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Abstract: Group decision-making combined with uncertainty theory is verified as a more conclusive theory, by
building a bridge between deterministic and indeterministic group decision-making in this paper. Due to the
absence of sufficient historical data, reliability of decisions are mainly determined by experts rather than some
prior probability distributions, easily leading to the problem of subjectivity. Thus, belief degree and uncertainty
distribution are used in this paper to fit individual preferences, and five scenarios of uncertain chance-constrained
minimum cost consensus models are further discussed from the perspectives of the moderator, individual decision-
makers and non-cooperators. Through deduction, reaching conditions for consensus and analytic formulas of the
minimum total cost are both theoretically given. Finally, with the application in carbon quota negotiation, the
proposed models are demonstrated as a further extension of the crisp number or interval preference-based minimum
cost consensus models. In other words, the basic conclusions of the traditional models are some special cases of
the uncertain minimum cost consensus models under different belief degrees.
Keywords: Group decision-making; Minimum cost consensus model (MCCM); Uncertainty theory; Linear
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1. Introduction

Group decision-making (GDM) mainly solves unstructured decision-making problems, involving
subjective participation of various experts [1, 2]. In GDM, through communication and multiple rounds
of effective feedback/adjustment, decision-makers (DMs) eventually form a clear support or objection
towards a certain issue. Then, a relatively consistent consensus is reached [3]. Consensus
decision-making is a prerequisite for effective GDM and widely exists in our daily lives, such as online
P2P lending [2], emergency decision support [4], and trans-boundary water pollution control [5, 6]. In
general, factors affecting the consensus reaching process (CRP) include DMs’ preference structures or
psychological expectation [6, 7, 8, 9], convergence rules [10, 11], decision environment
[12, 13, 14, 15, 16, 17], and leaders’ [2, 18, 19, 20] or non-cooperators’ influence [1, 21, 22, 23, 24]. Urda
and Loch [25] indicated that individual behaviours in GDM are driven by both their own economically
rational deliberation and decision biases and social preferences (e.g. status achievement, reciprocal
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relations, or group identity). Thus, a moderator [2, 19, 20], on behalf of collective interest, is often
introduced to improve the speed and efficiency of CRP. He/she possesses prominent skills in leadership
and negotiation, and can persuade/tempt DMs to continually adjust their opinions into consensus
through different effective means (collectively referred to as “consensus cost”).

The concept of minimum cost consensus model (MCCM) was first proposed by Ben-Arieh and
Easton [20], to explore a single and a multi-criteria decision consensus problem with a linear cost using
linear-time algorithms. Afterward, they built models based on quadratic cost functions by taking
account of consensus cost, opinion elasticity and the maximum number of experts [26]. Meanwhile,
Dong et al. [10] investigated the internal relations of several OWA-based linguistic operators based on
position indexes, and originally presented the optimisation-based minimum adjustment consensus
models (MACMs). Subsequently, Zhang et al. [27] proposed a new framework for consensus models
under aggregation operators, and illustrated that a link existed between MCCMs and MACMs. To
further explore the original MCCMs, Gong et al. [19, 28] and Zhang et al. [2] adopted the linear
prime-dual theory and presented the economic interpretations of their new consensus models. Wu et al.
[29] discussed the scheme recommendation and users’ trust measure using the feedback mechanism in
MCCMs with social network analysis. Meanwhile, considering that the cost coefficients are asymmetric
due to the adjustment direction of DMs’ opinions, Cheng et al. [5] analysed the impact of individual
limited compromises and tolerance behaviours on MCCMs. Research paradigms about the
MCCMs/MACMs with feedback mechanism during the last decade were concluded by Zhang et al.
[30], and they further pointed out new directions for the future research. So far, most extant
MCCMs/MACMs assume DMs’ preferences denoted by crisp numbers or intervals, making the
stochastic distribution for DMs’ opinions seldom considered. Thus, uncertainty distributions are used
to fit DM’s preferences in this paper.

Actually, even if there exists a moderator acting as a leader in GDM, the DMs involved still cannot
account for all factors; besides, diversity widely exists in individuals’ research background, knowledge
reserve, and the amount of private information. Thus, GDM is full of uncertainty, making it unable
to accurately predict the outcome in advance. GDM essentially includes providing decision support
for solving uncertainty. Without loss of generality, theoretical methods for dealing with uncertainty
include probability theory, interval analysis, fuzzy sets, rough sets and grey systems. However, it is often
difficult to obtain a precise probability for a natural state in real-life GDM, especially when there is
little information available for evaluating probabilities, usable information is insufficient, or when several
information sources conflict with each other [31]; then, the reliability (or probability) that certain event
will occur is primarily determined by experts. To handle situations where the reliable prediction that one
event would occur has to be determined by individual subjectivity due to the inability to obtain its actual
frequency [32], uncertainty theory was proposed by Liu [33], which gradually extended into a systematic
subject, from a theoretical perspective [34, 35, 36, 37, 38] and an application perspective [39, 40]. As
an important branch of mathematics [41], uncertainty theory is mainly used to deal with human beings’
subjective reliability and has been successfully applied into trust measure in social networks [42]. To the
best of the authors’ knowledge, compared with multiple prominent theories dealing with indeterminacy,
efficiencies and advantages of uncertainty theory in GDM are concluded in [43, 44].

Due to the uncertainty in DMs’ opinions, traditional probability and statistics methods are no
longer suitable for the preference analysis of individual behaviours involved in GDM, because frequency
distribution, probability distribution, and density function for individual opinions are difficult to
obtain. However, we can always grasp a certain degree of certainty, such as 95% confidence/belief, to
achieve consensus, and when the consensus is reached with a certain degree of belief, CRP is more
consistent with actual GDM situations. Therefore, this paper introduces the belief degree and
uncertain variables to simulate DMs’ judgement behaviours, and by combining the MCCMs and
uncertainty theory, this paper extends traditional MCCMs into five scenarios from diverse roles as
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moderator, individual DMs, and non-cooperators. In GDM, decisions are always made before the
realisation of individual preferences (i.e., random variables), so we suppose that the belief degree of the
constraints satisfied is no less than a specified value. Such problems can be solved by chance-
constrained goal programming [45]. As a stochastic programming method, chance-constrained problems
can always be transformed into an equivalent deterministic mathematical model, making it convenient
to obtain Pareto optimal solutions toward the original problems. In short, our main contributions are:

• Uncertain MCCMs are discussed from the perspectives of multiple roles, such as the moderator,
individual DMs and non-cooperators;

• Since interval preference-based MCCMs take only endpoints into account, belief degree and
uncertainty distribution are introduced as a whole to fit individual judgements, making the
proposed models more feasible;

• Analytic formulas for both the optimal consensus and the total cost (i.e., the optimal solutions)
under each scenario are presented, through linear transformation of the uncertain MCCMs.

• Feasibility of the new uncertain MCCMs is verified by the carbon emission quota negotiation
conducted between the heavily polluting enterprises and the local government.

The rest of the paper is organised as follows. Section 2 recalls preliminaries on traditional consensus
models (i.e., MCCMs or MACMs) and uncertainty theory. Inspired by the consensus modeling in [10, 19,
28], Section 3 adopts belief degree and uncertain variables to characterise DMs’ preferences. In addition,
by discussing five GDM scenarios, a series of optimisation-based consensus models are developed. General
reaching conditions for the consensus under each scenario are also provided in this section through
theoretical deduction. Subsequently, Section 4 verifies the feasibility of the proposed models through
the optimal carbon quota allocation negotiation between heavily polluting enterprises and the local
government. Finally, concluding remarks and future research directions are presented in Section 5.

2. Preliminaries

2.1. Consensus models with a minimum cost or adjustment
Suppose there exist n DMs participating in GDM, oi ∈ R is the original opinion of DM di,

i ∈ N = {1, 2, · · · , n} and o′ is the collective opinion reached by the whole group (i.e., consensus). Let
fi(o

′) = |o′ − oi| be the rectilinear distance measure between di’s original opinion and the consensus
[20]. Generally, reaching a consensus depends largely on behaviours of DMs [46], meanwhile
high-impact moderators [2] or opinion leaders [18] can effectively promote the speed and efficiency of
CRP. Particularly, by exercising significant leadership skills or scheduling limited resources (e.g.,
human, material, or financial resources), moderators are capable of guiding or coordinating with DMs
to change individual inconsistent opinions towards a relatively consistent group opinion. Based on the
above distance measure, Ben-Arieh and Easton [20] first put forward the concept of the minimum cost
consensus, aiming at minimizing resources consumption during decision-making process; meanwhile,
Dong et al. [10] initially proposed consensus models with minimum preference adjustment (i.e.,
MACMs) by introducing aggregation operators, aiming to preserve DMs’ original preference
information as much as possible. Subsequently, the two aforementioned modeling ideas become an
important foundation of most extant consensus works (e.g., [2, 5, 6, 23, 27, 29, 30, 46]).

This paper mainly pursue the goal of minimizing the total consensus cost instead of keeping the
original preference information as much as possible. Without loss of generality, let ωi denote the cost for
moving di’s original opinion oi towards the consensus o′ one unit. In fact, the main difference between
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MCCMs and MACMs lies in whether considering the unit cost or not. Mathematically, if we normalize
these unit costs, then they become the weighted arithmetic mean operators, which can also be understood
as each individual’s influence on CPR [28]. In reality, too many uncertain factors need to be considered
in GDM, making the above parameters difficult to quantify, hence, ωi is subjectively determined in the
follow-up discussion of this paper. Zhang et al. [46] presented a bi-level optimization model to describe
the interaction behaviors within CRP based on Stackelberg game, and further provided an optimal unit
cost from a pre-defined reasonable range rather than assuming ωi as a known parameter. Anyway,
ωifi(o

′) and
n∑

i=1
ωifi(o

′) indicate the costs paid by the moderator for persuading individual di and all

DMs to change their inconsistent opinions during GDM, respectively.

Min ϕ =
n∑

i=1

ωifi(o
′)

s.t.

{
fi(o

′) = |o′ − oi|
|o′ − oi| ≤ εi, i ∈ N

(1)

Since the less the total cost the better, a MCCM based on the above principles is built as Model (1)
[19, 20, 27], where ϕ represents the total consensus cost for the whole GDM, and εi is the upper bound of
the deviation (i.e., distance measure) between di’s opinion and the optimal collective opinion, implying
that we want to obtain an acceptable consensus (i.e., soft consensus [27, 47]).

2.2. Uncertainty theory
Uncertainty widely exists in real-life GDM, for instance, when faced with emergency, human beings

usually cannot determine the occurrence frequency of certain events due to the absence of historic data,
making it difficult to accurately estimate the probability distribution of such events. Aiming at the above
limitations in classical probability theory, uncertainty theory proposed by Liu [33, 48] is an important
and useful mathematical instrument to handle uncertain phenomenon with non-randomness and non-
fuzziness. Next, some basic concepts in uncertainty theory are introduced.

