price of di’s CQ δ Non-archimedean infinitesimal
qi Unit buying price of di’s CQ γ Fairness threshold
oi di’s initial CQ α Fairness measure variable
o
′
i di’s final CQ Z1 Obj to maximize overall revenue

o−i Lower limit of di’s IECQI Z2 Obj to maximize a specific DM’s revenue
o+i Upper limit of di’s IECQI Z3 Obj regarding revenue and fairness
Hi Individual development index H̄ Group development index

Note: CQ, IECQI and Obj are short for carbon quota, initially expected carbon quota interval and the objective function, respectively.
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To be noted, this paper aims to depict the most essential trading behavior within a carbon quota market by

consensus modeling. Meanwhile, in order to reduce the computational complexity of the subsequent models, we

currently simplify the problem to the greatest extent. Therefore, several basic assumptions need to be clarified as:

1. The carbon quota market discussed remains stable during a certain period, and DMs can freely participate

in the trading system;

2. Variables of unit prices (i.e., pi, qi, Tij) are static, meaning that they don’t fluctuate with time, supply and

demand, and etc.;

3. Unit revenue of di’s carbon quota (i.e., ri) is a constant, which is only determined by di’s own inherent char-

acteristics rather than oi, meaning that the standard law of diminishing returns assumption is not considered;

4. Factors regarding costs within the profit-oriented trading system are implicit in di’s initial unit revenue, which

means we only need to conduct analysis from the perspective of revenue maximization.

Actually, assumptions listed above are all to reduce the complexity of our GDM problem, and each point could

be an interesting topic in our subsequent research. Anyway, the final results obtained from the closed-loop trading

system through consensus modeling should satisfy two main objectives:

• Goal 1: Each DM’s total revenue derived from the trading is no less than his initial fixed total revenue;

• Goal 2: The sum of all DMs’ revenue acquired from the closed-loop trading system should be maximized.

Goal 1 is set from the DM’s perspective, and aims to maximize each DM’s economic benefits. All DMs are as-

sumed to be rational (that is, once the carbon quota trading is conducted, they must benefit themselves); otherwise,

the transactions are invalid. This corresponds to real-life market trading and can be understood as the effectiveness

of the trading mechanisms. On the contrary, Goal 2 is set from the collective angle. In general, the representative

for the collective benefit is the participant who determines the initial carbon quota for all DMs, and also the one

who plays the role as a moderator in GDM problems (Ben-Arieh & Easton, 2007; Gong et al., 2021), such as local

governments or world organizations. For those representatives, the primary goal is to maximize the overall revenue.

To realize Goal 1, we have the following constraints: (1) pi ≥ ri, (2) qi ≤ ri, where pi denotes the unit selling

price, qi represents the unit buying price, and ri is the original fixed revenue for one unit of di’s carbon quota.

Let the quantity transferred from di to dj be Iij , and their final unit transaction price be Tij . Then, the following
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statement holds: If pi ≤ qj , then the one-way carbon quota transaction from di to dj can be realized, that is, di

can sell a carbon quota to dj , and so Iij ≥ 0 and the unit transaction price Tij ∈ [pi, qj ], which indicates there is a

negotiable space in the trading process between di and dj . At the same time, we derive Iji = 0, since Iij ∗ Iji = 0

holds under the premise of one-way trading.

The above constraint indicates that there is a directionality in the carbon quota trading between any two DMs.

Specifically, once a carbon transaction occurs between di and dj , the transferred quantity sold by di to dj is Iij ,

and we get ri ≤ pi ≤ qj ≤ rj . Moreover, because the unit transaction price satisfies pi ≤ Tij ≤ qj , we have that

ri ≤ pi ≤ Tij ≤ qj ≤ rj . Thus, di’s revenue is TijIij − riIij ≥ 0, whereas dj ’s revenue is rjIij − TijIij ≥ 0. This

trading mechanism guarantees that every carbon transaction that occurs is profitable for both parties, implying

that each DM’s final revenue after the carbon trading is no less than their initial total fixed revenue. Thereby, Goal

1 is always met.

Theorem 1. Iij ∗ Iji = 0 and Iij ≥ 0, Iji ≥ 0 (i ̸= j, i, j ∈ N), if and only if pi = qi = pj = qj = ri = rj, Iij ≥ 0,

and Iji ≥ 0 hold simultaneously. At this time, the unit selling and buying prices, as well as the initial fixed unit

revenue for both di and dj, are equal. In this case, the transaction does not bring about a change in revenue, so it

has no economic significance.

Proof. As pi ≥ ri and qi ≤ ri, we have pi ≥ ri ≥ qi. When Iij ≥ 0 and Iji ≥ 0 hold simultaneously, pi ≤ qj

and pj ≤ qi are obtained, that is, ri ≤ pi ≤ qj ≤ rj ≤ pj ≤ qi ≤ ri. So when pi = qi = pj = qj = ri = rj , both

Iij ≥ 0 and Iji ≥ 0 hold. Under other situations, if Iij ≥ 0, we have Iji = 0; on the contrary, if Iji ≥ 0, we get

Iij = 0. To sum up, based on the aforementioned four assumptions, once DM di buys (sells) carbon quota from

(to) dj , he/she will no longer sell (buy) carbon quota to (from) dj .

Theorem 1 guarantees that the transactions between any two DMs in the closed-loop carbon quota trading system

are one-way. When the initial parameters provided by the two DMs (including unit buying and selling prices as

well as their initial fixed unit revenue) are all equal, their transaction has no direction constraint. However, any

transaction realized under these conditions cannot increase the DMs’ revenue, so it has no economic value.

Theorem 2. Suppose ri is di’s initial fixed unit revenue and r1 ≤ r2 ≤ ... ≤ rn, if i ≤ j, Iij ≥ 0 holds; if i > j and

ri ̸= rj, Iij = 0 holds; and if i > j and ri = rj, Iij ≥ 0 holds.
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Proof. If i ≤ j, we have ri ≤ rj , and because pi ≥ ri, qj ≤ rj , there must exist pi, qj such that ri ≤ pi ≤ qj ≤ rj ,

then Iij ≥ 0. Besides, if i > j and ri ̸= rj , then ri > rj , and since pi ≥ ri, qj ≤ rj , that is, pi ≥ ri > rj ≥ qj , thus

there exist no pi, qj such that pi ≤ qj , thereby we have Iij = 0. Similarly, if i > j and ri = rj , then pi ≥ ri = rj ≥ qj .

Clearly, only if pi = ri = rj = qj , Iij ≥ 0 holds, otherwise, we have Iij = 0.

Theorem 2 takes the basic hypothesis of this paper into consideration: all DMs are arranged in order based on

the relationships among their original fixed unit revenues, that is, r1 ≤ r2 ≤ ... ≤ rn. The quantity of the carbon

quota that is transferred is not only affected by the DM’s location index, but also by the size of the DM’s fixed

unit revenue. This theorem implies that carbon quota trading can only be carried out from one DM with a smaller

fixed unit revenue to another with a larger unit revenue. Therefore, DMs with small fixed unit revenues have to sell

their carbon quota to increase their total revenue, because pi ≥ ri. On the contrary, DMs with large unit revenues

can only improve their revenue by purchasing carbon quotas, because qi ≤ ri.

Theorem 3. Let di’s final carbon quota be o
′

i. Considering that some uncertainty exists during the trading process,

the above final carbon quota is represented by an interval value, denoted as [o−i , o
+
i ], whose endpoints satisfy:

n∑
i=1

o−i ≤
n∑

i=1

oi ≤
n∑

i=1

o+i

Proof. Since o−i ≤ o
′

i ≤ o+i , we have
∑n

i=1 o
−
i ≤

∑n
i=1 o

′

i ≤
∑n

i=1 o
+
i . Meanwhile, because the total carbon

quota in the closed-loop trading system is fixed, namely
∑n

i=1 o
′

i =
∑n

i=1 oi, then
∑n

i=1 o
−
i ≤

∑n
i=1 oi ≤

∑n
i=1 o

+
i .

