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Abstract. In this work we explore the use of Quantum Computing for
Time Series forecasting. More speci�cally, we design Variational Quan-
tum Circuits as the quantum analogy of feedforward Arti�cial Neural
Networks, and use a quantum neural network pipeline to perform time
series forecasting tasks. According to our experiments, our study suggests
that Quantum Neural Networks are able to improve results in error pre-
diction while maintaining a lower number of parameters than its classical
machine learning counterpart.

Keywords: Quantum Neural Networks · Quantum Machine Learning ·

Time Series Forecasting.

1 Introduction

Quantum Computing (QC) [15] was born in 1982 after Richard Feynman pointed
out the complexity of simulating a quantum system with a classic computer.
Since then, QC has been growing as a research area until nowdays, where con-
temporary applications of QC are varied and include cryptography, �nance, game
theory, chemical modelling, or machine learning [5][10][12][17], to mention just a
few. The recent reality of QC hardware and the existence of quantum computer
simulators able to run in classical computers have contributed signi�cantly to
improve the state-of-the-art in QC, although quantum supremacy (understood
as a signi�cant speedup from exponential time to polynomial time) have not
been achieved but for a handful of applications such as search in unordered sets
in O(

√
n) with Grover's search, �nding if a function is balanced or not with

Deutsch-Jozsa method, or integer factorization with Shor's algorithm [15], to
mention the most sounded examples.
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In we focus on Quantum Machine Learning (QML) [4], all types of supervised
[11], unsupervised [13], and reinforcement learning [1][6] tasks have been explored
with this new computing paradigm. Most of the approaches show the bene�ts
of QML to solve these tasks, and often they provide bene�ts in either time
complexity and/or performance. In this work, we adopt the supervised learning
paradigm under QC, and propose a Quantum Neural Network [8] to solve tasks
of time series forecasting, with the goal of performing a preliminar evaluation of
the scope of QC to tackle this type of problem.

A Time Series is a sequence of measurements or observations of a given
phenomenon, sampled periodically and indexed in time. Time series forecasting
is an ubiquitous problem to almost all areas in science, and attempts to predict
future values of the data series x(t+1) with historical time series data x(t), x(t−
1), x(t − 2), ..., and a hypothesis model f often parameterized with parameters
θ, i.e. x(t + t) = f(x(t), x(t − 1), x(t − 2), x(t − 3), ..., θ). Although the number
of models used for time series forecasting is wide and the proposals come from
di�erent areas (statistics, electronics, computer science, economics, etc.), in this
work we focus in the special case of neural networks for forecasting [16]. Both
feedforward and recurrent neural network models have been extensively tested
in a wide variety of problems, as it is described in the survey [3].

On the other hand, if we focus on the problem of time series forecasting with
Quantum Computing, the reference literature is scarce and very few research
articles have addressed the problem. In particular, the work [2] proposed a new
neural network model whose computation units are inpired in quantum ampli-
tude and phase operations, and applied the proposal for stock market forecasting.
Lately, in [14] it is proposed an adaptation of the Quantum-inspired Optimiza-
tion Algorithm (QOA) for fuzzy sets, and the approach was tested over the
TAIFEX stock market time series and temperature time series, among others.
We remark that these two approaches are not purely from QC, although they are
inspired by elements of QC to build classical models. Pure QC approaches are
the work [9], that proposes a hybrid classical/quantum neural network contain-
ing layers from both computing paradigms and trained the model to predict the
Sun Spot time series; and the article [7] which develops a framework for quan-
tum machine learning temporal tasks using reservoir computing and quantum
neural networks (QNNs), applied to S&P 500 stock market time series predic-
tion problems. In these cases, all papers in the literature report an increase in
performance/accuracy of the QC models with respect to classic computing ones.

In this manuscript, we design a pure QC neural network using Variational
Quantum Circuits, and test the approach in classic benchmark time series pre-
diction datasets. Since loops are not allowed in a quantum algorithm, the de-
signed quantum neural network has a feedforward structure, and contribute to
the existing literature by means of the proposal of how to encode time series
data into quantum states, the QNN design and measurement of results, and a
proof-of-concept experimentation to assess limitations and future possible ways
to address the problem of scalability.
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This work is structured as follows: Section 2 makes an overview of QC and
QML to make this article self-contained. After that, Section 3 review the con-
cept of Quantum Neural Network and describes our approach. Then, Section 4
describes the experimentation performed, and Section 5 concludes.

