
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Unveiling Agents’ Confidence in Opinion Dynamics
Models via Graph Neural Networks
Vı́ctor A. Vargas-Pérez, Jesús Giráldez-Cru, Pablo Mesejo, and Oscar Cordón

Abstract—Opinion Dynamics models in social networks are a
valuable tool to study how opinions evolve within a population.
However, these models often rely on agent-level parameters that
are difficult to measure in a real population. This is the case
of the confidence threshold in opinion dynamics models based
on bounded confidence, where agents are only influenced by
other agents having a similar opinion (given by this confidence
threshold). Consequently, a common practice is to apply a
universal threshold to the entire population and calibrate its value
to match observed real-world data, despite being an unrealistic
assumption. In this work, we propose an alternative approach
using graph neural networks to infer agent-level confidence
thresholds in the opinion dynamics of the Hegselmann-Krause
model of bounded confidence. This eliminates the need for
additional simulations when faced with new case studies. To this
end, we construct a comprehensive synthetic training dataset
that includes different network topologies and configurations of
thresholds and opinions. Through multiple training runs utilizing
different architectures, we identify GraphSAGE as the most
effective solution, achieving a coefficient of determination R2

above 0.7 in test datasets derived from real-world topologies.
Remarkably, this performance holds even when the test topologies
differ in size from those considered during training.

Index Terms—Opinion Dynamics, Bounded Confidence,
Hegselmann-Krause Model, Agent-Based Modeling, Graph Neu-
ral Networks

I. INTRODUCTION

AGENT-based models (ABM) [1], [2] are a leading tech-
nology to study complex systems. ABMs rely on the

definition of agents’ behavioral micro-rules [3], and the com-
plex behavior of the system is inferred from the aggregation
of those agents’ behaviors in a bottom-up manner [4]. In many
contexts, this methodology is more accurate than deriving
a global definition of the system by top-down approaches.
ABMs have been extensively used in many contexts, including
modeling emergency evacuations [5], the analysis of political

Received 27 May 2024; revised 10 October 2024 and 21 November
2024; accepted 26 November 2024. This work was supported in part by
MCIN/AEI/10.13039/501100011033 and ERDF “A way of making Europe”
under Grant CONFIA PID2021-122916NB-I00, in part by the FPU Program
under Grant FPU20/02441, and in part by Grant RYC2022-036395-I funded
by MICIU/AEI/10.13039/501100011033 and ESF+. Funding for open access
charge: Universidad de Granada/CBUA. (Corresponding author: Vı́ctor A.
Vargas-Pérez.)

Vı́ctor A. Vargas-Pérez, Pablo Mesejo, and Oscar Cordón are with the
Department of Computer Science and Artificial Intelligence (DECSAI), Uni-
versity of Granada (UGR), 18071 Granada, Spain, and also with Andalusian
Research Institute in Data Science and Computational Intelligence (DaSCI),
18071 Granada, Spain (e-mail: victorvp@ugr.es; pmesejo@decsai.ugr.es;
ocordon@decsai.ugr.es).

Jesús Giráldez-Cru is with the University of Seville (US), 41044 Seville,
Spain, and also with Andalusian Research Institute in Data Science and Com-
putational Intelligence (DaSCI), 18071 Granada, Spain (e-mail: jgiraldez@
us.es).

rallies [6], and the study of artificial societies [7], among
others.

A straightforward application of ABM is Opinion Dynamics
(OD) [8], [9], [10], [11]. OD models aim to study the evolution
of opinions in a population [12]. In this scenario, agents’
opinions evolve as a consequence of interactions between them
[13], as well as other endogenous and exogenous factors,
such as stubbornness [14] or mass communication [15], for
instance. OD models are commonly used to study whether the
opinion fusion rule (i.e., the agents’ micro-rule that defines
how opinions are updated after agents’ interactions) is able
to reach a consensus, a polarization, or a fragmentation of
opinions [16]. Consensus is the state where all opinions have
the same value, while polarization and fragmentation are cases
where several clusters of opinions co-exist: two clusters in the
former case, and more than two clusters in the latter [13].

A very well-studied OD model is Bounded Confidence (BC)
[17], [18], [19]. The main principle of the BC model is that
agents are only influenced by other agents having a similar
opinion to them, where a confidence threshold determines
the area of social influence for each agent. The rationale
behind this principle is social confirmation bias [20], i.e.,
the interactions that influence individuals’ own opinions are
mostly those occurring with other individuals similar to them.
In this work, we focus on the Hegselmann-Krause (HK) model
[18], where an agent is randomly selected at each time step,
and updates its opinion by averaging the agents’ opinions in its
confidence area (i.e., the neighbors of its social network whose
opinions are within the confidence threshold). It is well known
that, for a given threshold, a low value produces opinion
consensus, whereas a high value results in a fragmentation
of opinions [21], [22]. However, it remains unclear how to
determine the confidence threshold for a given population, and
this is the problem addressed in this work.

The task of determining confidence thresholds that yield
specific final opinions can be framed as a model param-
eter calibration problem. Heuristic search methods such as
evolutionary algorithms (EAs) can be used to address this
problem [23], [24], but require separate calibration for each
new case study. In this work, we aim to develop a method
that generalizes the knowledge from training. This will allow
us to effectively determine, in negligible time, the confidence
thresholds for case studies that differ from those observed
during the training phase, even with varying population sizes.

It is well established the interplay between Machine Learn-
ing (ML) techniques and ABMs, and how the former can help
to improve the performance of the latter [25], [26], including
learning micro-agent level situational awareness, micro-agent

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2

level behavior intervention, macro-ABM level emulation, and
sequential decision-making, among other tasks. Among the
diversity of existing ML techniques, Deep Learning (DL)
algorithms stand out nowadays because of the massive amount
of available data [27]. In this context, Graph Neural Networks
(GNN) are DL models especially designed to deal with non-
Euclidean data that can be represented in the form of graphs
[28]. They are able to perform most ML tasks, including
classification and regression tasks at the level of nodes, edges,
and the whole graph [29]. Notice that ABM in general, and
OD models in particular, are good examples of such graph-
structured data, and the aforementioned open question of
determining the confidence threshold of a given population
can be seen as a suitable learning task for GNNs.

The main contribution of this work is a thorough analysis
of predicting the confidence threshold of BC models by means
of GNNs. To the best of our knowledge, this is the first work
studying OD models by means of GNNs. In particular, we
analyze the performance of several GNN layers extensively
used in the literature, including Graph Convolutional Network
(GCN) [30], GraphSAGE [31], and Graph Attention Network
(GAT) [32], in order to predict the confidence thresholds of
a population in several synthetic social network topologies.
These trained models are further validated in real-world social
networks. Our experimental evaluation shows that Graph-
SAGE and GAT are able to obtain remarkably accurate results
on this problem, exhibiting notable generalization capabilities
to unseen social networks. Specifically, GraphSAGE is able
to achieve consistent results even when the agent population
has heterogeneous confidence thresholds. This means that the
challenging question of determining the confidence threshold
of BC OD models can be effectively addressed by GNNs.

The rest of this work is organized as follows. Section
II presents the preliminary background on OD models and
GNNs. The methodology of our proposal is presented in
Section III, while Section IV is devoted to the empirical
validation of it. Finally, we conclude and discuss potential
direction of future research in Section V.

II. BACKGROUND

This section describes some preliminaries on OD models
and GNN frameworks, required to properly understand the
developments made in the current contribution.

A. Opinion Dynamics Models

OD models are usually classified into discrete and con-
tinuous models, according to the representation of opinions
into discrete (usually binary) and continuous values, respec-
tively [13]. Some examples of discrete OD models are the
voter model [9] and the majority rule [10], among others.
Unfortunately, discrete models are usually unable to represent
the complex nature of opinions in most contexts. In contrast,
continuous OD models generally provide a more realistic
representation of opinions. Therefore, in the rest of this work
we focus on continuous OD.

Let oi(t) be the opinion of agent i ∈ {1, . . . , N} at time step
t. For simplicity, we assume oi(t) ∈ [0, 1], although any other

real interval could be used instead. One of first continuous
OD model proposed in the literature is the DeGroot [8], where
opinions are updated as per the following rule:

oi(t+ 1) =

N∑
j=1

wijoj(t) (1)

where wij is the weight agent i gives to agent j. In this simple
linear model, the sufficient and necessary conditions to reach
a consensus are well-known [33].

