Implementation of Markov Decision Processes into
quantum algorithms for reinforcement learning

15t M.P. Cuéllar

Dept. Computer Science and Artificial Intelligence

University of Granada
Granada, Spain
manupc @decsai.ugr.es

3" L.G.B. Ruiz
Dept. Software Engineering
University of Granada
Granada, Spain
bacaruiz@ugr.es

5t C. Cano
Dept. Computer Science and Artificial Intelligence
University of Granada
Granada, Spain
ccano@decsai.ugr.es

Abstract—In this work, we propose a methodology to imple-
ment classic Markov Decision Processes in a Quantum Comput-
ing paradigm, as a first step to achieve systems running Quantum
Reinforcement Learning where both agent and environment are
expressed as quantum programs. To do so, we analyze the
interaction cycle between the agent and the environment in
classic reinforcement learning and create a method to map a
Markov Decision Process with discrete state space, action set,
and rewards, into a quantum program.

Index Terms—Reinforcement Learning, Quantum Computing,
Quantum Machine Learning, Markov Decision Process

I. INTRODUCTION

Classic Reinforcement Learning (RL) [1] is a type of
Machine Learning where an intelligent agent learns by in-
teraction with an unknown environment. A cycle of a RL
agent/environment interaction (see Figure 1) is as follows: At
each time step ¢ the environment is in a state s(¢) which is
fully observable by the agent. Then, the agent selects an action
a(t) over an available action set and performs the action over
the environment, which evolves from state s(t) to s(¢t+1) and
returns a reward scalar value r(t+1) to the agent as a feedback
of its performance. The goal in RL is to learn a policy 7 (a|s)
to select the best action a at every state s that maximizes the
long term accumulated reward, i.e.), yr(t), where v € [0, 1]
is a discount factor. Applications of RL are varied and some
are described in [1].

This work was supported by the project QUANERGY (Ref. TED2021-
129360B-100), Ecological and Digital Transition R&D projects call 2022,
Government of Spain.

2" M.C. Pegalajar
Dept. Computer Science and Artificial Intelligence
University of Granada
Granada, Spain
mcarmen @decsai.ugr.es

4™ G. Navarro
Dept. Computer Science and Artificial Intelligence
University of Granada
Granada, Spain
gnavarro@ugr.es

6" L. Servadei

School of Computation, Information and Technology

Technical University of Munich
Munich, Germany
lorenzo.servadei @tum.de

sit). r(t)

Agent

at)

s(t+1) r(tr1)

Environment <«

Fig. 1. Agent/environment interaction in a Reinforcement Learning cycle.

Classic RL is built upon the first-order Markov assumption,
so that the environment can be modelled with a Markov
Decision Process (MDP) [2]. An MDP is defined as a tuple
<S,A,P, R>, where S = {s1,52,..., 55|} is a set of states,
A ={a1,az,...,a4} is a set of actions, P : S x A — P(S)
is a probabilistic transition function where P(s;,ax, s;) is the
probability to evolve from state s; to state s; after executing
action ag, and R : S x A xS — R is a reward function where
R(s;,ak, s;) is a scalar value containing the reward obtained
after reaching state s; by means of executing action ay, in state
Si.

Quantum Reinforcement Learning (QRL) [3] attempts to
adapt classic Reinforcement Learning methods, or to develop
new techniques, for Quantum Computing (QC). As in Quan-
tum Machine Learning [4], four different scenarios combining
quantum and classical cases are studied, that arise from the
possibilities of a combination of classical/quantum agents
operating in classical/quantum environments. Nowadays, the
QRL literature has been mostly focused on the case where
the agent is implemented as a quantum program (usually by

means of Variational Quantum Circuits, VQC) working over a
classical environment as in [3], [5]-[8] to mention just a few,
since real quantum environments are difficult to find. However,
in the last few years, there have been a few proposals to create
quantum environments such as the quantum Tic-Tac-Toe [9].

In this work, we propose a method to migrate a classic
MDP to a QC paradigm, as a first step to create true quantum
environment simulators that enable the execution of quantum
agents in quantum environments. To do so, we first analyze
the components of the underlying MDP that rules the envi-
ronment evolution according to an agent action, and propose
a methodology to create quantum programs that emulate the
agent/environment interaction cycle.

This work is structured as follows: Section II describes
the approach. After that, Section III show an example of the
method as a proof of concept, and Section IV concludes.