2 Quantum Computing and Machine Learning

This section contains a brief introduction to Quantum Computing and Quantum
Machine Learning for article self-completeness. The main references used to write
this section, and for further information, are [10][15] for QC and [5] for QML.

There is no need to argue that Quantum Computing is a completely di�erent
computer programming paradigm to the traditional (classic) computer program-
ming. However, we may �nd some common elements in both: Classic computing
is based on computation over binary digits (bits), and the output of a classic
computing algorithm is a set of n bits with values in {0, 1}n whose underlying
mathematical model is Zn

2 , i.e. the cartesian product of Z2 n times or ×nZ2.
Similarly, QC is based on operations over quantum binary digits (qubits), and
the output of a QC system is also a set of n binary values in {|0⟩ , |1⟩}. How-
ever, the underlying mathematical model of QC is a vector subspace of C2n

obtained by means of the tensor product of C2 n times, i.e.
⊗n C2. The values

|0⟩ = (1, 0)t and |1⟩ = (0, 1)t are the orthonormal basis column vectors of the
vector subspace of a system with one qubit, also refered to as the computational

basis. For systems with a larger number of qubits, the computational basis is cal-
culated by means of the tensor product of the qubit basis vectors, as for instance
{|0⟩ ⊗ |0⟩ = |00⟩ = (1, 0, 0, 0)t, |0⟩ ⊗ |1⟩ = |01⟩ = (0, 1, 0, 0)t, |1⟩ ⊗ |0⟩ = |10⟩ =
(0, 0, 1, 0)t, |1⟩⊗|1⟩ = |11⟩ = (0, 0, 0, 1)t} for the case of 2 qubits. It is worth not-
ing that, when a new bit is included into a classical system, the dimension of the
computational space increases by one as a consequence of the cartesian product
operation; however, when a new qubit is included into a quantum system the
dimension of the computational space doubles its size.

As a member of a vector subspace in C2, the value of an arbiratry qubit |ψ⟩
can be modelled as a linear complex combination of the basis states {|0⟩ , |1⟩} as
|ψ⟩ = α0 |0⟩+α1 |1⟩ , αi ∈ C with the additional constraint that

∑
i |αi|2 = 1, so

that a qubit can potentially hold an in�nite number of values. The coe�cients
αi are called amplitudes and, when the user retrieves the output of a quantum
algorithm through the measurement operator, the qubit collapses to value |0⟩
with probability |α0|2 or to value |1⟩ with probability |α1|2. This also holds for
systems with a larger number of qubits, as for instance |ψ⟩ = α0 |00⟩+α1 |01⟩+
α2 |10⟩+ α3 |11⟩ for a 2-qubit system.

Operations in a classic algorithm are implemented at a fundamental level
using a sequence of logic gates such as AND, NOT, OR, etc., whose mathematical
model relies on the addition and product over the �eld with two elements Z2.
Similarly, a quantum algorithm can also be implemented using quantum gates;
however, these gates are a reversible linear transformation over the complex
space C2n and are modelled as unitary matrices that multiply the quantum
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state. For example, the σx gate/operation in equation 1 is the quantum analog
to the NOT classical gate, and its application over qubits with values |0⟩ or |1⟩
is written as σx |0⟩ = |1⟩ or σx |1⟩ = |0⟩, respectively. Another example is the
Hadamard (H) gate in equation 2, where H |0⟩ moves the qubit into the standard
superposition of the basis states |ψ⟩ =

√
2
2 |0⟩+

√
2
2 |1⟩. A �nal example of a gate

with 2 inputs is shown in equation 3 and it corresponds to the Controlled-NOT
(CNOT) gate which switches the second qubit from |0⟩ to |1⟩ or vice versa
if the �rst qubit is |1⟩, of leaves it unchanged otherwise. In the general case,
for an arbitrary 2-qubit state |ψ⟩ = α0 |00⟩ + α1 |01⟩ + α2 |10⟩ + α3 |11⟩, the
CNOT exchanges the amplitudes of the last basis vectors so that CNOT |ψ⟩ =
α0 |00⟩+ α1 |01⟩+ α3 |10⟩+ α2 |11⟩.