Theorem 3 is based on the assumption that the total carbon quota in the closed-loop trading system is fixed,

which complies with the provisions of the clean development mechanism. That is, under the premise of fixed global

carbon emission levels, high-emission countries can finance some projects in low-emission countries to reach their

established limit (i.e., compensatory reduction) (Gomes & Lins, 2008). In short, the so-called “carbon market” can

reduce the economic impact on high-emission countries and achieve the overall goal of reducing carbon emissions.

In addition, for rational DMs, threshold constraints attached to their final carbon quota can better exhibit the

uncertainties during the trading process (Ruidas et al., 2021); for the moderator, there is no need to grasp all

transaction details, namely, the moderator only needs to have overall control of the total amount, that is, the lower
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limit of the final total carbon quota is no greater than the initial total amount, while the upper limit should be no

less than the sum of all DMs’ original carbon quotas.

An example of carbon quota trading conducted by three regions is presented below to preliminarily clarify our

modeling ideas. Initial information is listed in Table 2, while the trading results, including the final carbon quota,

and the corresponding revenue, are shown in Table 3. Meanwhile, the specific trading process is exhibited in Fig. 1.

Note that the elaborated example only corresponds to the aforementioned basic assumptions, and does not really

involve the consensus modeling in the next section.

Table 2 Example of the initial information provided
by three regions

d1 d2 d3

oi 10 10 10
ri 50 80 120
rioi 500 800 1200

Table 3 Example of the final carbon quotas through
the trading conducted by three regions

d1 d2 d3

o
′
i 3 11 16
ri 50 80 120
rio

′
i 150 880 1920

Trading revenue 530 -35 -495
Total revenue 680 845 1425

Table 2 provides the initial carbon quota (i.e., oi) allocated to each region along with its fixed unit revenue (i.e.,

ri), from which the initial total revenue (i.e., rioi) of each region can be obtained. As d1 has the smallest unit

revenue r1, this DM can only increase his revenue by selling a carbon quota; as d3 has the largest unit revenue r3,

this DM can only increase his total revenue by purchasing a carbon quota. For d2, revenue may be increased by

selling, purchasing, or combining both trading behavior (see Fig. 1).

Fig. 1 Schematic diagram of carbon quota trading among three regions

To make the trading mechanism effective and feasible, DM’s unit selling price should be no less than his initial
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unit revenue (i.e., pi ≥ ri), while the unit buying price should be no larger than the fixed unit revenue (i.e., qi ≤ ri).

Take d2 as an example for detailed analysis: the total revenue for d2’s initial carbon quota is 10 ∗ 80 = 800, and

suppose through optimization consensus modeling, d2’s unit selling and buying prices are derived as p2 = 90 and

q2 = 70, respectively. The parameters for other regions see Fig. 1. Since Tij ∈ [pi, qj ], here we might as well let

the unit transaction price be Tij =
pi+qj

2 , then we derive T12 = 65, T23 = 95, and the transferred carbon quota

quantities related to d2 are assumed to be obtained through mathematical modeling as I12 = 2, I23 = 1. As a result,

d2’s total carbon quota is 10 + 2− 1 = 11, and the new fixed revenue for holding his carbon quota is 11 ∗ 80 = 880,

while the transaction revenue (i.e., the difference between the income from selling carbon quotas and the cost of

buying quotas) is 1 ∗ 95 − 2 ∗ 65 = −35, making d2’s final total revenue of 880 − 35 = 845 be larger than the

initial total revenue of 800. Results in Tables 2 and 3 demonstrate that the final revenue of every region in the

closed-loop trading system has increased with respect to their initial total revenue, indicating that the proposed

trading mechanism is feasible.

4. Optimization consensus modeling concerning carbon quota trading mechanism

Chu & Shen (2006) indicated that the purpose of designing a trading mechanism is to provide a method

for ensuring that the allocation decisions and pricing decisions in decision-making processes result in the desired

outcomes. They also found that, once the allocation principle is set in a truthful mechanism, the prices are

determined; similarly, once the pricing rule is determined, the allocation is settled. Different from the extant

research on the carbon market (Diaz-Rainey & Tulloch, 2018; Gomes & Lins, 2008; Lamba et al., 2019; Ruidas

et al., 2021; Van Steenberghe, 2004; Zhou et al., 2020b; Zou et al., 2021), this section takes the maximization of the

overall revenue or a single DM’s revenue as the objective function, and uses optimization consensus modeling to

determine the allocation scheme (i.e., determination of variables o
′

i, Iij) and the pricing scheme (i.e., determination

of variables pi, qi, Tij) in the carbon quota trading system.
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4.1. Benchmark carbon trading consensus model with overall revenue maximization

To realize Goal 2 (as defined in Section 3), we build the following optimization consensus model (i.e., Model

(3)) to maximize the sum of the revenues of all DMs within the closed-loop trading system as:

max Z1 =
n∑

i=1

rio
′

i

s.t.



o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (3− 1)

qi ≤ ri ≤ pi, i ∈ N (3− 2)
Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

(3− 3)

o−i ≤ o
′

i ≤ o+i , i ∈ N (3− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, i, j ∈ N (3− 5)

(3)

The objective function Z1 in Model (3) attempts to maximize the final total revenue for all DMs within the carbon

quota trading system. Constraint (3-1) is the expression of di’s final quota, which is equal to the initial quantity

minus all the sold quantities
n∑

j=1,j ̸=i

Iij and plus all the purchased quantities
n∑

j=1,j ̸=i

Iji, where Iij denotes the

carbon quota quantity transferred from di to dj . Since the sum of all transfer-out quantities equals to the sum

of all transfer-in quantities, we can easily obtain
∑n

i=1 o
′

i =
∑n

i=1 oi through constraint (3-1), corresponding to

the fact that the total carbon quota amount in the closed-loop trading system is fixed. Constraint (3-2) is the

threshold constraint attached to the unit selling price pi and the unit buying price qi based on the pre-defined

initial fixed unit revenue ri. Constraint (3-3) specifies the achievable conditions of the carbon trading between any

two DMs. Namely, only when the seller’s location index is smaller than the purchaser’s index, and the unit selling

price pi is no greater than the unit buying price qj , will the transaction from di to dj be achieved (i.e., Iij ≥ 0).

Constraint (3-4) assumes that di’s final quota is located in his own expected interval provided initially. Constraint

(3-5) indicates that all variables are nonnegative. Hence, Model (3) explores the optimal carbon quota allocation

problem under the maximization of the overall revenue of the trading system, where Z1, o
′

i, Iij , pi, qi, (i ∈ N) are

decision variables and ri, oi, o
−
i , o

+
i are known parameters. In fact, due to insufficient constraints (e.g., the absence

of specific transaction prices building connections with the unit price variables), only the ranges of pi and qi instead
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of their optimal values can be obtained through Model (3).

Theorem 4. There must exist an m-th DM such that
m−1∑
i=1

o−i + o
′

m +
n∑

i=m+1

o+i =
n∑

i=1

oi and o−m ≤ o
′

m ≤ o+m. By

then, the optimal value for the objective function of Model (3) is
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i and the optimal

solution is o
′

i = o−i (1 ≤ i ≤ m− 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m+ 1 ≤ i ≤ n).