Let Γ be a nonempty set (sometimes referred as universal set), and a collection L consisting of
subsets of Γ is an algebra over Γ, if it meets the following three conditions: (a) Γ ∈ L; (b) if Λ ∈ L,
then ΛC ∈ L; and (c) if Λ1,Λ2, · · · ,Λn ∈ L, we have

∪n
i=1 Λi ∈ L, where, if condition (c) is replaced by

closure under countable union, that is, if Λ1,Λ2, · · · ,Λn ∈ L, we obtain
∪∞

i=1 Λi ∈ L, then L is referred
as a σ-algebra over Γ. Element Λ in L is called a measurable set, which also can be interpreted as an
event in uncertainty theory. M is defined as an uncertain measure over the σ-algebra L. Without loss of
generality, real number M{Λi} corresponds to event Λi one by one, representing the belief degree with
which we belief event Λi will occur. There exist no doubt that such assignment is not arbitrary, and the
uncertain measure M satisfies the following four axioms [33, 48].

Axiom 1. (Normality Axiom): M{Γ} = 1 holds for the universal set Γ.

Axiom 2. (Duality Axiom): M{Λ}+M{Λc} = 1 holds for any event Λ.
Axiom 3. (Subadditivity Axiom): For every countable sequence of event Λ1, Λ2, · · · , we have:

M

{ ∞∪
i=1

Λi

}
≤

∞∑
i=1

M{Λi}

Axiom 4. (Product Axiom): Let (Γk,Lk,Mk) be uncertain space for k ∈ N+, then the product of
uncertain measure M is still an uncertain measure, and satisfies:

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

M{Λk}
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where Λk are events arbitrarily chosen from Lk, (k ∈ N+), respectively.

Definition 1. [33] An uncertain variable ξ is a function from an uncertain space (Γ,L,M) to the set of
real numbers, and {ξ ∈ B} is an event for any Borel set B of real numbers. For any real number x, the
uncertainty distribution Φ of an uncertain variable ξ can be defined as: Φ(x) = M{ξ ≤ x}.

M{ξ ≤ x} is the belief degree for the event ξ ≤ x may occur, and it is denoted as α, where
0 ≤ α ≤ 1. In other words, we have Φ(x) = M{ξ ≤ x} = α. According to Axiom 2, we obtain
M{ξ > x} = 1− Φ(x) = 1− α.

Definition 2. [41] An uncertainty distribution Φ(x) is said to be regular if it is a continuous and
strictly increasing function with respect to x at which 0 < Φ(x) < 1, and satisfies lim

x→−∞
Φ(x) = 0 and

lim
x→+∞

Φ(x) = 1.

Note that, linear uncertainty distribution, zigzag uncertainty distribution, normal uncertainty
distribution and lognormal uncertainty distribution are all common regular uncertainty distributions.

Theorem 1. [41] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty
distribution Φ1,Φ2, · · · ,Φn, respectively. If f(ξ1, · · · , ξn) is strictly increasing with respect to
ξ1, · · · , ξm, and strictly decreasing with respect to ξm+1, · · · , ξn, then f(ξ1, · · · , ξn) has an inverse
uncertainty distribution of Ψ−1(α) = f(Φ−1

1 (α), · · · ,Φ−1
m (α),Φ−1

m+1(1− α), · · · ,Φ−1
n (1− α)).

Theorem 2. [33] Let ξ be an uncertain variable with its inverse uncertainty distribution denoted as
Φ−1(α), if and only if Φ−1(α) ≤ c, then M{ξ ≤ c} ≥ α, where α, c are constants within [0, 1].

Theorem 3. Let uncertain variables ξ1 and ξ2 be independent with inverse uncertainty distribution
Φ1 and Φ2, respectively, then the inverse uncertainty distribution for the difference between these two
variables (denoted by ξ1 − ξ2) can be defined as: Ψ−1(α) = Φ−1

1 (α)− Φ−1
2 (1− α).

Actually, uncertain measure can be understood as DMs’ personal belief degree (not frequency) of an
event may occur, so the real meanings of belief degree and uncertain measure appear to be the same.
Generally, regular uncertainty distributions include linear uncertainty distribution, normal uncertainty
distribution and so on. Hereafter, we only discuss the linear type since it can be easily transformed when
the analytic formulas of the proposed models are to be obtained.

Definition 3. [33] Uncertain variable ξ satisfies a linear uncertainty distribution (see Fig. 1), denoted
as ξ ∼ L(a, b), where a, b are both real numbers and a < b, then linear uncertainty distribution function
is presented as:

Φ(x) =


0, if x ≤ a

x− a

b− a
, if a ≤ x ≤ b

1, if x ≥ b

Definition 4. [33] An uncertain variable ξ satisfies ξ ∼ L(a, b), then its inverse uncertainty distribution
function (see Fig. 2) is expressed as:

Φ−1(α) = (1− α)a+ αb
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Fig. 1 Linear uncertainty distribution
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Fig. 2 Inverse linear uncertainty distribution

3. MCCMs with uncertain preferences

Participants’ preferences in original MCCMs or MACMs are usually denoted by crisp numbers,
without taking into account that their opinions fit by random distributions. In fact, it is often difficult
for individuals to provide exact values as their preference, especially in some complex GDM contexts
(e.g. social network GDM [6, 22, 29], large-scale GDM [1, 12, 14, 24] or GDM with dynamic opinions
[18, 49]). Thus, DMs are more likely to present their decisions by intervals with upper and lower
bounds or various uncertainty distributions (e.g. uniform uncertainty distribution or normal uncertainty
distribution). Previous research focus on either role combination with moderator and individual DMs
[2, 5, 20, 28] or independent decision-making status as moderator [18, 50], individual DM [10] or non-
cooperators [1, 22, 23, 24]. Few extant works have build MCCMs by simultaneously taking account on
three roles altogether. Given the above points, we utilise uncertainty distributions to denote participants’
decision preferences, and by discussing five scenarios from multiple decision-making roles (i.e., moderator,
individual DMs and non-cooperators), we aim to investigate a more general form of Model (1).

Min ϕ =
n∑

i=1

ωiεi

s.t. { |o′ − oi| ≤ εi, εi ≥ 0, i ∈ N
(2)

To introduce uncertainty theory into soft consensus decision-making, we obtain a further abstracted
form from Model (1), which is denoted as Model (2). In specific, decision variable in Model (1) only
includes o′, while εi is a pre-defined threshold set over the distance measure between o′ and oi, i ∈ N .
Meanwhile, decision variables in Model (2) include both o′ and εi, and εi is bound by the deterministic
threshold given in Model (1) under the premise that these parameters are set as same in both models.
Obviously, the feasible domain of the solution set of Model (2) is larger than that of Model (1), making
the optimal value of the objective function in Model (2) be no larger than that in Model (1). As a result,
although the form of Model (2) is simpler, its scope of application is wider than Model (1). Furthermore,
Model (2) becomes the basis of the following consensus models with uncertain variables.

3.1. Moderator with uncertain preference
Assume the original opinion oi is a known crisp number presented by individual di and ωi is a pre-

defined unit cost paid by the moderator for di’s change amount towards consensus o′, i ∈ N . Since the
moderator needs to consider many uncertain factors for the final convergent opinion, we assume that
the moderator’s opinion o′ obeys uncertainty distribution. Based on Liu’s uncertainty theory, if the
deviation between the consensus o′ and the individual opinion oi is no more than εi under the belief
degree α, then it can be denoted as M{o′− oi ≤ εi} ≥ α and M{o′− oi ≥ −εi} ≥ α, where M represents
the uncertain measure in uncertainty theory, and the variable α ∈ [0, 1] indicates the belief degree of the
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constraint of |o′ − oi| ≤ εi holding, i ∈ N . Accordingly, an MCCM with uncertain chance constraints
can be constructed as follows:

Min ϕ =
n∑

i=1

ωiεi

s.t.

 M{o′ ≤ oi + εi} ≥ α
M{o′ ≥ oi − εi} ≥ α
εi ≥ 0, i ∈ N

(3)

Theorem 4. Model (3) is equal to the non-linear goal programming Model (4).

Min ϕ =
n∑

i=1

ωiεi

s.t.

 εi ≥ Φ−1(α)− oi (4− 1)
εi ≥ −Φ−1(1− α) + oi (4− 2)
0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (4− 3)

(4)

where ϕ is the total budget for the consensus reached; ωi is the unit-persuading cost paid by the moderator
to DM di; the consensus o′ obeys a linear uncertainty distribution as o′ ∼ L(a, b), where a and b are
decision variables obeying an uncertainty distribution; and constraints (4-1) and (4-2) mean that the
deviation between individual original opinion oi and consensus o′ is no more than εi under the premise
of no less than an uncertain belief degree α. Clearly, the belief variable α (α ∈ [0, 1]) can be a pre-
determined fixed value or a decision variable to be solved.

Thus, if we reconsider the uncertain belief degree α, Model (3) or Model (4) essentially includes two
issues: α is a pre-determined value or α is a parameter to be determined. As for the latter situation,
the variable α solved by Model (3) or Model (4) will be an optimal belief degree in GDM. Besides, when
o′ ∼ L(a, b), Model (4) can be further transformed into a linear programming model as in Corollary 1.

Corollary 1. Assuming that the consensus opinion obeys a linear uncertainty distribution as o′ ∼ L(a, b),
Model (4) is equivalent to the following optimisation model:

Min ϕ =
n∑

i=1

ωiεi

s.t.

 εi ≥ (1− α)a+ αb− oi
εi ≥ −αa− (1− α)b+ oi
a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(5)

Corollary 2. If and only if α = 1 and o′ is a crisp number (i.e. a = b), Model (5) degenerates into
Model (2), and under this situation, the two models have identical values of the optimal consensus and
minimum consensus cost.

With the constraint of o′ ∼ L(a, b), we are to discuss when the total budget and consensus opinion are
exactly the same as that solved by Model (2), and to gain the threshold of the belief degree α once the
consensus is reached. In fact, by conducting sensitivity analysis on variable α, we obtain the analytical
formulas of the optimal solutions for Model (5), namely, we aim to explore the conditions under which
Model (5) and Model (2) have identical optimal consensus and total budget.

Theorem 5. Assume DM’s original opinions in Model (5) are arranged in order (i.e. o1 ≤ o2 ≤ · · · ≤
on), weights attached to each DM (i.e. ωi, i∈N ) are different, and moderator’s opinion obeys a linear
uncertainty distribution as o′ ∼ L(a, b), where a and b are decision variables (see Section 2.2). Once the
belief degree satisfies α ≥ 0.5, the optimal objective value and consensus reached conditions for Model (5)
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are:

ϕ∗ = min

n∑
i=1

ωiεi =



n∑
i=m+1

ωioi −
m∑
i=1

ωioi, a = b ∈ [om, om+1]

iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

n∑
i=m+1

ωi(oi − om) +
m∑
i=1

ωi(om − oi), a = b = om

iff
m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Proof. See Appendix A. □
Remark 1. Theorem 5 shows that once α ≥ 0.5, the optimal consensus and total cost will be

constants and irrelevant with the belief degree any more. By then, Model (5) with linear uncertain
preferences is equivalent to Model (2) with preferences denoted by crisp numbers. That is, the two
models have identical minimum budget and optimal collective opinions. Above findings verify that the
uncertain MCCMs proposed do have practical meanings.