II. IMPLEMENTATION OF THE MDP CYCLE IN QUANTUM
COMPUTING SCENARIOS

Our starting hypothesis is that all the state space S, action
space A, and possible rewards in R, can be expressed as
discrete sets. In this context, our goal is to find a deterministic
policy 7(s) that returns the best action a = 7(s) for each
environment state. The proposed general method to implement
the RL cycle in QC, containing the underlying MDP, can be
devised as follows (Figure 2):

(D)
v

ly.>

g%

Current state
Q-register Us
0>

a(
Y __ly,>

Current action
Q-register Un
0> ‘

lye>

Next state
Q-register Ur

s(t+1)
1(t+1)

[0> -
.
»>
q: ly,> A
Reward

Q-register Ur
0> ‘

Fig. 2. Scheme of the implementation of an MDP with a quantum program.

o At time ¢, the environment is at a given state s(t) =
s; € S, provided as an input. Therefore, a quantum
state preparation method is required to encode the cycle’s
initial state s; into its corresponding quantum state |t)s)
in a quantum register with ng qubits. The operator to
create |1)s) from |0) is Usg, i.e. |p5) = Ug |0).

o A deterministic action a(t) = ay € A, selected by either
a classical or quantum agent, is provided as input and
applied over the environment. The action aj, is encoded
into the state of a quantum register with n, qubits |,)
using the unitary transformation U4 so that |1),) |[¢0s) =
Ua [0) [¢s).

e Once the input state s; and action aj are encoded
into quantum states |1)s), |1),), the transition function

P(s;,ar) is executed to evolve the environment from the
known state s(t) = s; to a new state s(t + 1) = s;
with probability P(s;, ax,s;). To do so, a target quantum
register to store the next state, |ty), is required. A
controlled unitary transformation Ur is in charge of
calculating the superposition of target environment states
as |w8’>’ so that |"/}5’> |wa> |¢s> =Ur ‘0> W)a) |¢s>

o The reward r(t + 1) = R(s;, ax, s;) is finally calculated.
We could think of the reward function as a controlled
quantum operator Ur that evolves a quantum register
|0) of n, qubits allocated for rewards to a quantum
state |¢,.) encoding (¢ + 1). Formally, it is written as
|'(/Jr> |'(/)S’> |¢a> ‘ws> = UR |O> |'(/Js’> |¢a> ‘ws>

e Return of s(t + 1),r(t 4+ 1) to the agent. In the case the
agent is classical, this can be performed with measure-
ment operators over the target state quantum register |1)
and reward register |¢;.).

A. Current state and action encoding

To achieve an optimal use of qubit resources using a
dense encoding technique, all environment states, actions and
rewards are stored in the amplitudes of their corresponding
quantum registers. This means that the size of ns qubits used
for representing the environment states, n, qubits to represent
the available actions, and n, qubits to represent rewards can
hold 27+, 2™« and 2™~ different possible values, respectively.

Since environment states are fully observable in a MDP,
the quantum state representing |1)s) contains an amplitude
whose squared value equals 1.0, and therefore a simple basis
encoding technique [4] containing X gates can be used as
the encoding operator Ug. The same situation occurs for
actions and U 4. Assuming a mapping from environment states,
s; € S to basis quantum states, i.e. s; — |i), and also for
actions ar +> |k), the unitary operators Us and U, can
be generalized and implemented using parameterized circuits
containing R, (6) gates, where 6 € {0, 7} depending on the
binary representation of s;, a.

B. Implementation details of transition probabilities

The unitary transformation Ur is in charge of calculating
the superposition of target states s; € S into |t)y), so that
the register of the next state |¢)y/) contains the probabilities of
measurement P(s;, ag, sj). Thus, Ur can be implemented as
a sequence of instances of the Q-Sample encoding method [4]
controlled by the values of the quantum registers |1)) |1)s).
Section IIT provides an example of such instances.

C. Implementation details of reward computation

Similarly to states and actions, we assume a mapping from
the set of rewards 7, € R to basis states as r; — |[) in the
reward quantum register. After all values s;, ay, s; are known,
the reward function R(s;, ax, s;) is implemented into Ug as
a controlled operation that sets a probability amplitude of a
basis vector in the reward quantum register to value 1.0. This is
implemented in a circuit as a sequence of multiple controlled
NOT gates that set the correct amplitude. The idea behind

this operation is to entangle the reward quantum state with
[ths') [1ha) |1)s) so that the correct reward value is obtained
once |1)s) collapses after measurement.

ITI. PROOF OF CONCEPT AND IMPLEMENTATION

Due to space limitations, we limit the experimentation in
this work to show the RL cycle mapping from the MDP in
Figure 3 to a quantum program. We also performed a toy
example experiment to train a classic agent using the Q-
Learning procedure with v = 0.99 in a maximum number of
T = 200 steps and learning rate o = 0.2 to test convergence.
The source code for this experimentation is freely available at
https://github.com/manupc/MDPQuantum.

p(ss|ss.az)=1

pP(sz[ss.a1)=1
|s2,81)=0.8

a. a p(silss,a1)=0.6

S ‘.J)(S‘

1(sz)=-10

P(S:[S2.80)=0.8

p(si|sz.21)=0.4 p(s:]51.81)=0.3

p(s:|ss,81)=0.2

»

p(s:ls.,81)=0.7 '\52_)

1(s4)=10 S1

p(s:[s1.82)=1
Fig. 3. Example MDP.