A first step to introduce non-linearity in continuous OD
model is BC, including the Deffuant–Weisbuch (DW) [17]
and the HK [18] models. Although both models rely on only
considering opinions within a bounded confidence area (given
by a confidence threshold), the DW model only considers
random pairwise encounters while the HK model incorporates
all the opinions in the neighborhood of an agent. Therefore,
the HK model is more suitable for modeling interactions in
large groups, such as formal meetings, whereas the DW is
better suited for pairwise interactions within a large population
[21]. For this reason, we focus on the HK model to study the
confidence threshold of a population by means of GNNs.

Let us consider a population of N agents interacting in
a social network, which is represented by a graph G(V,A),
being V the set of nodes (with |V | = N), and A its N ×N
adjacency matrix (i.e., Aij = 1 iff. there is an edge between
nodes i and j in G, Aij = 0 otherwise).1 Each agent is
represented by a distinct node i in the graph, and interacts with
other agents within its neighborhood N (i), i.e., with some
agent j in the set N (i) = {j ∈ V |Aij = 1}.

In the HK model, at each time step t = {1, . . . T}2, an
agent i ∈ {1, . . . , N} is randomly selected and updates its
own opinion oi(t) as:

oi(t+ 1) =

∑
j∈C(i) oj(t)

|C(i)|
(2)

where C(i) = {j ∈ N (i) ∪ {i} | |oi(t) − oj(t)| < εi} is the
set of node i’s neighbors in its confidence area, with εi being
the confidence threshold of agent i. Notice that this confidence
threshold εi is agent-specific, i.e., it may differ from one agent
to another.

The values of the confidence thresholds are responsible
for the distribution of final opinions in an execution of the
model, resulting in consensus, polarization, or fragmentation
of opinions depending on such a value. Figure 1 depicts an
example of this phenomenon, executing the HK model with
a uniform confidence threshold (εi = ε) in a fully-mixed
population of N = 1, 000 agents during T = 105 time
steps, considering three distinct confidence thresholds: (left)
ε = 0.1, (center) ε = 0.2, and (right) ε = 0.3. It can
be observed that the execution with the lowest confidence
threshold ε = 0.1 results in a profile of final opinions with four
clusters of different opinions. With an intermediate value of
this confidence threshold, as in the case with ε = 0.2, the final
opinions are just polarized into 2 clusters of distinct opinions.

1For completeness, we assume Aii = 0 for every node i.
2T is the total number of time steps of a simulation.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 3

Fig. 1. Example of the execution of the HK model with several values of the confidence threshold ε. For each execution, the left subplots represent the
evolution of opinions during the executions and the right subplots represent the distribution of initial and final opinions.

Finally, with the highest value of ε, as in the execution with
ε = 0.3, the population reaches a consensus of opinions.

B. Graph Neural Networks

GNNs are a family of neural networks (NN) that operate
on graph data. The key idea behind them is to generate node
embeddings, which are vector representations of the nodes that
encode both their individual properties (i.e., node features) and
the structural information of the graph [34].

The most standardized framework for designing GNNs is
Neural Message Passing, wherein nodes receive information
from their neighbors (i.e., messages), aggregate it, and update
their internal representations using a NN [35]. This process
unfolds over a fixed number of iterations or layers L. Let h(l)

i

denote the representation of node i at layer l, and xi = h
(0)
i

denote its initial feature vector. The message-passing update
at layer l ∈ {1, . . . L} can be expressed as shown in Equation
3:

h
(l+1)
i = UPT(l)

(
h
(l)
i ,AGG(l)({m(l)

ij ,∀j ∈ N (i)})
)
,

m
(l)
ij = MSG(l)

(
h
(l)
i ,h

(l)
j

) (3)

where MSG(l), AGG(l), and UPT(l) are differentiable func-
tions that can be implemented with NNs. A foundational
example within this framework is GCN [30], which introduced
effective strategies for neighborhood aggregation and parame-
ter sharing, forming the basis for many advanced architectures.
GCN is defined in Equation 4 as follows:

h
(l+1)
i = σ

W(l)
∑

j∈N (i)∪{i}

h
(l)
j√

|N (i)||N (j)|

 (4)

where σ is a non-linear activation function and W is a weight
matrix.3 The aggregation includes symmetric normalization
and self-loops, stabilizing training and incorporating the center
node’s features [34]. However, this formulation processes
neighborhood and self-information uniformly, limiting its ex-
pressiveness.

3For simplicity, the corresponding bias term is omitted in the definition of
all GNN layers.

A more advanced layer is GraphSAGE [31], which allows
different ways of aggregating the neighborhood and explicitly
defines the update phase. Equation 5 shows this layer with
a mean aggregator. By distinguishing between the node and
its neighbors, GraphSAGE is capable of learning richer and
more flexible representations than GCN, albeit at the cost of
requiring a higher number of parameters.

h
(l+1)
i = σ

(
W

(l)
1 h

(l)
i +W

(l)
2

∑
j∈N (i) h

(l)
j

|N (i)|

)
(5)

In addition to distinguishing between the node and its
neighborhood, it may be beneficial to create a distinction
among the neighbors themselves, assigning different levels of
importance to each of them. This is precisely what GAT [32]
accomplishes: it calculates a weighted mean of the neighbor-
hood messages by incorporating an attention mechanism, as
depicted in Equations 6-8:

h
(l+1)
i = σ

α
(l)
ii W

(l)h
(l)
i +

∑
j∈N (i)

α
(l)
ij W

(l)h
(l)
j

 ,

(6)

α
(l)
ij =

exp(e(h
(l)
i ,h

(l)
j))∑

k∈N (i)∪{i} exp(e(h
(l)
i ,h

(l)
k))

, (7)

e(h
(l)
i ,h

(l)
j) = LeakyReLU

(
a
(l)T

1 W(l)h
(l)
i + a

(l)T

2 W(l)h
(l)
j

)
(8)

where a1 and a2 are learnable weight vectors, e represents the
importance of node j to node i, and αij is the corresponding
attention coefficient after applying softmax normalization over
the neighborhood N (i).

Although GAT is one of the most popular GNN architec-
tures nowadays, it presents a limitation: its attention mecha-
nism is static, meaning that the resulting ranking of attention
coefficients for every neighbor node is unconditioned by the
node of origin. This issue was addressed in GATv2 [36],
which achieves a dynamic attention mechanism with a small
adjustment involving a reordering of internal operations within
GAT and an increase in the number of parameters. Specifically,
the change entails duplicating parameters in W by splitting it
into two different matrices, W1 and W2. In turn, a1 and a2

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 4

are condensed into a single smaller weight vector a, which
is applied after the LeakyReLU activation function. Thus,
Equation 8 is now rewritten as shown in Equation 9:

e(h
(l)
i ,h

(l)
j) = a(l)

T

LeakyReLU
(
W

(l)
1 h

(l)
i +W

(l)
2 h

(l)
j

)
(9)

The increasing expressive power of these three layers also
implies an increasing number of parameters, as shown in Table
I. For illustration, this table also provides the parameter count
of a perceptron layer that only considers feature information,
not structure. Additionally, we include the theoretical upper
bound for the time complexity of a forward pass. Although
the asymptotic time complexity is the same for these GNN
layers, differences in constant factors and unit operation costs
(e.g., square roots in GCN or exponentials in GATv2) can
significantly impact their actual runtime.

TABLE I
NUMBER OF PARAMETERS (INCLUDING BIAS TERMS) AND ASYMPTOTIC

TIME COMPLEXITY OF THE DISCUSSED NN LAYERS. LET N BE THE
NUMBER OF NODES OF THE GRAPH, E BE THE NUMBER OF EDGES, Hi BE

THE INPUT NODE EMBEDDING SIZE, AND Ho BE THE OUTPUT NODE
EMBEDDING SIZE.

Layer type # Parameters Time complexity

MLP Hi ·Ho +Ho O(N ·Hi ·Ho)
GCN Hi ·Ho +Ho O(N ·Hi ·Ho + E ·Ho)
GraphSAGE 2 ·Hi ·Ho +Ho O(N ·Hi ·Ho + E ·Ho)
GATv2 2 ·Hi ·Ho + 4 ·Ho O(N ·Hi ·Ho + E ·Ho)

Regardless the layer type considered, GNNs are useful for
addressing various ML tasks, such as node-level classification
(or equivalently, regression), link prediction, or graph classi-
fication [37]. When working at the node level, a distinction
must be made between transductive and inductive problems,
which are commonly associated with semi-supervised and
supervised learning, respectively [34]. In the transductive case,
the training and test node sets are connected within the same
graph. This implies that test nodes participate in the training
process to perform message passing operations, though their
labels are neither observed nor used to compute the loss
function. Alternatively, the inductive case resembles traditional
supervised learning: test nodes are completely separated from
the training nodes, residing in disjoint graphs, and thus do
not intervene in any way in the training process. As discussed
in Section III, our methodology involves solving an inductive
node-level regression problem.