3.2. Non-cooperators considered and moderator with uncertain preference
So far, non-cooperators’ impact on MCCMs has gradually become an intriguing topic [23], particularly

under some complex GDM contexts [1, 21, 22, 24], and most of those research are analysed by theoretical
modeling and simulation experiments. Thus, without loss of generality, suppose multiple individuals
have similar preferences or interest in GDM, while some non-cooperators insist on their own opinions
for certain reasons, who may have authority power within industries or districts, making the moderator
unable to ignore their demands. Under this scenario, moderator’s budget is mainly used to persuade these
non-cooperators for compromising. MCCMs discussed here correspond to the decision rule of minority
being subordinate to majority. For example, a certain district is stepping into the final stage of China’s
urban demolition process, a large amount of local citizens have agreed to move while few nail-house
holders insist to stay put, probably for more compensation from the government or for some stuff hard
to let go. Then, the government has to schedule some extra budget to pursue better development for
the whole district. Such phenomenon can be modeled as:

Min Z =
t∑

i=1

ωkεk

s.t.

 fk(o
′) ≤ εk, k ∈ {1, 2, . . . , t} (6− 1)

fi(o
′) ≤ εi, i ∈ N\k (6− 2)

εi ≥ 0, i ∈ N (6− 3)

(6)

Model (6) assumes there exist a total of t non-cooperators (denoted as dk). Once a consensus is
reached, the change amount of dk’s opinion is fk(o

′) = |o′ − ok| and his/ her unit cost paid by the
moderator is ωk, then the total consensus cost for this GDM scenario is Z. Note, i ∈ N\k means that
excluding those non-cooperators, individuals belong to a small alliance where they may have similar
interest or have already reached a temporary consensus. Model (6) is a general form of GDM with non-
cooperators, however, situations with only one non-cooperator is discussed hereafter (i.e., Model (7)),
for simplicity and for easy to obtain the analytic formulas of the uncertain MCCMs. In fact, when there
exist no less than two non-cooperators, the modeling mechanism is similar and the optimal solutions can
be easy to get by using softwares such as MATLAB.

Min Z = ωkεk

s.t.

 fk(o
′) ≤ εk (7− 1)

fi(o
′) ≤ εi, i ∈ N, i ̸= k (7− 2)

εi ≥ 0, i ∈ N (7− 3)

(7)
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By introducing uncertain chance constraints based on the removal of the absolute value symbols,
(7-1) can be transformed as M{o′ − ok ≤ εk} ≥ β and M{o′ − ok ≥ −εk} ≥ β, and (7-2) becomes the
uncertain constraints as M{o′ − oi ≤ εi} ≥ α and M{o′ − oi ≥ −εi} ≥ α, where β and α are the belief
degrees imposed on dk’s and other DMs’ opinion deviations with the consensus, respectively. Obviously,
constraints (7-1) and (7-2) simultaneously define the threshold of the variable o′. Next, we obtain an
equivalent non-linear consensus model.

Min Z = ωkεk

s.t.


Φ−1(β) ≤ εk + ok
Φ−1(1− β) ≥ −εk + ok
Φ−1(α) ≤ εi + oi, i ∈ N, i ̸= k
Φ−1(1− α) ≥ −εi + oi, i ∈ N, i ̸= k
0 ≤ α, β ≤ 1, εi ≥ 0, i ∈ N

(8)

If the consensus obeys a linear uncertainty distribution with unknown parameters of a and b, namely
o′ ∼ L(a, b), then Model (8) can be further extended as Model (9). For the convenience of comparative
analysis with [19], this paper sets Model (9) as an MCCM with a soft-consensus constraint. That is,
except for the non-cooperator, all other threshold constraints εi,i∈N,i ̸=k imposed on DMs’ opinions and
the final consensus are pre-determined. To make up for the deficiency of hard consensus [51], soft
consensus, which allows for a certain range between individual opinions and the collective opinion, is
proposed [2, 47, 20]. Generally, soft consensus can be measured by consensus level [22, 51]. Therefore,
Z, a, b and εk are all decision variables in Model (9).

Min Z = ωkεk

s.t.


(1− β)a+ βb− ok ≤ εk (9− 1)
−βa+ (β − 1)b+ ok ≤ εk (9− 2)
(1− α)a+ αb− oi ≤ εi, i ∈ N, i ̸= k (9− 3)
−αa+ (α− 1)b+ oi ≤ εi, i ∈ N, i ̸= k (9− 4)
a ≤ b, 0 ≤ α, β ≤ 1, εi ≥ 0, i ∈ N (9− 5)

(9)

Constraints (9-1)-(9-4) create bounds on the parameters of a and b, which may lead to an empty
solution space, that is, a feasible solution maybe no longer exist in Model (9). However, this situation
makes sense in real-life GDM. For example, if a non-cooperator is no longer rational enough, then the
urban demolition negotiation may bring to an end. Furthermore, we should note that once no feasible
solution exists, then the roles of different DMs will change. Specifically, DMs other than dk now have
a veto power, and in fact are then more powerful than dk, which may result in a new iteration for
reaching a consensus. Currently, such scenarios haven’t been analysed in this paper, but it will be an
interesting topic in our future research. However, using conclusions in Theorem 6, we can always set
certain pre-defined parameters in Model (9) to guarantee that a feasible solution exist.
Theorem 6. When belief degrees α and β in Model (9) satisfy the constraint (10). Then, if and only if
a = b, Model (9) degenerates into the Pk(ε) problem in [19] (i.e. Model (11)), meaning that Model (9)
and Model (11) have identical optimal solutions, then the final collective opinion (i.e. the consensus) for
Model (9) is also obtained.

Pk(ε) : Min Z = ωk|o′ − ok|

s.t.

{
|o′ − oi| ≤ εi, i ∈ N, i ̸= k
o′ ≥ 0

(11)

Proof. See Appendix B. □
Remark 2. Theorem 6 provides consensus reaching conditions for MCCMs in light of the non-

cooperator dk and the consensus o′ obeying a linear uncertainty distribution. And when α = β = 1,
Model (9) is equivalent to Model (7).
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1
2 ≤ β ≤ 1



0 ≤ α ≤ 1
2



ok > min (oi + εi)


ε∗k = min{(β − 1

2 )(b− a), ok −min(oi + εi)}
if ε∗k = (β − 1

2 )(b− a) :

a = min(oi+εi)−2αok
1−2α , b = (2−2α)ok−min(oi+εi)

1−2α

if ε∗k = ok −min(oi + εi) :
a = b = min(oi + εi)

max (oi − εi) ≤ ok ≤ min (oi + εi)

{
a = b = ok
ε∗k = 0

ok < max (oi − εi)


ε∗k = min{(β − 1

2 )(b− a),max(oi − εi)− ok}
if ε∗k = (β − 1

2 )(b− a) :

a = max(oi−εi)+(2−2α)ok
1−2α , b = max(oi−εi)−2αok

1−2α

if ε∗k = max(oi − εi)− ok :
a = b = max(oi − εi)

1
2 ≤ α ≤ 1



ok > min (oi + εi)

{
a = b = min (oi + εi)
ε∗k = ok −min (oi + εi)

max (oi − εi) ≤ ok ≤ min (oi + εi)

{
a = b = ok
ε∗k = 0

ok < max (oi − εi)

{
a = b = max (oi − εi)
ε∗k = max (oi − εi)− ok

(10)

3.3. DMs with uncertain preferences
Suppose individual opinion oi = [ai, bi] obeys an uncertainty distribution, while the random

distribution characteristics of the consensus is not considered (i.e., o′ denoted as a crisp number).
Similar to the aforementioned research idea, deviation between oi and o′ can be expressed using
uncertain measure based on the removal of the absolute value symbols as M{o′ − oi ≤ εi} ≥ α and
M{o′ − oi ≥ −εi} ≥ α, (i ∈ N). Therefore, an optimisation-based MCCM with uncertain preferences is
built as follows.

Min ϕ =
n∑

i=1

ωiεi

s.t.

 Φ−1
i (α) ≤ o′ + εi, i ∈ N

Φ−1
i (1− α) ≥ o′ − εi, i ∈ N

o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(12)

If an individual opinion specifically obeys a linear uncertainty distribution, denoted as oi ∼ L(ai, bi),
where ai and bi are predetermined parameters of di’s original uncertain preference, exhibiting certain
extent of indetermination, i ∈ N . Other variables are similarly defined as in Section 3.1. Model (12)
then equals to Model (13).

Min ϕ =
n∑

i=1

ωiεi

s.t.

 (1− α)ai + αbi − o′ ≤ εi, i ∈ N (13− 1)
o′ − αai − (1− α)bi ≤ εi, i ∈ N (13− 2)
o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (13− 3)

(13)

Theorem 7. Suppose original individual opinions in GDM satisfy linear uncertainty distributions as
oi ∼ L(ai, bi), i ∈ N . If and only if 1

2 ≤ α ≤ 1 and all opinions are organised in order as a1+b1
2 ≤
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a2+b2
2 ≤ · · · ≤ an+bn

2 , analytic formulas of the objective function and the consensus are obtained as:

ϕ∗ =



n∑
i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi], where o′ ∈ [am+bm
2 , am+1+bm+1

2 ],

iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

(
m∑
i=1

ωi −
n∑

i=m+1

ωi)
am+bm

2 +
n∑

i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi], where o′ = am+bm
2 ,

iff
m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Theorem 7 can be verified by a similar mechanism as for Theorem 5, thereby its relevant proof is
omitted here due to space limitation. Note that when 0 ≤ α ≤ 1

2 , there is no general conclusion for
Model (13). In addition, from practical perspective, if the belief degree belongs to the threshold of [0, 12 ],
the CRP discussed makes no sense.

Remark 3. Theorem 7 indicates that once the value of the belief degree α is large enough, the
consensus in Section 3.3 is only related to the mean values of individual opinions expressed by linear
uncertainty distributions. Essentially, Theorem 7 and Theorem 5 are equivalent in forms.

3.4. Non-cooperators considered and DMs with uncertain preferences
Assume there exist a total of t non-cooperators in GDM process (referred to as dk), and all the

individual opinions oi, i∈N obey uncertainty distributions while the consensus is presented as a crisp
number. Since DMs other than dk, k ∈ {1, 2, . . . , t} are like-minded and form a small alliance, then the
whole group will mostly emphasize on dk’s interest, thus, an optimisation-based uncertain MCCM is
constructed as

Min Z =
t∑

i=1

ωkεk

s.t.

 M{o′ − ok ≤ εk} ≥ β,M{o′ − ok ≥ −εk} ≥ β, k ∈ {1, 2, . . . , t} (14− 1)
M{o′ − oi ≤ εi} ≥ α,M{o′ − oi ≥ −εi} ≥ α, i ∈ N\k (14− 2)
o′ ∈ O, o′ ≥ o, εk ≥ 0, k ∈ {1, 2, . . . , t} (14− 3)

(14)

In Model (14), dk, (k ∈ {1, 2, . . . , t}) is non-cooperated with the small alliance in GDM. That is, other
(n− t) DMs have basically reached a temporary consensus, or the (n− t) DMs may have similar interest
or like-minded, so this scenario aims to minimise the total consensus cost (i.e. Z) on dk for adjusting
their opinions. Constraint (14-1) denotes the uncertain measure for those non-cooperators with belief
degree β, while constraint (14-2) represents other individual opinions obeying an uncertainty distribution
under the belief degree of α. Consensus o′ belongs to the feasible set of O, and all opinions are greater
than zero by default. For the logical consistency of this paper and easy to obtain the analytic formulas
of the uncertain MCCMs, hereafter, we still discuss the GDM scenario with only one non-cooperator
considered, then, the above uncertain MCCM is further transformed as Model (15).

