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Abstract. We obtain a result in the spirit of the well-known W. Schachermeyer
and H. P. Rosenthal research about the equivalence between Radon-Nikodym and
Krein-Milman properties, by showing that, for closed, bounded and convex subsets
C of a separable Banach space, under Krein-Milman property for C, one has the
equivalence between convex point of continuity property and strong regularity both
defined for every locally convex topology on C, containing the weak topology on C.
Then, under Krein-Milman property, not only convex point of continuity property
and strong regularity are equivalent as defined for weak topology, but even when
they are defined for a locally convex topology containing the weak topology. We
also show that while the unit ball B of c0 fails convex point of continuity property
and strong regularity (both defined for the weak topology), threre is a locally
convex topology τ on B, containing the weak topology on B, such that B still
fails convex point of continuity property for τ , but B surprisingly satisfies strong
regularity for τ−open subsets. As a consequence, using the usual norm of c0, we
obtain that B satisfies the diameter two property for the topology τ , that is, every
nonempty τ−open subset of B has diameter two, but every τ−open subset of B
contains convex combinations of relative τ−open subsets with diameter arbitrarily
small, that is, B fails strong diameter two property for topology τ , which stresses
the known extreme differences up to now between those diameter two properties
from a topological point of view.

1. Introduction

There are three families of subsets in each bounded, convex, and non-empty subset
C of a Banach space X that are highly relevant to understanding the weak topology
w of the space X and its structural properties: the family of slices of C (a subbasis
of the weak topology), the family of relatively weakly open subsets of C (or a basis
of the weak topology) and the family of convex combinations of slices or relatively
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weakly open subsets of C (a π-basis of the weak topology). From the isomorphic
point of view, these three families of subsets give rise to three widely studied iso-
morphic properties in Banach spaces, the Radon-Nikodym property (RNP) for C
(existence of slices of arbitrarily small diameter in each bounded and convex subset
of C), the convex point of continuity property (CPCP) for C (existence of relatively
weakly open subsets of arbitrarily small diameter in each bounded and convex subset
of C) and strong regularity (SR) for C (existence of convex combinations of slices
or relatively weakly open subsets with arbitrarily small diameter in each bounded
and convex subset of C). When C is the unit ball BX of the Banach space X, it
is said that X verifies RNP, CPCP, or is strongly regular, respectively (see [7], [11]
for background). Another widely studied property related to the previous ones is
the Krein-Milman property (KMP). It is said that the subset C verifies the KMP
if each nonempty, closed, bounded and convex subset of C has some extreme point,
and when C is the unit ball of the space it is said that the space itself verifies the
KMP. It is known that RNP implies CPCP and CPCP implies SR, and that these
three properties are different [2]. It is also known that RNP implies KMP, and it
is a famous problem still open today whether KMP implies RNP. Research on this
problem has obtained some important partial answers (see for example [7], [8], [9],
[12], [13], [14], [16]), although in general the most relevant result in this regard has
been to be able to relate the properties defined above, obtaining that for a closed,
bounded, convex and strongly regular subset C of a Banach space X, C verifies the
RNP as long as C verifies the KMP ([17], [15]). Consequently, the problem of the
equivalence between the RNP and the KMP is solved for subsets where the RNP
and the SR are not equivalent properties, or if desired, this problem will be solved
for subsets in which the CPCP and the SR are not equivalent, since RNP implies
CPCP. In short, the previous result can be stated by saying that under the KMP,
one has that CPCP and SR are equivalent properties. Since the CPCP and the SR
are defined in terms of families of subsets relevant to the weak topology, it is then
natural to ask if translating the definitions of the CPCP and SR for a topology other
than the weak one can obtain a result similar to the previous one. In this note we
study this possibility, showing that for a locally convex topology that contains the
weak topology, it is also obtained that the new CPCP and SR properties for the
above topology are equivalent under the KMP, which generalizes the results known
up to now. As a consequence, a new strategy is obtained to obtain the equivalence
between the RNP and KMP: starting from a Banach space X failing CPCP for the
weak topology (otherwise we already know that RNP and KMP are equivalent for
X), it would enough to build a locally convex topology τ on the unit ball BX of
X, in such a way that for the new topology BX fails CPCP and verifies SR, which
implies, applying the previously announced result, that X does not verify KMP.
In fact, if one starts with a Banach space whose unit ball has nonempty relatively
weakly open subsets with diameter uniformly positive, we prove that it is enough
assume SR for open subsets to get the failure of KMP. The above strategy is based
on the possibility of building a suitable topology for which the CPCP and SR prop-
erties are not equivalent. The more ambitious question would be whether this can
be done for any space without the CPCP for the weak topology, but we don’t have
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an answer to this question for now. However, another natural question is whether
this can be done in some space where CPCP and SR properties are equivalent for
the weak topology, or at least for some space where the unit ball does not satisfy
either of the above two properties. The answer in this case is affirmative, since it is
shown in this note that there is a locally convex topology on the unit ball B of space
c0, containing the weak topology, such that B is SR for the family of open subsets
of this topology, but it does not verify CPCP for the same topology. Of course, such
a topology is not the weak topology because B verifies neither CPCP nor is it SR
for the weak topology.

From the geometric point of view, there are also widely studied properties as a
non-isomorphic counterpart to the properties we have talked about so far, they are
the so-called diameter 2 properties, which are also defined through the same families
of subsets of the ball unit of a Banach space relevant to the weak topology discussed
above. A Banach space verifies the diameter two property for slices (slice-D2P),
diameter two property (D2P) or strong diameter two property (SD2P) if each slice,
nonempty weak open, or convex combination of slices or nonempty weak open sub-
sets, respectively, of the unit ball of the space has diameter 2. These properties are
related to other well-known properties, such as the Daugavet property, octahedral-
ity, and dualize as non-differentiability properties of the dual norm. Furthermore, it
is known that the three previous properties are different and it is clear that SD2P
implies D2P and D2P implies slice-D2P (see [3], [4], [6]). Precisely to obtain the dif-
ference between the D2P and SD2P properties, an equivalent norm was constructed
in the space c0 in such a way that each nonempty weak open subset of the unit ball
of c0 has a diameter 2 for the new norm, while for a such norm it is possible to
find convex combinations of slices or nonempty weak open subsets with arbitrarily
small diameter [4]. It is natural then, as previously stated for the CPCP and SR
properties, to ask if it is possible to obtain a similar result to the above for the
unit ball of c0 using the usual norm of c0, but changing the definition of D2P and
SD2P to another proper topology. The answer is yes, in fact, for the topology built
on the unit ball of c0 we talked about above, it is obtained that the unit ball of c0

verifies the D2P for this topology and each nonempty open subset for this topology
contains convex combinations of relatively open subsets for the same topology with
arbitrarily small diameter, and in particular, it does not satisfy SD2P for the same
topology. Of course, the diameters are measured here with the usual norm of c0.
Then the differences between the D2P and SD2P properties are even greater than
what has been known so far if they are defined for more general topologies, even
maintaining the natural norm of the space.

