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ABSTRACT
Microrheology (MR) has emerged as a powerful tool for unraveling the intricate
local viscoelastic properties of various soft materials. By tracking the free (passive
MR) or forced (active MR) diffusion of a tracer, valuable insights into the mechani-
cal characteristics of the host system can be obtained. In this study, we investigate
the forced diffusion of a spherical tracer within isotropic and smectic liquid crystal
phases of hard rod-like particles. Our findings reveal superdiffusive behaviour in-
duced by external forces, particularly pronounced when these are aligned parallel
to the nematic director. Analysis of dynamical susceptibility unveils heterogeneities
strongly correlated with the magnitude and orientation of applied forces, highlight-
ing the system’s critical dependence on structural ordering. Intriguingly, we observe
that tracer superdiffusion, driven by external forces and evident across all relevant
system directions, does not demonstrate a strong correlation with resulting dynam-
ical heterogeneities.
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1. Introduction

Liquid crystals (LCs) represent states of matter where the directional characteristics
of particles (at either colloidal or molecular scales) result in a partial spontaneous
disruption of spatial symmetries within the system [1]. This phenomenon gives rise to
properties that bridge the gap between crystalline solids and isotropic fluids. Specifi-
cally, smectic LCs are distinguished by their layered structures composed of rod-like
or disk-like particles. Within these layers, particles tend to align parallel to one an-
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other, following a common direction known as the nematic director n̂, thus exhibiting
significant orientational order. Positional order is prevalent in the direction parallel
to n̂, while being negligible within the layers. This allows particles to move relatively
freely, similar to a fluid. Smectic LCs find diverse applications in fields such as displays,
sensors, and materials science, owing to their capacity for controlled phase transitions
and their display of optical anisotropy.

At the colloidal scale, which is the focus of this study, Onsager’s seminal research
unveiled the entropy-driven transition from isotropic (I) to nematic (N) phases in sys-
tems comprised of infinitely long hard rods, representing a pivotal breakthrough in
the field [2]. This landmark discovery was later validated by computer simulations
in systems containing perfectly aligned or freely rotating hard rods of finite lengths,
unveiling the emergence of thermodynamically stable smectic phases driven by merely
entropic effects [3, 4]. Since then, extensive research has deepened our understand-
ing of the equilibrium properties of smectic LCs. A wide array of studies, spanning
experimental [5, 6, 7], theoretical [8, 9, 10, 11], and computational [12, 13, 14, 16] ap-
proaches, have meticulously analysed the phase behaviour and structural intricacies of
smectic LCs formed by colloidal hard rods. Moreover, research efforts have expanded
to encompass mixtures of rods with varying geometries [17, 18, 19, 20, 22], as well as
mixtures of rods with other types of anisotropic [23] or spherical [24, 25] particles.

Following these preliminary insights into phase behaviour, a still-vibrant interest
developed around the dynamics of smectic LCs, mostly sparked by the seminal work
by Lettinga and Grelet. Employing video fluorescence microscopy, these researchers
investigated the self-diffusion dynamics of rod-like viruses through smectic layers
[26]. Their findings unveiled non-Gaussian diffusion patterns and revealed a quasi-
quantized layer-to-layer hopping across an energy barrier induced by the smectic lay-
ers, a phenomenon, also known as permeation, initially theorized by Helfrich in the
1960s [27]. This work sparked further research that eventually elucidated the impact
of caging, clustering and cooperative motion in the relaxation dynamics of smectics
[28, 30, 31, 32, 33, 34, 35, 36, 37].