III. METHODOLOGY

Our methodology aims to determine the individual confi-
dence threshold εi of each agent i within a population whose
interactions are governed by the HK model. To accomplish this
task, we propose training a ML model to learn the function
that maps the initial and final opinions of each agent, along
with the social network connecting them, to the corresponding
confidence threshold for each agent. Given the inherent graph
structure of this input data, a GNN emerges as the most natural
choice for the ML model.

A standard approach that closely resembles our objective
is ABM calibration. In this methodology, the confidence
thresholds are treated as free parameters of the OD model, and
the goal is to find a configuration of values that yields specific
simulation outputs, namely, the desired set of final opinions.
When the dimensionality of the parameters is high, it is
appropriate to employ an automated calibration process using
heuristic search methods. These methods aim to minimize an
objective function that quantifies the distance between the re-
sulting simulation output and the target output [23], [24]. EAs
are among the most commonly used optimization techniques
for this purpose [38], [39], [40], due to its capability to explore
a wide range of parameter values and consider the non-linear
interactions between them.

However, we must highlight that the objective of this work
is not to calibrate the parameters of an ABM to a specific case
study. Instead, we aim to develop a method that, after a single
training process, is capable of inferring the agent parameters
for any new BC case study, without additional ABM simula-
tion runs. To the best of our knowledge, this is the first study
that seeks to generalize OD ABM parameter fitting across
scenarios that were not observed during the optimization phase
and with varying population sizes. The motivation behind this
novel approach lies in two key advantages with respect to
traditional ABM calibration:

• A standard calibration approach is specific to each in-
stance of the problem or case study, requiring a compre-
hensive set of simulations for each new scenario, without
direct use of prior knowledge. In contrast, our approach
benefits from learning generalization. In a new case study,
the trained GNN requires only one inference step to
derive the thresholds associated with each agent, without
the need for retraining or conducting additional simula-
tion runs of the ABM, which tend to be computationally
expensive.

• It is common in OD to establish a uniform confidence
threshold for all agents in the population [15], or to
alternatively segment it. This practice aims to prevent
a substantial increase in the number of parameters to
calibrate, which would be equal to the population size if a
fully personalized threshold were adopted. Alternatively,
our approach facilitates addressing a more realistic sce-
nario where each individual owns a distinct confidence
threshold, without entailing an increase in the number
of parameters of the GNN. Indeed, our approach is
potentially capable of managing scenarios with varying
population sizes, as the same GNN model can be applied
to graphs or cases of different sizes.

Despite the potential advantages described in our proposal,
it is crucial for the GNN training process to be sufficiently
robust and generalizable for effective application in real-world
scenarios not previously observed. Particularly, to ensure the
GNN can generalize across different topologies, the training
set must encompass diverse characteristics across different
topologies. Fortunately, since the HK model is fully defined
(see Equation 2), we can generate a synthetic training dataset
representing a wide array of problem variants. This includes

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 5

diverse social network topologies and a multitude of settings
of confidence thresholds and initial opinions within the range
[0, 1]. Moreover, knowledge about the problem allows us to tai-
lor the data generation process to encompass various scenarios
while avoiding the over-representation of equivalent scenarios.
Specifically, prior research [18] suggests that, despite the
theoretical domain of ε ∈ [0, 1], in practical scenarios where
ε ≥ 0.25, the population tends to reach a consensus opinion,
resulting in similar final outcomes (see Figure 1). Therefore,
it is appropriate to limit the generation of synthetic data with
values of εi within a narrower domain, such as [0, 0.5].4

Figure 2 shows a summary of the steps for training the GNN
model, which are defined as follows:

1) Selection and generation of a set of topologies or adja-
cency matrices A representing different social networks
of agents. It is essential to consider a range of topologies
based on different network properties such as density,
clustering coefficient, and degree distribution, among
others, to provide the learning process with enough
diversity.

2) Generation of M different random configurations of ini-
tial opinions and thresholds for the agents for each social
network topology considered. We denote the resulting
set of graphs as G, and for each topology A ∈ A, we
define the subset G(A) = {G ∈ G|G(V,A)}, where
|G(A)| = M, ∀A ∈ A. This ensures a comprehensive
representation of diverse scenarios across all considered
topologies.

3) Running the HK model on each graph G ∈
G, thereby obtaining the final opinion of each
agent.5 This process allows us to construct the
dataset associated with each graph, denoted as
D(G(V,A)) = ((X, A),y). Here, X ∈ [0, 1]N×2

comprises the feature vector of each node i, de-
fined as X = {xi = (oi(1), oi(T)) |∀i ∈ {1, . . . , N}}.
Meanwhile, the label vector y ∈ [0, 0.5]N contains
the confidence threshold of each node, i.e., y =
{yi = εi|∀i ∈ {1, . . . , N}}. The number of time-steps
T of the simulations should be high enough to reach a
stationary state, i.e., a state beyond which the agents no
longer change their opinions.

4) Training a GNN following a supervised approach to
address the regression problem associated with the pre-
vious datasets. Formally, the GNN aims to approximate
the function f : (X, A) → y. Note that, while the
dimensions of X, A, and y must remain consistent
within a specific graph (same number of nodes N),
the number of parameters in the GNN model remains
constant and independent of the graph size. Thus, we
can combine graphs of varying sizes in both training
and inference stages. The set of |M | × |A| graphs or

4The upper limit of 0.25 is an indicative empirical value, justifying our
choice of a higher upper bound. In fact, these results are made considering a
fully connected social network, without considering the impact of the social
network topology.

5The HK model has a stochastic component, wherein an agent is randomly
chosen at each time-step. Thus, the final opinion oi(T) recorded in the dataset
for each agent is actually its average final opinion after 10 Monte Carlo
simulation runs.

case studies is randomly divided into training G(Train),
validation G(Val), and test G(Test) sets. The GNN is
trained using the training graphs and validated using
the validation ones. Subsequently, the final performance
and generalization capacity of the trained GNN are
evaluated on the test graphs, which remained completely
unobserved during the training process.

In addition to decisions regarding synthetic data generation
and training process, it is crucial to define the specific archi-
tecture of the GNN. This architecture is contingent upon the
type of GNN layer chosen, which should be flexible enough
to capture the complexity of the problem at hand. Lastly, and
not least, it is imperative to verify the underlying hypothesis of
our proposal: that determining the confidence thresholds for a
population of agents based on their initial and final opinion in
an OD diffusion process is non-trivial, and that the structural
information of the graph plays a crucial role. These aspects
are further explored in the following Section IV.

IV. EXPERIMENTS AND ANALYSIS

This section presents the experiments conducted to evaluate
our methodological proposal. First, we describe the experi-
mental setup and the generation of synthetic datasets in Section
IV-A. Next, we detail the considered model architectures,
training details, and hyperparameter tuning in Section IV-B.
We then proceed to evaluate the best models on the synthetic
test dataset GSyn in Section IV-C. In Section IV-D, we perform
a final evaluation on test datasets generated from common
real-world topologies in the literature, whose union we denote
as GReal. Finally, in Section IV-E, we develop an alternative
EA method to determine the agents’ thresholds using a more
standard heuristic search approach, and compare its results
with our GNN-based proposal.

A. Experimental Setup and Synthetic Datasets

All experiments related to NN training are conducted on a
server with 2 × Intel Xeon CPU E5-2698, 512 GB DDR4,
and 8 × Tesla V100 32Gb GPUs. On the other hand, since
the experiments related to an EA run (see Section IV-E)
do not take advantage of the GPU (they are CPU-oriented
processes), we use a server with 2 × 2.2 GHz Intel Xeon
Silver 4214 (12 cores), 256 GB DDR4. This architecture
allows us to parallelize the simulation runs corresponding to
the evaluation of each EA solution, thus reducing computation
time. Additionally, to ensure result reproducibility, we have
created a public repository containing all the code related to
dataset generation and experimentation.6 We use the Pytorch
Geometric library [41] to implement the GNN models and
NetworkX [42] to generate the synthetic topologies.