2. Main results

Let X be a Banach space, D is a closed convex and bounded subset of X and τ is
a locally convex topology (τ has a countable basis of open subsets) in D containing
the relative weak topology on D. For every subset C of D we will denote τ |C the
induced topology of τ in D. With this notation, we recall the definitions for CPCP
and SR. We say that D has the
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i) τ -convex point of continuity property (τ -CPCP) if, for every bounded and
convex subset C of D and every ε > 0 there is a nonempty τ |C-open set with
diameter less than ε.

ii) τ -strongly regular (τ−SR) if, for every bounded and convex subset C of D
and every ε > 0 there is a convex combination of nonempty τ |C-open sets
with diameter less than ε.

iii) τ -strongly regular (τ−SR) for open subsets if, for every nonempty and convex
τ−open subset O of D and for every ε > 0 there is a convex combination of
nonempty τ |O-open subsets with diameter less than ε.

iv) Krein-Milman property (KMP) if every nonempty closed and convex subset
of D has some extreme point.

When τ is the weak topology restricted to D, we use CPCP, SR and SR for open
subsets, and omit the reference to the topology. Also, when D is the unit ball of the
space X and τ is defined on X, we say that X satisfies τ−CPCP, τ−SR or τ−SR
for open subsets, respectively.

As we said in the introduction, it is well known that D satisfies CPCP whenever
D is SR and satisfies KMP, that is, under KMP, CPCP and SR are equivalent. Our
mail goal is to get the same result for another topology other than the weak one.
We start with a couple of easy lemmas, omitting the elementary proof of the first
one.

Lemma 2.1. Let E be a closed subset of a Banach space X and let (Sn) be a
decreasing sequence of subsets of E. If diam(Sn)→ 0 then there is x ∈ E such that
every sequence (xn) ⊂ E with xn ∈ Sn for every n ∈ N converges to x.

Lemma 2.2. If D is τ -strongly regular and C is a nonempty convex subset of D,
then, for every ε > 0 and every nonempty set O ∈ τ |C there is a a finite family of
nonempty sets O1, . . . On ∈ τ |C , with Oi ⊂ O, such that

diam
( n∑
i=1

1

n
Oi

)
< ε.

Proof. Since τ is locally convex and C is convex we get that τ |C is locally convex.

Hence, there is a nonempty convex set Õ ∈ τ |C with Õ ⊂ O. Now, as D is τ -strongly
regular, we deduce that there are nonempty sets O1, . . . , On ∈ τ |Õ such that

diam
(∑

i

1

n
Oi

)
< ε.

We are now done because Oi ∈ τ |Õ ⊂ τ |C for every i = 1, . . . , n. �

Inspired by Schachermayer’s work in [17], we introduce in the following definition
the subdiameter (SD) in order to estimate from bellow the diameter of convex com-
binations of weakly open subsets, taking into account the coefficients of the convex
combinations.
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Definition 2.3. Let C be a convex subset of D and n ∈ N. Given a n-tuple of
nonempty sets (Oi)

n
i=1 ⊂ τ |C and λ ∈ S+

`n1
, we define the sub-diameter of

∑
i λ(i)Oi

as

SD(λ, (Oi)) = inf
{

diam
(∑

i

λ(i)Ui

)
: Ui ∈ τ |Oi

\ {∅} for 1 ≤ i ≤ n
}
∀λ ∈ S+

`n1
.

The next two lemmas use the definition of subdiameter to get a relation between
the diameter of a convex combination of weak open subsets and the distance from
a finite set to these convex combination.

Lemma 2.4. Let C be a convex subset ofD, ε > 0, n, k ∈ N, λ ∈ S+
`n1

, {x1, . . . , xk} ⊂
X and a n-tuple of nonempty sets (Õi)

n
i=1 ⊂ τ |C . Then, for 1 ≤ i ≤ n there is a

nonempty τ |Õi
-open set Oi such that:

(2.1) diam
(∑

i

λ(i)Oi

)
≤ SD(λ, (Oi)) + ε,

(2.2) d
(
{x1, . . . , xk},

∑
i

λ(i)Oi

)
≥ SD(λ, (Oi))

2
− ε.

Proof. By definition, for each i = 1, . . . , n there must be O0
i ∈ τ |Õi

\ {∅} such that

(2.3) diam
(∑

i

λ(i)O0
i

)
≤ SD(λ, (Õi)) + ε/2 ≤ SD(λ, (O0

i )) + ε/2.

We will be done if we find Oi ∈ τ |O0
i
\ {∅} for 1 ≤ i ≤ n satisfying (2.2). Indeed, we

would have from (2.3) that

diam
(∑

i

λ(i)Oi

)
≤ diam

(∑
i

λ(i)O0
i

)
≤ SD(λ, (O0

i )) + ε ≤ SD(λ, (Oi)) + ε,

and thus (2.1) would also hold.

Let us then prove by induction on k ∈ N that there is for every i ≤ n a nonempty
set Oi ∈ τ |O0

i
satisfying (2.2).

First step of the induction (k = 1): Clearly, there are a, b ∈
∑

i λ(i)O0
i and

x∗ ∈ SX∗ such that

x∗(a− b) ≥ SD(λ, (O0
i ))− ε/2.

We may assume without loss of generality that the last inequality holds together
with x∗(x1) ≤ x∗

(
a+b

2

)
(changing sign of x∗ and swapping the roles of a and b if

necessary). We define now

O1
i = O0

i ∩ {x ∈ D : x∗(x) > supx∗(O0
i )− ε/2}.

