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Abstract
In this paper, we explore how data augmentation (DA) tech-
niques can improve spoofed audio detection. Specifically, we
will focus on replay attacks, where a genuine voice is surrep-
titiously captured and then played back through a loudspeaker
to the voice biometric system. We propose several approaches
to handle with reverberation variability, different types of ad-
ditive noise, and unseen spoofing attacks, which have all been
proven to reduce the performance of countermeasure systems.
In order to test the effectiveness and generalization capability
of these DA techniques, out-of-domain experiments are car-
ried out on the PA ASVspoof 2021 dataset as well as on the
ASVspoof 2019 Real corpus, employing a LCNN classifier fed
with STFT features and trained over an augmented version of
the ASVspoof 2019 corpus. Four DA methodologies are ex-
plored: time masking, noise addition, Room Impulse Response
filtering and data mixup. The experimental results show that
meaningful improvements can be achieved when the DA proce-
dures are suitably selected.
Index Terms: anti-spoofing, data augmentation, physical ac-
cess

1. Introduction
Automatic Speaker Verification (ASV) aims to verify the
claimed identity of users in biometric systems by analyzing
their voice patterns. As these systems enable secure access to
sensitive information, ASV is widely utilized in practical sce-
narios and plays a significant role in our daily lives, such as
bank authentication and voice assistants. Despite recent ad-
vancements [1], ASV systems remain susceptible to malicious
attacks, which can be classified into Logical Access (LA) at-
tacks, such as text-to-speech (TTS) and voice conversion (VC),
and Physical Access (PA), including replay and impersonation
attacks [2]. This paper addresses the issue of replay attacks.
In this case, the attacker does not need any technical knowl-
edge since the attack can be simply carried out by recording the
original user’s voice and presenting it to the ASV system via a
loudspeaker [3].

Recent studies have focused on the development of anti-
spoofing strategies, also referred to as countermeasures (CM),
with the goal of detecting whether the audio voice presented
to the ASV system is genuine (bonafide) or whether it orig-
inates from a spoofing attack (spoofed). Many of these CM
systems rely on deep-learning based approaches, as they have
been proven to be the most effective [4, 5, 6, 7]. While enhanc-
ing network architectures can lead to improved performance,
these methods often suffer from overfitting and poor generaliza-
tion capability mainly due to the lack of suitable training data
[8, 9]. These issues are common to many classification systems

[10, 11, 12] and have been commonly tackled by means of data
augmentation (DA) and regularization techniques [13, 14, 15].

The aim of DA is to increase the diversity and amount of
training data without collecting new samples [16, 17]. By ap-
plying various transformations, new data is created enabling the
model to generalise to a wider range of scenarios. This pro-
cess helps to mitigate overfitting, improve model robustness and
enhance overall performance, particularly when the available
dataset is limited.

In the case of audio systems, data augmentation can be
performed either directly on signal samples (waveform) or on
time-frequency domain features, including spectrogram, mel-
spectrogram, and mel-frequency cepstral coefficients. For the
waveform, there are several DA methods that are known for
preserving the relevant information in speech audio as noise
addition, speaking speed changing and perturbation [18], time
shifting, among others.

In the spectral domain, methods intended for Automatic
Speech Recognition (ASR) as in [8], have introduced strategies
such as time warping, frequency masking, and time masking,
which involve altering specific frequency bands or time frames
to make the model more robust by forcing it to learn from in-
complete or partially obscured data.

Additionally, since time-frequency features (spectrograms)
can be treated as two-dimensional images, some DA strategies
from computer vision can also be applied. An example is the
Mixed Sample Data Augmentation (MSDA) techniques, also
known as mixup [19], which combines the spectral features of
two audios and their corresponding labels by varying a random
parameter.

In recent years, the scientific community has explored the
effectiveness of DA techniques to improve the generalization
of voice anti-spoofing models. While significant advancements
have been achieved in Logical Access (LA) and DeepFake (DF)
detection [20, 21, 22], Physical Access (PA) has seen limited
progress, with only small improvements emerging from small-
scale studies [23]. In this paper, we address the existing knowl-
edge gap in PA and determine which DA techniques yield the
best results for anti-spoofing models, especially in the context
of replay attacks. The techniques used in this study include time
masking and noise addition, as well as more innovative methods
to provide greater acoustic diversity. Specifically, we consider
filtering with a new Room Impulse Response (RIR) to intro-
duce varying levels of reverberation, and the mixup method for
generating new spoofed and bonafide spectrogram instances.