The MDP in Figure 3 contains four states S =
{51, $2, 83,84}, two possible actions for each state A =
{a1,a2}, and a discrete set with four rewards that depend
on the final transition state only {r(s;) = 10,r(s2) =
—5,r(ss) = 1,7(s4) = —10}. Therefore, the number of
qubits required to represent the states and rewards is ns =
n, = 2. The proposed mapping from states and rewards to
basis vectors is s; — |00),s2 — [01),s3 — |10),84 +—>
[11) and 7(-,-,s1) = [00),7(:,-,s2) — |01),7(-,-,83) —
[10) ,7(-,-,s4) — |11), respectively. It is assumed that the
initial state to execute the environment is s;. With respect
to actions, a number of n, = 1 qubit is required under the
mapping a; — [0), a2 — |1).

The optimal deterministic policy was obtained using the
Value Iteration method in classic RL, obtaining the policy
m(s1) = a1,7m(s2) = aa,m(s3) = az,7(s4) = a1. Running
the value iteration over the classical environment required 0.02
sec. on a desktop computer Intel(R) Core(TM) i5-9600K CPU
at 3.70GHz with 32GB RAM. On the other hand, the Q-
Learning algorithm over the classical environment took 0.012
sec. and obtained the optimal policy.

The quantum MDP was implemented in IBM’s Qiskit with
the QASM noise-free simulator. An example of a sub-circuit
containing the transition from s3 and action ay to states sg, S3
with probabilities 0.4 and 0.6, respectively, is depicted in
Figure 4. The Q-Learning method was applied to learn the
optimal policy, using a computational time of 226.68 sec.
under ideal conditions.

aso —
a5 5
gA . G G
aspo l——
asp1

qRo

cS

cR

Fig. 4. Example circuit to represent a single transition P(s2, a2).

IV. CONCLUSIONS

In this work, we have shown a preliminary study towards the
creation of quantum environments for reinforcement learning,
inspired in the hypotheses of classic RL using MDPs as
a first step. We have developed a method to implement a
reinforcement learning agent/environment interaction cycle in
a quantum computer containing the full transition and reward
functions of the MDP. Future works will consider extending
the implementation to models with partial observability, and
general methods to implement quantum agents working in
quantum environments.

ACKNOWLEDGEMENTS

This article was supported by the project QUANERGY
(Ref. TED2021-129360B-100), Ecological and Digital
Transition R&D projects call 2022 funded by
MCIN/AEI/10.13039/501100011033 and European Union
NextGenerationEU/PRTR.

REFERENCES
[

—

P. Winder, Reinforcement Learning: Industrial Applications with Intelli-

gent Agents. O’Reilly, 2020.

[2] M. Putterman, Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum reinforcement

learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), vol. 38, no. 5, pp. 1207-1220, 2008.

[4] A. Zeguendry, Z. Jarir, and M. Quafafou, “Quantum machine learning:

A review and case studies,” Entropy, vol. 25, no. 2, 2023. [Online].

Available: https://www.mdpi.com/1099-4300/25/2/287

A. Skolik, S. Jerbi, and V. Dunjko, “Quantum agents in the Gym: a

variational quantum algorithm for deep Q-learning,” Quantum, vol. 6, p.

720, 2022.

[6] S. Jerbi, C. Gyurik, S. C. Marshall, H. J. Briegel, and V. Dunjko,
“Parametrized quantum policies for reinforcement learning,” 2021.

[7] N. D. Pozza, L. Buffoni, S. Martina, and F. Caruso, “Quantum
reinforcement learning: the maze problem,” Quantum Mach.
Intell., vol. 4, no. 2, . 1-10, 2022. [Online]. Available:
https://doi.org/10.1007/s42484-022-00068-y

[8] E. Andrés, M. P. Cuéllar, and G. Navarro, “On the use of

quantum reinforcement learning in energy-efficiency scenarios,” Energies,

vol. 15, no. 16, 2022. [Online]. Available: https://www.mdpi.com/1996-
1073/15/16/6034

S. Sagole, A. Dey, B. Behera, and P. Panigrahi, “Quantum tic-tac-toe: A

hybrid of quantum and classical computing,” Tech. Rep., 12 2019.

3

—_

[5

—

[9

—

