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Eros Rosello1, Angel M. Gomez1, Iván López-Espejo1, Antonio M. Peinado1, Juan M.
Martı́n-Doñas2
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Abstract
This paper proposes an ensembling model as spoofed

speech countermeasure, with a particular focus on synthetic
voice. Despite the recent advances in speaker verification based
on deep neural networks, this technology is still susceptible to
various malicious attacks, so that some kind of countermeasures
are needed. While an increasing number of anti-spoofing tech-
niques can be found in the literature, the combination of mul-
tiple models, or ensemble models, still proves to be one of the
best approaches. However, current iterations often rely on fixed
weight assignments, potentially neglecting the unique strengths
of each individual model. In response, we propose a novel en-
sembling model, an adaptive neural network-based approach
that dynamically adjusts weights based on input utterances. Our
experimental findings show that this approach outperforms tra-
ditional weighted score averaging techniques, showcasing its
ability to adapt to diverse audio characteristics effectively.
Index Terms: Anti-spoofing, deep learning, ensemble model,
wav2vec 2.0, fake audio.

1. Introduction
Voice biometrics systems employ automatic speaker verifica-
tion (ASV) technology to confirm a speaker’s identity through
their unique voice characteristics. Recent advances in deep
neural networks (DNNs) have notably enhanced ASV system
performance [1]. However, these systems are still vulnerable
to various malicious attacks, such as voice synthesis (text-to-
speech, TTS), voice conversion (VC), replay, and imperson-
ation attacks, posing significant security risks [2].

In this context, the development of countermeasures against
ASV spoofing attacks or deepfakes has notoriously attracted
the attention of the scientific community. Numerous evaluation
campaigns, such as ASVspoof 2015 [3], 2017 [4], 2019 [5],
and 2021 [6], have been focused on logical access (LA) at-
tacks (TTS and VC), physical access attacks (replay attacks),
and speech deepfake detection. These campaigns underscored
the need for robust technologies resilient to diverse attack vec-
tors and environmental conditions, with DNNs emerging as the
most effective approach [7–12]. In this paper, we focus our
attention on TTS and VC attacks, which rely on high-quality
synthesized speech. These are commonly associated with LA
attacks on biometrics systems as well as audio deepfakes [2].

While an increasing number of anti-spoofing techniques
can be found in the literature, the fusion of a set of different sys-
tems, usually referred to as ensemble model, has provided the
best results in recent challenges [5,13]. Weighted score averag-
ing (WSA), employed in the recent 2019 and 2021 ASVspoof
challenges, has showcased superior performance to other en-
semble techniques or to single systems [11, 14]. Nevertheless,

this conventional ensemble model adheres to a rigid practice of
assigning weights based solely on overall model performance,
potentially neglecting the nuanced strengths inherent to each in-
dividual model.

We hypothesize that each model may exhibit proficiency in
dealing with certain attacks or spoofing clues, potentially iden-
tifying subtle nuances, beyond attack modes or noise profiles,
that each model best deals with. This observation suggests the
potential for an ensemble model whose weight allocation dy-
namically adapts to the input data. Such adaptability might sig-
nificantly enhance the model ensemble efficacy and resilience in
real-world scenarios, where different attack types and acoustic
environments are expected.

Following this idea, in this paper we introduce a DNN-
based ensemble model, referred to as ensembling model, which
dynamically adjusts the weighting based on input utterances,
thus leveraging the advantages of each anti-spoofing model used
in the ensemble. As a proof of concept, we test the feasibility
of this new ensemble technique with four simple anti-spoofing
models: the baseline models of the ASVspoof 2021 challenge.
We not only compare our ensemble model with the classical
WSA, but also with an equivalent model trained for binary
(bonafide or spoof) audio classification in order to demonstrate
the potential of the idea.

The rest of this paper is organized as follows: Section
2 presents our proposed ensembling model technique and the
model used in this work. Section 3 outlines our experimen-
tal setup. Section 4 presents the experimental results obtained.
Finally, in Section 5, we summarize our research findings and
draw some conclusions.

2. Proposed ensembling model
In this section, we provide an overview of our ensembling
model. First, we briefly detail the mathematical framework used
for dynamically-extracting weights to calculate the final score.
Then, we describe the architecture used to extract these weights.
Finally, we provide a brief overview of the anti-spoofing models
used for the ensemble.