Clearly, O1
i ∈ τ |O0

i
\ {∅} for every i. Let us prove that O1

1, . . . O
1
n satisfy (2.2) for

k = 1:
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If y ∈
∑

i λ(i)O1
i then y =

∑
i λ(i)yi where yi ∈ O1

i . Therefore,

x∗(y) =
∑
i

λ(i)x∗(yi) >
∑
i

λ(i) supx∗(O0
i )− ε/2 ≥ supx∗

(∑
i

λ(i)O0
i

)
− ε/2

≥x∗(a)− ε/2.

Hence, for every y ∈
∑

i λ(i)O1
i ,

(2.4)
‖y − x1‖ ≥ x∗(y − x1) ≥ x∗(a)− x∗

(a+ b

2

)
− ε/2 =x∗

(a− b
2

)
− ε/2

≥SD(λ, (O0
i ))

2
− 3ε

4
.

Clearly, from (2.3) we have that

SD(λ, (O1
i )) ≤ diam

(∑
i

λ(i)O1
i

)
≤ diam

(∑
i

λ(i)O0
i

)
≤ SD(λ, (O0

i )) + ε/2.

Therefore, putting together this last inequality and (2.4) we finish this step.

Inductive step: Let us assume that for some m ∈ N there are nonempty sets
Om

1 , . . . , O
m
n with Om

i ∈ τ |O0
i

for every i ≤ n satisfying equation (2.2) for k = m.

We may then construct Om+1
1 , . . . Om+1

n ∈ τ |C \ {∅} with Om+1
i ⊂ O0

i and satisfying
equation (2.2) for k = m + 1. The construction is analogous to the one given for
the case k = 1. We just take x∗ ∈ SX∗ and a, b ∈

∑
i λ(i)Om

i such that x∗(a− b) ≥
SD(λ, (Oi))− ε and x∗(xm+1) ≤ x∗

(
a+b

2

)
. Then, the sets given by

Om+1
i = Om

i ∩ {x ∈ D : x∗(x) > supx∗(Om
i )− ε/2}

make the trick. Hence, (2.2) holds for Oi = Ok
i for every i ≤ n. �

Lemma 2.5. Let C be a convex subset of D, ε > 0, n, k ∈ N and {x1, . . . , xk} ⊂ X.

If (Õi)
n
i=1 ⊂ τ |C , then there is another n-tuple of nonempty τ |C-open sets (Oi)

n
i=1

with Oi ⊂ Õi such that

diam

( n∑
i=1

λ(i)Oi

)
≤ 2d

(
{x1, . . . , xk},

n∑
i=1

λ(i)Oi

)
+ ε ∀λ ∈ S+

`n1
.

Proof. Let us consider (λi)
N
i=1 an ε

4n
-net of S+

`n1
. It is now straightforward to construct,

by recursively using Lemma 2.4, n-tuples (Oj
i )
n
i=1 for j ≤ N satisfying

(1) ∅ 6= O1
i ⊂ Õi and ∅ 6= Oj+1

i ⊂ Oj
i for every j < N and i ≤ n.

(2) diam

(∑n
i=1 λj(i)O

j
i

)
≤ 2d

(
{x1, . . . , xk},

∑n
i=1 λj(i)O

j
i

)
+ ε/4 for j ≤ N.
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We take Oi = ON
i for i = 1, . . . , n so that for every j ≤ N ,

(2.5)

diam

( n∑
i=1

λj(i)Oi

)
≤diam

( n∑
i=1

λj(i)O
j
i

)

≤2d

(
{x1, . . . , xk},

n∑
i=1

λj(i)O
j
i

)
+ ε/4

≤2d

(
{x1, . . . , xk},

n∑
i=1

λj(i)Oi

)
+ ε/4.

If we take now λ ∈ S+
`1

arbitrary, then there must be j ≤ N such that ‖λj−λ‖`n1 ≤
ε

4n
.

It is straightforward to check that

diam

( n∑
i=1

λ(i)Oi

)
≤ diam

( n∑
i=1

λj(i)Oi

)
+ ε/2,

d

(
{x1, . . . , xk},

n∑
i=1

λ(i)Oi

)
≥ d

(
{x1, . . . , xk},

n∑
i=1

λj(i)Oi

)
− ε/4.

We are therefore done since

diam

( n∑
i=1

λ(i)Oi

)
≤diam

( n∑
i=1

λj(i)Oi

)
+ ε/2

(2.5)

≤ 2d

(
{x1, . . . , xk},

n∑
i=1

λj(i)Oi

)
+ 3ε/4

≤2d

(
{x1, . . . , xk},

n∑
i=1

λ(i)Oi

)
+ ε.

�

Now, we are ready to get our main result

Theorem 2.6. Let X be a separable Banach space and D a τ -strongly regular
closed, bounded and convex subset of X without the τ -CPCP, where τ is a locally
convex topology on D containing the weak topology on D. Then, there is a closed
convex subset of D without extreme points, that is D fails KMP.

Proof. Let C be a bounded and convex subset of D and δ > 0 such that every
τ |C-open set has diameter greater than δ > 0. We assume without loss of generality
that C ⊂ BX . Our aim is to find out a closed bounded and convex subset of D
without extreme points. We will split the proof into three different steps. The first
two steps will deal with the construction of a particular set E ⊂ D whereas in the
final step we will prove that E is the sought set without extreme points.

Since X is separable we may consider a sequence (xn) dense in X. We are going to
inductively define a sequence of indexes sets (Ωn) satisfying that Ω1 = {1, . . . ,m1}
and Ωn+1 = Ωn × {1, . . . ,mn+1} for every n ∈ N where (mn) ⊂ N.
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Step 1. We are going to define inductively the sequence (Ωn) altogether with a
family of nonempty τ |C-open sets indexed by Ω =

⋃
n Ωn, (Oω)ω∈Ω satisfying the

following properties.

(1) O(ω,i) ⊂ Oω for every ω ∈ Ωn and i ∈ {1, . . . ,mn+1} with n ∈ N.
(2) For every n ∈ N and λ ∈ S+

`1(Ωn),

diam
( ∑
ω∈Ωn

λ(ω)Oω

)
≤ 2d

(
{x1, . . . , xn},

∑
ω∈Ωn

λ(ω)Oω

)
+ 2−n.

(3) For every n ∈ N and ω ∈ Ωn,

diam

(mn+1∑
i=1

1

mn+1

O(ω,i)

)
≤ 2−n.