The first step to create the synthetic dataset GSyn is to
generate the set of base topologies A. To achieve this, we
consider three classic algorithms for generating artificial so-
cial networks, each with distinct characteristics. The first is
the Ërdos-Rényi (ER) algorithm to create random networks
[43], where each pair of nodes is connected with a uniform

6https://github.com/vvarper/GNN4BCPrediction

https://github.com/vvarper/GNN4BCPrediction

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 6

Fig. 2. Overview of the methodology for training a GNN to predict the confidence threshold of agents in a population governed by the HK OD model. The
process involves generating a set of initial topologies A (Step 1), creating a set of M random configurations of initial opinions and thresholds for the agents
(Step 2), running the HK model on each graph to obtain the final opinions (Step 3), and constructing the complete dataset G, and splitting it into training
(G(Train)), validation (G(Val)), and test (G(Test)) subsets (Step 4). The GNN receives as input the initial and final opinions of each agent (X) along with
the social network connecting them (A), and returns as output the predicted confidence threshold of each agent (ŷ). The colors in the nodes from Step 2
indicate the different configurations of initial and final opinions, as well as confidence threshold values.

probability p. As a result, these graphs exhibit a binomial
degree distribution. The second algorithm is the Newman-
Watts-Strogatz, which generates small-world networks (SW)
[44]. This algorithm starts with a regular ring lattice where
each node has k neighbors, and then creates shortcuts by
randomly adding new connections with a probability p. Thus,
the resulting graph has both small paths (similar to a random
network) and a high clustering coefficient. Finally, the third
algorithm considered is the Barabási-Albert (BA) preferential
attachment [45]. This method begins with a fully connected
graph and iteratively adds new nodes with m connections to
previous ones, such that each node receives a new connection
with a probability proportional to its degree. This results in
a graph with a power-law degree distribution. In other words,
most nodes have a low degree, while a few hubs receive most
of the connections. These graphs are also known as scale-free
because the distribution is independent of both the number of
nodes and the average degree, and many real networks follow
this distribution [45].

For each network generation algorithm, we apply three
different configurations, resulting in a total of |A| = 9 base
topologies. In the case of ER, we consider three values of
the link probability p. For SW, we set p = 0.3 and vary the
value of the initial degree k. Lastly, for BA we use different
values for the number of links m added per iteration. In
all cases, we set N = 1, 000, as we consider this to be a
sufficient number of nodes to create a realistic scenario while
not dramatically increasing the dataset size. Table II shows the
9 configurations and the properties of the resulting networks.
This table also includes the results of applying the Louvain

community detection algorithm [46] to each network, which
will be relevant in the next step of the dataset generation.

The second step in our methodology is the creation of
the M configurations of initial and final opinions, as well as
confidence thresholds. To cover a wide variety of scenarios,
we consider M = 20 configurations. In all of them, the initial
opinion of each agent is randomly generated according to a
uniform distribution [0, 1]. The difference between each of
the M configurations lies in the values of the confidence
thresholds. To address problem scenarios with incremental
difficulty, we consider two cases:

• Graphs with homogeneous thresholds GHom
Syn . In this sce-

nario, we generate M evenly spaced thresholds in the
range [0.1, 0.5] and assign each of them to all nodes of
the corresponding graph configuration.

• Graphs with heterogeneous thresholds by communities
GCom

Syn . The idea behind this scenario is that an individual
has similar characteristics to those close to them, differ-
ing from the rest. For every topology, we consider the
community partition from Table II and assign a random
confidence threshold to each community drawn from a
uniform distribution [0, 0.5]. The generation of thresholds
for each community is repeated M times per topology
to obtain the desired number of configurations. The
community partitions and their corresponding modularity
values are presented in Table II.

The final opinions of each graph are obtained by averaging
the results of 10 MC simulations of the HK model. Every
simulation runs for T = 106 time-steps, ensuring that a
stationary state is reached in all cases. At this point, both GHom

Syn

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 7

TABLE II
CHARACTERISTICS OF THE SYNTHETIC BASE TOPOLOGIES A ALONG WITH THE COMMUNITY DETECTION RESULTS.

Topology Nodes Edges Density Average
Degree Diameter

Average
Clustering
Coefficient

#Communities Modularity

ER(0.1) 1,000 49,925 9.99e-02 9.99e+01 3 9.95e-02 10 8.04e-02
ER(0.2) 1,000 100,129 2.00e-01 2.00e+02 2 2.01e-01 8 5.41e-02
ER(0.3) 1,000 149,559 2.99e-01 2.99e+02 2 2.99e-01 7 3.98e-02
SW(0.3, 3) 1,000 1,311 2.62e-03 2.62e+00 20 0.00e+00 27 7.36e-01
SW(0.3, 5) 1,000 2,646 5.30e-03 5.29e+00 9 3.05e-01 26 7.01e-01
SW(0.3, 7) 1,000 3,882 7.77e-03 7.76e+00 7 3.71e-01 22 7.08e-01
BA(2) 1,000 1,996 4.00e-03 3.99e+00 7 3.04e-02 19 5.22e-01
BA(4) 1,000 3,984 7.98e-03 7.97e+00 5 3.53e-02 16 3.11e-01
BA(6) 1,000 5,964 1.19e-02 1.19e+01 4 4.42e-02 9 2.58e-01

and GCom
Syn have a total of |A|×M = 9×20 = 180 graphs each.

7 We randomly split each dataset, assigning 64% of the graphs
for training (i.e., 115 graphs), 16% for validation (29 graphs),
and 20% for testing (36 graphs).

B. Models’ Architecture and Hyperparameter Tuning

The three GNN architectures previously discussed in Sec-
tion II-B are considered: GCN, GraphSAGE, and GATv2.
Additionally, with the aim of having a base benchmark and
verifying that structural information is crucial in our problem,
we also consider a multi-layer perceptron (MLP) that treats
each graph as a dataset in which each node is an independent
sample. MLP is a structure-agnostic architecture that aims
to predict the confidence thresholds solely based on feature
information.

We define each model as a concatenation of L layers se-
lected from the four types defined earlier, such that |h(0)

i | = 2,
|h(L)

i | = 1, and |h(j)
i | = H for j ∈ {1, . . . , L − 1}

and i ∈ {1, . . . , N}. All layers are followed by a ReLU
activation function, except the last one, which uses a sigmoid
activation function to ensure that the predicted threshold ε̂i is
in the range [0, 0.5]. Architectures such as Convolutional NNs
usually benefit from lager number of layers, as they facilitate
hierarchical feature extraction. However, in the case of GNNs,
the number of layers is typically more limited due to the over-
smoothing problem [47].

In order to find the best possible model, our experimentation
involves hyperparameter tuning for each layer type and dataset.
Specifically, we use a grid search, which is one of the most
common techniques in the literature for this task [48]. It offers
a comprehensive and straightforward approach to explore the
parameter space, ensuring that no region of the predefined
spaces is overlooked [49]. We adjust the number of layers L,
the dimension of the hidden layers H , the learning rate, and
the batch size. Table III shows the candidate values considered
for each hyperparameter, resulting in a total of 36 possible
settings, and thus, a total of 288 training runs. In all these
training processes, we use the Adam optimizer with the Mean
Squared Error (MSE) loss function with a maximum of 10, 000

7Note that among these graphs, there are repeated topologies but with
different node features. In this work, we distinguish between topology (the
structure of the graph) and the graph as a whole, which includes the node
information.

epochs. Furthermore, to prevent over-fitting to training data,
we apply early stopping if the validation loss does not improve
for 1, 000 consecutive epochs.

TABLE III
HYPERPARAMETERS TO BE TUNED AND THEIR RESPECTIVE CANDIDATE

VALUES.

Hyperparameter Description Candidate Values

L Number of layers of the NN. {4, 5}

H Node embedding dimension
in hidden layers. {16, 32}

Learning Rate Step size on each SGD update. {1.00e-02, 1.00e-03, 1.00e-04}

Batch Size Number of graphs used on
each SGD update. {2, 4, 8}

The results of the hyperparameter tuning are shown in Table
IV, where we indicate the best configuration found according
to validation loss for each layer type and dataset, along with
the corresponding MSE on the training and validation sets. We
can observe that the settings found vary in each case, although
in the case with homogeneous thresholds, the architecture
with L = 5 layers and a hidden layer size of H = 32 is
consistently chosen as the best one. Regarding the quality of
the models, we observe that in both problem scenarios, and in
both training and validation datasets, the lowest MSE found
corresponds to GraphSAGE, followed by GATv2. The worst
results are obtained with MLP and GCN, with the ranking
varying among them depending on the threshold scenario.
Another issue to note is that, in the case with homogeneous
thresholds, the MSE of the GraphSAGE and GATv2 models
is an order of magnitude lower than that of MLP and GCN,
a trend also observed in the community scenario but only
with GraphSAGE. Furthermore, although the MSE in training
is generally lower than in validation, the difference is not
wide, with the magnitude order and the ranking of the models
remaining consistent. Therefore, there do not seem to be over-
fitting problems in either case.