Proof. First, when o
′

i = o−i (1 ≤ i ≤ m − 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m + 1 ≤ i ≤ n), there

exists no Iij > 0 to further increase the objective function. That is, except dm, all DMs have reached their critical

points of their expected carbon quota intervals (i.e., [o−i , o+i ]), either the lower limit of di (1 ≤ i ≤ m − 1) or the

upper limit of di (m + 1 ≤ i ≤ n), making DMs with a location index smaller than m cannot further sell carbon

quota while DMs with a location index larger than m cannot further buy carbon quota, based on the given condition

as r1 ≤ r2 ≤ ... ≤ rn. In a nutshell, if Iij > 0, the objective function of Model (3) increases to f∗ = f+(rj−ri)∗Iij ,

where f is the total revenue before the transaction. Due to rj ≥ ri, (i < j), we get f∗ ≥ f , indicating that if and only

if Iij = 0, the value of the objective function no longer increases and becomes the optimal value. Thus, the solution

at this point is exactly the optimal solution, and the objective function becomes
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i .

Next, we prove that this critical DM with the m-th location index always exists. Because o−i ≤ o
′

i ≤ o+i ,

we have
n∑

i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i . If m = 1, then r1o

−
1 +

n∑
i=2

rio
+
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i . If m = 2, then

2∑
i=1

rio
−
i +

n∑
i=3

rio
+
i ≤

n∑
i=1

rio
′

i ≤ r1o
−
1 +

n∑
i=2

rio
+
i . In the same way, if m = n, then

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n−1∑
i=1

rio
−
i +

rno
+
n . Therefore, once m takes a specific value within the set N ,

n∑
i=1

rio
′

i can take any value from the interval

[
n∑

i=1

rio
−
i ,

n∑
i=1

rio
+
i ], and so the known constraint

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′

i ≤
n∑

i=1

rio
+
i means that dm must exist such that

o
′

i = o−i (1 ≤ i ≤ m− 1), o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′

i = o+i (m+ 1 ≤ i ≤ n) hold.

Theorem 5. When Model (3) reaches its maximum value, we obtain
n∑

j=1,j ̸=i

Iij−
n∑

j=1,j ̸=i

Iji = oi−o−i (1 ≤ i ≤ m−1),

n∑
j=1,j ̸=m

Imj −
n∑

j=1,j ̸=m

Ijm = om −
n∑

i=1

oi +
m−1∑
i=1

o−i +
n∑

i=m+1

o+i ,
n∑

j=1,j ̸=i

Iij −
n∑

j=1,j ̸=i

Iji = oi − o+i (m+ 1 ≤ i ≤ n).

Proof. Theorem 4 implies that once Model (3) reaches its maximum value, and if 1 ≤ i ≤ m−1, then o
′

i = o−i

holds, meantime, due to o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, we have
n∑

j=1,j ̸=i

Iij −
n∑

j=1,j ̸=i

Iji = oi − o−i (1 ≤ i ≤ m− 1).

Similar analysis can be conducted for the rest situations.

Theorems 4 and 5 indicate that the optimal solution of Model (3) and the maximum value of the objective
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function exist and are unique. Therefore, the optimal allocation for all DMs’ carbon quotas is determined. In other

words, by solving Model (3), we obtain all information about carbon quota transfers within the trading system.

However, note that only the feasible regions can be obtained by Model (3), rather than the optimal values of the

decision variables pi, qi.

Theorem 6. The achievable constraints of the carbon quota trading mechanism are determined by di’s unit selling

price pi and dj’s unit buying price qj as:


Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

which is equivalent to


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(4)

where δ is the non-Archimedean infinitesimal, viz. a sufficiently small positive value approaching zero (Charnes

et al., 1994; Mehrabian et al., 2000).

Proof. If i < j, i, j ∈ N , then carbon quota trading between the seller di and the purchaser dj is achievable,

so Iij ≥ 0 holds. Next, we discuss the effect of prices on the transferred quantity: when pi < qj , according to Eq.

(4), we have Iij <
2(qj − pi)

δ
, and because δ is the non-Archimedean infinitesimal, Iij < +∞, that is, Iij ≥ 0 holds;

when pi ≥ qj , based on Eq. (4), we have Iij = 0. In addition, if i ≥ j, i, j ∈ N , the one-way transaction from di to

dj cannot be achieved, so we have Iij = 0. This completes the proof of Theorem 6.

Theorem 6 states the achievable conditions for a closed-loop trading system. Specifically, carbon quota trading

can only be achieved when the unit selling price of one DM with a small location index is no greater than the unit

buying price of another DM with a large location index; otherwise, their carbon quota transaction fails.

4.2. Carbon trading consensus models with single DM’s revenue maximization

The competition mechanism refers to the struggle among market practitioners to maximize their own economic

benefits, so it focuses more on individual standpoints than the collective perspective. The model developed in
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Section 4.1 only maximizes the overall revenue of the trading process, and ignores the individual DM’s interests and

the resulting unfairness issues. This section considers individual DMs as the research object, and uses optimization

consensus models to derive detailed information about the trading process, including the participating DMs, trans-

ferred quantities, and the final unit transaction prices. That is, when the group realizes its optimal allocation by

considering every DM’s revenue maximization, this section attempts to determine not only di’s final carbon quota

o
′

i from its expected interval [o−i , o
+
i ], but also each DM’s psychological expected unit selling and buying prices

(i.e., pi, qi) and the transferred quantity Iij along with the best achievable unit transaction price Tij . Based on the

above principles, a two-stage programming model is built as:

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(5− 1)



Max
n∑

i=1

rio
′

i

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N

qi ≤ ri ≤ pi, i ∈ N
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

o−i ≤ o
′

i ≤ o+i , pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N

(5− 2)

(5)

Model (5) introduces constraint (5-1) into Model (3), that is, adding the expression of the unit transaction price

Tij between DMs di and dj , which is a range bounded by di’s unit selling price pi and dj ’s unit buying price qj . As

stated in Section 3, only the location indices satisfy i < j, i, j ∈ N , and pi ≤ qj holds, can the unit transaction price

between di and dj be denoted as Tij ∈ [pi, qj ]. Here, the unit transaction price Tij obeys a uniform distribution

by default, as each point within the interval [pi, qj ] can be selected with equal possibility, which makes it easy to

calculate, understand and be applied into real-life GDM. The objective function in Model (5) is the sum of di’s

final carbon quota holding revenue (i.e., rio
′

i) and the transaction revenue for selling or buying carbon quotas (i.e.,
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji), and this value the larger the better. Model (5) indicates that maximizing a single

DM’s revenue is not unconstrained; instead, it should be carried out within the context of maximizing the overall
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revenue for the whole group (i.e., constraint (5-2)). Referring to Theorem 4, Model (5) can be further transformed

into Model (6), where constraints (6-2)–(6-9) provide the analytical formula of constraint (5-2). The definitions of

other variables and constraints in Model (6) are consistent with those in Models (3) and (5).

Theorem 4 states that the optimal solution of Model (3) exists and is unique. Thus, there must exist feasible

solutions for Model (6). Actually, constraints (6-6)–(6-8) in Model (6) provide the analytical formula for the DM’s

final carbon quota o
′

i, and are acquired by solving Model (3). Hence, variables Z2, Iij , pi, qi, Tij and m in Model

(6) are decision variables, while ri, oi, o
−
i , o

+
i , δ are known parameters. In short, under the premise of maximizing

the overall revenue, and by further adding the expression of the unit transaction prices, Model (6) determines

the optimal values for di’s unit selling and buying prices (i.e., pi and qi), and further obtains detailed trading

information including the quantity Iij transferred from di to dj and their corresponding unit transaction price Tij .