2.1. Score computation

As mentioned earlier, our ensembling model dynamically ad-
justs weights for each anti-spoofing model based on input ut-
terances. Specifically, our goal is to determine a function
f(·) : Rl −→ RM , that, given an input utterance, x ∈ Rl, re-
turns the optimal set of weights w = (w1, . . . , wM )⊤ = f(x),
where l is the length of the utterance and M is the number of
anti-spoofing models to be used. In our case, M = 4 (see Sub-
section 2.3).

To train our ensembling model we employ a cross-entropy
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Figure 1: Block diagram of the proposed ensembling model.

loss which needs both bonafide and spoof scores. Conse-
quently, during training, our ensembling model computes 2M
weights from an input utterance (x), two for each anti-spoofing
model: one for calculating the final bonafide score, wb

x =
(wb

1(x), . . . , w
b
M (x))⊤, and one for computing the final spoof

score, ws
x = (ws

1(x), . . . , w
s
M (x))⊤. These weights are used

to compute the final scores, o(b,s)x , according to the formula

o(b,s)x =
(
w(b,s)

x

)⊤
· (sx − β), (1)

where sx = (s1(x), . . . , sM (x))⊤ are the bonafide scores from
the anti-spoofing models and β = (β1, . . . , βM )⊤ are learnable
parameters independent from the input utterance.

Note that only bonafide scores from anti-spoofing models
are used to calculate our final scores due to the fact that many
models only provide the former scores. In addition, it must be
taken into account that the final spoof score and its correspond-
ing weights are discarded during inference (i.e., they are only
used for training).

2.2. Weight extraction

A diagram illustrating the proposed weight extraction system
is presented in Figure 1. The system leverages the pre-trained
wav2vec 2.0 (W2V2) XLS-128 model [15] as a feature extractor
with no fine-tuning. In this extractor, the raw speech waveform
undergoes processing by a feature encoder consisting of several
convolutional layers. This encoder extracts vector representa-
tions of size 1, 024 every 20 ms, employing a receptive field
of 25 ms. Subsequently, these encoder features are input to a
transformer network comprising 24 layers to derive contextual-
ized representations of the speech signal.

Studies have demonstrated that, for tasks like speaker ver-
ification and emotion recognition, when using self-supervised
models as feature extractors, more discriminative information
can be derived from the first or intermediate layers rather than
the last layer [16, 17]. Therefore, following the approach of
prior research [16–18], instead of only using the output from
the last layer, we utilize the hidden representations of the var-
ious transformer layers as input to our model. Similar to [18],
temporal normalization [19] is applied to the hidden represen-
tations of the different transformer layers. For each of the T
temporal steps, an output representation is computed by apply-
ing a weighted sum of the normalized hidden representations.

Table 1: Architecture of the ensembling model, where T is the
number of time frames and N is the batch size.

Layer Output size
Input (W2V2 features) N × T × 1, 024× 24

Temp. norm. and weighted sum N × T × 1, 024
FC layer, BN & SeLU N × T × 128

LSTM N × 80
FF module N ×M
Final scores N × 2

These weights, denoted as {αk; k = 1, . . . , 24} in Figure 1,
are network trainable parameters normalized to sum one [16].

As a result, we obtain a vector sequence (of length T ) that
undergoes further processing through a fully-connected (FC)
layer along with batch normalization (BN) and a scaled expo-
nential linear unit (SeLU) activation function, ultimately reduc-
ing the vectors’ dimension. The resulting vector sequence is
processed by a long short-term memory (LSTM) network. The
last output vector of the deepest LSTM layer is then fed to a
feed-forward (FF) module which consists of a FC layer that
halves the dimension followed by a rectified linear unit (ReLU)
activation, and another FC layer that extracts M weights. Dur-
ing training, the FF module is replicated so one is utilized to
extract the bonafide weights, while the other is employed to ex-
tract the spoof weights (see Figure 1). The proposed ensembling
model is summarized in Table 1.