Table IV also includes the number of parameters of each
configuration (corresponding to the counts provided in Table
I) and the training times. A direct comparison based on the
layer type may be misleading, as both values depend on
additional factors: while the number of parameters is affected
by the number of layers and node embedding dimension, the
training time is influenced by the batch size and the number of
epochs before early-stopping. Notably, focusing on the most

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 8

TABLE IV
BEST HYPERPARAMETER CONFIGURATION FOUND PER LAYER TYPE AND PROBLEM ACCORDING TO THE MSE IN THE VALIDATION SET, INCLUDING THE

NUMBER OF PARAMETERS, THE NUMBER OF EPOCHS UNTIL EARLY-STOPPING, AND THE TOTAL TRAINING TIME. THE LOWEST MSE VALUES ARE
HIGHLIGHTED IN BOLD.

Dataset type Layer Learning Rate L H Batch Size # Parameters Epochs Training time (s) MSE (Train) MSE (Val)

Homogeneous
Thresholds GHom

Syn

MLP 1.00e-03 5 32 8 3,297 4,557 7.28e+02 7.33e-03 6.49e-03
GCN 1.00e-03 5 32 2 3,297 10,000 8.92e+03 2.78e-03 3.06e-03
GraphSAGE 1.00e-03 5 32 4 6,465 6,361 2.28e+03 6.32e-04 4.42e-04
GATv2 1.00e-04 5 32 2 6,852 10,000 1.29e+04 7.44e-04 8.15e-04

Thresholds by
Community GCom

Syn

MLP 1.00e-02 4 16 4 609 1,911 5.17e+02 1.38e-02 1.36e-02
GCN 1.00e-03 4 32 8 2,241 7,754 1.90e+03 1.53e-02 1.68e-02
GraphSAGE 1.00e-03 5 32 4 6,465 2,953 1.04e+03 5.22e-03 6.49e-03
GATv2 1.00e-02 4 32 8 4,676 3,233 1.47e+03 9.55e-03 1.05e-02

promising layers, the training time for GraphSAGE ranged
from 17 to 38 minutes, whereas GATv2 varied significantly,
taking between 24 minutes (in the community scenario) and
4 hours (in the homogeneous scenario). The latter extended
training time is due to reaching the maximum number of
epochs allowed.

C. Evaluation on Synthetic Topologies

We continue to delve into the performance of the best
models found in the previous section, evaluating them on
the synthetic test datasets. The results are shown in Table
V, where, in addition to MSE, Mean Average Error (MAE),
Mean Absolute Percentage Error (MAPE), and the coefficient
of determination R2 are included. Note that while MSE, MAE,
and MAPE are error metrics to minimize, R2 is a goodness-
of-fit measure where R2 = 1 indicates a perfect fit and R2 = 0
indicates that the model is not better than predicting the mean
of the target variable. The results remain consistent with those
observed previously in Table IV, although in the case of
homogeneous thresholds, GraphSAGE and GATv2 show an
MSE of one order of magnitude higher than in training and
validation datasets. Nevertheless, we should note that R2 is
above 0.79 in both cases. As could be inferred from the MSE,
the GATv2 model exhibits notably lower performance in GCom

Syn
(R2 = 4.59e-01), while GraphSAGE maintains remarkable
performance (R2 = 7.08e-01).

The underlying hypothesis of our methodology was that
structural information plays a crucial role in this problem,
and therefore MLP should serve as a baseline model to
measure whether the performance of a GNN model is indeed
positive. The results seen so far seem to confirm this, with
the only case of discrepancy being GCN, the most basic
GNN architecture. To discuss this issue further, we visualize
in Figure 3 the predictions of each model against the labels
of each node in GHom

Syn , the easiest variant of the problem
that also presents fully balanced and evenly spaced thresholds
values. The visualization for a perfect model should show
a diagonal line. MLP is unable to adequately capture the
relationship between node features and their thresholds, as it
makes noisy predictions around the mean. In this scenario, the
visualization for the three GNNs shows a gradual increasing
trend in predictions according to the real thresholds, which is
particularly noticeable in the GraphSAGE case. Therefore, we
can conclude that indeed, the error values for MLP serve as a

reference point that must be widely surpassed to claim that a
GNN model is effective.

Finally, we conduct statistical ranking tests [50] by evalu-
ating each model on the 36 test graphs from each scenario
separately. First, the Friedman test is applied to determine if
there are significant differences between the models’ perfor-
mance. The result of this test is χ2

F = 4.52e+01 (p-value =
8.39e-10) for GHom

Syn and χ2
F = 9.14e+01 (p-value = 1.08e-19)

for GCom
Syn . Thus, setting a confidence level of 99%, we can

affirm that there are significant differences in both scenarios.
Subsequently, it makes sense to examine whether there are
significant differences between each pair of models with the
Nemenyi post-hoc test, whose results are shown in Table VI.
We can see that in the scenario with homogeneous thresholds,
GraphSAGE and GATv2 are significantly better than MLP and
GCN, while in the community scenario, GraphSAGE is also
significantly superior to GATv2. However, it cannot be stated
that there are significant differences between GCN and MLP in
either case. The fact that GCN does not outperform MLP may
seem surprising, but there are already previous studies indi-
cating that GCN is a very basic model with limited expressive
capacity. In fact, there are cases where it does not provide
advantages over structure-agnostic models such as MLP [51].
The intuition behind the insufficient power of GCN can be
derived from its mathematical definition. In Equation 4, we
observe that GCN uses a singles weight matrix and performs
aggregation without distinguishing between the center node
and its neighbors. This is a key difference from GraphSAGE
(Equation 5), which also applies to GATv2: in these layers,
different weight matrices are used for the target node and its
neighbors, applying different linear transformations to their
features. Given the results, this distinction seems to be crucial
when addressing this threshold prediction problem.

D. Evaluation on Real Topologies

We conclude the evaluation of the models with additional
test datasets generated from real-world topologies commonly
used in the literature [52]. The characteristics of these topolo-
gies are shown in Table VII, and it can be seen that they
differ from the synthetic topologies (Table II) even in their
larger size, ranging from networks of 2, 000 to 20, 000 nodes.
For each of these topologies, we create a dataset with ho-
mogeneous thresholds and another one with thresholds by
communities, following the same procedure as in Section

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 9

Fig. 3. Inference results of best models on the synthetic test dataset with homogeneous thresholds GHom
Syn . The x-axis represents the real threshold εi of each

node i, while the y-axis represents the pr edicted threshold ε̂i.

TABLE V
EVALUATION OF THE BEST MODEL FOR EACH LAYER TYPE IN THE SYNTHETIC TEST DATASETS ACCORDING TO MSE, MAE, MAPE AND R² METRICS.

Layer Homogeneous Thresholds GHom
Syn Thresholds by Community GCom

Syn

MSE MAE MAPE R² MSE MAE MAPE R²

MLP 6.09e-03 6.17e-02 2.33e-01 5.72e-01 1.60e-02 1.07e-01 1.55e+00 3.08e-01
GCN 3.71e-03 4.62e-02 1.76e-01 7.40e-01 1.97e-02 1.20e-01 2.14e+00 1.50e-01
GraphSAGE 1.69e-03 2.53e-02 9.84e-02 8.81e-01 6.76e-03 6.33e-02 6.07e-01 7.08e-01
GATv2 2.89e-03 3.30e-02 1.44e-01 7.97e-01 1.25e-02 9.08e-02 1.07e+00 4.59e-01

TABLE VI
NEMENYI POST-HOC TEST RESULTS (P-VALUES) ON THE 36 SYNTHETIC
TEST GRAPHS. P-VALUES LOWER THAN 1.00E-02 ARE HIGHLIGHTED IN

BOLD.

Dataset type Layer GCN GraphSAGE GATv2

Homogeneous
Thresholds GHom

Syn

MLP 7.73e-01 1.00e-03 1.00e-03
GCN 1.00e-03 5.60e-03
GraphSAGE 3.55e-01

Thresholds by
Community GCom

Syn

MLP 8.24e-01 1.00e-03 1.00e-03
GCN 1.00e-03 1.00e-03
GraphSAGE 4.08e-03

IV-A. Again, we consider M = 20 configurations per case.
The only difference is that this time the topologies are kept
in separate datasets and that these are not split into training,
validation, and test subsets, but are used directly to evaluate
the models previously trained on synthetic topologies.