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(6− 1)

n∑
i=1

rio
′

i =
m−1∑
i=1

rio
−
i + rmo

′

m +
n∑

i=m+1

rio
+
i (6− 2)

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (6− 3)

qi ≤ ri ≤ pi, i ∈ N (6− 4)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(6− 5)

o
′

i = o−i , 1 ≤ i ≤ m− 1 (6− 6)

o
′

m =
n∑

i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o−m ≤ o
′

m ≤ o+m (6− 7)

o
′

i = o+i ,m+ 1 ≤ i ≤ n (6− 8)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j,m ∈ N (6− 9)

(6)

4.3. Identification and adjustment rules for discordant DMs

In Section 4.2, we considered the case in which every single DM pursues the maximization of his own revenue,

which inevitably results in unfairness (e.g., the unbalanced growth of the DMs’ revenue). Therefore, this section
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examines the potential to achieve a relatively balanced state within the closed-loop carbon quota trading system by

adjusting some DMs’ initial parameters. Once fairness is achieved, DMs with too much revenue growth or too little

revenue growth should no longer exist in the final stage of carbon trading. Any such DMs are collectively referred to

as discordant DMs in the trading system. During CRP, if the DMs’ improper initial parameters can be modified

as early as possible, systemic losses (e.g., cost, time) will be significantly reduced. In short, an earlier intervention

during GDM is more advantageous (Liang et al., 2020). Compared with extant research adopting utility function

(Du et al., 2021) or fuzzy theory (Liu et al., 2021) to characterize the fairness concerns, this paper defines two

indicators to directly judge whether the GDM results are fair, so as to further identify discordant DMs and make

some corresponding adjustments.

Definition 1. An individual development index is defined as a relative proportion of the DM’s final revenue

obtained through the carbon quota trading process with respect to their initial fixed revenue, that is,

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N

Definition 2. The group development index is defined as a relative proportion of the final total revenue obtained

through the carbon quota trading process with respect to the initial fixed total revenue of the group, that is,

H̄ =

n∑
i=1

rio
′

i

n∑
i=1

rioi

This section follows the idea of fair development of all DMs in the trading system. By default, the difference

between the individual development index Hi and the group development index H̄ should be within a certain

range, otherwise DMs will be identified as discordant DMs with too much or too little revenue growth. These two

development indices mainly depend on the DM’s final carbon quota o
′

i, which further depends on the endpoints

of the expected interval [o−i , o+i ] provided by DM di. Here, we choose interval values instead of crisp numbers to

denote di’s expected carbon quota quantity due to various uncertainties (Ruidas et al., 2021). Hence, by adjusting

the expected carbon quota range [o−i , o
+
i ] of discordant DMs, an equilibrium state with a minimum loss can be

achieved within the trading system (see Fig. 2(c)). Let a discordant DM be dk, k ∈ {0, 1, · · · , n}, and his expected
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final carbon quota be adjusted from [o−k , o
+
k ] to [o

′−
k , o

′+
k ] through the following adjustment rules.

• When Hk << H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and << denotes far less than, dk

is identified as a discordant DM with too little revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(a), and his adjustment rules are:

– If k > m, then the amount purchased is too little, and so o+k needs to be increased;

– If k < m, then the amount sold is too little, and so o−k needs to be further decreased;

– If k = m, then the current expected interval is improperly set, and we need to simultaneously reduce o−k

and increase o+k .

• When Hk >> H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and >> means far more than, dk

is identified as a discordant DM with too much revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(b), and his adjustment rules are:

– If k > m, then the quantity purchased is too great, and so o+k needs to be decreased;

– If k < m, then the amount sold is too great, and so o−k should be increased;

– If k = m, then the current interval of the DM’s expected carbon quota is inappropriate, and we need to

increase o−k and decrease o+k at the same time.

Through the above adjustment rules, a set of updated trading information for all DMs can always be acquired.

Based on the individual/group development indices, we obtain the values of all |Hi − H̄| based on Model (6) so

as to determine the threshold for the variable γ, as well as the difference value |Hi − Hj | between any two DMs.

By repeating the calculations of Models (3) and (6), it is then possible to verify whether the above adjustments

are effective or not. The above rules are used to identify discordant DMs and provide the corresponding direction

of adjustments. However, the identification parameter γ needs to be manually set, and the specific adjustment

range for each DM cannot be accurately specified, that is, we cannot determine by how much each discordant DM

needs to adjust the upper and lower limits of their initial expected carbon quota intervals. To overcome these

deficiencies, a fairness measure variable α is introduced in the next section, and the optimal carbon quota allocation

scheme considering fairness is directly acquired through consensus modeling. Furthermore, by applying a sensitivity

analysis to the variable α, we can obtain flexible allocation schemes according to specific GDM scenarios.
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Fig. 2 Identification of non-equilibrium states in closed-loop carbon trading system

4.4. Carbon trading consensus model regarding fairness and revenue

When only a single DM’s revenue is considered, the overall revenue cannot be maximized; moreover, when

only the overall revenue is taken into account, there can be large gaps between the total revenue of different DMs,

highlighting the unfairness issues. Thus, this section introduces a fairness constraint (that is, the difference between

any two individual development indices should be within a certain acceptable threshold) under the premise of

ensuring the maximization of the overall revenue. Specifically, the fairness constraint is expressed as |Hi −Hj | ≤

α(α ≥ 0, i < j, i, j ∈ N), and the optimization carbon quota consensus model considering both revenue and fairness
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is built as follows:

max Z3 =
n∑

i=1

rio
′

i

s.t.



o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (7− 1)

qi ≤ ri ≤ pi, i ∈ N (7− 2)
pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(7− 3)


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(7− 4)

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N (7− 5)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (7− 6)

o−i ≤ o
′

i ≤ o+i , qi ≥ 0, pi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (7− 7)

(7)

Z3 in Model (7) aims to maximize the overall revenue after carbon quota trading under the premise that each DMs’

revenue has been fairly developed. Constraint (7-1) is the expression of di’s final carbon quota, which guarantees
n∑

i=1

o
′

i =
n∑

i=1

oi. Constraint (7-2) sets di’s optimal psychological expected unit selling price pi and unit buying price

qi based on his own initial fixed unit revenue ri. Constraint (7-3) denotes the unit transaction price between any

two DMs, and (7-4) provides the achievable conditions for carbon quota trading considering both the DMs’ location

indices (i.e., i, j) and the relationships between pi and qj . Constraint (7-5) defines the individual development index

(i.e., Definition 1), and (7-6) specifies the fairness constraints attached to different DMs, where α ≥ 0 is the fairness

measure variable that is pre-determined from the differences among individual development indices (see Section

4.3). Finally, (7-7) provides the thresholds for all variables. Variables Z3, o
′

i, Iij , pi, qi, Tij ,Hi, (i ̸= j, i, j ∈ N) in

Model (7) are to be solved, while ri, oi, o
−
i , o

+
i , α, δ, (i ∈ N) are determined in advance.

4.5. Solution method to solve carbon trading consensus models

Clearly, Model (6) is a non-convex optimization problem with many decision variables to be determined. As

the pricing decisions (i.e., variables pi, qi) have no direct effect on the objective function Z2, we remove these two
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variables using constraints (6-1), (6-4), and (6-5), thus obtaining the following relaxation model:

max Z2 = rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

s.t.




Tij = 0, if i ≥ j, i, j ∈ N

ri ≤ Tij ≤ rj , if i < j, i, j ∈ N

(8− 1)

n∑
i=1

rio
′

i = max Z1 (8− 2)

o
′

i = oi −
n∑

j=1,j ̸=i

Iij +
n∑

j=1,j ̸=i

Iji, i ∈ N (8− 3)
Iij = 0, if i ≥ j, i, j ∈ N

Iij ≤
2(rj − ri)

δ
, if i < j, i, j ∈ N

(8− 4)

o−i ≤ o
′

i ≤ o+i , Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N (8− 5)

(8)

where Z1 is the maximum value obtained from Model (3), and definitions of other variables and constraints refer to

Model (6). Without loss of generality, Model (6) is the original problem, and the relaxation model (i.e., Model (8))

is its sub-problem, thus the solution of Model (6) can be directly obtained after solving Model (8). In other words,

as the submodel of Model (6), the solution of the relaxation Model (8) doesn’t affect the results of Model (6).