2.3. Anti-spoofing models

As explained previously, our ensembling model dynamically as-
signs weights to a set of anti-spoofing models. In this study, we
utilize the four baseline models from ASVspoof 2021 [6] to this
end. Briefly, these models are:
• CQCC GMM: A Gaussian mixture model (GMM)-based

system that operates on constant-Q cepstral coefficients
(CQCCs) [20];

• LFCC GMM: Another GMM-based system that operates on
linear frequency cepstral coefficients (LFCCs) [21];

• LFCC LCNN: A model based on a lightweight convolu-
tional neural network (LCNN) architecture [22], incorporat-
ing LSTM layers and average pooling, that utilizes LFCC
features;

• RawNet2 [23]: A DNN-based system employing the fully
end-to-end RawNet2 architecture [24], which operates di-
rectly on raw audio waveforms.

Each of these systems was trained exclusively on the corre-
sponding ASVspoof 2019 training data and optimized using the
respective development data. No data augmentation techniques
were applied during training.

2.3.1. Comparative performance of the anti-spoofing models

In order to assess the feasibility of our proposal, we examine
the performance of the above baseline models on the ASVspoof
2021 LA database. Our hypothesis is that if all baseline models
misclassify the same utterances, our proposal could not bring
any improvements. However, if the anti-spoofing models ex-
hibit complementary behavior, wherein audios misclassified by
one model are correctly classified by another model, our pro-
posal could exploit this by prior analyzing the utterance and
assigning it to the most suitable anti-spoofing model. Note that,
despite this may be seen as a detour to a direct classification, the



Table 2: Number of incorrectly classified utterances. Diagonal:
Number of utterances incorrectly classified by each standalone
model. Off-diagonal: Number of utterances incorrectly classi-
fied by two models. The last row shows the performance of each
anti-spoofing model in terms of equal error rate (EER), in per-
centages.

Model CQCC
GMM

LFCC
GMM

LFCC
LCNN RawNet2

CQCC GMM 23, 142 11, 231 7, 340 4, 314
LFCC GMM 11, 231 28, 593 3, 688 2, 501
LFCC LCNN 7, 340 3, 688 13, 721 4, 678
RawNet2 4, 314 2, 501 4, 678 11, 071
EER (%) 15.62 19.30 9.26 7.47

goal is that the ensembling model actually seizes the different
strengths of the different anti-spoofing models.

In Table 2, we present the equal error rate (EER) perfor-
mance of each baseline model on the ASVspoof 2021 LA eval
database. Additionally, this table displays the number of utter-
ances misclassified by each model at the EER threshold (diag-
onal entries) and the number of utterances misclassified by two
models simultaneously (off-diagonal entries).

As can be seen from Table 2, the anti-spoofing models show
varied misclassification patterns, which can be derived from
the significantly smaller number of utterances jointly misclas-
sified by any two models compared to that of every standalone
model. Moreover, some model combinations demonstrate su-
perior complementary behavior compared to others. For exam-
ple, the LFCC GMM (row 2) model shows a better comple-
mentary behavior with RawNet2 (row 2, column 4) than with
CQCC GMM (row 2, column 1). Furthermore, we also have
examined the behavior of all baseline models simultaneously
(not reported in Table 2), and we have found that only 1, 107
utterances —approximately 10% of those misclassified by the
best model (see RawNet2 in Table 2)— are misclassified by all
anti-spoofing models.

The above results suggest that it is possible to significantly
enhance the joint performance of these models if we were able
to assign each utterance to the appropriate model, which could
be achieved by means of our proposed ensembling framework.

3. Experimental setup
In this section, we describe the datasets and evaluation metrics
considered in our experiments as well as the training details.

3.1. Models, datasets and evaluation metrics

For the anti-spoofing models, we use publicly available model
weights and scores1, except for RawNet2, which was trained
from scratch due to issues with the provided weights. Mod-
els were originally trained using the ASVspoof 2019 LA train-
ing and development partitions for training and validation, re-
spectively [5]. Additionally, the scores returned by each anti-
spoofing model are normalized prior to be fed to the ensem-
ble models. We apply a min-max normalization followed by a
sigmoid function, ensuring that all scores fall within the range
[0, 1], easing comparison across models with similar thresholds.