In order to check the generalization capability of the stud-
ied DA techniques, out-of-domain tests are conducted using a
Lightweight Convolutional Neural Network (LCNN) with log-
magnitude STFT input features, which is a widely known base-
line model for spoofing detection. The results, measured in
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terms of Equal Error Rate (EER), are promising and indicate
significant progress in Physical Access (PA) attack detection.

The rest of this paper is organized as follows. The next sec-
tion presents the databases used for training, development, and
evaluation of PA countermeasures, along the LCNN baseline
model. In Section 3, we describe the DA techniques employed.
Then, Section 4 shows the experiments conducted to check the
effectiveness of these techniques and their results. Finally, we
discuss and summarize our research in Section 5.

2. Databases and experimental setup
In this section, we describe the datasets used, an overview of
our model architecture to assess the performance of the tested
techniques and the evaluation metrics employed.

2.1. Speech datasets

In this study, we will use the training and validation subsets of
ASVspoof 2019 PA [24] to train our model, and then test the
effectiveness of the different DA methods considered against
ASVspoof 2021 [1] and ASVspoof 2019 Real [25] evaluation
sets.

The training and validation subsets of ASVspoof 2019 PA
contain genuine voice recordings and replay attack samples
generated through simulation with utterances taken from the
VCTK corpus [26]. The simulation involves filtering with pre-
established RIRs in order to simulate room’s acoustics, and
the application of the non-linearities corresponding to the loud-
speakers used for replay. No environmental noise is considered.
The number of speakers and audio samples in each subset is
presented in Table 1.

Table 1: Structure of ASVspoof 2019 PA data corpus.

Speakers Utterances
Subset Male Female Bonafide Spoofed

Training 8 12 5,400 48,600
Development 8 12 5,400 24,300
Evaluation 21 27 18,090 116,640

Total 37 51 28,890 189,540

The ASVspoof 2019 Real evaluation dataset was released
with the aim of providing an extra, small collection of real
spoofed recordings (captured and replayed in three distinct
acoustic conditions) [25]. Unlike the simulated database, this
dataset features authentic acoustic distortions, including noise
and reverberation. It consists of 2,700 audio files in total, with
540 bonafide audios and 2,160 spoofed ones.

Unlike ASVspoof 2019 PA, the ASVspoof 2021 data [1]
was created under a rigorously controlled setup across a diverse
range of real acoustic environments, featuring various levels of
reverberation and additive noise. Furthermore, recordings are
performed using different playback and recording devices, mak-
ing it more realistic for a replay attack scenario than its 2019
counterpart. The dataset consists solely of an evaluation parti-
tion, totaling 943,110 audio files, with 126,630 bonafide voices
and 816,480 spoofed.

2.2. Classification model

The classification model used in our experiments is an alterna-
tive implementation of the LCNN architecture proposed in [27],
which is fed with the log-magnitude spectra obtained via Short-

Time Fourier Transform (STFT). In particular, the STFT pro-
vides a spectrogram S[t, f ] consisting of N = 400 frames and
M = 256 frequency bins, derived from 512 FFT points and
excluding f = 0. The transform is performed with a Black-
man window of 25 ms frames and 10 ms shift, which, given
a sampling rate of 16,000 Hz, restricts the audio to 4-second
segments.

This network consists of five layers, each incorporating
2D convolutions followed by max pooling. Batch normal-
ization is also employed to improve the stability and conver-
gence of gradient descent. As illustrated in Table 2, the out-
put is then fed into a Fully-Connected layer (FC1) to produce
a 64-dimensional utterance-level spoofing identity vector. This
vector is then passed through a second Fully-Connected layer
(FC2), which generates a final score vector with two compo-
nents, indicating whether the utterance is bonafide or spoofed.

Table 2: The architecture of our LCNN model.