Namely, if individual opinions satisfy linear uncertainty distributions as oi ∼ L(ai, bi), then Model
(14) with only one non-cooperator considered is equivalent to Model (15), where ∀i ∈ N , ai and bi are
pre-determined. Similar in Section 3.2, εi, i ̸=k are some known soft-consensus thresholds, α, β are belief
degrees for different DMs, and o′, εk are decision variables. Similarly, when GDM situation involves more
than two non-cooperators, corresponding optimization models with linear uncertain preferences can be
easily solved by software as MATLAB, however, the analytic formulas of their optimal solutions will be
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difficult to obtain then, thus, this paper mainly focuses on the simplest GDM context.
Min Z = ωkεk

s.t.


(1− β)ak + βbk − o′ ≤ εk (15− 1)
o′ − [βak + (1− β)bk] ≤ εk (15− 2)
(1− α)ai + αbi − o′ ≤ εi, i ∈ N, i ̸= k (15− 3)
o′ − [αai + (1− α)bi] ≤ εi, i ∈ N, i ̸= k (15− 4)
o′ ∈ O, o′ ≥ o, εk ≥ 0 (15− 5)

(15)

Theorem 8. If di’s opinion (i ∈ N) obeys a linear uncertainty distribution as oi ∼ L(ai, bi), the analytic
formulas of the objective function and the consensus in Model (15) satisfy constraint (16).


0 ≤ β ≤ 1

2

 βak + (1− β)bk] < G : ε∗k = o′ − βak − (1− β)bk, o′ = G
(1− β)ak + βbk > H : ε∗k = (1− β)ak + βbk − o′, o′ = H
Otherwise : ε∗k = 0, o′ ∈ [(1− β)ak + βbk, βak + (1− β)bk]

∩
[G,H]

1
2 ≤ β ≤ 1


ak+bk

2 < G : ε∗k = o′ − βak − (1− β)bk, o′ = G
ak+bk

2 ∈ [G,H] : ε∗k = (β − 1
2 )(bk − ak), o′ = ak+bk

2
ak+bk

2 > H : ε∗k = (1− β)ak + βbk − o′, o′ = H

(16)

where G = max{(1− α)ai + αbi − εi} and H = min{αai + (1− α)bi + εi}, i ∈ N, i ̸= k.
Proof. See Appendix C. □

3.5. Moderator and DMs with uncertain preferences
Suppose all participants’ opinions (including moderator and individual DMs) obey uncertainty

distributions. Once individuals in the group obey diverse uncertainty distributions, the MCCM
constructed aims to solve heterogeneous GDM problems [13, 14]. However, this is not the focus we
intend to explore, in other words, this paper assumes that all participants obey the same type of
uncertainty distribution. Therefore, a corresponding CRP can be mathematically constructed as:

Min ϕ =
n∑

i=1

ωiεi

s.t.

 M{o′ − oi ≤ εi} ≥ α
M{o′ − oi ≥ −εi} ≥ α
0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(17)

As both individual opinion oi and consensus o′ obey uncertainty distributions, then based on Theorem
3, Model (17) can be further extended as

Min ϕ =
n∑

i=1

ωiεi

s.t.

 Φ−1
o′ (α)− Φ−1

oi (1− α) ≤ εi (18− 1)
Φ−1

oi (α)− Φ−1
o′ (1− α) ≤ εi (18− 2)

0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (18− 3)

(18)

Specifically, suppose DM’s opinion oi = [ai, bi] obeys a linear uncertainty distribution (denoted as
oi ∼ L(ai, bi)), and moderator’s opinion, on behalf of the interest of the whole group, also obeys a
linear uncertainty distribution by default as o′ ∼ L(a, b). Where ai and bi are known parameters of di’s
uncertain preference, while a and b are unknowns to be solved. Model (18) is equivalent to

Min ϕ =
n∑

i=1

ωiεi

s.t.

 a+ (b− a)α+ (bi − ai)α− bi ≤ εi
(bi − ai)α+ (b− a)α− b+ ai ≤ εi
a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(19)

12



Theorem 9. Assume all individual DMs’ opinions satisfy oi ∼ L(ai, bi) and moderator’s opinion satisfies
o′ ∼ L(a, b), and adjust individual original opinions in sequence as a1+b1

2 ≤ a2+b2
2 ≤ · · · ≤ an+bn

2 , then if
and only if 1

2 ≤ α ≤ 1, the optimal solution for Model (19) exists, which satisfies the following conditions:

ϕ∗ =



n∑
i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi],

where a = b ∈ [am+bm
2 , am+1+bm+1

2 ], iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

(
m∑
i=1

ωi −
n∑

i=m+1

ωi)
am+bm

2 +
n∑

i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi],

where a = b = am+bm
2 , iff

m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Theorem 9 can be proved by a same mechanism as for Theorem 5, therefore, its relevant proof is
omitted.

Remark 4. Theorem 9 verifies that once the participants’ opinions obey linear uncertainty
distributions in GDM, the final consensus is only related to the weight allocation and the mean values
of initial opinions for all DMs. Besides, Theorem 9, Theorem 7 and Theorem 5 are formally equivalent.

3.6. Flowchart of MCCMs with uncertain preferences
For clarity, a flowchart of this paper is given as Fig. 3, and the relations between the aforementioned

five GDM scenarios are also summarized in detail.
In specific, we differentiate all the GDM participants into three roles as moderator, individual DMs,

and non-cooperators. Considering that participants usually have disparate standpoints or interests when
facing real-life GDM, uncertain preferences will be accordingly expressed by different roles under various
decision contexts. Thus, Section 3.1 and 3.2 assume that moderator’s opinion is expressed as uncertain
preference (denoted by belief degree and uncertainty distribution) while individuals present crisp number
preferences, and then preference structures of those two roles are reversed in Section 3.3 and 3.4. Finally,
in Section 3.5, participants involved in GDM all present their judgements by uncertain preferences. For
more in line with real-life GDM problems, we also deeply explored the influence of non-cooperators in
uncertain MCCMs in Section 3.2 and 3.4, simultaneously aiming to conduct an association research with
previous MCCMs in [19].

4. Application in carbon quota negotiation

A negotiation abstracted from real-life GDM is conducted in this section, over the carbon emission
quota issue between the government and four local heavily polluting enterprises, so as to further illustrate
the validity of the above five uncertain chance-constrained MCCMs and the proposed theorems. In
addition, this section also deeply investigates the relations between the newly constructed models with
the traditional MCCMs through data analysis.

4.1. Research background
The fifth assessment report of the intergovernmental panel on climate change (IPCC) clearly states

that global warming is intensified according to the observable data over the global surface temperatures
and the rising sea levels, which is largely due to human activities [52]. Therefore, how to reduce the
impact of human activities on the environment through greenhouse gas emission reduction has become
a priority for entire mankind. Jiang et al. [53] proved that the most cost-efficient way to deal with
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global warming is to build a carbon market under which the key problem becomes to allocate carbon
emission quota (hereafter carbon quota). “Carbon emission right” refers to the right of enterprises to
legally discharge greenhouse gases such as carbon dioxide into the atmosphere according to relevant
laws, and “carbon quota” refers to the legal amount for each enterprise within a certain period through
some bargains with the government. Based on the concept of the carbon market, if the actual emission
amounts of enterprises are more than their quotas, then they need to pay for extra quotas to make up
their illegal amounts; conversely, if the actual emission amounts are smaller, then the balance can be sold
out in the carbon market (http://www.tanpaifang.com). Given the above background, a negotiation is
usually conducted over specific carbon quotas between the government and different enterprises, and
thus, the allocation of carbon quotas for various enterprises is essentially a CRP.

How to allocate carbon quotas? Take a certain region as an example, local government can always
provide a rough carbon quota allocation scheme for each enterprise, through comprehensively considering
their historical emission data, advanced emission reduction measures, and future development strategies.
Then, through bargain or negotiation, the government and all enterprises can reach a carbon quota
consensus. In fact, enterprises are mostly profit-oriented and usually believe that environmental actions
lead to financial cost increasing, because their proactive huge investment in green technology may not pay
off for decades [54]. Therefore, it is relatively difficult for enterprises to provide an exact emission index.
Although an exact emission number sometimes needs to be given by enterprises, it is highly likely to have
some deception in that index from the view of enterprises’ interest [49]. Acting as a macro-moderator,
government needs to take into account both economic and social benefits and always stick in line with the
principle of fairness and effectiveness, so as to help enterprises more accurately determine carbon quotas
through multiple means (e.g. game, negotiation, and implementation of relevant administrative orders
or incentives). Obviously, such carbon quota negotiations involving the government (i.e. moderator) and
enterprises (i.e. DMs) can constitute a cost consensus GDM problem. As mentioned earlier, we will not
discuss the economic benefits of enterprises resulting from their subsequent carbon quota transferring (i.e.
trading behaviour in carbon market), which can be viewed as post-consensus decision-making problems
[55], such as how to use tiered pricing after overrun for different heavily polluting enterprises.

4.2. Numerical discussion and sensitivity analysis
Assume four heavily polluting enterprises located in different regions within a same province, with

similar qualifications and scales in the same industry, denoted as di, i ∈ N = {1, 2, 3, 4}. oi is their
original carbon quota (unit: 10,000 tons/year). We assume that to facilitate unified management, the
provincial government needs to set a unified standard (i.e. an optimal carbon quota) for these enterprises.
The optimal carbon quota negotiated above is not only the consensus reached but also the final value
expected by the government, which can be marked as o′. For simplicity, we conduct comparative analysis
with the data in [19, 28] (see Table 1). If there exists a non-cooperator, we might as well assume that
dk = d3, and it holds a special position different from the others (e.g. d3 is a pillar industry within its
region, receiving special support from the government, while others aren’t). Note that, by considering
the moderator’s preference on some specific factors, we can always easily identify such non-cooperators
in real-life GDM.

Case 1. Assume that the original carbon quotas required by four enterprises are o1 = 0, o2 = 3,
o3 = 6, and o4 = 10 (unit: 10,000 tons/year). To promote the allocation of optimal carbon quotas,
unit costs that the provincial government is willing to pay are: ω1 = 1, ω2 = 2, ω3 = 3, and ω4 = 1
(unit:10,000 yuan/ton). Here, we suppose that the optimal quota expected by the government (i.e. o′)
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Table 1 Summary of original decision information
Cases (1) (2) (3) (4) (5)

o′ ∼ L(a, b) o′ ∼ L(a, b) oi ∼ L(ai, bi) oi ∼ L(ai, bi) o′ ∼ L(a, b);oi ∼ L(ai, bi)
Variables oi ωi oi ωi εi oi ωi oi ωi εi oi ωi

d1 0 1 0 - 5 [14,37] 1 [14,37] - 12 [14,37] 1
d2 3 2 3 - 4 [22,30] 2 [22,30] - 5 [22,30] 2
d3 6 3 6 3 - [64,153] 3 [64,153] 3 - [64,153] 3
d4 10 1 10 - 6 [8,61] 1 [8,61] - 36 [8,61] 1

Unknown a, b, εi, ϕ a, b, ε3, Z o′, εi, ϕ o′, ε3, Z a, b, εi, ϕ
Note: ϕ indicates the total consensus cost for all plants di, (i ∈ N); Z indicates the consensus cost for the non-cooperator dk.