Let us proceed with the inductive construction. For n=1 we consider m1 = 1. We

use Lemma 2.5 with n = k = 1, Õ1 = C, ε = 1/2 and λ ∈ S+
`1({1}) = {1}. Thus,

there is a nonempty τ |C-open set O1 satisfying (2). Now, provided that for some
n ∈ N we have Ωn = {1, . . . ,m1} × · · · × {1, . . . ,mn} and Oω for every ω ∈ Ωn, let
us define mn+1 and O(ω,i) for every (ω, i) ∈ Ωn × {1, . . . ,mn+1} = Ωn+1 satisfying
properties (1), (2) and (3). First, by Lemma 2.2 there is mn+1 ∈ N such that for

every ω ∈ Ωn there are mn+1 nonempty τ |C-open sets (Õ(ω,i))
mn+1

i=1 such that

(2.6) diam

(mn+1∑
i=1

1

mn+1

Õ(ω,i)

)
≤ 2−n and Õ(ω,i) ⊂ Oω ∀i = 1, . . . ,mn+1.

Now, by Lemma 2.5, for every ω ∈ Ωn+1 there is a nonempty τ |C-open set Oω ⊂ Õω

satisfying property (2). Clearly, by (2.6), (Oω)ω∈Ωn+1 also satisfies property (3). We
may assume that Oω is convex for every ω ∈ Ω without loss of generality because τ
is locally convex.

Step 2. We are finally ready to construct the closed convex subset of D without
extreme points. Let us first pick for every ω ∈ Ω an element yω ∈ Oω. Now, if
ω ∈ Ωn for some n ∈ N we define for every k ≥ n+ 3 the element

zkω =
∑
ω̃∈Ωω

k

1

mn+1 . . .mk

yω̃,

Where Ωω
k = {ω̃ ∈ Ωk : ω̃(i) = ω(i) ∀i ≤ n}. Notice that #Ωω

k = mn+1 · · ·mk.
We claim that (zkω)k is a Cauchy sequence for every ω ∈ Ω. From property (1) we
deduce that Oω̃ ⊂ Oω for every ω̃ ∈ Ωω

k . Now, for every q ∈ {n + 2, . . . , k − 1} we
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have Ωω
k =

⋃
˜̃ω∈Ωω

q

Ω
˜̃ω
k and therefore

(2.7)

∑
ω̃∈Ωω

k

1

mn+1 . . .mk

Oω̃ =
∑
˜̃ω∈Ωω

q

∑
ω̃∈Ω

˜̃ω
k

1

mn+1 . . .mqmq+1 . . .mk

Oω̃

=
∑
˜̃ω∈Ωω

q

1

mn+1 . . .mq

∑
ω̃∈Ω

˜̃ω
k

1

mq+1 . . .mk

Oω̃.

Hence, it follows that

(2.8)

∑
ω̃∈Ωω

k

1

mn+1 . . .mk

Oω̃ ⊂
∑
ω̃∈Ωω

q

1

mn+1 . . .mq

Oω̃

=
∑

ω̃∈Ωω
q−1

1

mn+1 . . .mq−1

mq∑
i=1

1

mq

O(ω̃,i).

Equation (2.7) yields that if n ∈ N and ω ∈ Ωn,

(2.9) zkω ∈
∑
ω̃∈Ωω

q

1

mn+1 . . .mq

Oω̃ ∀q, k ∈ N , n+ 2 ≤ q ≤ k − 1.

On the other hand, if q ≥ n+ 2,

(2.10)

diam
( ∑
ω̃∈Ωω

q

1

mn+1 . . .mq

Oω̃

)
(2.8)

≤
∑

ω̃∈Ωω
q−1

1

mn+1 . . .mq−1

diam
( mq∑
i=1

1

mq

O(ω̃,i)

) (3)

≤ 2−q+1.

Therefore, for every k, k′ ≥ q + 1,

‖zkω − zk
′

ω ‖ ≤ diam
( ∑
ω̃∈Ωω

q

1

mn+1 . . .mq

Oω̃

) (2.10)

≤ 2−q+1.

This proves that (zkω)k is a Cauchy sequence for every ω ∈ Ω. We are then allowed
to consider its limit zω ∈ D. Our sough set finally is

E = co
(
(zω)ω∈Ω

)
.

Step 3. We just need to show that E does not have any extreme point.

Claim 1. We claim that for every a ∈ E there is a sequence (ak)k where ak ∈
co
(
(zω)ω∈Ωk

)
for every k ∈ N such that ak

‖·‖−→ a.
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It is enough to show that if ω ∈ Ωn for some n ∈ N then for every q > n it holds
that

(2.11) zω =
∑
˜̃ω∈Ωω

k

1

mn+1 · · ·mq

z˜̃ω ∈ co
(
(z˜̃ω)˜̃ω∈Ωq

)
.

Indeed, if (2.11) holds, then for every x ∈ co
(
(zω)ω∈Ω

)
there is N ∈ N such that for

every q ≥ N , x ∈ co
(
(zω̃)ω̃∈Ωq

)
and the claim is immediately deduced. Let us show

the proof of (2.11). Let ω ∈ Ωn and q > n be fixed. From (2.9) we know that

zk˜̃ω ∈
∑

ω̃∈Ω
˜̃ω
k−1

1

mq+1 . . .mk−1

Oω̃ ∀˜̃ω ∈ Ωq, ∀k ≥ q + 3.

Therefore, for every k ≥ q + 3 it follows that

(2.12)

∑
˜̃ω∈Ωω

q

1

mn+1 . . .mq

zk˜̃ω ∈
∑
˜̃ω∈Ωω

q

1

mn+1

. . .mq

∑
ω̃∈Ω

˜̃ω
k−1

1

mq+1 . . .mk−1

Oω̃

(2.7)
=

∑
ω̃∈Ωω

k−1

1

mn+1 . . .mk−1

Oω̃ =: Sk.

Clearly, from (2.9) we know that zkω ∈ Sk for every k ≥ q+3. From (2.8) we get that
Sk+1 ⊂ Sk for every k ≥ q+ 3 and from (2.9) we know that diamSk → 0. Hence, by
Lemma 2.1

zω = lim
k
zkω = lim

k

∑
˜̃ω∈Ωω

q

1

mn+1 . . .mq

zk˜̃ω =
∑
˜̃ω∈Ωω

q

1

mn+1 . . .mq

z˜̃ω,

which finally proves the claim.