Layer Type Filter/Stride Output
Channels

Conv2D 5x5/1x1 8
BatchNorm2D - 8Layer 1

MaxPool 2x2/2x2 8
Conv2D 1x1/1x1 8

BatchNorm2D - 8
Conv2D 3x3/1x1 16Layer 3

MaxPool 2x2/2x2 16
Conv2D 1x1/1x1 16

BatchNorm2D - 16
Conv2D 3x3/1x1 16Layer 4

MaxPool 2x2/2x2 16
Conv2D 1x1/1x1 16

BatchNorm2D - 16
Conv2D 3x3/1x1 16Layer 5

MaxPool 2x2/2x2 16
- FC1 - 64
- BatchNorm1D - 64
- FC2 - 2

It is worth noticing that the two-dimensional convolutions
are implemented using Max-Feature-Map (MFM) operations
[27], which result in a reduction in the total number of param-
eters (lightweight). Additionally, a dropout rate of 0.7 was ap-
plied before the first Fully-Connected layer to prevent overfit-
ting.

2.3. Evaluation metrics

We use the Equal Error Rate (EER) [28] as the metric to assess
the model’s overall accuracy. This metric is particularly useful
in anti-spoofing systems because it indicates the trade-off be-
tween incorrectly accepting spoofed audio (false positives) and
failing to detect bonafide audio (false negatives). It is important
for the EER to be as low as possible, as it demonstrates that
the model is achieving the most effective balance between these
two types of errors.

3. Data augmentation techniques
This section details the DA techniques considered during the
training of the proposed model, consisting of time and fre-
quency masking, noise addition, Room Impulse Response fil-
tering, and data mixup.

2



3.1. Time and frequency masking

Time masking is a method from the SpecAugment framework
in [8], which enhances the model robustness by masking con-
tiguous time segments within the spectrogram S[t, f ].

In time masking, a segment of ∆t consecutive time steps,
spanning from [t0, t0 + ∆t), is masked. The duration ∆t is
sampled from a uniform distribution in an interval [0, T ], while
the starting point t0 is chosen from the range [0, N − ∆t),
where N is the total length of the time dimension in the spectro-
gram. This approach forces the model to employ variable time
intervals rather than relying on specific time-localized patterns,
which can be particularly advantageous for detecting spoofed
speech.

Therefore, the masked spectrogram S̃[t, f ], spoofed or
bonafide, is then defined as,

S̃[t, f ] =

{
S[t, f ] if t < t0 or t ≥ t0 +∆t,

0 if t0 ≤ t < t0 +∆t.
(1)

Frequency masking is similar to time masking, but applied
to the frequency domain. In this case, a segment of ∆f consec-
utive frequency bins, [f0, f0 + ∆f), is masked. Analogous to
time masking, the duration ∆f is sampled from a uniform dis-
tribution in [0, F ], and f0 is chosen from [0,M −∆f), where
M is the total number of frequency bins.

The masked spectrogram S̃[t, f ] with frequency masking is
given by,

S̃[t, f ] =

{
S[t, f ] if f < f0 or f ≥ f0 +∆f,

0 if f0 ≤ f < f0 +∆f.
(2)

This technique introduces variability in the spectral domain
by simulating different frequency distortions.

3.2. Additive noise

Unlike time masking and frequency masking techniques, ad-
ditive noise is applied directly to the temporal samples of the
audio. This method aims to artificially introduce noise into the
voice sequences to simulate various real-world conditions and
enhance the model’s robustness.

While white gaussian noise is traditionally used for aug-
menting audio samples [29], other noise types, such as back-
ground conversations or environmental sounds, can also be in-
troduced to diversify the training data. Since our focus is on PA
and, specifically, replay attacks, we will use our own database
of realistic noises, such as car, bus noises, crowd chatter, street
environment, and similar sounds that might be encountered in
practice. Our DA technique involves, for each audio sequence
x[n] in a training batch, the random selection of a noise ex-
cerpt v[n] from our noise database and a signal-to-noise ratio
value (SNR, in dB) chosen from a uniform distribution be-
tween [SNRmin, SNRmin + 10].

Consequently, the noisy audio signal x̃[n] is

x̃[n] = x[n] + α · v[n+ τ ], (3)
where α is the scaling factor applied to the noise signal to
achieve the desired SNR and can be calculated as

α =

√
Px

Pv · SNR
, (4)

with Px and Pv denoting the power of the audio and noise sig-
nals, respectively.