Unit for oi, o
′: 10,000 tons/year; unit for wi: 10,000 yuan/ton.

obeys a linear uncertainty distribution, represented as o′ ∼ L(a, b), where a and b are unknown.

Model(4− 1) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.


M{o′ − 0 ≤ ε1} ≥ α,M{o′ − 0 ≥ −ε1} ≥ α
M{o′ − 3 ≤ ε2} ≥ α,M{o′ − 3 ≥ −ε2} ≥ α,
M{o′ − 6 ≤ ε3} ≥ α,M{o′ − 6 ≥ −ε3} ≥ α,
M{o′ − 10 ≤ ε4} ≥ α,M{o′ − 10 ≥ −ε4} ≥ α
o′ ∼ L(a, b), εi ≥ 0, i = 1, 2, 3, 4

Taking the negotiation cost initiated by the government to minimise as our main goal, an MCCM
based on the carbon quota is constructed as Model (4-1), which is finally transformed as Model (4-
11) (see Appendix D). Without regard to the random distribution for the consensus opinion, optimal
solution obtained by [19] is o∗ = 6 and ϕ∗ = 16. Table 2 provides the sensitivity results for Model
(4-1) when the step length for the belief degree α is 0.1. In addition, Table 2 indicates that if and

Table 2 Sensitivity results for Case 1
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ε1 0 1.11 2.5 3 4 6 6 6 6 6 6
ε2 0 0 0 0 1 3 3 3 3 3 3
ε3 0 0 0 0 0 0 0 0 0 0 0
ε4 0 0 0 3 4 4 4 4 4 4 4

o∗ = [a, b] [0,10] [0,11.11] [0,12.5] [0,10] [0,10] 6 6 6 6 6 6
ϕ∗ 0 1.11 2.5 6 10 16 16 16 16 16 16

only if α ≥ 0.5, the optimal carbon quota o∗ reached by polluters and the government evolves from an
uncertainty distribution to a single real value 6, and then, the consensus budget ϕ∗ also reaches a stable
level of 16. Moreover, when we take the belief degree α as an unknown variable, then its optimal solution
solved by Model (4-1) is α∗ = [0.5, 1]. Compared to the results in [19], Corollary 2 holds. As polluters’
original carbon quotas have already been ranked in an ascending order, and due to ω1 + ω2 < ω3 + ω4,
ω1 + ω2 + ω3 > ω4, the optimal quota for minimising the objective function is o∗ = o3 = 6, so Theorem
5 is verified.

Combined with the research background, when the belief degree is rather low (i.e. α < 0.5), the
provincial government can only obtain a threshold for the optimal carbon quota. However, when the
belief degree is no less than 0.5, the optimal carbon quota is constant at 60,000 tons/year, meaning that
once the government’s belief degree reaches a critical value (i.e. 0.5), the optimal quota will stabilize to
a fixed value. Next, we economically explain the changes in carbon quotas for each polluter. Enterprises
d1 and d2 require a relatively low quota at the beginning, possibly due to the overconfidence or lack
of comprehensive verification of their emission capacity, but the government believes that they should
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get 60,000 tons of quota per year from the perspective of their previous emission situation or future
development demands. As for d4, a rather high quota is given on the account of excessive conservatism
or the desire to obtain more economic subsidies from the government. However, d4 should finally lower
its emission standard to balance the environmental and economic benefits.

As we stated earlier, if the actual emission amounts of enterprises are less than the allocated quotas,
the balance can produce certain economic benefits in the carbon market, which can be regarded as an
incentive to promote emission reduction. Conversely, for polluters whose real emission amounts exceed
the allocated quota, only by purchasing extra quotas, can they complete their business targets, and
then, the transaction can be considered as a negative incentive. In short, irrespective of how much the
polluters actually emit, the government can always achieve the emission reduction target by setting an
optimal carbon quota.

Case 2. As shown in Table 1, enterprise d3 acts as a non-cooperator, and the government provides
it a unit negotiation cost as ω3 = 3 (unit: 10,000 yuan/ton). Meanwhile, to make the CRP more
flexible, final optimal carbon quotas for other three polluters have soft- consensus thresholds as ε1 = 5,
ε2 = 4 and ε4 = 6 (unit: 10,000 tons/year). Assume the optimal quota o′ obeys a linear uncertainty
distribution as o′ ∼ L(a, b) by default. Aiming to minimise the total budget, an uncertain carbon quota
MCCM is built as Model (4-2) and its linear equivalent form is Model (4-21) (see Appendix D). Ref
[19] provided an optimal solution as o∗ = 5, Z∗ = 3 without considering DMs’ opinions characterizing
random distributions.

Model(4− 2) : Min Z = 3 ∗ ε3

s.t.



M{o′ − 6 ≤ ε3} ≥ β,M{o′ − 6 ≥ −ε3} ≥ β
M{o′ − 0 ≤ ε1} ≥ α,M{o′ − 0 ≥ −ε1} ≥ α
M{o′ − 3 ≤ ε2} ≥ α,M{o′ − 3 ≥ −ε2} ≥ α
M{o′ − 10 ≤ ε4} ≥ α,M{o′ − 10 ≥ −ε4} ≥ α
0 ≤ ε1 ≤ 5, 0 ≤ ε2 ≤ 4, 0 ≤ ε4 ≤ 6, ε3 ≥ 0
o′ ∼ L(a, b), a ≤ b, 0 ≤ α, β ≤ 1

In fact, Case 2 introduces the soft-consensus constraints based on Case 1, and analyses the consensus
GDM with only considering some non-cooperators instead of all DMs. Table 3 provides sensitivity results
for the variable α in Model (4-2) when another belief degree set for the non-cooperator d3 is fixed as
β = 0.6. For detailed analysis, we identify the consensus reaching conditions with all DMs’ carbon
quotas being crisp numbers, while the emission index for the local government obeys a linear uncertainty
distribution. Namely, we draw conclusions by adapting the belief degree α within the interval of [0,1] for
the other three polluters during the carbon quota negotiation. Through calculation, we find that once
the soft-consensus thresholds are given in advance, the optimal values for variables εi, i ̸=k, i∈N always
take the upper limits as ε∗1 = 5, ε∗2 = 4 and ε∗4 = 6, so these values are omitted in Table 3.

Table 3 Sensitivity results for Case 2.
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
ε3 0.2 0.25 0.33 0.5 1 1 1 1 1 1 1

o∗ = [a, b] [5,7] [4.75,7.25] [4.33,7.67] [3.5,8.5] [1,11] 5 5 5 5 5 5
Z∗ 0.6 0.75 1 1.5 3 3 3 3 3 3 3

Table 3 indicates that when α ≥ 0.5, the optimal carbon quota becomes a fixed constant from an
uncertainty distribution. ∀i ∈ N, i ̸= k, max(oi − εi) = 4, min(oi + εi) = 5, we have ok=3 = 6 >
min(oi + εi). Therefore, when α ≤ 0.5, we obtain the optimal value for ε∗k and further obtain accurate
values for a and b, by comparing the sizes of (β−0.5)(b−a) and ok−min(oi+εi). Taking the situation of
α = 0.3, β = 0.6 as an example, we have a = [min(oi+εi)−2α∗ok]/(1−2α) = (5−2∗0.3∗6)/(1−2∗0.3) =
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3.5 and b = [(2 − 2α)ok − min(oi + εi)]/(1 − 2α) = [(2 − 2 ∗ 0.3) ∗ 6 − 5]/(1 − 2 ∗ 0.3) = 8.5. Thus,
ε∗k = min{(β − 0.5)(b − a), ok −min(oi + εi)} = 0.5. Meanwhile if α ≥ 0.5, for ok = 6 > min(oi + εi)
always holds, thereby a∗ = b∗ = 5, Z∗ = ω3 ∗ (o3 −min(oi + εi)) = 3. Obviously, above calculations are
in accordance with the data in Table 3, so Theorem 6 holds.

Owing to the randomness of data selection, Case 2 only validates the conclusion of ok > min(oi+εi).
By adjusting d3’s original carbon quota, the rest of Theorem 6 can always be validated by a similar
mechanism.

Case 3. Initial emission quotas of the four polluters are listed in Table 1. The local government, for
obtaining an optimal allocation with unified standards, provides each enterprise a unit cost as ω1 = 1,
ω2 = 2, ω3 = 3, and ω4 = 1 (unit:10,000 yuan/ton). Here, the final collective carbon quota is defaulted
as a crisp number, while the original emission indexes for the four polluters obey linear uncertainty
distributions. Thus, an uncertain MCCM is constructed as Model (4-3), whose optimal solution is solved
by Model (4-31) (see Appendix D).

Model(4− 3) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.


M{o′ − oi ≤ εi} ≥ α, i = 1, 2, 3, 4
M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 3, 4
o1 ∼ L(14, 37), o2 ∼ L(22, 30),
o3 ∼ L(64, 153), o4 ∼ L(8, 61)
o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

With no uncertain chance-constraints, an optimal solution presented in [28] is o∗ = [37, 61], ϕ∗ = 95.
Previous work only regards DMs’ opinions as intervals, without considering the characteristics of opinions
obeying random distributions.

Table 4 Sensitivity results for Case 3.
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ε1 0 0 0 0 1.4 9 11.3 13.6 15.9 18.2 20.5
ε2 7 5.5 4 2.5 2.4 8.5 9.3 10.1 10.9 11.7 12.5
ε3 27 38.2 49.4 60.6 70.4 74 82.9 91.8 100.7 109.6 118.5
ε4 0 0 0 0 0 0 5.3 10.6 15.9 21.2 26.5
o∗ [37,61] [34.7,55.7] [32.4,50.4] [30.1,45.1] [29.2,39.8] 34.5 34.5 34.5 34.5 34.5 34.5
ϕ∗ 95 125.6 156.2 186.8 217.4 248 283.9 319.8 355.7 391.6 427.5

When belief degree α is an unknown parameter, we obtain α∗ = 0 and o∗ = [37, 61], ϕ∗ = 95 (see
Column 2 in Table 4), corresponding to the optimal solution in [28]. Note that, keeping α∗ = 0, ϕ∗ = 95
constant, the variable o∗ can be any optimal value within the interval [37,61] and variables εi, i∈N will
change with the specific value of o∗. Due to εi, i∈N have no effect on the final results, relevant analysis
is omitted in the paper.