Let us take a ∈ E and a sequence (ak) converging to a as in the claim. Then,
for every k ∈ N there is λk ∈ S+

`1(Ωk) such that ak =
∑
ω∈Ωk

λk(ω)zω for every k ∈ N.

Let us prove that a is not an extreme point in E. First, we extend λk to
⋃
n≤k

Ωn as

follows. If ω ∈ Ωn with n ≤ k we define

λk(ω) =
∑
ω̃∈Ωω

k

λk(ω̃).

We may assume (taking subsequence if necessary) that for every n ∈ N, the sequence
(λk|Ωn

)k is pointwise convergent. Therefore, we define λ : Ω→ [0, 1] as

λ(ω) = lim
k
λk(ω) (ω ∈ Ω).

Clearly, λ|Ωn
∈ S+

`1(Ωn) for every n ∈ N. Moreover, if ω ∈ Ωn then

(2.13)
∑
ω̃∈Ωω

m

λ(ω̃) = lim
k

∑
ω̃∈Ωω

m

λk(ω̃) = lim
k
λk(ω) = λ(ω) ∀m ≥ n.
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Let us now define for every m,n ∈ N with m ≥ n and every ω ∈ Ωn the element

am(ω) =


∑

ω̃∈Ωω
m

λ(ω̃)
λ(ω)

zω̃ if λ(ω) > 0,

zω otherwise.

Claim 2. For every ω ∈ Ω the sequence (am(ω))m is convergent, moreover, if we
take a(ω) = lim

m
am(ω) then a =

∑
ω∈Ωn

λ(ω)a(ω) for every n ∈ N.

If we fix n ∈ N, we have that ak ∈
∑
ω∈Ωn

λk(ω)Oω for every k ∈ N so that a ∈∑
ω∈Ωn

λ(ω)Oω. By property (2) we deduce that

(2.14)
diam

( ∑
ω∈Ωn

λ(ω)Oω

)
≤2d

(
{x1, . . . , xn},

∑
ω∈Ωn

λ(ω)Oω

)
+ 2−n

≤2d({x1, . . . , xn}, a) + 2−n
n→∞−−−→ 0.

Also, if m > n and ω ∈ Ωn with λ(ω) > 0 then∑
ω̃∈Ωm

λ(ω̃)Oω̃ = λ(ω)
∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)
Oω̃ +

∑
˜̃ω∈Ωn\{ω}

λ(˜̃ω)
∑
ω̃∈Ω

˜̃ω
m

λ(ω̃)

λ(˜̃ω)
Oω̃,

so that, by (2.14) we have

diam
( ∑
ω̃∈Ωm

λ(ω̃)Oω̃

)
≥ λ(ω)diam

( ∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)
Oω̃

)
.

Therefore,

(2.15) lim
m

diam
( ∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)
Oω̃

)
= 0 ∀ω ∈ Ωn with λ(ω) > 0.

Let us prove that the sequence of subsets
( ∑
ω̃∈Ωω

m

λ(ω̃)
λ(ω)

Oω̃

)
m

is decreasing for every

ω ∈ Ω in order to use Lemma 2.1. Clearly, by (2.13), property (1) and the fact that
Oω̃ is convex for every ω̃ ∈ Ω, we have that

∑
˜̃ω∈Ωω̃

m+1

λ(˜̃ω)

λ(ω̃)
O˜̃ω ⊂ Oω̃ ∀ω̃ ∈ Ωm, ∀m ∈ N.

Then, if ω ∈ Ωn for some n ∈ N and m ≥ n,

∑
ω̃∈Ωω

m+1

λ(ω̃)

λ(ω)
Oω̃ =

∑
ω̃∈Ωω

m

∑
˜̃ω∈Ωω̃

m+1

λ(˜̃ω)

λ(ω)
O˜̃ω =

∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)

∑
˜̃ω∈Ωω̃

m+1

λ(˜̃ω)

λ(ω̃)
O˜̃ω ⊂

∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)
Oω̃,
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which means that
( ∑
ω̃∈Ωω

m

λ(ω̃)
λ(ω)

Oω̃

)
m

is decreasing for every ω ∈ Ω, as we wanted. In

particular, taking ω = 1 ∈ Ω1, this shows that the sequence of sets
( ∑
ω∈Ωm

λ(ω)Oω

)
m

is a decreasing sequence.

By Lemma 2.1 the sequence (am(ω))m is convergent in E since am(ω) ∈
∑

ω̃∈Ωω
m

λ(ω̃)
λ(ω)

Oω̃.

Let us denote a(ω) its limit. We just need to prove that a =
∑
ω∈Ωn

λ(ω)a(ω) for every

n ∈ N. If we fix n ∈ N and denote am =
∑
ω∈Ωn

λ(ω)am(ω) for every m ≥ n, it is

enough to show that am → a. By (2.15), we know that lim
m

diam
( ∑
ω∈Ωm

λ(ω)Oω

)
= 0.

For every m ≥ n, a ∈
∑

ω∈Ωm

λ(ω)Oω and

am =
∑
ω∈Ωn
λ(ω)>0

λ(ω)am(ω) =
∑
ω∈Ωn
λ(ω)>0

λ(ω)
∑
ω̃∈Ωω

m

λ(ω̃)

λ(ω)
zω̃ =

∑
ω∈Ωm

λ(ω)zω ∈
∑
ω∈Ωm

λ(ω)Oω.

Therefore, by Lemma 2.1, am → a and Claim 2 is proven.

Finally, we wanted to show that E has no extreme point, that is, we want to show
that our previously picked element a ∈ E is not an extreme point in E. Notice
that by Claim 2, it is enough to show that there is ω ∈ Ω with λ(ω) > 0 such that
a(ω) 6= a.

Let us argue by contradiction. If we deny the above statement then for every
ω ∈ Ω with λ(ω) > 0 we have a(ω) = a. Therefore, a ∈ Oω for every ω ∈ Ω with
λ(ω) > 0. From (2.13), we know that there must be a sequence (ωn) ⊂ Ω such that
for every n ∈ N, ωn+1 ∈ Ωωn

n+1 and λ(ωn) > 0. Hence, a ∈ Oωn for every n ∈ N. By
property (2) we obtain that d(a,X) ≥ δ/2 which is clearly false.

�

We want to remark that while part of the techniques used in the proof of the
above theorem appear in [17], we don’t use the essential approach in [17] about the
positive face of the unit sphere of L1 via the construction of an operator from L1 to
the space X, in order to get the subset without extreme points.