3.3. Room Impulse Response filtering

Like additive noise, filtering with a new RIR is a data aug-
mentation technique applied directly to the temporal samples
of spoofed and bonafide audios. Our innovative approach in
PA aims to introduce acoustic variability to the training data,
specifically in terms of reverberation time (RT60).

To achieve this, we use the Roomsimove simulation pro-
gram [30], which generates RIRs based on the image-source
method [31]. The program takes as input the acoustic param-
eters characterizing each room. To ensure realistic values, we
use data from The Ace Challenge 2015 study [32], which pro-
vides experimental RT60 measurements for each frequency oc-
tave (125 Hz, 250 Hz, ..., 8000 Hz) in seven different rooms:
two offices, a building lobby, two meeting rooms, and two con-
ference rooms. Table 3 shows the averaged RT60 across fre-
quencies for each case.

Table 3: Size and averaged RT60 for each room in [32].

Room name Size (m) Av. RT60 (s)
Office1 4.83 x 3.32 x 2.95 0.380
Office2 5.10 x 3.22 x 2.94 0.430
BuildingLobby 5.13 x 4.47 x 3.18 0.715
MeetingRoom1 5.11 x 6.61 x 2.95 0.480
MeetingRoom2 9.07 x 10.32 x 2.63 0.415
LectureRoom1 9.73 x 6.93 x 3.00 0.675
LectureRoom2 9.29 x 13.56 x 2.94 1.200

The radial distance between the sound source and the re-
ceiver is randomly selected, following a uniform distribution
within three reverberation categories (low L, neutral N, and high
H) as shown in Table 4. These parameters (room size, RT60,
source and receiver positions, etc.) are used as inputs to the
Roomsimove software [30], which generates the corresponding
impulse responses. In total, 4050 unique RIRs were simulated.

Table 4: Distance categories for the RIRs simulation.

L N H
Distance (cm) [10, 50] [50, 100] [100, 150]

Next, the DA technique is performed by carrying out the
discrete-time convolution operation between the audio, x[n],
and an impulse response, h[n], randomly selected from the RIR
dataset generated.

3.4. Data mixup

Mixup, as detailed in [19], is a recent DA technique for creat-
ing new synthetic features from the existing data in a training
batch. Thus, this approach performs a linear interpolation be-
tween two random spectrograms and their labels within a batch.
Specifically, given two spectrograms and their corresponding
labels, (Si[t, f ], yi) and (Sj [t, f ], yj), mixup generates a new
spectrogram, S̃[t, f ] and its label, ỹ, as follows,

S̃[t, f ] = λSi[t, f ] + (1− λ)Sj [t, f ],

ỹ = λyi + (1− λ)yj ,
(5)

where λ is a mixing coefficient drawn from a Beta distribution,
λ ∼ Beta(α, α), with α ∈ (0,∞).

Spectrograms are randomly selected within the batch, and
the parameter α can vary freely. A smaller value of α results
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Table 5: EER results for the different PA evaluation datasets after applying varied configurations of the DA techniques presented.
Values representing a relative improvement equal or higher than 5% are highlighted in bold.

Training
2019 PA

Additive noise MixupNo DA Time
masking

Frequency
masking 30 dB 15 dB

RIR
filtering α = 0.2 α = 0.1

2019 PA 3.03% 2.58% 5.26% 11.12% 6.23% 3.64% 2.55% 2.55%
2019 Real 30.12% 26.78% 29.44% 44.68% 36.91% 26.67% 28.46% 28.64%

E
va

l.

2021 PA 44.06% 43.30% 43.98% 44.73% 36.33% 42.50% 43.26% 43.69%

Table 6: EER results for the different PA evaluation datasets using the combination of our best DA techniques.

Training
2019 PA

No DA
Time masking

+
Freq. masking

Additive noise 15 dB
+

RIR filtering

RIR filtering
+

Time masking
2019 PA 3.03% 4.68% 5.12% 5.55%
2019 Real 30.12% 36.78% 42.10% 30.52%

E
va

l.