Integrating insights into the phase behaviour, structure, and dynamics of smec-
tics into a framework where microrheology (MR) assumes a central role is key in
enhancing our comprehension of how orientational and positional ordering influence
the viscoelastic properties of this captivating liquid crystal phase [38, 39]. MR en-
ables the evaluation of the viscoelastic properties of soft materials by monitoring and
analysing the dynamics of a guest tracer (or probe particle) that induces, over its
characteristic length scales, local deformations in the host fluid [40]. This sets it apart
from macroscopic rheology, which examines the material’s response across significantly
larger length scales. Active MR allows one to picture both the linear and nonlinear
viscoelastic domains, unveiling intriguing phenomena like force thinning, where the ef-
fective friction coefficient diminishes as the applied force magnitude increases [41]. In
contrast, passive MR, which correlates tracer free diffusion with the system’s thermal
fluctuations, solely offers insight into the linear viscoelastic response. In our recent
study, we employed active MR to investigate how the size of the tracer and the direc-
tion of an external force impact the effective friction coefficient of smectic LCs of hard
rods [39]. Specifically, we demonstrated that the effective friction coefficient maintains
a constant value when probed by the tracer at both small and large forces, and reveals
a force-thinning nonlinear regime at intermediate forces. We notice that MR has also
been applied to study the viscoelastic properties of nematic LCs in the bulk [42] and
under confinement [43] by theory and simulations. An experimental work on lyotropic
smectic LCs - lamellar phases formed by amphiphilic molecules - highlighted the dif-
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ferences from bulk rheology, revealing that the latter remains the preferred technique
for assessing macroscopic relaxations over long time scales [44].

Building on these introductory considerations, our focus turns to exploring the
forced diffusion of a spherical tracer within smectic LCs of hard rods. Investigating
the dynamics of such a tracer not only offers insights into the material’s rheology,
but also lays the groundwork for understanding the diffusion of small particles or
macromolecules in densely packed colloidal suspensions — a multidisciplinary chal-
lenge with far-reaching implications [45, 46, 47]. Notably, the presence of long-range
ordering, an intrinsic signature of LCs, has been demonstrated to be pivotal in this
context [48]. By employing active MR and dynamic Monte Carlo simulation, we
unveil a force-induced superdiffusive behaviour where the tracer’s mean squared
displacement deviates from linear growth over time, instead following a power-law
relationship of the form r2(t) ∝ tα, with α > 1. Our study extends to the analysis
of dynamic heterogeneities, which are found to be strongly correlated with both the
magnitude and direction of the applied force.

This work is dedicated to the memory of Prof. Luis Felipe Rull Fernández, whose
profound contributions to the field of liquid crystals are deeply missed since his passing
in February 2022.

2. Model and simulation method

Our model of colloidal suspensions consists of Nr = 1440 rods, modeled as hard
spherocylinders, in I and smectic (Sm) liquid-crystal phases, accompanied by Nt = 1
hard spherical tracer. The bath particles have an aspect ratio of L∗ = L/σ = 5, where
L is the length and σ is the diameter of a cylindrical body capped by hemispherical
ends, each with a diameter of σ. The tracer particle is modeled as a sphere with a
diameter dt = σ. Our simulations incorporate inter-particle interactions through a
hard-core potential. Length, energy, and time are given in units of σ, kBT , and τ =
σ2/D0, respectively, where kB is Boltzmann’s constant, T the absolute temperature,
D0 = kBT/(ηsσ) a diffusion constant, and ηs the viscosity of the implicitly-modelled
solvent. The primary focus of this study is the dynamical response of the tracer particle
to an external constant force F pulling it through the host fluid.

Before performing dynamic Monte Carlo (DMC) simulations to study the system’s
dynamics, a series of Monte Carlo (MC) simulations in the canonical ensemble were
performed to equilibrate the systems at a volume fraction of φ = 0.349 and 0.507,
corresponding to stable I and Sm phases, respectively [55]. The volume fraction is
defined as φ = (Nrvr + Ntvt)/V , where vr = πσ3/6 + πσ3L∗/4, vt = πd3

t /6, and
V = Lx×Ly ×Lz refers, respectively, to the rod, tracer, and simulation box volumes.
We used orthogonal simulation boxes with periodic boundaries. Specifically, I phases
were simulated in cubic boxes of size Lx = Ly = Lz = 26.36σ, whereas Sm LCs in
elongated boxes with Lx×Ly ×Lz = 31.42× 20× 20σ3. Inter-particle interactions are
mediated via a hard-core potential, and attempted moves are always accepted unless
an overlap occurs. Overlaps between rods are detected using the algorithm proposed by
Vega and Lago [56]. Equilibration is run in the NPT ensemble until the nematic (S2)
and smectic (λ) order parameters reached steady values within statistical fluctuations.
The nematic order parameter is obtained from the diagonalisation of the symmetric
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Figure 1. Snapshots of the system in the isotropic (left) and smectic (right) states with reference axes. The

white arrows show the two directions of the external force pulling the tracer. Note that the nematic director,
n̂, is aligned with the x-axis.