Observe that the hypothesis on D (non-τ−CPCP) in the above theorem is used
first to get a subset C so that every nonempty weakly open subset of C has diam-
eter at least δ, for some positive δ. From this moment, the τ -SR is used to find
convex combinations of relatively τ−open subsets with diameter arbitrarily small
inside every relative τ−open subset of C. Then, starting with D satisfying that
every nonempty τ−open subset of D has diameter at least δ (say D fails τ−CPCP
δ−uniformly), we have with the same proof that D fails KMP whenever D is τ−SR
for open subsets.

Corollary 2.7. Let X be a separable Banach space and D a closed, bounded and
convex subsets of X failing τ−CPCP δ−uniformly for some positive δ, where τ is a
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locally convex topology on D containing the weak topology on D. If D is τ−SR for
open subsets then D fails KMP.

Observe that SR for open subsets is strictly weaker than SR, since every Banach
space with a LUR norm, for example, has a unit ball SR for open subsets while not
a such ball is necessarily SR, c0 is an example, that is, SR for open subsets depends
on the used equivalent norm and this is not the case for SR. On the other hand, it
is known that if a closed, bounded and convex subset C of a Banach space X fails
CPCP, then there is an equivalent norm on X so that the new unit ball fails CPCP
δ−uniformly [5]. As every separable Banach space can be equivalently renormed
with a LUR norm [10], then every separable Banach space can be equivalently
renormed so that its new unit ball is SR for open subsets.

In order to get a nonseparable analogous result of the above theorem, recall that
a topological space X is said countable tightness if for every A ⊂ X and for every
x ∈ A there is a countable subset B ⊂ A such that x ∈ B. The key to get the
nonseparable result is to have the separable determination of τ−CPCP, which is
proved in the next

Lemma 2.8. Let X be a Banach space and D a closed, bounded and convex subset
of X without τ−CPCP, where τ is a locally convex and countable tightness topology
on D containing the weak topology on D. Then there is a separable, closed, bounded
and convex subset of D without τ−CPCP.

Proof. If D fails τ−CPCP there is a convex subset A of D and a δ > 0 such that

every relatively τ−open subset of A has diameter at least δ, so a ∈ A \B(a, δ
2
)
τ

for
every a ∈ A. As τ is countable tightness, for every a ∈ A there is Da a countable
subset of A\B(a, δ

2
) such that a ∈ Da

τ
. For a0 ∈ A define B1 = {a0}∪ co(Da0) and

Bn+1 = Bn∪co(∪a∈BnDa) for every n. Now put B = ∪nBn. Then B
τ

is a separable,
closed, bounded and convex subset of D since A it is and A ⊂ D . Observe that
B is convex since Bn ⊂ co(∪a∈BnDa) and Bn+1 = Bn ∪ co(∪a∈BnDa) for every n.
Now every relatively τ−open subset of B has diameter, at least, δ

2
. Indeed, if U is

a relatively τ−open subset of B then there is x ∈ U ∩ Bn for some n and x ∈ Dx
τ
.

Then there is y ∈ Dx ∩ U and y ∈ B ∩ U . As ‖xy‖ > δ
2
, one has diam(U) > δ

2
and

we are done, since B is dense in B
τ
. �

Finally, using the above lemma joint to theorem 2.6 we get the following

Corollary 2.9. Let X be a Banach space and D a τ−strongly regular closed,
bounded and convex subset of X without τ−CPCP, where τ is a locally convex and
countable tightness topology on D containing the weak topology on D. Then, there
is a closed and convex subset of D without extreme points, that is D fails KMP.

3. Non-CPCP and SR locally convex topology on the unit ball of c0

As the problem about the equivalence between RNP and KMP, as we said in the
introduction, is solved when CPCP and SR are not equivalent, the above theorem
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suggests exploring a new way to proceed: starting with a Banach space X failing
CPCP, is it possible to construct a locally convex topology τ on the unit ball of
X, BX , containing the weak topology so that BX still fails τ−CPCP and satisfy-
ing τ−SR? We don’t know the answer to this question, but a first step could be
answer the above question for the unit ball B of c0, since B fails CPCP, in fact
every nonempty weakly open subset of B has diameter 2, that is B fails CPCP
2−uniformly and B also fails SR. In this case, we have a positive answer and for
that purpose we state and prove the following lemma.

Lemma 3.1. Let k ∈ N, A ⊂ P(N) countable family and A0 ∈ A. There is a
partition {A1

0, . . . A
k
0} of A0 satisfying that for every F ∈ A<ω and 1 ≤ i ≤ k, if

A0 ∩
⋂
A∈F A is infinite, so is Ai0 ∩

⋂
A∈F A.

Proof. Since A is countable, so is F = {F ∈ A<ω : A0 ∩
⋂
A∈F A is infinite}.

Hence, we may label its elements as F = {Fn}n∈N where F1 = {A0} and we also
label A0 = {aj}j∈N (the case when A0 is not infinite is trivial). We now construct
inductively a family {Ain} i≤k

n∈N
of finite subsets of A0 with the following properties for

every p, q ∈ N,

(1) For i, j ≤ k, Aip ∩ Ajq = ∅ if either i 6= j or p 6= q.

(2) #
(
Aip ∩

⋂
A∈Fm

A
)
≥ 1 for every m ≤ p and i ≤ k.

(3)

A0 \
( ⋃
m≤p
i≤k

Aim

)
⊂ {aj}j>kp.

We take Ai1 = {ai} for i = 1, . . . , k which satisfy the above properties for p = q = 1.
Assume that Aim has been defined for i ≤ k and m ≤ n − 1 satisfying the above
properties for p, q ≤ n − 1. We aim to define Ain for i ≤ k such that {Aim} i≤k

m≤n

satisfy properties (1) to (3) for p, q ≤ n. For that purpose, if A0 \
(⋃

i≤k
m≤n−1

Aim

)
=

{aσ(j)}j∈N we take Ain,1 = {aσ(i)} and inductively Ain,m = Ain,m−1 ∪ {aτ(i)} where

(3.1)
(
A0 ∩

⋂
A∈Fm

A
)
\
( ⋃

i≤k
r≤n−1

Air ∪
⋃
i≤k

Ain,m−1

)
= {aτ(j)}j∈N.