To our knowledge, PSO algorithm was put forward to optimize nonlinear functions based on the initial point

and stopping criteria (Kennedy & Eberhart, 1995), and has been proven to be an effective tool for streamlining

decision making (Cabrerizo et al., 2013; Zhou et al., 2020a). In this paper, a relaxation method based on the PSO

algorithm (i.e., Algorithm 1) is proposed for determining the optimal solution of Model (6). In specific, Algorithm

1 is proposed to solve the original problem (i.e., Model (6)), while PSO algorithm is used to solve its sub-problem

(i.e., Model (8)). Note that, if the selection of parameters (e.g., initial points) is appropriate, a global optimal

solution can be found (Campana et al., 2010; Sun et al., 2012). Generally, the above-mentioned non-convex models

can be linearized and solved using standard exact solvers, but linearization only obtains an approximate solution,

while our proposed relaxation method can derive the equivalent form of the original problem. By adopting similar

principles, a fine-tuning algorithm can be used to solve Model (7), but it is omitted here due to space limitations.
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Algorithm 1 Relaxation method based on PSO algorithm for solving Model (6).
Input: Number of DMs, N ; di’s initial carbon quota, oi; di’s initial fixed unit revenue, ri; di’s expected carbon quota

interval, [o−i , o+i ]; the maximum overall revenue obtained from Model (3), Z1; the maximal number of iterations, limit;
population size, M .

Output: di’s final carbon quota, o′
i; di’s unit selling and buying prices, pi, qi; the transferred quantity, Iij ; the unit trans-

action price, Tij ; the specific DM’s maximum total revenue, Z2.
Step 1: Remove decision variables pi, qi to obtain a relaxation optimization model (see Model (8)), based on constraints

(6-1), (6-4) and (6-5);
Step 2: Use PSO algorithm to solve Model (8);

1: Set current iteration as t = 0;
2: for each particle i do
3: Initialize velocity Vi and position Xi for particle i;
4: Evaluate particle i by the defined fitness function and set pBesti = Xi;
5: end for
6: gBest=min {pBesti};
7: while t<limit do
8: for i = 1 to M do
9: Update the velocity and position of particle i;

10: Evaluate particle i by the defined fitness function;
11: if fit(Xi) < fit(pBesti) then return pBesti=Xi;
12: end if
13: if fit(pBesti) < fit(gBest) then return gBest = pBesti;
14: end if
15: end for
16: end while
17: Z2= –fit(gBest);
18: return Best solution of o′

i, Iij , Tij , Z2.
Step 3: Derive the optimal values of pi, qi based on relaxation constraints (6-1) and (6-5) .

5. Numerical analysis

To verify the feasibility of the optimization consensus models proposed in this paper, this section presents a

numerical case study. Suppose there are five regions (d1, d2, d3, d4, d5) in a closed-loop carbon quota trading

system (i.e., N = {1, · · · , 5}). The initial information provided by each region is summarized in Table 4.

Table 4 Summary of the initial trading information provided by five regions
Regions ri oi o−i o+i rioi

d1 12 16 13 19 192
d2 15 20 16 24 300
d3 23 34 27 41 782
d4 34 18 14 22 612
d5 40 12 10 26 480

Total — 100 80 132 2366
Note: di is the i-th region; ri denotes the initial fixed unit revenue; oi is di’s initial carbon quota; o−i and o+i are the lower and upper

limit of di’s initially expected interval, respectively; and rioi is di’s initial carbon quota holding revenue.
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5.1. Steps of the research on carbon quota trading mechanism

To clarify the construction mechanism described in this paper, five steps are presented below.

Step 1: Referring to Model (3), an optimization carbon trading model is built to achieve overall revenue

maximization, i.e., to obtain the optimal carbon quota allocation scheme for different regions from the collective

perspective. Specifically, the carbon quota quantities transferred among regions and the maximum value of the

final total revenue of the system are acquired.

Step 2: Using the maximum overall revenue obtained in Step 1, and by adding the constraint of the unit

transaction price, a series of optimization consensus models are built based on Model (6). Hence, a total of n

allocation schemes are derived by maximizing each region’s revenue, and detailed information such as di’s unit

buying and selling prices, transferred quantities, and unit transaction prices is obtained.

Step 3: Through a comparison of the individual/group development indices, it can be determined whether

regions have developed fairly or not. If not, some discordant regions are identified by a pre-defined threshold γ,

then their initial parameters are adjusted accordingly. Next, the calculations in Steps 1 and 2 are repeated until

the allocation scheme satisfies the fairness requirement.

Step 4: Introduce the fairness measure variable α to build consensus models based on Model (7), so as to directly

obtain fair carbon quota allocation schemes for the five regions in terms of the maximum overall revenue, quantities

of carbon quota transferred, and the unit transaction prices. Additionally, a sensitivity analysis is applied to α to

provide flexible suggestions for authorities involved in the trading system.

Step 5: Conduct a comparison and discussion based on the results obtained in each step.
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5.2. Analysis of the overall revenue maximization model

Based on Model (3), we obtain a closed-loop carbon quota trading system involving the five regions listed in

Table 4. Aiming to maximize the overall revenue, an optimization consensus model is constructed:

max Z1 = 12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5

s.t.





o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(9− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (9− 2)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(9− 3)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (9− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, δ > 0, i, j ∈ N (9− 5)

(9)

The objective function in Model (9) aims to maximize the total holding revenue for all five regions through the

carbon quota trading process, where o
′

i, i ∈ N is the final quota for the i-th region, which is restricted by both (9-1)

and (9-4). Constraints (9-2)–(9-3) concern the unit selling and buying prices, and the transferred quantity for each

region. δ in constraint (9-3) is a non-Archimedean infinitesimal, and hereafter it is set as δ = 10−6. The optimal

solution of Model (9) is presented in Table 5.

Table 5 Optimal solution of Model (9) with overall revenue maximization
Regions ri o

′
i rio

′
i Iij Value-I

d1 12 13 156 (1,5) 3
d2 15 16 240 (2,5) 4
d3 23 27 621 (3,5) 7
d4 34 18 612
d5 40 26 1040

Total — 100 2669 — —
Note: di denotes the i-th region; ri denotes the initial fixed unit revenue of carbon quota; o′i is di’s final carbon quota; rio

′
i is di’s final

carbon quota holding revenue; and Iij denotes the quantity transferred from di to dj .

The results in Table 5 show that the maximum value of the objective function in Model (9) is 2669. According to

Theorem 4, the critical region within the trading system is d4, namely, m = 4. When i < m, the regions with small
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original fixed unit revenues are d1, d2, d3. These regions can increase their revenue by selling carbon quotas, and

their final quotas are the lower limit of their original expected intervals, namely 13, 16, and 27, respectively (i.e.,

o−i in Table 4). When i > m, i.e., for d5, the only way to increase revenue is to purchase carbon quotas, and the

final quota for this region is the upper limit of the original interval, namely 26 (i.e., o+i in Table 4). Moreover, the

final quota for d4 is located in the initial range, and the data of Iij show that region d4 does not become involved

in the trading. In summary, Theorem 4 has been verified. Region d1 sold three carbon quota units to d5; region

d5 bought three, four, and seven carbon quota units from regions d1, d2, d3, respectively, making its total buying

quantity 3 + 4 + 7 = o
′

5 − o5 = 26− 12 = 14. The transferred quantities for the remaining regions can be obtained

in the same way. Thus, Theorem 5 has also been verified. Note that the revenue for each region in Table 5 only

involves the fixed revenue for holding a certain carbon quota, while the transaction revenue from the trading of

carbon quotas is not included.