Table VIII shows the results on these real-topology test
datasets, which follow a similar trend to those observed in
Table V. GraphSAGE and GATv2 remain the models with
the best performance, although this time GATv2 outperforms
GraphSAGE in the scenarios with homogeneous thresholds.
On the other hand, GCN shows even worse results than in the
synthetic datasets, being surpassed by MLP in all cases.

Once again, we conduct statistical tests to determine if
there are significant differences. This time, we combine the
datasets of the five real-world topologies into a single test
set per case (GHom

Real and GCom
Real), resulting in a total of 100

graphs per scenario. The Friedman test result for GHom
Real is

χ2
F = 2.15e+02 (p-value = 2.89e-46), while for GCom

Real is
χ2
F = 2.76e+02 (p-value = 1.31e-59). The results of the

Nemenyi post-hoc test are shown in Table IX, and they
indicate that the differences between the models are even more

significant than in the synthetic datasets. The main difference
is that now GCN is significantly worse than MLP in the
scenario with homogeneous thresholds, while the rest of the
comparisons remain consistent with the previous datasets (see
Table VI).

Therefore, we can confidently assert that GraphSAGE and
GATv2 are the most suitable models for our task. The
significant outperformance of GraphSAGE over GATv2 in
one of the scenarios, despite its simpler architecture, may
seem surprising. Our intuition is that GraphSAGE already has
sufficient expressiveness to capture the relevant information for
our problem, while the slightly higher number of parameters
in GATv2 does not offer any substantial advantage for this
specific task.

We must note that the best GATv2 model we achieved
for the community scenario has fewer parameters than the
best GraphSAGE model found. However, this specific GATv2
configuration, derived from hyperparameter tuning, outper-
formed other alternative configurations with a higher number
of parameters (exceeding those of any GraphSAGE model
considered). Therefore, this does not invalidate our current
discussion. Even if extended training allowed some GATv2
configurations to improve their performance, they would still
not surpass GraphSAGE as a better alternative, since the latter
already provides strong performance with lower computational
cost (see Table IV).

The performance of GraphSAGE is always notably superior
to that of MLP, consistently achieving a R2 value above 0.7.
This outcome remains true even when acting on real-world
topologies not seen during training time and with networks of
different sizes. These findings confirm that structural informa-
tion is crucial in this problem. Thus, by judiciously selecting
the appropriate GNN model, our proposed methodology suc-

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 10

TABLE VII
CHARACTERISTICS OF THE REAL-WORLD TEST TOPOLOGIES ALONG WITH THE COMMUNITY DETECTION RESULTS.

Topology Nodes Edges Density Average
Degree Diameter

Average
Clustering
Coefficient

Communities Modularity

CORA 18,800 62,685 3.55e-04 6.67e+00 23 2.67e-01 41 8.12e-01
CORA-ML 2,810 7,981 2.02e-03 5.68e+00 17 2.78e-01 22 7.62e-01
CiteSeer 1,681 2,902 2.06e-03 3.45e+00 23 1.53e-01 27 8.18e-01
PubMed 19,717 44,324 2.28e-04 4.50e+00 18 6.02e-02 36 7.70e-01
DBLP 16,191 51,913 3.96e-04 6.41e+00 34 1.45e-01 37 7.58e-01

TABLE VIII
EVALUATION OF THE BEST MODEL FOR EACH LAYER TYPE IN THE REAL-TOPOLOGY TEST DATASETS ACCORDING TO MSE, MAE, MAPE AND R²

METRICS.

Dataset Layer Homogeneous thresholds Thresholds by Community

MSE MAE MAPE R² MSE MAE MAPE R²

CORA

MLP 7.89e-03 7.15e-02 2.65e-01 4.65e-01 1.15e-02 8.88e-02 1.57e+00 4.61e-01
GCN 2.10e-02 1.16e-01 3.52e-01 -4.26e-01 1.39e-02 9.10e-02 7.84e-01 3.50e-01
GraphSAGE 3.15e-03 4.31e-02 1.44e-01 7.87e-01 4.21e-03 4.92e-02 5.03e-01 8.03e-01
GATv2 2.06e-03 3.47e-02 1.25e-01 8.60e-01 6.90e-03 6.53e-02 6.80e-01 6.77e-01

CORA-ML

MLP 8.69e-03 7.75e-02 3.04e-01 4.10e-01 1.29e-02 9.48e-02 1.30e+00 3.61e-01
GCN 1.77e-02 1.05e-01 3.27e-01 -2.00e-01 1.22e-02 8.55e-02 6.27e-01 3.95e-01
GraphSAGE 2.65e-03 3.87e-02 1.34e-01 8.20e-01 4.29e-03 5.04e-02 4.55e-01 7.88e-01
GATv2 1.88e-03 3.33e-02 1.25e-01 8.72e-01 7.77e-03 7.02e-02 5.82e-01 6.16e-01

CiteSeer

MLP 7.11e-03 6.72e-02 2.40e-01 5.18e-01 1.35e-02 9.45e-02 7.77e-01 3.23e-01
GCN 2.14e-02 1.18e-01 3.95e-01 -4.50e-01 1.62e-02 1.01e-01 5.28e-01 1.89e-01
GraphSAGE 3.15e-03 4.38e-02 1.63e-01 7.86e-01 4.80e-03 5.38e-02 3.61e-01 7.59e-01
GATv2 2.08e-03 3.38e-02 1.39e-01 8.59e-01 8.90e-03 7.41e-02 4.50e-01 5.54e-01

PubMed

MLP 7.92e-03 7.15e-02 2.61e-01 4.63e-01 1.20e-02 9.00e-02 1.20e+00 3.70e-01
GCN 3.48e-02 1.54e-01 4.95e-01 -1.36e+00 1.61e-02 1.01e-01 6.98e-01 1.58e-01
GraphSAGE 2.66e-03 3.89e-02 1.42e-01 8.19e-01 4.71e-03 5.27e-02 5.09e-01 7.53e-01
GATv2 2.33e-03 3.81e-02 1.42e-01 8.42e-01 7.93e-03 7.03e-02 6.46e-01 5.85e-01

DBLP

MLP 7.93e-03 7.17e-02 2.64e-01 4.62e-01 1.11e-02 8.69e-02 1.57e+00 4.23e-01
GCN 2.27e-02 1.20e-01 3.69e-01 -5.43e-01 1.21e-02 8.52e-02 7.77e-01 3.70e-01
GraphSAGE 2.83e-03 4.04e-02 1.43e-01 8.08e-01 4.55e-03 5.07e-02 6.63e-01 7.63e-01
GATv2 2.34e-03 3.67e-02 1.35e-01 8.41e-01 7.01e-03 6.53e-02 7.98e-01 6.35e-01

TABLE IX
NEMENYI POST-HOC TEST RESULTS (P-VALUES) ON THE 100

REAL-TOPOLOGY GRAPHS. P-VALUES LOWER THAN 1.00E-02 ARE
HIGHLIGHTED IN BOLD.

Dataset type Layer GCN GraphSAGE GATv2

Homogeneous
Threshold GHom

Real

MLP 1.00e-03 1.00e-03 1.00e-03
GCN 1.00e-03 1.00e-03
GraphSAGE 2.21e-01

Threshold by
Community GCom

Real

MLP 5.70e-02 1.00e-03 1.00e-03
GCN 1.00e-03 1.00e-03
GraphSAGE 1.00e-03

cessfully infers the confidence thresholds of agents under an
HK model from the network topology and the initial and final
opinions of each agent.

E. Comparison with an Evolutionary Algorithm Approach for
Confidence Threshold Estimation

As discussed in Section III, determining individual-level
confidence thresholds in an OD model to match specific
simulation outputs can be framed as a parameter calibration
problem in a high-dimensional space, for which heuristic
techniques like EAs are typically used [38], [39]. However, this
work pursues a different goal: to develop an ML method that,

after training on a synthetically generated dataset with diverse
case studies, can automatically infer the confidence thresholds
for any new case study, hence being able to generalize to
unseen data. This inference step takes negligible time and
avoids the need for additional ABM simulations, which are
often the bottleneck in calibration processes. The computa-
tionally intensive part of our approach lies in generating the
synthetic datasets (9 topologies and 180 ABM simulations per
scenario) and training the GNN model. As we showed in Table
IV, the training part, in particular for the best GraphSAGE
configurations, takes less than one hour.