We rename Ain,n = Ain for i = 1, . . . , k. Let us prove that we reached our goal, that

is, {Aim} i≤k
m≤n

satisfy properties (1) to (3) for p, q ≤ n.

Property (1): If p, q ≤ n−1 then by the induction hypothesis it is clear that (1)
holds true. Otherwise, we may assume that p = n. If q < p = n and i, j ≤ k then
by construction, Ain,1 ∩Ajq = ∅ since aσ(i) /∈ Ajq. If we assume that Ain,m−1 ∩Ajq = ∅,
we need to show that Ain,m ∩ Ajq = ∅. Indeed, Ain,m ∩ Ajq =

(
Ain,m−1 ∪ {aτ(i)}

)
∩

Ajq = {aτ(i)} ∩ Ajq = ∅ since again by construction aτ(i) /∈ Ajq. This shows that

Ain ∩ Ajq = Ain,n ∩ Ajq = ∅. Finally, if q = n and i 6= j ≤ k then aσ(i) 6= aσ(j)

and hence Ain,1 ∩ A
j
n,1 = ∅. We assume that Ain,m−1 ∩ A

j
n,m−1 = ∅ and show that
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Ain,m ∩ Ajn,m = ∅. Since aτ(i) 6= aτ(j) and aτ(i), aτ(j) /∈ Ain,m−1 ∪ A
j
n,m−1 it is clear

that Ain,m ∩ Ajn,m =
(
Ain,m−1 ∪ {aτ(i)}

)
∩
(
Ajn,m−1 ∪ {aτ(j)}

)
= ∅. Hence, Ain ∩ Ajn =

Ain,n ∩ Ajn,n = ∅.

Property (2): If p < n then by the induction hypothesis #
(
Aip ∩

⋂
A∈Fm

A
)
≥ 1

for every m ≤ p and i ≤ k. Let then p = n and i ≤ k. In this case aτ(i) ∈ Ain,m ⊂ Ain.

By (3.1), it is clear that aτ(i) ∈
⋂
A∈Fm

A and therefore aτ(i) ∈ Ain ∩
⋂
A∈Fm

A.

Property (3): By the induction hypothesis we have that

{aσ(j)}j∈N = A0 \
( ⋃
m≤n−1
i≤k

Aim

)
⊂ {aj}j>k(n−1).

This means that σ(1) ≥ k(n− 1) + 1 and hence σ(j) ≥ σ(1) + j − 1 ≥ k(n− 1) + j.
Taking into account that last inequality, we have that

A0 \
( ⋃
m≤n
i≤k

Aim

)
=

(
A0 \

( ⋃
m≤n−1
i≤k

Aim

))
\
(⋃
i≤k

Ain

)

={aσ(j)}j≥1 \
(⋃
i≤k

Ain,n

)
⊂ {aσ(j)}j≥1 \

(⋃
i≤k

Ain,1

)
={aσ(j)}j>k ⊂ {ak(n−1)+j}j>k = {aj}j>kn.

This finishes the induction.

Finally, we define Ai0 =
⋃
n∈NA

i
n for every i ≤ k. It only remains to prove that

A1
0, . . . , A

k
0 satisfy the statement of the lemma. From (1) it is clear that Ai0∩A

j
0 = ∅

for i 6= j. It is also immediate from (3) that
⋃k
i=1A

i
0 = A0 so that {A1

0, . . . , A
n
0}

forms a partition of A0. Finally, if F ∈ F then combining properties (1) and (2) we
have that

#
(
Ai0 ∩

⋂
A∈F

A
) (1)

=
∞∑
n=1

#
(
Ain ∩

⋂
A∈F

A
) (2)

= +∞.

�

Now, we pass to show the existence of a appropriate topology on Bc0 . From now
on we say that an interval I ⊂ [−1, 1] is a proper open subinterval whenever it is
open as a subset of [−1, 1] and different from [−1, 1].

Theorem 3.2. There exists a locally convex topology τ in Bc0 containing the weak
topology such that Bc0 is τ -strongly regular for open subsets, but Bc0 does not enjoy
the τ -CPCP, in fact every nonempty relatively τ−open subset of Bc0 has diameter
2.

Proof. We will proceed by induction, constructing an increasing sequence (βn)n∈N
of countable convex subbases of topologies in Bc0 where β1 is a subbase of the weak
topology and such that for every n ∈ N the following properties are satisfied:



16 G. LÓPEZ-PÉREZ AND R. MEDINA

(1) For every nonempty U ∈ βn there is AU ⊂ N such that

U = {(xk) ∈ Bc0 : xk ∈ Ik, ∀k ∈ N \ AU},

where Ik is a nonempty proper open subinterval of [−1, 1].
(2) For every F ∈ F(βn) := {G ∈ β<ωn :

⋂
U∈G U 6= ∅}, the set

⋂
U∈F AU is

infinite.
(3) If n > 1 then for every F ∈ F(βn−1) there exist U1, . . . , Un ∈ βn \ {∅} such

that Ui ⊂
⋂
U∈F U for i = 1, . . . , n and

diam

( n∑
i=1

1

n
Ui

)
≤ 4

n
.

Clearly, the weak topology has a convex countable subbase β1 satisfying properties
(1) and (2) (notice that property (3) does not apply when n = 1). Now, for the
inductive step, assume that βn−1 is a convex countable subbase containing β1 and
satisfying properties (1) and (2). Since F(βn−1) is countable, we label its elements
as F(βn−1) = {Fm}m. Now we rename

⋂
U∈Fm

AU = Am so that by (1),⋂
U∈Fm

U = {(xk) ∈ Bc0 : xk ∈ Ik,m, ∀k ∈ N \ Am},

for some proper open subintervals Ik,m of [−1, 1]. We define βn by means of an-
other inductive argument. Specifically, we construct now an increasing sequence of
subbases {βpn}p∈N with the following properties,

(4) βpn = {U1
p , . . . , U

n
p }∪βp−1

n with U1
p , . . . , U

n
p pairwise disjoint subsets of

⋂
U∈Fp

U

for every p ∈ N (taking β0
n = βn−1).

(5) βpn satisfies properties (1) and (2) for every p ∈ N.
(6) For every p ∈ N,

diam

( n∑
i=1

1

n
U i
p

)
≤ 4

n
.

Let us construct β1
n.