5.3. Analysis of the single-region revenue maximization model

Model (9) can only provide feasible regions for variables pi, qi, (i ∈ N), rather than their optimal values (see

Section 4.1). Therefore, we construct Model (10) to acquire these optimal values under the objective of maximizing

the revenue of individual regions, which follows the research ideas of Models (5) and (6). Obviously, we obtain five

allocation schemes, one for each of the five regions taking part in the carbon quota trading process. For brevity,
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only the model that maximizes revenue for d4 is illustrated here.

max Z2 = 34 ∗ o′

4 +
5∑

j=1,j ̸=4

T4jI4j −
5∑

j=1,j ̸=4

Tj4Ij4

s.t.




pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(10− 1)

12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5 = 2669 (10− 2)

o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(10− 3)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (10− 4)
Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(10− 5)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (10− 6)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i ∈ N (10− 7)

(10)

The objective function Z2 in Model (10) is the maximum total revenue that can be achieved by region d4 through

carbon trading. This is composed of fixed revenue for holding carbon quotas (i.e., 34 ∗ o′

4) and transaction revenue

for trading behavior (i.e.,
5∑

j=1,j ̸=4

T4jI4j−
5∑

j=1,j ̸=4

Tj4Ij4). Constraint (10-2) ensures that the above trading is carried

out under the premise of maximizing the overall revenue, where 2669 is the maximum value obtained by solving

Model (9). Other definitions see Model (9). Using Algorithm 1, the optimal solution of Model (10) is presented in

Table 6, while the results of maximizing the revenue for other regions see Table A1. Here, all the demand parameters

in Algorithm 1 are set as N = 5, Z1 = 2669, limit = 5000 and M = 50. In addition, the values for oi, ri, o
−
i , o

+
i

refer to Table 4 and the parameters regarding the PSO algorithm are set in Matlab R2016a by default.

The decision variable o
′

i in Model (6) is directly given by constraints (6-6)–(6-8), but needs to be solved under

constraints (10-3) and (10-6) in Model (10). The results in Tables 6 and A1 indicate that, regardless of which region’s

revenue is maximized, the optimal allocation scheme is fixed and consistent with the results obtained in Section

5.2, that is, o′

1 = 13, o
′

2 = 16, o
′

3 = 27, o
′

4 = 18, o
′

5 = 26. Moreover, the unit selling and buying prices of each region

27



Table 6 Optimal solution of Model (10) with d4’s revenue maximization
Regions o

′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915
d2 16 15 15 (2,4) 4 15 1.0000 0.1281
d3 27 23 23 (3,4) 7 23 1.0000 0.1281
d4 18 34 34 (4,5) 14 40 1.4951 0.3670
d5 26 [40,+∞) 40 1.0000 0.1281

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.

are also consistent, although the transferred quantities, corresponding unit transaction prices, and the individual

development indices differ in each model. Note that, the values of p5, q1 are intervals due to the reason that they

are subjected to unilateral constraints of corresponding Tij . In fact, these are auxiliary variables for realizing the

trading process, because d1 cannot purchase carbon quotas and d5 cannot sell carbon quotas considering their fixed

order of unit revenues. Optimal values of all Tij , (i, j ∈ N) are provided during the calculation, but most are

omitted here because they don’t affect our analysis on the results.

The relationship between the individual development index Hi and the group development index H̄ is now

analyzed to identify whether there exist some discordant regions with too much or too little revenue growth.

First, based on
∑5

i=1 rioi = 2366 in Table 4 and
∑5

i=1 rio
′

i = 2669 in Table 5, we derive the group development

index as H̄ =
2669

2366
= 1.128064. Based on the data in Tables 4, 5, and 6, individual development indices for

each region can then be computed. Taking d4 as an example, H4 =
r4o

′

4 + T45I45 − T14I14 − T24I24 − T34I34
r4o4

=

34 ∗ 18 + 14 ∗ 40− 3 ∗ 12− 4 ∗ 15− 7 ∗ 23
34 ∗ 18

= 1.4951. The individual development indices in Tables 6 and A1 can

be derived using a similar calculation method.

5.4. Identification and parameter adjustment of discordant regions

Using the individual development indices Hi in Table A1, we obtain the absolute values of the differences in

development indices between each region and the group (i.e., |Hi − H̄|) or the absolute difference between any two

regions (i.e., |Hi − Hj |). Generally, in actual GDM problems, we can always judge whether the development of

different regions is balanced, namely, we can always pre-determine a threshold γ to identify discordant regions.

To determine the value of the parameter γ, Table 7 summarizes various development indices based on Table A1,

including the maximum, minimum, and mean for the abovementioned difference values. Numbers in bold font
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indicate relatively large values in each column, which require more attention.

Table 7 Summary of the development indices under the region’s revenue maximization
Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3094 0 0.1461 0.4375 0 0.2336
0.4853 0.0396 0.1692 0.6133 0 0.2789
0.2594 0.1281 0.1543 0.3875 0 0.1550
0.3670 0.1281 0.1759 0.4951 0 0.1980
0.5032 0.1281 0.2031 0.6313 0 0.2525

Referring to the adjustment rules designed in Section 4.3, the initial parameters provided by discordant regions,

namely, their predetermined expected carbon quota interval [o−i , o+i ], will be adjusted accordingly. If we set γ = 0.5,

then only d5 is identified as a discordant region with too much revenue growth. However, if the difference between

the development indices of any two regions is considered, the corresponding maximum values for d2, d5 should be

considered, as they are both greater than 0.6. Thus, the threshold for the parameter is adjusted to γ = 0.45. Liang

et al. (2020) concluded that the shorter the time required to reach a consensus, the more necessary it is to make

greater adjustments to the initial opinions. Initially concluded from a phenomenon of 20% people possessing 80%

of the wealth in the world, the 80/20 Rule (i.e., the Pareto principle) is now extended to a fact that an optimal

ratio exists between the effort and gain. In other words, once we change 20% of the key factors, qualitative change

will occur, implying that we can derive enough (like 80% of) expected results on that critical point. Therefore, we

may wish to adjust the endpoints of the expected carbon quota interval by 20% of their initial values. Because d2

sold too much of his quota, the quota interval is adjusted from [16, 24] to [20, 24]; and as d5 purchased too much

carbon quota, his expected range is adjusted from [10, 26] to [10, 23.6]. Here, taking d2 as an instance for specific

explanation. Acted as a seller, d2 needs to decrease its sales volum to reduce its revenue growth, so d2 increases

its lower limit by adding 20% of its initial carbon quota (i.e., o2), thus we derive the adjusted lower limit of d2’s

expected interval as 16 + 20% ∗ 20 = 20. Distinguished from d2, the buyer d4 should decrease its upper limit so as

to possess less carbon quota at the end.

After repeating the calculations of Models (3) and (6), new allocation schemes are obtained. For brevity, the

specific calculation models are omitted here. Using updated information, the new optimal allocation scheme for

overall revenue maximization is as presented in Table 8; the schemes maximizing different region’s revenue are
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presented in Table A2. Table 9 provides an updated summary of the development indices after adjusting the initial

parameters of d2, d5 by 20% of their initial carbon quotas.

Table 8 Optimal solution for maximizing overall revenue after adjusting the initial parameters of d2, d5
Regions ri o

′
i rio

′
i Iij Value-I

d1 12 13 156 (1,2) 3
d2 15 20 300 (2,5) 3
d3 23 27 621 (3,5) 7
d4 34 16.4 557.6 (4,5) 1.6
d5 40 23.6 944

Total — 100 2578.6 — —
Note: Definitions of notation see Table 5.