tensor Q, given by:

Q =
1

2Nr

Nr∑
j=1

(3ûjûj − I) (1)

where ûj is the unit vector aligned with the main axis of rod j and I the second-rank
unit tensor. The largest eigenvalue resulting from the diagonalisation of Q provides
the order parameter S2, while the corresponding eigenvector gives the nematic director
n̂. The smectic order parameter is given by:

λ = max
l

〈
1

Nr

∣∣∣∣∣∣
Nr∑
j=1

e2πirj ·n̂/l

∣∣∣∣∣∣
〉

(2)

In our equilibrium MC simulations, we obtained very low values of both order parame-
ters in the I phase, whereas S2 ≈ 0.9 and λ ≈ 0.8 in the presence of a Sm phase. In this
case, the nematic director was aligned with the x -axis (see Fig. 1). The incorporation of
the tracer particle did not have a tangible effect on the values of the order parameters
or on the long-range structure of the host phase [39]. Subsequently, the equilibrium
configurations obtained were utilized to perform production DMC simulations in the
canonical ensemble.

The DMC method simulates Brownian motion of the system’s particles by displacing
and, in case of rods, rotating selected random particles according to the standard
Metropolis algorithm. However, unphysical moves such as jumps, swaps, or cluster
moves are not allowed to obtain more realistic trajectories. In the following, we review
relevant aspects of DMC for this study, and additional details can be found in Refs. [49,
50, 51, 52, 53, 54]. In a DMC cycle, N = Nr + Nt independent random attempts
are made to displace and rotate particles, with rotations being exclusive for rods.
Moves are accepted or rejected according to a Metropolis algorithm with probability
min[1, e−β∆E ], where β ≡ (kBT )−1 and ∆E is the change in energy due to particle
movement. This change in energy ∆E includes both the interaction with other particles
and the work done by the external force, F · δrt, where δrt is the displacement of
the tracer particle as described below. For rod particle displacement, the position is
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updated by decoupling into three contributions δrr = X‖ûr + X⊥,1v̂r,1 + X⊥,2v̂r,2,
where ûr is a unit vector parallel to the main rod axis, while v̂r,1 and v̂r,2 are unit
vectors perpendicular to ûr and to each other. The magnitude of displacement is
randomly selected from uniform distributions, satisfying |X‖| ≤ δr‖ and |X⊥,m| ≤ δr⊥,
with m = {1, 2}. The maximum displacements are linked to translational diffusivities
at infinite dilution through equations:

δr‖ =
√

2Dr,‖δtMC,r (3)

δr⊥ =
√

2Dr,⊥δtMC,r (4)

where δtMC,r is the rod’s time step in the MC time scale, while Dr,‖ and Dr,⊥ are,
respectively, the diffusion coefficients in the direction parallel and perpendicular to the
rod longitudinal axis. For rotations, the orientation vector varies as δûr = Yϕ,1ŵr,1 +
Yϕ,2ŵr,2, with vectors ŵr,m chosen to be perpendicular to each other and to ûr. The
magnitude of the rotations satisfies |Yϕ,m| ≤ δϕ, where:

δϕ =
√

2Dr,ϕδtMC,r (5)

where Dr,ϕ is the rod’s rotational diffusion coefficient at infinite dilution. For the
spherical tracer, only translational moves are considered, and the displacement reads
δrt = Xt

‖ût + Xt
⊥,1v̂t,1 + Xt

⊥,2v̂t,2, where ût is a unit vector parallel to the applied

force, while v̂t,1 and v̂t,2 are unit vectors perpendicular to ût and to each other.
Displacements fulfill conditions |Xt