In this section, we develop better why traditional heuristic
calibration algorithms are not well-suited for our specific
generalization-oriented goal and why the GNN-based proposal
is more appropriate. To this end, we designed a genetic
algorithm (GA) for comparison in which each solution is
represented as a vector of real numbers encoding agents’
confidence threshold. Since we aim for generalization across
case studies, the objective function minimizes the average
MSE between simulation outputs and final opinions across
all training cases. This allows us to apply the best threshold
configuration found by the GA directly to new cases without
additional simulations.

The GA operates as follows. We use a population of 100

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 11

solutions, with each solution encoded as a real-valued vector
where each gene represents an agent’s confidence threshold,
ϵ̂i ∈ [0, 1]. In each iteration, 100 offspring solutions are
generated through a binary tournament selection process and a
BLX-α crossover (with α = 0.3 and a crossover probability of
0.6). Random uniform perturbations within [ϵ̂i − 0.3, ϵ̂i +0.3]
are applied to each gene with a probability of 0.1. The
replacement mechanism selects the 100 best solutions from the
combined parent and offspring populations. The GA stops after
evaluating 5,000 solutions (50 generations). Each evaluation in
the GA requires running |G(Train)| = 115 ABM simulations,
which is equivalent to the number of simulations involved in
the training set (G(Train)) generation.8

The GA execution took 1.59e+06 and 1.61e+06 seconds
(around 18.5 days) in the homogeneous and community-
based scenarios, respectively. Table X provides the error in
confidence threshold estimation for each synthetic split, which
can be compared to the results of our GNN-based approach
(see Tables IV and V). We can see that this GA method
performs much worse than the GNN-based approaches, even
when compared to models with poorer performance, such as
MLP and GCN layers. For example, the test MSE of the GA
is one order of magnitude higher than any NN model in the
homogeneous scenario, and between one and two orders of
magnitude higher in the community-based scenario.

TABLE X
EVALUATION OF THE THRESHOLD CONFIGURATIONS OBTAINED BY THE
GA FOR EACH SPLIT OF EACH SYNTHETIC DATASET, ASSESSED USING

MSE, MAE, MAPE, AND R² METRICS.

Dataset type Split MSE MAE MAPE R2

Homogeneous
Thresholds GHom

Syn

Train 9.22e-02 2.49e-01 1.17e+00 -5.48e+00
Validation 1.04e-01 2.67e-01 1.43e+00 -5.13e+00
Test 9.62e-02 2.56e-01 1.23e+00 -5.76e+00

Thresholds by
Community GCom

Syn

Train 1.46e-01 3.16e-01 9.39e+00 -6.12e+00
Validation 1.42e-01 3.11e-01 3.34e+01 -6.12e+00
Test 1.45e-01 3.14e-01 6.91e+00 -5.27e+00

This experiment highlights three issues of the heuristic
search method, which further emphasizes the advantages of
our proposal. First, when provided with the same training
data as our GNN-based method, the GA requires significantly
more computation time, increasing from hours to weeks.
Second, the heuristic search struggles to adequately address
our generalization goal across different case studies. It must
search for a fixed threshold configuration that performs well
on average, leading to significantly poorer results than our
method, which infer case-specific thresholds. Third, since the
GA solution size depends on the graph size (i.e., the number
of agents in the case study), its applicability is restricted to
case studies on the same size as the training data. This, for
instance, prevents us from testing it on the real topologies test
set discussed in Section IV-D.

8For time constraints, we use only one MC run for each GA evaluation.
Even with this computational reduction and parallelizing all simulations for
each evaluation, the evaluation time of each chromosome is around 320
seconds.

V. CONCLUSIONS AND FUTURE WORKS

In this research, we have addressed the challenge of deter-
mining agent-level confidence thresholds in a social network
of individuals following the HK model of OD. We approached
this task by reframing it as a regression problem, wherein the
input data consists of the social network topology and the
initial and final opinions of each agent. Given this formulation,
GNNs emerge as the most suitable ML model family for the
problem solving of this learning challenge. The theoretical
foundation of the OD model enabled the generation of large
synthetic datasets, facilitating the proper training of the mod-
els.

After conducting a comprehensive experimentation involv-
ing two threshold scenarios of increasing difficulty and evalu-
ating various GNN architectures along with an MLP model
as a baseline and a GA-based method as benchmark, we
have identified GATv2 and GraphSAGE layers as the most
successful to address the problem at hand, achieving re-
markably good results in both cases. Notably, GraphSAGE
stands out for obtaining the best results in scenarios involving
heterogeneous thresholds by communities, which represents
the most challenging variant of the problem. It is noteworthy
that the superior results achieved in synthetic datasets extend
to test datasets comprising real-world topologies, with Graph-
SAGE consistently achieving a coefficient of determination
R2 exceeding 0.7. This consistency across different topologies
suggests that the GraphSAGE model effectively generalizes its
learning to previously unseen social networks, underscoring its
potential for direct application to new real-world case studies.
Consequently, these findings affirm the success of the proposed
methodology.

While our work has yielded positive results, several limi-
tations warrant consideration for future research. Firstly, our
exploration of GNN architectures has focused on three of the
most prevalent layers in the literature. Examining alternative
options could potentially enhance the results obtained. Addi-
tionally, it would be valuable to deploy our trained models in a
fully real-world case study involving a population with known
initial and final opinions. Such an application could provide
further insights into the practical utility and effectiveness of
the proposed methodology. Moreover, to increase the realism
of the OD model, future works could explore an extension
of this methodology to handle dynamic social networks that
evolve over time [53]. Finally, we propose investigating the
application of this approach to predict agent-level attributes in
other ABMs. Like the HK model, these models should depend
solely on individual agent properties and an underlying social
network for their operation.

REFERENCES

[1] J. M. Epstein, Generative social science: Studies in agent-based com-
putational modeling. Princeton University Press, 2006.

[2] J. D. Farmer and D. Foley, “The economy needs agent-based modelling,”
Nature, vol. 460, pp. 685–686, 2009.

[3] C. M. Macal and M. J. North, “Tutorial on agent-based modeling
and simulation,” in Proceedings of the 37th Conference on Winter
Simulation, 2000, pp. 86–98.

[4] M. A. Janssen and E. Ostrom, “Empirically based, agent-based models,”
Ecology and society, vol. 11, no. 2, 2006.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 12

[5] A. Trivedi and S. Rao, “Agent-based modeling of emergency evacuations
considering human panic behavior,” IEEE Transactions on Computa-
tional Social Systems, vol. 5, no. 1, pp. 277–288, 2018.

[6] P. Lv, Z. Zhang, C. Li, Y. Guo, B. Zhou, and M. Xu, “Crowd
behavior evolution with emotional contagion in political rallies,” IEEE
Transactions on Computational Social Systems, vol. 6, no. 2, pp. 377–
386, 2019.

[7] P. Ye, S. Wang, and F.-Y. Wang, “A general cognitive architecture
for agent-based modeling in artificial societies,” IEEE Transactions on
Computational Social Systems, vol. 5, no. 1, pp. 176–185, 2018.

[8] M. H. Degroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[9] R. A. Holley and T. M. Liggett, “Ergodic theorems for weakly interact-
ing infinite systems and the voter model,” Annals of Probability, vol. 3,
no. 4, pp. 643–663, 1975.

[10] S. Galam, “Minority opinion spreading in random geometry,” The
European Physical Journal B - Condensed Matter and Complex Systems,
vol. 25, no. 4, pp. 403–406, 2002.

[11] H. Xia, H. Wang, and Z. Xuan, “Opinion dynamics: A multidisciplinary
review and perspective on future research,” International Journal of
Knowledge and Systems Science, vol. 2, no. 4, p. 72–91, 2011.

[12] J.-H. Cho, “Dynamics of uncertain and conflicting opinions in social
networks,” IEEE Transactions on Computational Social Systems, vol. 5,
no. 2, pp. 518–531, 2018.

[13] Y. Dong, M. Zhan, G. Kou, Z. Ding, and H. Liang, “A survey on the
fusion process in opinion dynamics,” Information Fusion, vol. 43, pp.
57–65, 2018.

[14] N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,” The
Journal of Mathematical Sociology, vol. 15, no. 3-4, p. 193 – 206, 1990.

[15] J. Giráldez-Cru, A. Suárez-Vázquez, C. Zarco, and O. Cordón, “Mod-
eling the opinion dynamics of superstars in the film industry,” Expert
Systems with Applications, vol. 250, p. 123750, 2024.

[16] D.-S. Lee, C.-S. Chang, and Y. Liu, “Consensus and polarization of
binary opinions in structurally balanced networks,” IEEE Transactions
on Computational Social Systems, vol. 3, no. 4, pp. 141–150, 2016.