Table 4 intuitively shows that once the uncertain belief degree of the carbon quota negotiation satisfies
α ≥ 0.5, the optimal consensus expected by the moderator becomes a real value from an uncertainty
distribution. As original emission indexes of the four DMs haven’t been ranked in an ascending order,
Table 5 gives the updated values to conveniently verify the effectiveness of relevant theorems. Since
ω(1) + ω(2) < ω(3) + ω(4), ω(1) + ω(2) + ω(3) > ω(4), the optimal carbon quota is obtained as o∗ =
a(3)+b(3)

2 = 69
2 = 34.5. Then, using the analytic formula of the objective function in Theorem 7, values of

ϕ∗ calculated are identical with the data in Table 4. Thus, Theorem 7 holds.
Case 4. Similar as in Case 2, d3 is assumed as the non-cooperating enterprise. Data of polluters’

original carbon quotas, unit cost for d3 as well as the soft-consensus thresholds for the other three
enterprises are all listed in Table 1. Here, the consensus o′ obtained for the government is defaulted as a
crisp number, while DMs’ preferences obey linear uncertainty distributions. Then, Model (4-4) is built
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Table 5 Updated opinions in Case (3-5) with an ascending order
Updated Origin ai bi ai + bi weight

o(1) o1 14 37 51 1
o(2) o2 22 30 52 2
o(3) o4 8 61 69 1
o(4) o3 64 153 217 3

Note: oi represents the opinion for the original i-th DM;
o(i) represents the opinion for the updated i-th DM in an ascending order.

with great emphasis on d3’s interest. Table 6 and Table 7 are obtained by solving Model (4-41) (see
Appendix D).

Model(4− 4) : Min Z = 3 ∗ ε3

s.t.



M{o′ − o3 ≤ ε3} ≥ β,M{o′ − o3 ≥ −ε3} ≥ β
M{o′ − oi ≤ εi} ≥ α,M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 4
o1 ∼ L(14, 37), o2 ∼ L(22, 30),
o3 ∼ L(64, 153), o4 ∼ L(8, 61)
0 ≤ ε1 ≤ 12, 0 ≤ ε2 ≤ 5, 0 ≤ ε4 ≤ 36
o′ ≥ o, ε3 ≥ 0

Table 6 provides the sensitivity results over the belief degree α, which is set for the small alliance
(including polluters d1, d2 and d4), meantime, the belief degree imposed on o3 and o′ is fixed as β = 0.75.
Table 7 gives the sensitivity results over the belief degree β for d3. Similar in Case 2, once εi,i∈N,i ̸=k are
pre-defined, their optimal values are exactly the pre-determined upper limits, so values of ε∗1, ε∗2, ε∗4 are
omitted in Table 6 and Table 7.

Table 6 Sensitivity results for Case 4 on α when β = 0.75.
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
ε3 95.75 96.55 97.35 98.15 98.95 99.75 100.55 101.35 102.15 102.95 104.75
o∗ 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 26
z∗ 287.25 289.65 292.05 294.45 296.85 299.25 301.65 304.05 306.45 308.85 314.25

i = 1 2 4.3 6.6 8.9 11.2 13.5 15.8 18.1 20.4 22.7 25
i = 2 17 17.8 18.6 19.4 20.2 21 21.8 22.6 23.4 24.2 25
i = 4 -28 -22.7 -17.4 -12.1 -6.8 -1.5 3.8 9.1 14.4 19.7 25

G = Max 17 17.8 18.6 19.4 20.2 21 21.8 22.6 23.4 24.2 25
i = 1 49 46.7 44.4 42.1 39.8 37.5 35.2 32.9 30.6 28.3 26
i = 2 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 27
i = 4 97 91.7 86.4 81.1 75.8 70.5 65.2 59.9 54.6 49.3 44

H = Min 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 26
Note: G = Max{(1− α) ∗ ai + α ∗ bi − εi}, H = Min{α ∗ ai + (1− α) ∗ bi + εi}, i ∈ N, i ̸= k

Table 7 Sensitivity results for Case 4 on β when α = 0.86.
α 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ε3 35.88 44.78 53.68 62.58 71.48 80.38 89.28 98.18 107.08 115.98 124.88
o∗ 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12
Z∗ 107.64 134.34 161.04 187.74 214.44 241.14 267.84 294.54 321.24 347.94 374.64

Values of the total cost and the consensus calculated by the analytic formula in Theorem 8 are exactly
the same as the data in Table 6 and Table 7. However, detailed analysis for Case 4 is omitted here due
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to space limitation. Note, Case 4 only validates part of the conclusions in Theorem 8, but by adjusting
the value of o3, the remaining parts can also be verified.

Case 5. Assume all participants involved in this negotiation obey linear uncertainty distributions.
Relevant data is provided as Table 1, so an uncertain chance-constrained MCCM is constructed as Model
(4-5) and its equivalent linear transformation is Model (4-51) (see Appendix D).

Model(4− 5) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.


M{o′ − oi ≤ εi} ≥ α, i = 1, 2, 3, 4
M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 3, 4
o′ ∼ L(a, b), o1 ∼ L(14, 37), o2 ∼ L(22, 30),
o3 ∼ L(64, 153), o4 ∼ L(8, 61)
a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

By solving Model (4-51), optimal solutions under different belief degrees are obtained as Table 8.
Simultaneously, Table 8 provides the changes for both the optimal carbon quota o∗ and the optimal total
cost ϕ∗ with the variable α.

Table 8 Sensitivity results for Case 5.
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ε1 0 0 0 8.77 38.6 9 11.3 13.6 15.9 18.2 20.5
ε2 0 0 0 11.27 39.6 8.5 9.3 10.1 10.9 11.7 12.5
ε3 0 0 0 0 0 74 82.9 91.8 100.7 109.6 118.5
ε4 0 0 0 0 26.6 0 5.3 10.6 15.9 21.2 26.5

o∗ = [a, b] [0,64] [0,81] [0,102.25] [0,129.57] [0,166] 34.5 34.5 34.5 34.5 34.5 34.5
ϕ∗ 0 0 0 31.31 144.4 248 283.9 319.8 355.7 391.6 427.5

Once α ≥ 0.5, the optimal allocation values evolves from an uncertainty distribution to the real value
of 34.5. Similar as the analysis in Case 3, o∗ =

a(3)+b(3)
2 = 69

2 = 34.5 is obtained by referring to Table 5.
Negotiation costs calculated by the analytic expression of ϕ∗ are in accordance with the data in Table 8.
Taking α = 0.7 as an example, ϕ∗ = (ω(1) +ω(2) +ω(3) −ω(4)) ∗ 34.5+ω(4) ∗ (0.3 ∗ 64+ 0.7 ∗ 153)−ω(1) ∗
(0.7 ∗ 14 + 0.3 ∗ 37)− ω(2) ∗ (0.7 ∗ 22 + 0.3 ∗ 30)− ω(3) ∗ (0.7 ∗ 8 + 0.3 ∗ 61) = 319.8. So Theorem 9 holds.

4.3. Comparison and discussion
Due to serious deterioration of the global environment, the reduction of carbon emission has become

a key measure to improve the ecological system, so we choose the application in carbon quota negotiation
to verify the feasibility of the proposed models. Results show that the calculated values correspond to the
analytic formulas of the optimal solutions under each scenario, verifying the correctness of the theorems
obtained by theoretical deduction. Moreover, findings in the application indicate that traditional crisp
number- or interval preference-based MCCMs are some special cases of the new uncertain MCCMs,
suggesting that uncertainty theory can build a bridge between deterministic and indeterministic GDM.
Finally, we find that once the belief degree, set for the deviation of polluters’ and government’s quota
indexes, is larger than the critical value of 0.5, then the optimal carbon quota consensus will be crisp
numbers and no longer obey uncertainty distributions. The above conclusion implies that only belief
degree is large enough, GDM can achieve a deterministic consensus and the carbon quota negotiation
can then be effectively conducted to some extent.

To illustrate the novelty of our research, we conduct a comparative analysis (see Table 9).
Distinguished from previous research, we build the consensus models from three decision roles, by
introducing non-cooperators into traditional MCCMs. Meanwhile, we first introduce Liu’s uncertainty
theory into consensus modeling, by adopting belief degree and uncertainty distribution as a whole to fit
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individual preferences, and find out the relations between the deterministic and indeterministic GDM
through theoretical deduction. Finally, we apply the proposed models into the carbon emission quota
allocation negotiation problem to verify their feasibility. However, it is undeniable that some important
contributions in relevant MCCMs/ MACMs may be neglected in this paper, such as setting an
aggregation function over the adjusted individual opinions to obtain a consensus [2, 10, 27], using
consensus level to measure the efficiency of CRP [2, 10], or considering the asymmetric characteristic of
unit costs [5].

Table 9 Comparative analysis on relevant MCCMs/ MACMs.
Consensus models Decision roles DM’s preference Application

This paper
Moderator;

individual DMs;
non-cooperators

Uncertainty distributions
and belief degree Carbon emission quota allocation

Ben-Arieh and Easton [20] Moderator;
individual DMs Crisp numbers None-numerical examples

Dong et al. [10] Individual DMs Linguistic preferences None-numerical examples
Zhang et al. [27] Individual DMs Crisp numbers Apartment selection

Gong et al. [28] Moderator;
individual DMs Interval preferences None-numerical examples

Gong et al. [19] Moderator;
individual DMs Crisp numbers None-numerical examples

Zhang et al. [2] Moderator;
individual DMs Crisp numbers Loan consensus problems in

Online P2P lending

Cheng et al. [5] Moderator;
individual DMs Crisp numbers Trans-boundary pollution control

Inspired by the fact that flexible management has been a premiere goal pursued by Chinese
government, in order to encourage high-quality development of enterprises, the negotiation over the
carbon emission quota allocation problem is chosen as our case background. In fact, when setting
carbon emission reduction quotas for different enterprises with similar scales, it can better reflect the
government’s humanized management by setting uncertain indicators rather than some deterministic
and fixed ones, which may also be understood as the practical significance of the uncertainty
constraints in this paper. Without doubt, our newly proposed uncertain MCCMs can provide
significant managerial implications for moderators to deal with real-life GDM problems with flexible
requirements, such as targeted recommendation system purchasing based on advertisers’ market share,
and second-hand housing selection bargain from different agencies.

5. Conclusion

Compared to traditional deterministic preferences, fitting DMs’ preferences with uncertainty
distributions is more suitable for real-life decision-making contexts, especially for complex GDM. In
this paper, linear uncertainty distributions are adopted to fit individual judgements, and a series of
uncertain MCCMs are proposed. Through transformation into equivalent linear programming models,
the analytic formulas of the optimal consensus and minimum total cost under each scenario are given
in the paper. We find out that the uncertain preference-based MCCMs are more inclusive than those
traditional ones, in other words, the basic conclusions of the crisp number- or interval preference-based
models are some special cases of uncertain MCCMs under different belief degrees, thus our research is
more flexible in actual GDM. In addition, optimal solution of each uncertain chance-constrained
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MCCM is theoretically provided, and the feasibility of the proposed models are further verified with
the application in carbon quota negotiation between enterprises and the local government.