Our ensembling model is not trained with the exact same
data as the anti-spoofing models (ASVspoof 2019 LA training),
due to the exceptional performance of the anti-spoofing models

1https://github.com/asvspoof-challenge/2021

on their training data (we could not assign weights to the most
appropriate models if all models performed very well on the
data we used). Instead, we use the ASVspoof 2019 development
set for training and the ASVspoof 2021 LA progress partition
as the validation set. No data from the Deep Fake (DF) partition
are used for validation.

To evaluate our proposed method, we conduct experiments
on the LA and DF evaluation subsets of the ASVspoof 2021
database [6]. These subsets contain both bonafide and spoofed
speech, the latter generated using TTS and VC systems. The LA
subset encompasses codec and transmission variability, while
the DF subset introduces compression variability. In addition,
while the 2019 training and development sets include only six
known attacks (2 VC-based and 4 TTS-based), the 2021 evalu-
ation datasets incorporate unseen attacks [6].

As primary metric, we employ the pooled EER [25]. Addi-
tionally, for the LA subset, we also report minimum normalized
tandem detection cost function (t-DCF) [26] scores.

3.2. Implementation details

We create, by either cropping or padding the content as needed,
4-second long input audio signals to be processed. For training,
we employ the standard Adam optimizer [27] with an initial
learning rate of 10−4, a weight decay of 10−4, and a batch size
of 32 training samples. Weighted cross-entropy is used as the
loss function. After the W2V2 feature extraction, a FC layer
produces 128 output dimensions. Consequently, we incorporate
an LSTM network with an input size of 128, a hidden size of 80,
and three layers, resulting in a total of 300k trainable parame-
ters. We train 5 different realizations of the proposed model us-
ing 5 different random seeds, which allows us to study potential
statistically significant performance gains. In instances where
we compare our model with other results lacking multiple runs,
we utilize the model that best performs in our validation dataset
(ASVspoof 2021 LA progress). To prevent overfitting, we im-
plement an early-stopping scheme [28], finishing the training
process if the weighted cross-entropy on the validation set fails
to improve over 8 consecutive epochs. We also halve the learn-
ing rate if the validation loss does not decrease for 3 epochs in a
row. Finally, all experiments were done in a Nvidia 3090 GPU.

4. Results
In this section, we present our experimental results, compar-
ing our proposed ensembling model with other WSA ensembles
and a direct classifier with identical architecture to our model.

4.1. Comparison with classical weighted score averaging
models

We compare our proposal with the classical WSA ensemble
technique used in other works [11, 13]. To this end, we con-

Table 3: Comparison of our proposed ensembling model with
other WSA ensemble models on the ASVspoof 2021 LA and DF
evaluation sets in terms of EER (%) on both sets and min t-DCF
on LA.

LA DF
Model EER (%) min t-DCF EER (%)

GS Ensemble 5.784 0.2963 23.633
EB Ensemble 6.641 0.3051 20.150

Ensembling Model 2.315 0.2339 5.596



Table 4: Architecture of the classification model, where, as be-
fore, T is the number of time frames and N is the batch size.

Layer Output size
Input (W2V2 features) N × T × 1, 024× 24

Temp. norm. and weighted sum N × T × 1, 024
FC layer, BN & SeLU N × T × 128

LSTM N × 80
FF module N × 2

sider two different weight selection techniques:
• Grid search (GS): We conduct a grid search over a pre-

defined range of weights (with a minimum of 0.1 and all
weights adding up 1) to identify the combination that min-
imizes the EER on the progress phase of ASVspoof 2021 LA
and DF, for the LA and DF ensemble models, respectively.

• Error-based (EB): We use the performance of the anti-
spoofing models on the progress phase of ASVspoof 2021
for each track (LA and DF) to assign the ensemble weights, in
particular, the inverse of the EER values. Higher EER values
indicate worse performance, so taking their inverse ensures
that models with better performance receive larger weights.

We report the results of this classical WSA ensemble with
the 4 baseline models (Subsection 2.3) in Table 3. We can ob-
serve that our proposed ensembling model significantly outper-
forms these WSA techniques on both LA and DF subsets.