σx =

(
0 1
1 0

)
(1)

H =
1√
2

(
1 1
1 −1

)
(2)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

Of special interest to our work are the set of parameterized gates, i.e. gates
whose behaviour depends of input parameters θ, such as the rotation gates
Rx(θ), Ry(θ), Rz(θ), whose unitary matrices for one qubit are described in equa-
tions 4-6, respectively. These gates allow to change the output of a quantum
algorithm depending on the parameter θ, and are the fundamental block to
build the quantum neural network used in this work.

Rx(θ) =

(
cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

)
(4)

Ry(θ) =

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
(5)

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(6)

Quantum algorithms are described as a sequence of operations over a quan-
tum state, as for instance the operations CNOT ((H |q0⟩) ⊗ |q1⟩), and are im-
plemented into quantum circuits. Figure 1 shows the implementation of the
previous algorithm, which starts from state |q0q1⟩ = |00⟩ and measures state
|00⟩ or |11⟩ with probability 0.5 into classical bits (line c). In a circuit, each
horizontal line is assigned to a single qubit, and gates are organized sequentially
until measurement. Thus, loops are not allowed in a quantum program. A spe-
cial case of a quantum circuit is the Variational Quantum Circuit (VQC), whose
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q0

q1

2c

H

0 1

Fig. 1: Example of circuit implementing the algorithm CNOT ((H |q0⟩)⊗ |q1⟩).

main feature is that it contains parameterized gates such as the aforementioned
Rx(θ), Ry(θ), Rz(θ).

Quantum Machine Learning has been a research area of growing interest for
the last two decades; however, it has obtained a special focus in the last few years
thanks to the advances in Quantum Computer Hardware and Quantum Com-
puting simulators. The main goal of QML is to design and implement methods
able to run in a quantum computer to solve the traditional supervised, unsu-
pervised and reinforcement learning tasks of classic Machine Learning, taking
advantages of quantum operations that are not present in a classic computer
such as superposition, tunneling, entanglement, or quantum parallelism, coming
from Quantum Computing (QC). In this work, we focus on the case of Quantum
Neural Network (QNN) design. A QNN is the quantum analog of a classic neural
network. Each layer of a QNN is a VQC containing parameterized gates, where
the parameters are the quantum analog of the classic network weights. It also
contains a mechanism to transfer information among the existing qubits as an
analogy to a classic connection between neurons of di�erent layers. Usually, this
information transfer is implemented as entanglements using operators such as
the CNOT gate.

Fig. 2: Usual pipeline of Quantum Machine Learning, where CPU stands for op-
erations performed on a classical computer and QPU operations over a quantum
hardware.

The process to create a QML model usually involves the following steps (see
Figure 2): First, the dataset is loaded and preprocessed into a classical CPU.
After that, the classic data are encoded into quantum states on a quantum
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hardware of QPU using a quantum embedding technique. Once the classic data
has been represented into quantum states, the core model implemented in the
antsatz is executed and its results measured into classical bits. Finally, these
results are post-processed if necessary in CPU to provide the expected model
output. In this work, we follow this general pipeline to study how a Quantum
Neural Network can be used for time series forecasting.

3 Variational Quantum Circuits for forecasting

A Quantum Neural Network [8] can be tipically organized as a sequence of layers:

� The input layer, in charge of transforming the classic input data into a
quantum state.

� The antsatz, containing a Variational Quantum Circuit whose structure is
concatenated L times to create the quantum analog of L network layers.

� The output layer, which performs measurement operations over qubits to
return the expected outcome.

The input layer is usually implemented as a parameterized variational cir-
cuit with rotation and controlled-rotation gates that help to set the desired
quantum state for a given input classic data. This process is called the quantum
embedding procedure, and it encompasses a set of techniques such as basis en-
coding, amplitude encoding, hamiltonian encoding, or tensor product encoding,
to mention just a few. In this work, we use the tensor product encoding consist-
ing of a single X-rotation gate for each qubit, where the gate parameter is the
classic data scaled to [−π, π]. This is a simple and fast encoding technique which
requires operations in O(1) to perform the creation of a quantum state; however,
it has the limitation that the number of qubits must increase with the number
of input classic data linearly. In addition, quantum embedding can be in�uenced
by the bias and scale of the input dataset and, for that reason, we have mod-
i�ed the tensor product classic scheme to include further learnable parameters
to scale and bias the input data. Figure 3 shows an example of the input layer
for a network containing 3 qubits. Values Ii are the classic data features, θi are
the input scale parameter and bi the bias parameter.