Main contributions of this paper are as follows. Firstly, this paper builds the optimisation-based
MCCMs from multiple decision roles (i.e., the moderator, individual DMs, and non-cooperators).
Secondly, belief degree and uncertainty distributions are used as a whole to simulate DMs’ preference
structure, making the new models more feasible than those traditional ones (i.e., crisp number- or
interval preference-based MCCMs), better avoiding the paradox in interval operations (e.g.
[1, 3] − [1, 3] = [−2, 2] ̸= [0, 0]), and maintaining the integrity of decision information by analyzing
individual uncertain opinions as a whole instead of only endpoints being considered. Thirdly, consensus
reaching conditions under different GDM scenarios are presented through mathematical deduction. By
taking the application in carbon quota negotiation, the proposed models are verified as a more general
paradigm of the traditional MCCMs.

This paper explores consensus reaching conditions in homogenous GDM, but real-life decision is
rather complex and changeable, making it highly possible for involved participants to simultaneously
present completely different preference structures. So, in the future, we may deal with heterogeneous
GDM problems [14, 56] by modeling non-linear uncertain chance-constrained MCCMs. At present,
unit costs attached to DMs are subjectively given in the paper, afterwards, we may adopt some robust
methods, such as game theory [46], to assure those parameters to be more reasonable. In specific, we
may need to set variable unit costs for DMs to deal with the situation under which tiered pricing is set
for heavily polluting enterprises after overrun. Finally, in this paper, we aim to figure out how an optimal
consensus can be reached within each certain stage of the whole GDM process under the uncertain chance
constraints, neglecting the dynamic characteristics for the whole process, which are definitely of great
significance for GDM, so our subsequent research may also focus on dynamic uncertain MCCMs with
feedback mechanism [6, 30, 57] or social interactions [12, 29, 49].
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Appendix A. Proof of Theorem 5.

Proof. Without loss of generality, we suppose n DMs participate in GDM, and their decisions satisfy
o1 ≤ o2 ≤ · · · ≤ om ≤ om+1 ≤ · · · ≤ on. Furthermore, let om ≤ a+b

2 ≤ om+1, then when α ≥ 0.5, the
constraints of Model (5) are simplified as

Φ−1(α)− oi ≥ a+b
2 − oi ≥ 0 (i = 1, 2, · · ·m);

−Φ−1(1− α) + oi ≥ −a+b
2 + oi ≥ 0 (i = m+ 1, · · ·n).

At this point, the objective function satisfies

min

n∑
i=1

ωiεi = ω1(Φ
−1(α)− o1) + · · ·+ ωm(Φ−1(α)− om)

+ωm+1(−Φ−1(1− α) + om+1) + · · ·
+ωn(−Φ−1(1− α) + on)

≥
n∑

i=m+1

ωioi −
m∑
i=1

ωioi +
a+b
2 (

m∑
i=1

ωi −
n∑

i=m+1

ωi)
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If and only if Φ−1(α) = Φ−1(1− α) = a+b
2 , the above inequality takes the mark of equality, then we

obtain a = b and min
n∑

i=1
ωiεi =

n∑
i=m+1

ωioi −
m∑
i=1

ωioi + a(
m∑
i=1

ωi −
n∑

i=m+1
ωi).

Next, the optimal analytic expression of the objective function is derived by comparing
m∑
i=1

ωi and
n∑

i=m+1
ωi.

• If
m∑
i=1

ωi =
n∑

i=m+1
ωi, then a = b can be any value in the interval of [om, om+1], and ϕ∗ =

n∑
i=m+1

ωioi−
m∑
i=1

ωioi.

• If
m−1∑
i=1

ωi <
n∑

i=m
ωi and

m∑
i=1

ωi >
n∑

i=m+1
ωi, because ωi,i∈N are positive constants, the objective

function ϕ first decreases and then increases with the variable a. Thus, when a = b = om, the
optimal value for the objective function will be ϕ∗ =

n∑
i=m+1

ωi(oi − om) +
m∑
i=1

ωi(om − oi).

This completes the proof for Theorem 5. □

Appendix B. Proof of Theorem 6.

Proof. Theorem 6 is derived in two steps: (1) Determination of the analytic formula of the objective
function min Z = ωkεk(a, b). As the parameter ωk is pre-defined, only the formula of ε∗k = min εk(a, b)
actually needs solving. Then (2), determination of the optimal solutions for variables a, b and ε∗k.

Part 1. Determination of ε∗k = min εk(a, b).
As the value of εk only depends on the constraints of (9-1) and (9-2), let A = (1− β)a+ βb− ok and

B = −βa+(β−1)b+ok. Compared to the sizes of A and B, the following three situations are discussed:

• Case 1: If A = B, then a+ b = 2ok, making εk ≥ A = (β − 1
2)(b− a) hold.

– If 1
2 ≤ β ≤ 1, then ε∗k = (β − 1

2)(b− a);
– If 0 ≤ β ≤ 1

2 , then (β − 1
2)(b− a) ≤ 0; also due to εk ≥ 0, then ε∗k = 0 is obtained.

• Case 2: if A > B, we obtain a+ b > 2ok.

– If 1
2 ≤ β ≤ 1, then εk = A ≥ a+b

2 − ok, so if and only if a = b, the above inequality takes the
mark of equality, making ε∗k = a+b

2 − ok;
– If 0 ≤ β ≤ 1

2 , we obtain εk = A ≤ a+b
2 − ok. However, due to εk ≥ 0 and a+b

2 − ok > 0, we get
0 ≤ εk ≤ a+b

2 − ok. Thus, ε∗k = 0.

• Case 3: If A < B, we obtain a+ b < 2ok.

– If 1
2 ≤ β ≤ 1, we obtain εk = B ≥ ok − a+b

2 , so if and only if a = b, the above inequality takes
the mark of equality, then ε∗k = ok − a+b

2 holds;
– If 0 ≤ β ≤ 1

2 , we get εk = B ≤ ok − a+b
2 ; by taking both εk ≥ 0 and ok − a+b

2 > 0 into
consideration, we obtain 0 ≤ εk ≤ ok − a+b

2 . Thus, ε∗k = 0.
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Above all,

ε∗k =


(β − 1

2 )(b− a), iff β ∈ [ 12 , 1], a+ b = 2ok (B1− 1)
a+b
2 − ok, iff β ∈ [ 12 , 1], a = b, a+ b > 2ok (B1− 2)

ok − a+b
2 , iff β ∈ [ 12 , 1], a = b, a+ b < 2ok (B1− 3)

0, iff β ∈ [0, 1
2 ] (B1− 4)

(B1)

Part 2. Determination of optimal solutions for a, b and ε∗k.
As the analytic formula for min εk is determined in Part 1 and the original opinion ok for the non-

cooperator dk with greater influence is known in advance, the value of ε∗k mainly depends on those of
a + b and b − a. Without loss of generality, let a + b = m and b − a = n, then we have a = m−n

2 and
b = m+n

2 . By substituting constraints (9-3) and (9-4), we get{
(1− α) · m−n

2 + α · m+n
2 − oi ≤ εi

−α · m−n
2 + (α− 1) · m+n

2 + oi ≤ εi
(B2)

After simplifying the inequality (B2), ∀i ∈ N, i ̸= k, the range of m is solved as

(2α− 1)n+ 2(oi − εi) ≤ m ≤ 2(oi + εi)− (2α− 1)n (B3)

By fully considering the values of oi, εi, and n, the above formula is equivalent to

min [max 2(oi − εi) + (2α− 1)n] ≤ m ≤ max [min 2(oi + εi)− (2α− 1)n] (B4)

Taking both the actual GDM and the construction mechanism of uncertainty theory into account,
opinions of the non-cooperator dk with great influence cannot be ignored, so the belief degree β for dk’s
original opinion ok and the finally reached consensus o′ should satisfy the condition of β ≥ 1

2 . Then,
the CRP makes sense. Based on the conclusion derived from Part 1, the optimal value of the objective
function is always equal to zero when 0 ≤ β ≤ 1

2 . Thus, only the situation of 1
2 ≤ β ≤ 1 will be discussed

below. For simplicity, let E = max 2(oi − εi) + (2α− 1)n and F = min 2(oi + εi)− (2α− 1)n.
Situation 1: When 0 ≤ α ≤ 1

2 and 1
2 ≤ β ≤ 1, we get 2α − 1 ≤ 0, considering n = b − a ≥ 0, so

E monotonically decreases with respect to n, while F monotonically increases with respect to n. On
account of inequality constraints (B4), if ∃a, b, 0 ≤ a ≤ b such that a + b = 2ok, then min εk exists,
satisfying ε∗k = (β− 1

2)(b−a). In view of α, the optimal values of a and b are gained from three scenarios.

i i

i i

E= max2(o - ε )+(2α -1)n

F = min2(o + ε )-(2α -1)n

E F

( )i imax2 o - ε ( )i imin2 o +ε

m= a+b

k
2o

a

E F

( )i imax2(( ( )i imin2((

m= a+b

kkkkkk
222oo222oo222oo222

E F

m= a+b

k
2o

E F

( )i imax2 o - ε ( )i imin2 o +ε

m= a+b

k
2o

b

E F

m= a+b

kkkkkk
222oo222oo222oo222

E F

( )i imax2(( ( )i imin2((

m= a+b

kkkk
22oo22oo2222

c

( )i imax2 o - ε ( )i imin2 o +ε

Fig. B1 Discussion on 0 ≤ α ≤ 1
2 and 1

2 ≤ β ≤ 1
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• As shown in Fig. B1(a), when ok > min (oi + εi), then 2ok > min 2(oi + εi) is obtained.
1. If 2ok ≤ F , then min2(oi + εi) < 2ok ≤ min2(oi + εi) − (2α − 1)n, that is, when n ≥

2ok−min2(oi+εi)
1−2α , then a + b = 2ok holds; thus, minεk = (β − 1

2)(b − a) = (β − 1
2)n is derived.

Obviously, εk is a monotonically increasing function of n, so once n takes the minimum value,
namely n = b− a = 2ok−min2(oi+εi)

1−2α , ε∗k exists. On the basis of the formulas of a+ b and b− a,
we get 

a = min (oi+εi)−2αok
1−2α

b = (2−2α)ok−min (oi+εi)
1−2α

ε∗k = (β − 1
2)(b− a)

2. If 2ok > F , then a + b < 2ok, such that minεk = ok − a+b
2 . Obviously, εk monotonically

decreases with the variable of (a+ b). Therefore, once a+ b takes the maximum value, namely
a+ b = m = F = min 2(oi + εi)− (2α− 1)n, then ε∗k exists and a = b holds. In other words,
n = 0 is obtained. Thus, if a = b = min (oi + εi), the optimal objective function will be
ε∗k = ok −min (oi + εi).

As a result, when ok > min (oi+εi), we obtain ε∗k = min {(β− 1
2)(b−a), ok−min (oi+εi)}, where if

ε∗k = (β− 1
2)(b−a), then a = min (oi+εi)−2αok

1−2α and b = (2−2α)ok−min (oi+εi)
1−2α ; if ε∗k = ok−min (oi+εi),

then a = b = min (oi + εi) holds.