Table 9 Summary of the development indices under the region’s revenue maximization after adjusting the initial
parameters of d2, d5

Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3476 0.0064 0.1211 0.4375 0 0.2073
0.1901 0.0064 0.0896 0.2800 0 0.1443
0.1697 0.0699 0.1018 0.2596 0 0.1078
0.2575 0.0899 0.1234 0.3474 0 0.1390
0.3531 0.0899 0.1425 0.4429 0 0.1772

Results in Tables 7 and 9 show that the unfairness in the system is ameliorated by adjusting the initial parameters

of d2, d5. Specifically, the maximum difference between the individual and group development indices drops from

0.5032 to 0.3531, while the maximum difference between any two regions drops from 0.6313 to 0.4429. In fact, if

policy-makers are not satisfied with the results in Table 9, they may repeat the above calculations. The maximum

value of each region’s revenue declines in most scenarios because the total transaction amount decreases as the

overall revenue drops from 2669 to 2578.6 (see column Z2 in Tables A1 and A2). Note that the identification of

discordant regions, adjustment of their parameters, and fairness of the final result all depend on the experience of

the policy-makers. In addition, the adjustment range of the initial parameters for those discordant regions has a

significant influence on the number of adjustments and the final allocation scheme of the trading system. Obviously,

the “fairness” reached through the above strategy is effective, but subjective and rather complicated.

5.5. Analysis regarding both fairness and revenue

Based on Table 4 and Model (7), this section considers the optimization consensus model (i.e., Model (11)) for

obtaining a relatively fair carbon quota allocation scheme with the goal of maximizing the final overall revenue
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within the closed-loop trading system.

max Z3 = 12 ∗ o′

1 + 15 ∗ o′

2 + 23 ∗ o′

3 + 34 ∗ o′

4 + 40 ∗ o′

5

s.t.





o
′

1 = 16−
5∑

j=2

I1j +
5∑

j=2

Ij1; o
′

2 = 20−
5∑

j=1,j ̸=2

I2j +
5∑

j=1,j ̸=2

Ij2

o
′

3 = 34−
5∑

j=1,j ̸=3

I3j +
5∑

j=1,j ̸=3

Ij3; o
′

4 = 18−
5∑

j=1,j ̸=4

I4j +
5∑

j=1,j ̸=4

Ij4

o
′

5 = 12−
4∑

j=1

I5j +
4∑

j=1

Ij5

(11− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (11− 2)
pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(11− 3)


Iij ≤

|qj − pi|+ qj − pi
δ

, i < j, i, j ∈ N

Iij = 0, otherwise

(11− 4)

13 ≤ o
′

1 ≤ 19, 16 ≤ o
′

2 ≤ 24, 27 ≤ o
′

3 ≤ 41, 14 ≤ o
′

4 ≤ 22, 10 ≤ o
′

5 ≤ 26 (11− 5)

Hi =

rio
′

i +
n∑

j=1,j ̸=i

TijIij −
n∑

j=1,j ̸=i

TjiIji

rioi
, i ∈ N (11− 6)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (11− 7)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0,Hi ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (11− 8)

(11)

Z3 in Model (11) maximizes the overall revenue of the carbon quota trading system. Constraint (11-1) describes the

relationship between the final quotas and the carbon quotas transferred by each region, and
n∑

i=1

o
′

i = 100. Constraints

(11-2)–(11-4) concern the unit buying and selling prices, the unit transaction prices and transferred quantities, where

δ is a pre-determined non-Archimedean infinitesimal. Constraint (11-5) is the threshold for decision variable o
′

i,

and (11-6) defines the individual development index. Constraint (11-7) is the fairness restriction, where α is the

pre-determined fairness measure variable. Other variables are consistent with those in Model (7).

Table 10 presents the solution set for Model (11) when the fairness measure variable α = 0. At this time, the

trading system achieves an absolutely fair state, that is, all individual development indices are equal to the group

development index of 1.1281. The results of a sensitivity analysis of α are given in Table B1, and show that any

value of α in the interval [0,0.5] gives an optimal value of the objective function of 2669. The final carbon quotas

for all regions are also fixed to o
′

1 = 13, o
′

2 = 16, o
′

3 = 27, o
′

4 = 18, o
′

5 = 26.
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Table 10 Solutions to Model (11) when α = 0

�� pi qi Iij Value-I Value-T Iij Value-I Value-T Hi

d1 15 [0,12] (1,2) 0.09 15 (2,5) 1.82 36.15 1.1281
d2 15 15 (1,3) 1.54 23 (3,4) 5.36 34 1.1281
d3 34 23 (1,4) 1.37 17.36 (3,5) 3.51 34 1.1281
d4 36.15 34 (2,3) 0.32 15 (4,5) 8.68 36.15 1.1281
d5 [40,+∞) 36.15 (2,4) 1.95 15 1.1281

Note: Definitions of notation see Table 6.

Tables 10 and B1 show that, as the fairness measure variable α gradually decreases, although the final carbon

quota of each region o
′

i is fixed, the transaction frequency significantly increases, implying that carbon quotas are

fully traded within the system. Besides, when α is greater than 0.1, the variables pi, qi for each region are fixed,

but when α ≤ 0.1, those pricing decisions change. Overall, the introduction of the fairness measure changes the

allocation schemes by increasing the number of trading paths in the system. Clearly, as the closed-loop carbon

quota trading mechanism gradually complicates the transaction process, a state of absolute fairness is finally reached,

namely, sufficient interactions among regions are achieved as the fairness measure variable decreases to zero.

5.6. Discussion

To verify the rationality and effectiveness of the proposed models in the paper, this section has considered the

example of carbon quota trading among five regions. Our optimization consensus models can derive the optimal

allocation scheme from the global perspective (i.e., the moderator’s perspective in GDM), and can also obtain

allocation schemes from different DM’s perspectives, in which the maximization of each region’s revenue is the

modeling goal. The following findings can be elicited from our results:

• Consensus modeling to maximize the overall revenue can obtain the optimal allocation scheme for the whole

group, but cannot identify specific pricing decisions. Moreover, the final carbon quotas of different regions

obtained from the models that maximize each region’s revenue are the same as those obtained from the former

modeling mechanism. That is, the optimal values of o′

i are fixed. However, detailed trading information, such

as the trading regions involved and the unit transaction prices, change with the specific region being studied

(see Tables 5, A1, 8, and A2).

• The unit selling and buying prices of each region (i.e., variables pi, qi) derived from the proposed optimization

consensus models do not change according to which region’s revenue is being maximized (see Tables A1 and
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A2) and do not depend on the value of the fairness measure variable (see Table B1). This indirectly implies

that the carbon quota trading mechanism discussed in this paper is robust to some extent.

• For the two strategies proposed to deal with the unfairness issue within the trading system, adjusting the initial

parameters of discordant regions is effective (see Tables 7 and 9), but complicated in practice. In addition, the

parameter γ for identifying discordant regions, the adjustment range for each region, and whether the final

allocation scheme meets the GDM requirements are all subjective (see Section 5.4). In contrast, the strategy

of directly introducing the fairness measure variable α is convenient and effective, and further sensitivity

analysis enables feasible allocation schemes to be obtained (see Tables 10 and B1).

• The introduction of the fairness measure variable increases the number of trading paths among different regions

(see Tables 10 and B1), meaning that absolute fairness within the closed-loop system is realized only when

carbon quotas are fully traded among different regions. Thus, sufficient interactions among participators are

highly significant in achieving consensus or the pursuit of DMs’ balanced development during a GDM process.

6. Conclusion

This paper has described the use of optimization consensus modeling theory to explore theoretical innovations

regarding flexible carbon trading mechanisms. Specifically, we have investigated essential carbon quota allocation

schemes within a closed-loop trading system with the aim of ensuring both revenue maximization and fairness.

First, the optimal carbon quota allocation scheme was derived by maximizing the overall revenue through Model (3).

Then, its analytical formula and the achievable conditions for successful trading were provided through theoretical

deduction. Next, simultaneously taking the group revenue maximization and the competition mechanism into

account, models for deriving the optimal allocation schemes by maximizing individual’s revenues were constructed

as Models (5) and (6). Since conflicts of interest are the main reasons for the failure of GDM in the real world,

individual/group development indices were defined as Definitions (1) and (2), and two fairness strategies were

further presented. The former is based on calculating the difference between the development indices, with fairness

achieved through the identification of discordant DMs and the adjustment of their initial parameters. The latter

introduces a fairness measure variable, allowing fair allocation schemes to be directly obtained from Model (7).