With respect to the antsatz, we may notice that the literature does not o�er
a set of �xed quantum layer structures as there are in the classic neural network
domain (fully connected, recurrent, etc.). The number of possible gates used for
quantum information transfer between qubits is wide, and the organization of
these gates to make the data transfer has not been extensively studied yet. In
this work, we use the Real Amplitudes antsatz which has been used previously in
other domains with success such as policy estimation for quantum reinforcement
learning and classi�cation. The antsatz starts with full rotation X/Y/Z param-
eterized gates as the quantum analog of connection weights, followed by a set of
CNOT gates organized with a ring structure for the qubit information transfer.
Figure 4 shows the implementation of the described antsatz as the analogy of a
quantum network layer for a 3-qubit network. Thus, a quantum network layer in
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q0

q1

q2

θ_0*I_0+b_0
RX

θ_1*I_1+b_1
RX

θ_2*I_2+b_2
RX

Fig. 3: Tensor product embedding for a classic data containing 3 features in
[−π, π].

our work contains a number of 3 ∗n parameters, where n stands for the number
of qubits.

q0

q1

q2

θ_00
RX

θ_10
RX

θ_20
RX

θ_01
RY

θ_11
RY

θ_21
RY

θ_02
RZ

θ_12
RZ

θ_22
RZ

Fig. 4: Real Amplitudes antsatz for a 3-qubit network.

σz =

(
1 0
0 −1

)
(7)

With respect to the output layer, measurement is often performed over a
selected observable. A typical observable is the σz operator over the computa-
tional basis (see equation 7). The network output can be calculated by means
of the expectation of the observable over a quantum state, i.e. ⟨ψ|σz |ψ⟩, where
⟨ψ| stands for the conjugate transpose of |ψ⟩, so that the output is in the range
[−1, 1]. This must be taken into account for the QML system design, since the
output data must be scaled if the target patterns in our dataset have a di�erent
range. In this work, we use the expectation of the σz observable over the �rst
qubit q0 of our network as the network output. However, we append a �nal scale
parameter and bias to be learned, so that the network output is less sensitive to
dataset bias and scale. The whole designed model is depicted in Figure 5.

As we are using Quantum Computing simulation software, the training of the
proposed QNN is performed in CPU using classic algorithms such as the Adam
optimizer. Gradient computation is performed in CPU using the classic propa-
gation rules, while the gradient in the QPU is calculated using the parameter-
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Fig. 5: Proposed Quantum Neural Network model.

shift rule. Figure 6 shows the training process pipeline, where θ1 stand for the
scale/bias parameters in the input layer, θ2 are the parameters of the layers
containing the antsatz, and θ3 are the scale/bias parameters for the network
outputs.

Fig. 6: Proposed Quantum Neural Network model.

The use of the proposed QNN model for time series forecasting is as follows:
Since a QNN is a feedforward model, we �rst set a time horizon T , and the time
series must be transformed to tabular data where the target is the time series
value at time t, x(t), and the inputs are the values x(t− 1), x(t− 2), ..., x(t−T ),
as described in Figure 5.
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4 Experiments

The experimentation in this paper is a proof-of-concept regarding the capabilities
of QNNs to perform time series prediction. For that reason, we used two classic
and well-tested time series: The laser time series from the far-infrared laser
dataset A of the Sata Fe Time Series competition, and the synthetic Henon
map time series. Figure 7 shows the time series used, containing 150 data points
each. As a QNN has a feedforward structure, we compare the results with a
classic Multilayer Perceptron (MLP) instead of more complex recurrent neural
networks, in order to make the most fair comparison possible. The time series
were divided into the �rst 75% of data for training/test, and the remaining 25%
for validation. To ease QNN learning, we scaled the time series to the interval
[−1, 1] as a preprocessing step.