We use here Lemma 3.1 with k = n, A = A1 ∪ {AU}U∈βn−1 and A0 = A1.
Therefore, there exists {A1

1, . . . , A
n
1} a partition of A1 such that

(3.2) Ai1 ∩
⋂

U∈F1∪F

AU is infinite ∀F1 ∪ F ∈ F(βn−1) , ∀i ∈ {1, . . . , n}.

We define n pairwise disjoint subsets of
⋂
U∈F1

U as

U i
1 = {(xk) ∈ Bc0 : xk ∈ I ik,1 if k ∈ N \ A1, xk ∈ (−1/n, 1/n) if k ∈ A1 \ Ai1},

where I1
k,1, . . . , I

n
k,1 ⊂ Ik,1 are pairwise disjoint nonempty open intervals of the same

length.

Claim. We claim that β1
n := {U1

1 , . . . , U
n
1 } ∪ βn−1 is a subbase satisfying (4), (5)

and (6).
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Clearly, β1
n satisfies by definition property (4) so that we just have to show (5)

and (6). Let us first tackle property (5). It is immediate from the definitions and
inductive assumptions that β1

n satisfies (1) with Ai1 = AU i
1

for i = 1, . . . , n. Let

us focus on property (2). Consider then F ∈ F(β1
n). If F ∈ β<ωn−1 then from the

induction hypothesis we know that (2) is satisfied. Otherwise, there is 1 ≤ i ≤ n such
that U i

1 ∈ F . Since
⋂
U∈F U 6= ∅ necessarily F \{U i

1} ∈ β<ωn−1 and
⋂
U∈F1∪F\{U i

1}
U 6= ∅.

Hence, F1∪F \{U i
1} ∈ F(βn−1). Therefore,

⋂
U∈F AU = Ai1∩

⋂
U∈F1∪F\{U i

1}
AU which

is infinite by (3.2). This finally proves that β1
n enjoys property (2) and hence (5).

Let us finish the proof of the claim by showing that β1
n enjoys property (6). Indeed,

if we pick (xi,1k )k, (y
i,1
k )k ∈ U i

1 for i = 1, . . . , n, then |xi,1k −y
i,1
k | ≤ 2

n
whenever k /∈ Ai1.

Therefore,∥∥∥∥ n∑
i=1

1

n
(xi,1k )k−

n∑
i=1

1

n
(yi,1k )k

∥∥∥∥ =
1

n
sup
k

∣∣∣∣ n∑
i=1

(xi,1k −y
i,1
k )

∣∣∣∣ ≤ 1

n
sup
k

(
2+

n∑
i=1
k/∈Ai

1

|xi,1k −y
i,1
k |
)
≤ 4

n
.

This proves that β1
n satisfies the induction hypothesis and hence the claim is proven.

Let us now get into the inductive step. Assume βp−1
n has been defined for some p >

1 enjoying properties (4), (5) and (6).We use Lemma 3.1 with k = n, the countable
set A = {Ap}∪ {AU}U∈βp−1

n
and A0 = Ap and obtain a partition {A1

p, . . . , A
n
p} of Ap

such that for every Fp∪F ∈ F(βp−1
n ) we have that Aip∩

⋂
U∈Fp∪F AU is infinite (this

is due to the fact that βp−1
n satisfy (2)). Now, we define for i = 1, . . . , n the set,

U i
p = {(xk) ∈ Bc0 : xk ∈ I ik,p if k ∈ N \ Ap, xk ∈ (−1/n, 1/n) if k ∈ Ap \ Aip},

where I1
k,p, . . . , I

n
k,p ⊂ Ik,p are pairwise disjoint nonempty open intervals of the same

length. Following the same reasoning as in the case p = 1, we know that βpn :=
{U1

p , . . . , U
n
p }∪βp−1

n satisfies properties (4), (5) and (6). Finally, βn is defined as the
union βn :=

⋃
p β

p
n. It is straightforward to see that βn satisfies properties (1), (2)

and (3) and hence the inductive construction is complete.

We are then ready to define our sought topology τ as the topology generated by
the subbase β =

⋃
n βn. τ is clearly locally convex and contains the weak topology.

Let us check that Bc0 is τ -strongly regular but does not enjoy the τ -CPCP.

In order to show that Bc0 fails τ -CPCP we will prove that every nonempty τ−open
subset of Bc0 has diameter 2. For that, observe that the family of finite intersections
of elements in β is a basis for τ , so we will be done if we get that every set of the
form

⋂
U∈F U is either empty or has diameter 2 for every F ∈ β<ω. There has to

be some n ∈ N such that F ∈ β<ωn . If we assume that
⋂
U∈F U is nonempty then

F ∈ F(βn) and the set
⋂
U∈F AU is infinite from (2). Now, from (1), if U ∈ F the

elements in U are sequences of Bc0 without restrictions on terms of AU , so there
is k (in fact, infinite many terms) such that the elements of U have no restrictions
on its values for the term k, other than belongs to Bc0 , for every U ∈ F , and then
diam(

⋂
U∈F U) = 2.

In order to show that Bc0 is τ−SR for open subsets, let O be a nonempty τ -open
set and ε > 0. Then, there is F ∈ β<ω such that ∅ 6=

⋂
U∈F U ⊂ O. Therefore, there
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is n ∈ N such that F ∈ F(βn). Consider m > n such that 4/m < ε. Since (βn)n is
increasing, F ∈ F(βm−1) and thus by property (3) there are U1, . . . , Um ∈ β \ {∅}
such that Ui ⊂

⋂
U∈F U for i = 1 . . . , n and

diam

( m∑
i=1

1

m
Ui

)
≤ 4

m
< ε.

�

We think that it would be interesting to know if a topology as the constructed
one in the above theorem exists for L1.

Observe that the topology defined in the above theorem can be defined on the
whole space c0 and even it is possible defining a topology on `∞, following the
same above ideas, containing the weak-star topology on `∞ so that every relatively
open subset of the unit ball has diameter 2, while the unit ball contains convex
combinations of relatively open subsets with diameter arbitrarily small.

In [4] (see also [1]) is proved that every Banach space containing c0 can be equiv-
alently renormed satisfying D2P so that the new unit ball contains convex combina-
tions of relatively weakly open susets with diameter arbitrarily small, showing the
extreme diference between D2P and SD2P. The abore result stresses this extreme
difference from a topological point of view, enlarging the family of open subsets
with diameter 2 and keeping the existence of convex combinations of relatively open
subsets with diameter arbitrarily small, without renorming.
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