2021 PA 44.06% 44.16% 40.04% 43.95%

in greater differentiation between the two classes in the newly
created features, which is advantageous for generating clear ex-
amples of both spoofed and bonafide. Conversely, a very large
value of α may result in an overmixing of features, potentially
causing the new examples to become too similar and reducing
the model’s ability to distinguish between the two classes.

When an appropriate value for α is chosen, there is a bal-
ance between differentiation and overfitting and the model can
generalize to new, unseen audio data.

4. Experiments
For each DA experiment, we performed three training runs and
evaluate the databases across the three resulting models, ulti-
mately reporting the corresponding averaged EER. In total, 33
training runs and 99 evaluation tests were conducted. In every
training step, when a DA technique is applied to a batch of data,
a new same-size batch is recreated, thereby doubling the size of
the effective batch during training, or tripling it when pairs of
DA techniques are combined.

We use the standard Adam optimizer for minimizing the
weighted cross-entropy (WCE) loss function, with a learning
rate of 3·10−4, a weight decay of 10−4, and an initial batch size
of 144. All training processes use a maximum of 100 epochs
and an early-stopping criterion of 15, except for the mixup tech-
nique, which requires the full 100 epochs to ensure model con-
vergence. The total number of parameters in the neural network
is 832,946.

4.1. Results

Table 5 shows the averaged EER for each DA technique eval-
uated. Values showing a relative improvement equal or higher
than 5% when comparing to the no-DA baseline, are highlighted
in bold.

For the experiments involving time masking and frequency
masking, the selected width parameters (after some preliminary
experiments) are T = 80 and F = 20, respectively. Noise ad-
dition DA was assessed at two different minimum SNR levels:
a lower noise level with SNRmin = 30 dB, and a higher noise
level with SNRmin = 15 dB. Additionally, the mixup DA ap-

proach was explored using two α values: α = 0.2 and α = 0.1,
where a smaller α indicates greater class differentiation in the
new generated data.

As shown, the additive noise data augmentation (DA) tech-
nique with noise levels between 30 dB and 40 dB provides the
best results on the ASVspoof 2021 PA evaluation set, achiev-
ing a 36.33% EER (44.06% without DA). This improvement
is mainly due to the fact that the ASVspoof 2021 PA dataset
includes various levels and types of additive noise, making
this method particularly effective for DA when testing on this
database.

For the ASVspoof 2019 Real dataset, the best DA results
are obtained using RIR filtering, resulting in a 26.67% EER
compared to the original 30.12%. In this case, the ASVspoof
2019 Real data encompasses different real acoustic conditions,
so applying new reverberation environments to the training data
introduces new acoustic features that aid the LCNN’s learning
process. Additionally, the EER values obtained for time mask-
ing and mixup with α = 0.2 are promising. These techniques
introduce greater variability during training, preventing the neu-
ral network from learning specific temporal patterns that may be
present in the spectrograms of the training data.

We attempted to combine the most effective DA techniques
in hopes of improving results, but this was not the case, as
the best improvement achieved was an EER of 40.04% for the
ASVspoof 2021 evaluation dataset. This limitation is likely due
to reaching the network’s generalization capacity, constrained
by its relatively small number of parameters.

5. Conclusions
In this paper, we have explored the enhancement of replay
attack detection systems, associated to voice biometrics, by
means of DA techniques. We evaluated four methodologies
across various datasets to improve CM system robustness.

The results obtained show that DA can effectively improve
the detection performance and, also, that the choice of a suitable
DA technique depends on the context where the system is to be
used (i.e., the characteristics of the test data). This suggests
that adapting the detector model to the test context would be an
interesting approach for future research.
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lutional gru-rnn deep feature extractor for asv spoofing detection,”
in Interspeech, 2019.

[5] A. Gomez-Alanis, A. M. Peinado, J. A. González et al., “A gated
recurrent convolutional neural network for robust spoofing detec-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, pp. 1985–1999, 2019.

[6] A. Tomilov, A. F. Svishchev, M. Volkova et al., “Stc antispoof-
ing systems for the asvspoof2021 challenge,” 2021 Edition of the
Automatic Speaker Verification and Spoofing Countermeasures
Challenge, 2021.

[7] A. Gomez-Alanis, J. A. González-López, and A. M. Peinado,
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