The MLP model was implemented in tensor�ow 2.7, containing 1 layers with
10 neurons, the tanh activation function in the hidden layer and the identity in
the output layer. On the other hand, the QNN was implemented in Tensor�ow
Quantum 0.6.1 and, in both datasets, a single layer was included in the network
structure. The training algorithm was Adam with a learning rate of 0.01 for
both MLP and QNN, and 30 di�erent executions were performed using 4-fold
cross-validation, to make a statistical analysis of results over a desktop computer
Intel(R) Core(TM) i5-9600K CPU at 3.70GHz with 32GB RAM with a NVidia
GeForce RTX 2060 GPU. The source code for this experimentation is available
at https://github.com/manupc/qnn_tsp.

(a) Laser (b) Henon

Fig. 7: Time Series datasets

Table 1 summarizes the results of the experiments performed. Column 1
prints the metric under study, Columns 2-3 the values of the corresponding
metric for the Laser dataset obtained by MLP and QNN, respectively, and
Columns 4-5 the values for the Henon dataset. On the other hand, rows 2-
4 show the MSE obtained for the training, test and validation sets; and the
rows 5-6 the minimum and maximum MSE obtained in the 30 experiments,
respectively. Finally, the last row contains the average computational time in



10 M.P. Cuéllar et al.

seconds for each run. A Mann-Whitney U test was applied over the validation
MSE of all 30 executions, and we remark results of QNN in row 3 with (+) if
the test concluded that there are signi�cant di�erences between MLP and QNN
and the latter outperformed the former, which occurs in both cases. Boxplots in
Figure 8 help to analyse these results.

Table 1: Summary of results.
Metric Laser Henon

MLP QNN MLP QNN

Avg. Tr. MSE 0.0380 0.0168 0.0761 0.0044
Avg. Ts. MSE 0.0478 0.0199 0.0734 0.0063
Avg. Val. MSE 0.0863 0.0476 (+) 0.0977 0.0145 (+)
Min. Val. MSE 0.05774 0.01461 0.0655 0.0096
Max. Val. MSE 0.1215 0.0683 0.1416 0.02145
Avg. Time 10.36 30.92 10.44 30.89

(a) Laser (b) Henon

Fig. 8: Boxplots of MSE for Laser and Henon datasets in our experiments

According to Table 1, the QNN was able to outperform the classic MLP in
the both datasets studied, both in training/test and validation data splits. Also,
both the best solution ans worst were better with QNN. However, the average
time required to perform the experimentation is x3 times slower in QNN, which
makes the model less scalable than the classical counterpart for a large number
of qubits. This could be expected, since the experiments were performed over a
QC simulation software instead than in a true quantum hardware. Boxplots in
Figure 8 support this conclusion, and also suggest that the robutsnetss of QNN
is better than in MLP since the di�erence betweeen the �rst and third quartiles
are lower in the former case.

If we analyze the results in terms of model complexity (number of param-
eters), the MLP with 10 hidden neurons contains (T+1)*10 parameters in the
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hidden layer (weights and biases) and 11 parameters in the output layer. On
the other hand, the number of parameters of the QNN is 2*T in the input layer
(input scale and bias), 3*T parameters in the hidden layer, and 2 parameters
(scale and bias) in the output layer. In the case of T=7, the MLP contains 91
parameters while the QNN has 37. Thus, the network model in the quantum
proposal is signi�cantly smaller than the classic counterpart. This fact suggests
that QML can contribute not only with an improvement in accuracy of models,
but also in model complexity.

Despite of these results, it is important to note that the computational space
of a QNN increases by power of two everytime a qubit is included into the
network. For that reason, we believe that the proposed model cannot be used
under simulation for large time series. This fact opens the doors to future works
where a more e�cient way to embed time series could be analyzed to reduce the
quantum network size.

5 Conclusions

In this work we have studied how Quantum Neural Networks can be used to
perform Time Series forecasting tasks in quantum computers. We have designed
a quantum neural network composed of a tensor product encoding input layer,
and one or several hidden layers using the Real Amplitudes antsatz. Experiments
were conducted as a proof-of-concept over two time series. Results suggest that
QNN have a great potential improving accuracy being compared with the MLP
classical counterpart, although at a big cost of computational resources required
under simulations. Future works must be conducted to extend the analysis to
larger time series and to design more e�cient ways of Quantum Embedding that
allow to reduce the QNN size.
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