Finally, a numerical example was conducted to demonstrate the performance of the proposed models.
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The results show that the final carbon quotas of all regions can be determined through the proposed consensus

models, but detailed trading information (including the participating regions and the unit transaction prices) can

only be acquired through the models that focus on single-region revenue maximization. In addition, the strategies

for dealing with the unfairness issue are both practical and effective, but the second strategy of directly introducing

a fairness measure variable is more objective and easier to operate. Finally, the results of a sensitivity analysis of

the fairness measure variable show that, as the variable decreases to zero, that is, when the group approaches the

state of absolute fairness, the frequency of DMs’ transactions within the group increases significantly, corresponding

to the fact that reaching fairness within a group requires sufficient interactions among DMs.

In the future, some varaibles in our proposed models will be comprehensively determined to be more in line

with real-life, for example, price variables are no longer static and could be accurately positioned by combining

with game theory (Liu et al., 2021; Zheng et al., 2019). In addition, trading mechanisms should also focus on some

critical factors, such as risk or utility (Zheng & Chang, 2021) in practical markets, rather than only considering

the allocation and pricing decisions from the revenue maximization perspective. Moreover, with large-scale GDM

problems (Dong et al., 2018; Zhang et al., 2017), especially under social network contexts (Liu et al., 2019; Wu

et al., 2019), attracting increased attention, the use of artificial intelligence methods (Ding et al., 2020) to solve

large-scale trading issues will also be a focus of our subsequent research.

Appendix A. Results with single region’s revenue maximization

Based on Sections 4.2 and 4.3, Table A1 lists the optimal solutions (including o
′

i, pi, qi, Iij , Tij , and Z2) to Model

(6) and the values of the development indices (including Hi and |Hi − H̄|) in the case of each region maximizing

its revenue (note: the specific region discussed in Model (6) is marked with ⋆ in the first column in Table A1).

Moreover, Table A2 exhibits the corresponding results after the initial parameters of d2, d5 have been adjusted by

20% of their initial carbon quotas.

Appendix B. Sensitivity analysis of the fairness measure variable

If the fairness measure variable α in Model (11) is decreased from 0.5 at intervals of 0.1, then the optimal

solutions of the above optimization consensus model are as listed in Table B1.
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Table A1 Optimal solution of Model (6) with different region’s revenue maximization
Regions o

′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

⋆d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3094

276
d2 16 15 15 (2,4) 2.10 15 1.0000 0.1281
d3 27 23 23 (2,5) 1.90 15 1.0000 0.1281
d4 18 34 34 (3,4) 3.50 23 1.1280 0
d5 26 [40,+∞) 40 (3,5) 3.50 23 1.2930 0.1650
– – – – (4,5) 5.60 34 – –
d1 13 12 [0,12] (1,2) 3 12 1.0000 0.1281

484
⋆d2 16 15 15 (2,5) 7 40 1.6133 0.4853
d3 27 23 23 (3,4) 3.50 23 1.0000 0.1281
d4 18 34 34 (3,5) 3.50 23 1.0629 0.0652
d5 26 [40,+∞) 40 (4,5) 3.50 34 1.1677 0.0396
d1 13 12 [0,12] (1,3) 3 12 1.0000 0.1281

1085
d2 16 15 15 (2,3) 4 15 1.0000 0.1281
⋆d3 27 23 23 (3,5) 14 40 1.3875 0.2594
d4 18 34 34 1.0000 0.1281
d5 26 [40,+∞) 40 1.0000 0.1281
d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915
d2 16 15 15 (2,4) 4 15 1.0000 0.1281
d3 27 23 23 (3,4) 7 23 1.0000 0.1281
⋆d4 18 34 34 (4,5) 14 40 1.4951 0.3670
d5 26 [40,+∞) 40 1.0000 0.1281
d1 13 12 [0,12] (1,5) 3 12 1.0000 0.1281

783
d2 16 15 15 (2,5) 4 15 1.0000 0.1281
d3 27 23 23 (3,5) 7 23 1.0000 0.1281
d4 18 34 34 1.0000 0.1281
⋆d5 26 [40,+∞) 40 1.6313 0.5032

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table A2 Optimal solution of Model (6) with different region’s revenue maximization after adjusting the initial
parameters of d2, d5

Regions o
′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

⋆d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3476

276
d2 20 15 15 (3,4) 4.64 23 1.0000 0.0899
d3 27 23 23 (3,5) 2.36 23 1.0000 0.0899
d4 16.4 34 34 (4,5) 6.24 34 1.0835 0.0064
d5 23.6 [40,+∞) 40 1.1615 0.0716
d1 13 12 [0,12] (1,2) 3.00 12 1.0000 0.0899

384
⋆d2 20 15 15 (2,5) 3.00 40 1.2800 0.1901
d3 27 23 23 (3,4) 4.64 23 1.0000 0.0899
d4 16.4 34 34 (3,5) 2.36 23 1.0835 0.0064
d5 23.6 [40,+∞) 40 (4,5) 6.24 34 1.1615 0.0716
d1 13 12 [0,12] (1,3) 3 12 1.0000 0.0899

985
d2 20 15 15 (3,5) 10 40 1.0000 0.0899
⋆d3 27 23 23 (4,5) 1.6 34 1.2596 0.1697
d4 16.4 34 34 1.0000 0.0899
d5 23.6 [40,+∞) 40 1.0200 0.0699
d1 13 12 [0,12] (1,4) 3 12 1.0000 0.0899

824.6
d2 20 15 15 (3,4) 7 23 1.0000 0.0899
d3 27 23 23 (4,5) 11.6 40 1.0000 0.0899
⋆d4 16.4 34 34 1.3474 0.2575
d5 23.6 [40,+∞) 40 1.0000 0.0899
d1 13 12 [0,12] (1,5) 3 12 1.0000 0.0899

692.6
d2 20 15 15 (3,5) 7 23 1.0000 0.0899
d3 27 23 23 (4,5) 1.6 34 1.0000 0.0899
d4 16.4 34 34 1.0000 0.0899
⋆d5 23.6 [40,+∞) 40 1.4429 0.3531

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;
and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table B1 Sensitivity of the results to the fairness measure variable α

Regions pi qi Iij Value-I Value-T Hi α

d1 12 [0,12] (1,5) 3 40 1.4375

0.5
d2 15 15 (2,5) 4 40 1.3333
d3 23 23 (3,5) 7 40 1.1522
d4 34 34 1.0000
d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 0.42 23 1.4000

0.4
d2 15 15 (1,5) 2.58 40 1.3333
d3 23 23 (2,5) 4 40 1.1614
d4 34 34 (3,5) 7.42 40 1.0000
d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 1.55 23 1.3000

0.3
d2 15 15 (1,5) 1.45 40 1.3000
d3 23 23 (2,5) 4 37.5 1.1859
d4 34 34 (3,5) 8.55 40 1.0000
d5 [40,+∞) 40 1.0208

d1 12 [0,12] (1,3) 2.68 23 1.2000

0.2
d2 15 15 (1,5) 0.32 40 1.2000
d3 23 23 (2,5) 4 30 1.2000
d4 34 34 (3,5) 9.68 39.15 1.0000
d5 [40,+∞) 40 1.1004

d1 15 [0,12] (1,3) 1.15 23 1.0946

0.1
d2 23 15 (1,4) 1.85 15 1.1358
d3 34 23 (2,5) 4 25.19 1.1186
d4 40 34 (3,4) 1.93 34 1.0946
d5 [40,+∞) 40 (3,5) 6.22 34.51 1.1946
— — — (4,5) 3.78 40 —

Note: di denotes the i-th region; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with Value-I
as its specific value and Value-T as the corresponding unit transaction price; Hi is the individual development index; and α is the

fairness measure variable.
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