• As shown in Fig. B1(b), max(oi − εi) ≤ ok ≤ min(oi + εi), for n = b − a ≥ 0, so 2ok ∈
[max2(oi − εi),min2(oi + εi)] ⊆ [E,F ]. Clearly, ∃m such that m = a + b = 2ok. That is, when
minεk = (β − 1

2)(b − a) = (β − 1
2)n, then n = b − a = 0 holds. Thus, if a = b = ok, we obtain

ε∗k = 0.

• As shown in Fig. B1(c), ok < max(oi − εi), so 2ok < max2(oi − εi).
1. If 2ok ≥ E, then max2(oi − εi) + (2α − 1)n ≤ 2ok < max(oi − εi), and we have n ≥

max2(oi−εi)−2ok
1−2α . Because minεk = (β− 1

2)(b−a) = (β− 1
2)n can be obtained when a+b = 2ok,

obviously, once n takes the minimum value, namely when n = max2(oi−εi)−2ok
1−2α = b−a, ε∗k exists.

Due to the formulas of a+ b and b− a, we obtain
a = max (oi−εi)+(2−2α)ok

1−2α

b = max (oi−εi)−2αok
1−2α

ε∗k = (β − 1
2)(b− a)

2. If 2ok < E, then a+ b > 2ok, so we get min εk = a+b
2 − ok. Obviously, εk is increasing with

(a+ b). Thus, if a+ b takes the minimum value, that is, a+ b = m = E = max 2(oi − εi) +
(2α − 1)n, ε∗k exists. Based on the constraint of (B1-2), a = b holds (i.e. n = 0). Therefore,
once a = b = max (oi − εi), we always have ε∗k = max (oi − εi)− ok.

As a result, if ok < max (oi − εi), ε∗k = min {(β − 1
2)(b − a),max (oi − εi) − ok}, where if ε∗k =

(β− 1
2)(b−a), we have a = max (oi−εi)+(2−2α)ok

1−2α and b = max (oi−εi)−2αok
1−2α ; if ε∗k = max (oi−εi)−ok,

we get a = b = max (oi − εi).

Situation 2: When 1
2 ≤ α ≤ 1 and 1

2 ≤ β ≤ 1, we obtain 2α − 1 ≥ 0, as n = b − a ≥ 0, making
E monotonically increase with respect to n and F monotonically decrease with respect to n. Then, we
divide a similar discussion into three scenarios.
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Fig. B2 Discussion on 1
2 < α ≤ 1 and 1

2 ≤ β ≤ 1.

• As shown in Fig. B2(a), if ok > min (oi + εi), then 2ok > min 2(oi + εi); thus, m = a + b ≤
min 2(oi + εi)− (2α − 1)n ≤ min 2(oi + εi) < 2ok and then min εk = ok − a+b

2 . Obviously, εk is
a monotonically decreasing function of (a+ b). In view of formula (B1-3) in Part 1, as a = b and
a+ b = min 2(oi + εi), we have a = b = min (oi + εi) and ε∗k = ok −min (oi + εi).

• As shown in Fig. B2(b), if max (oi − εi) ≤ ok ≤ min (oi + εi), then max 2(oi − εi) ≤ 2ok ≤
min 2(oi + εi); if and only if n = 0, then m = a + b = 2ok holds. Thus, a = b = ok and
ε∗k = (β − 1

2)(b− a) = 0.

• As shown in Fig. B2(c), if ok < max (oi− εi), then 2ok < max 2(oi− εi) ≤ max 2(oi− εi)+ (2α−
1)n ≤ m = a+b. Considering the formula (B1-2) in Part 1, we obtain a = b and min εk = a+b

2 −ok.
Obviously, εk increases with (a+ b), so if a = b = max (oi − εi), ε∗k = max (oi − εi)− ok holds.

Above all, conditions of the existence for ε∗k and o∗ in Model (9) are obtained as Theorem 6. □

Appendix C. Proof of Theorem 8.

Proof. From constraints (15-3) and (15-4), we have (1− α)ai + αbi − εi ≤ o′ ≤ αai + (1− α)bi + εi,
where i ∈ N, i ̸= k. The above inequalities are equivalent to max{(1−α)ai+αbi−εi} ≤ o′ ≤ min{αai+
(1− α)bi + εi}. For simplicity, let G = max{(1− α)ai + αbi − εi} and H = min{αai + (1− α)bi + εi},
(i ∈ N, i ̸= k), such that G ≤ o′ ≤ H.

From constraints (15-1) and (15-2), we have

• If (1− β)ak + βbk − o′ = o′ − [βak + (1− β)bk], we have ak + bk = 2o′, then min εk = (1− β)ak +
βbk − ak+bk

2 = (β − 1
2)(bk − ak). When 1

2 ≤ β ≤ 1, then ε∗k = (β − 1
2)(bk − ak) ≥ 0 holds, and when

0 ≤ β ≤ 1
2 , (β − 1

2)(bk − ak) ≤ 0, for εk ≥ 0, we have ε∗k = 0.

• If (1−β)ak +βbk − o′ < o′− [βak +(1−β)bk], we have ak + bk < 2o′, and if and only if 1
2 ≤ β ≤ 1,

ε∗k = o′ − [βak + (1− β)bk] > 0 holds; when 0 ≤ β ≤ 1
2 , for εk ∈ [0, o′ − ak+bk

2 ]; thus, ε∗k = 0.

• If (1−β)ak +βbk − o′ > o′− [βak +(1−β)bk], we have ak + bk > 2o′, and if and only if 1
2 ≤ β ≤ 1,

ε∗k = (1− β)ak + βbk − o′ > 0 holds; when 0 ≤ β ≤ 1
2 , then εk ∈ [0, ak+bk

2 − o′]; thus, ε∗k = 0.
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If 1
2 ≤ β ≤ 1, we should discuss the sizes of (ak + bk) and 2o′, so as to obtain the existing conditions

for o′.

a

c

bbb

Fig. C1 Comparative analysis between o′ and ak+bk
2 .

• As shown in Fig. C1(a), if ak+bk
2 < G, namely ak + bk < 2o′, then minεk = o′− [βak +(1−β)bk] is

a monotonically increasing function with respect to o′. Therefore, when o′ = G = max{(1−α)ai+
αbi − εi}, ε∗k exists, and ε∗k = max{(1− α)ai + αbi − εi} −βak − (1− β)bk.

• As shown in Fig. C1(b), if G ≤ ak+bk
2 ≤ H, then ak + bk = 2o′ holds; thus, when o′ = ak+bk

2 ,
ε∗k = (β − 1

2)(bk − ak).

• As shown in Fig. C1(c), if ak+bk
2 > H, namely ak + bk > 2o′, then minεk = (1 − β)ak + βbk − o′

decreases with o′. Therefore, when o′ = H = min{αai + (1 − α)bi + εi}, ε∗k exists and ε∗k =
(1− β)ak + βbk −min{αai + (1− α)bi + εi}.

When 0 ≤ β ≤ 1
2 , due to the constraints of (15-1) and (15-2), we have o′ ∈ [ak+bk

2 , βak +(1−β)bk] or
o′ ∈ [(1− β)ak + βbk,

ak+bk
2 ]. Then, o′ ∈ [(1− β)ak + βbk, βak +(1− β)bk] and ε∗k = 0. However, because

of G ≤ o′ ≤ H, we need to comprehensively discuss the final threshold of o′.

a

c

b

Fig. C2 Discussion on the analytic formulas of the objective function depends on o′.

• As shown in Fig. C2(a), if βak + (1− β)bk < G, then ε∗k = o′ − [βak + (1− β)bk], o′ = G.
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• As shown in Fig. C2(b), if (1− β)ak + βbk > H, then ε∗k = (1− β)ak + βbk − o′, o′ = H.

• As shown in Fig. C2(c), if other circumstances are met, then ε∗k = 0 and o′ ∈ [(1−β)ak+βbk, βak+
(1− β)bk]

∩
[G,H].

Thus, this completes the proof for Theorem 8. □

Appendix D. Equivalent forms of carbon quota MCCMs in Case (1-5)

Table D1 Equivalent forms of carbon quota MCCMs in Case (1-5)
Cases Models

Case 1

Model(4− 11) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.



ε1 ≥ (1− α)a+ αb− 0, ε1 ≥ −(1− α)b− αa+ 0

ε2 ≥ (1− α)a+ αb− 3, ε2 ≥ −(1− α)b− αa+ 3

ε3 ≥ (1− α)a+ αb− 6, ε3 ≥ −(1− α)b− αa+ 6

ε4 ≥ (1− α)a+ αb− 10, ε4 ≥ −(1− α)b− αa+ 10

a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

Case 2

Model(4− 21) : Min Z = 3 ∗ ε3

s.t.



(1− β)a+ βb− 6 ≤ ε3, −βa+ (β − 1)b+ 6 ≤ ε3

(1− α)a+ αb− 0 ≤ ε1, −αa+ (α− 1)b+ 0 ≤ ε1

(1− α)a+ αb− 3 ≤ ε2, −αa+ (α− 1)b+ 3 ≤ ε2

(1− α)a+ αb− 10 ≤ ε4, −αa+ (α− 1)b+ 10 ≤ ε4

0 ≤ ε1 ≤ 5, 0 ≤ ε2 ≤ 4, 0 ≤ ε4 ≤ 6, ε3 ≥ 0

a ≤ b, 0 ≤ α, β ≤ 1

Case 3

Model(4− 31) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.



14(1− α) + 37α− o′ ≤ ε1, o′ − 14α− 37(1− α) ≤ ε1

22(1− α) + 30α− o′ ≤ ε2, o′ − 22α− 30(1− α) ≤ ε2

64(1− α) + 153α− o′ ≤ ε3, o′ − 64α− 153(1− α) ≤ ε3

8(1− α) + 61α− o′ ≤ ε4, o′ − 8α− 61(1− α) ≤ ε4

o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

Case 4

Model(4− 41) : Min Z = 3 ∗ ε3

s.t.



64(1− β) + 153β − o′ ≤ ε3, o
′ − [64β + 153(1− β)] ≤ ε3

14(1− α) + 37α− o′ ≤ ε1, o′ − [14α+ 37(1− α)] ≤ ε1

22(1− α) + 30α− o′ ≤ ε2, o′ − [22α+ 30(1− α)] ≤ ε2

8(1− α) + 61α− o′ ≤ ε4, o′ − [8α+ 61(1− α)] ≤ ε4

0 ≤ ε1 ≤ 12, 0 ≤ ε2 ≤ 5, 0 ≤ ε4 ≤ 36

o′ ≥ o, ε3 ≥ 0

Case 5

Model(4− 51) : Min ϕ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.



a+ (b− a)α+ (37− 14)α− 37 ≤ ε1, (37− 14)α+ (b− a)α− b+ 14 ≤ ε1

a+ (b− a)α+ (30− 22)α− 30 ≤ ε2, (30− 22)α+ (b− a)α− b+ 22 ≤ ε2

a+ (b− a)α+ (153− 64)α− 153 ≤ ε3, (153− 64)α+ (b− a)α− b+ 64 ≤ ε3

a+ (b− a)α+ (61− 8)α− 61 ≤ ε4, (61− 8)α+ (b− a)α− b+ 8 ≤ ε4

a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4
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