[17] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs
among interacting agents,” Advances in Complex Systems, vol. 3, no.
01n04, pp. 87–98, 2000.

[18] R. Hegselmann and U. Krause, “Opinion dynamics and bounded confi-
dence models, analysis, and simulation,” Journal of Artificial Societies
and Social Simulation, vol. 5, no. 3, 2002.

[19] Q. Zha, H. Liang, G. Kou, Y. Dong, and S. Yu, “A feedback mechanism
with bounded confidence- based optimization approach for consensus
reaching in multiple attribute large-scale group decision-making,” IEEE
Transactions on Computational Social Systems, vol. 6, no. 5, pp. 994–
1006, 2019.

[20] R. Axelrod, “The dissemination of culture: A model with local conver-
gence and global polarization,” Journal of Conflict Resolution, vol. 41,
no. 2, pp. 203–226, 1997.

[21] C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social
dynamics,” Rev. Mod. Phys., vol. 81, pp. 591–646, 2009.

[22] J. Lorenz, “Heterogeneous bounds of confidence: Meet, discuss and find
consensus!” Complexity, vol. 15, no. 4, pp. 43–52, 2010.

[23] F. Stonedahl, D. Anderson, and W. Rand, “When does simulated
data match real data?” in Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, 2011, pp. 231–
232.

[24] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based
optimization methods applied to building performance analysis,” Applied
energy, vol. 113, pp. 1043–1058, 2014.

[25] W. Zhang, A. Valencia, and N. Chang, “Synergistic integration between
machine learning and agent-based modeling: A multidisciplinary re-
view,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, no. 5, pp. 2170–2190, 2023.

[26] M. Ale Ebrahim Dehkordi, J. Lechner, A. Ghorbani, I. Nikolic, E. Chap-
pin, and P. Herder, “Using machine learning for agent specifications in
agent-based models and simulations: A critical review and guidelines,”
Journal of Artificial Societies and Social Simulation, vol. 26, no. 1, 2023.

[27] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT
Press, 2022.

[28] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[29] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A
gentle introduction to graph neural networks,” Distill, 2021.

[30] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2016.

[31] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[32] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[33] R. L. Berger, “A necessary and sufficient condition for reaching a
consensus using degroot’s method,” Journal of the American Statistical
Association, vol. 76, no. 374, p. 415 – 418, 1981.

[34] W. L. Hamilton, Graph representation learning. Morgan & Claypool
Publishers, 2020.

[35] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[36] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations,
2021.

[37] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[38] N. Malleson, L. See, A. Evans, and A. Heppenstall, “Optimising an
agent-based model to explore the behaviour of simulated burglars,”
Theories and simulations of complex social systems, pp. 179–204, 2014.

[39] J. Zhong and W. Cai, “Differential evolution with sensitivity analysis
and the powell’s method for crowd model calibration,” Journal of
computational science, vol. 9, pp. 26–32, 2015.

[40] J. F. Robles, E. Bermejo, M. Chica, and Ó. Cordón, “Multimodal evolu-
tionary algorithms for easing the complexity of agent-based model cal-
ibration,” Journal of Artificial Societies and Social Simulation, vol. 24,
no. 3, 2021.

[41] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[42] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[43] P. Erdös and A. Rényi, “On random graphs i,” Publ. math. debrecen,
vol. 6, no. 290-297, p. 18, 1959.

[44] M. E. Newman and D. J. Watts, “Renormalization group analysis of the
small-world network model,” Physics Letters A, vol. 263, no. 4-6, pp.
341–346, 1999.

[45] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[46] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[47] C. Cai and Y. Wang, “A note on over-smoothing for graph neural
networks,” arXiv preprint arXiv:2006.13318, 2020.

[48] S. Simon, N. Kolyada, C. Akiki, M. Potthast, B. Stein, and N. Sieg-
mund, “Exploring hyperparameter usage and tuning in machine learning
research,” in 2023 IEEE/ACM 2nd International Conference on AI
Engineering–Software Engineering for AI (CAIN). IEEE, 2023, pp.
68–79.

[49] M. Ogunsanya, J. Isichei, and S. Desai, “Grid search hyperparameter
tuning in additive manufacturing processes,” Manufacturing Letters,
vol. 35, pp. 1031–1042, 2023.

[50] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[51] D. Gomes, F. Ruelens, K. Efthymiadis, A. Nowe, and P. Vrancx, “When
are graph neural networks better than structure-agnostic methods?” in
NeurIPS 2022. OpenReview.net, 2022, pp. 1–10.

[52] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” in International
Conference on Learning Representations, 2018, pp. 1–13.

[53] Z. Wu, Q. Zhou, Y. Dong, J. Xu, A. H. Altalhi, and F. Herrera,
“Mixed opinion dynamics based on degroot model and hegselmann–
krause model in social networks,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 53, no. 1, pp. 296–308, 2022.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 13

Vı́ctor A. Vargas-Pérez received the B.Sc. degree
in Computer Science and the M.Sc. degree in Data
Science from the University of Granada (Spain) in
2020 and 2021, respectively. He is currently a Ph.D.
student in the Department of Computer Science
and Artificial Intelligence, University of Granada
(Spain). His research interests include agent-based
modeling and machine learning.

Jesús Giráldez-Cru obtained his PhD in Computer
Science in 2016 from the Autonomous University
of Barcelona (Spain). He did his PhD in the Artifi-
cial Intelligence Research Institute of the Spanish
National Research Council (IIIA-CSIC) and was
a postdoctoral researcher in the Royal Institute of
Technology (KTH, Stockholm, Sweden) and in the
University of Granada (Spain). Currently, he is a
“Ramón y Cajal” senior postdoctoral researcher at
the University of Seville (Spain). He has co-authored
more than 30 research works published in top inter-

national journal and conferences, such as Artificial Intelligence, International
Journal of Intelligent Systems, Knowledge-based Systems, Journal of Artificial
Intelligence Research, and International Joint Conference on Artificial Intel-
ligence (IJCAI), among others, with a H-index of 14 according to Google
Scholar, and he is an active member of the Program Committee of top
AI conferences including IJCAI and AAAI. His research interests focus on
constraint satisfaction and optimization problems, complex networks, and
opinion dynamics in agent-based modeling.

Pablo Mesejo is Associate Professor at the De-
partment of Computer Science and Artificial In-
telligence of the University of Granada (Spain),
and Co-Founding Partner and Chief AI Officer of
Panacea Cooperative Research (Spain). The main
topic of his research is the analysis and design of ma-
chine learning, computer vision, and computational
intelligence methods able to solve image analysis
problems. He has published his research work at top
venues like IEEE TPAMI, CVPR, ECCV, MICCAI,
ICML, IJCAI, ECAI, IEEE TMI, and many more.

Dr. Mesejo is the Vice-Chair of the IEEE CIS Task Force on Evolutionary
Computer Vision and Image Processing (Chair from 2018 to 2021), Associate
Member of the American Academy of Forensic Sciences (AAFS, Digital
and Multimedia Sciences Section), and member of the Andalusian Research
Institute on Data Science and Computational Intelligence, among others.

Oscar Cordón (Fellow, IEEE) is Professor at
University of Granada, Spain. Founding Director
of Virtual Learning Center (2001–2005) and VP
for Digital University (2015–2019). Founding re-
searcher of European Centre for Soft Computing
(2006–2015). IEEE CIS Outstanding Early Career
Award (2011), National Award on Computer Science
(2014), IEEE Fellow (2018), IFSA Fellow (2019),
and Recognition of the Spanish AI Association
(2020), among other awards. Member of High-Level
Expert Group for Spanish R&D Strategy on AI

(2019). 131 JCR-indexed journal papers, 23 Ph.D. dissertations advised, 42
research projects/contracts (∼10MC) coordinated, and 4 international patents.
Included in 1% of most-cited researchers in the world (Clarivate WOS) and
Top 2% of the most cited researchers in the world in Artificial Intelligence
(University of Stanford-Elsevier).

	Introduction
	Background
	Opinion Dynamics Models
	Graph Neural Networks

	Methodology
	Experiments and Analysis
	Experimental Setup and Synthetic Datasets
	Models' Architecture and Hyperparameter Tuning
	Evaluation on Synthetic Topologies
	Evaluation on Real Topologies
	Comparison with an Evolutionary Algorithm Approach for Confidence Threshold Estimation

	Conclusions and Future Works
	References
	Biographies
	Víctor A. Vargas-Pérez
	Jesús Giráldez-Cru
	Pablo Mesejo
	Oscar Cordón