4.2. Comparison with an equivalent classification model

In order to prove that our ensembling model truly leverages
the underlying anti-spoofing models, we have also developed
a classification model with identical structure to our ensem-
bling model. The architecture of this classification model, de-
tailed in Table 4, closely resembles that of the proposed weight
extraction system and, thereby, has a similar number of pa-
rameters. The main difference lies in the fact that the ensem-
bling model employs two FF modules to estimate bonafide and
spoof weights during training, whereas the current classification
model only needs one FF module, since this model directly out-
puts bonafide and spoof scores.

Table 5 presents the experimental results of our ensembling
model and the equivalent classification model when evaluated
on the ASVspoof 2021 LA and DF evaluation subsets. We use
5 different random seeds, in order to present the results of the
best model (selected through the development set) and the av-
erage across the 5 runs (in parentheses). To ensure fairness, we
train the classification model using the same data as the ensem-
bling model (see Subsection 3.1). According to Table 5, on the
LA partition, we observe that our ensembling model remarkably
outperforms the classification model. In particular, a Welch’s t-
test [29], which is performed using the results derived from the

Table 5: Comparison of our proposed ensembling model with a
classification model of similar characteristics on the ASVspoof
2021 LA and DF evaluation subsets in terms of EER (%). Re-
ported results are the best (average) obtained from five runs
with different random seeds.

Model LA DF
Classifier Model 9.961 (12.801) 6.517 (8.043)

Ensembling Model 2.315 (4.484) 5.596 (8.743)

Table 6: Comparison of our proposed ensembling model with
other WSA ensemble models (5 anti-spoofing models) on the
ASVspoof 2021 LA and DF evaluation sets in terms of EER (%)
on both sets and min t-DCF on LA.

LA DF
Model EER (%) min t-DCF EER (%)

GS Ensemble 5.210 0.2943 11.393
EB Ensemble 5.757 0.3040 12.979

Ensembling Model 2.315 0.2339 5.596

different random seeds, yields a p-value of 2.76%, indicating
that the proposed ensembling model offers statistically signifi-
cant enhancements (given a standard significance level of 5%)
over the classification model on LA. On the other hand, on DF,
there are no statistically significant differences between the two
models compared.

Additionally, we also report the results of a classical WSA
ensemble that uses 5 anti-spoofing models: the 4 baseline mod-
els plus the equivalent classification model, trained with the
same data as the anti-spoofing models (using 5 different ran-
dom seeds and selecting the best model for the ensemble), in
comparison with our ensebling model. These results are de-
tailed in Table 6, where we can observe that our proposed en-
sembling model (with 4 models) still outperforms the extended
WSA techniques (with 5 models) on both LA and DF.

5. Conclusions
This paper introduces a novel ensembling model capable of dy-
namically weighing the scores provided by a set of underly-
ing anti-spoofing models depending on the input utterance. The
goal is that the ensemble seizes the most suitable model for de-
tection according to the characteristics or clues contained in the
utterance. Our ensembling model is compared to other WSA
ensemble techniques under LA and DF scenarios.

Our results show the effectiveness of leveraging dynamic
weight adjustments in ensemble models, since our approach
obtains significantly better results than classical WSA ensem-
bles. Results suggest that, by incorporating adaptive weighting
mechanisms, our ensembling model can exploit the strengths of
each anti-spoofing model for different types of input utterances,
showing improved overall system resilience against spoofing at-
tempts when compared to classical WSA techniques. To further
support this hypothesis, our proposed approach has been com-
pared with a direct classification model with similar character-
istics. On the LA partition, our ensemble model shows a sig-
nificant improvement over the classification model. This seems
to indicate that our model is able to leverage different strengths
of the anti-spoofing models. In addition, our technique obtains
better results than a classical ensemble containing this classi-
fication model, suggesting that, in a real scenario, where the
actual performance of the models to be used in the final ensem-
ble is unknown, our approach might obtain better results than a
classical WSA ensemble, even when the latter includes an ad-
ditional classification model of identical characteristics to our
ensembling model.

Moving forward, future work will focus on 1) refining
weight allocation strategies to further optimize the performance
of ensemble models, 2) exploring alternative architectures, and
3) extending the scope of application to domains other than anti-
spoofing. Finally, the potential of this ensemble technique with
more powerful anti-spoofing models is also worth exploring.
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