‖| ≤ δr
t
‖ and |Xt

⊥,m| ≤ δrt⊥. Specifically:

δrt‖ =

√
2DtδtMC,t + (DtβFδtMC,t)

2 (6)

δrt⊥ =
√

2DtδtMC,t (7)

where δtMC,t, F and Dt are, respectively, the MC time step, the modulus of the ap-
plied force and infinite-dilution diffusion coefficient of the tracer. Translational and
rotational diffusion coefficients of rod-like particles are calculated from analytical ex-
pressions derived from the induced-force method [57]:

Dr,⊥
D0

=
ln(2/ε)− 1/2− Itt

2π/ε
(8)

Dr,‖

D0
=

ln(2/ε)− 3/2− Itt

π/ε
(9)

Dr,ϕ

D0
= 3

ln(2/ε)− 11/6− Irr

πσ2/ (2ε)3 (10)

where ε−1 = 2(L∗ + 1), Itt = 1
2

∫ 1
−1 lnh(x)dx, Irr = 3

2

∫ 1
−1 x

2 lnh(x)dx, with h(x) =

(1−2x2n)1/2n a parametric function that models particles with symmetry of revolution.
The geometry of a spherocylinder is well reproduced by taking n = 8. Consequently
Itt ' −0.0061, and Irr ' −0.017.

The diffusion coefficient of the spherical tracer is estimated from the Stokes-Einstein
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equation:

Dt

D0
=

1

3π

σ

dt
(11)

Maximum displacements and rotations of particles are set by rod and tracer time
steps, δtMC,r and δtMC,t. Following recent work [54], the time steps of bath and tracer
particles are related through their acceptance rates by the following relationship:

δtBD =
Ar
3
δtMC,r =

1

3

(
3

2
At −

1

2

)
δtMC,t (12)

Here, δtBD is the elementary time step in the BD scale, and Ar and At are the ac-
ceptance rates of bath and tracer particles, respectively. For Eq. 12 to be valid, the
condition βFδrt‖ � 1 must be fulfilled [54]. This indicates that, according to Eq. 6,

for small forces, the MC time step of the tracer can fall within a wide range of values,
while for large forces, the value of the time step is accordingly smaller.

In order to characterise the dynamics of the system under study, several dynamic
variables have been calculated. All of them have been obtained by averaging over 500
independent trajectories to improve statistics. Among these, the primary observable
analysed is the mean square displacement (MSD) of the spherical tracer (t). To ensure
accurate assessment and eliminate the influence of drift induced by the applied force,
the MSD has been adjusted by subtracting the average displacement of the tracer
particle:

MSD = 〈∆r2(t)〉 = 〈[(rt(t)− rt(0))− (rt(t)− rt(0))av]
2〉 (13)

where (rt(t) − rt(0))av = 〈rt(t) − rt(0)〉 is the average displacement at the beginning
of each trajectory, angular brackets denote averaging across all trajectories, and rt(t)
is the vector position of the tracer at instant t. Directional mean square displacements
can be defined in a similar manner, also corrected by the average displacement. For
instance, the MSD of the tracer in the x-direction can be defined as:

〈∆x2(t)〉 = 〈[(xt(t)− xt(0))− (xt(t)− xt(0))av]
2〉 (14)

with xt(t) the x -component of vector rt(t). Analogous definitions can be formulated
for the y and z components of the tracer displacement. From the MSDs defined in
equations 13 and 14, valuable insights into the dynamical regime of the spherical tracer
in the fluid of rods can be gleaned. For instance, one can calculate the instantaneous
power-law exponent α of the MSD as a function of time as:

α =
∂ ln〈(∆r)2〉

∂ ln t
(15)

The parameter α furnishes fundamental insights into the motion of the tracer within
the fluid of rods. When α = 1, the tracer exhibits diffusive behaviour, indicating that
its displacement, after accounting for the drift induced by external forces, is primarily
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governed by Brownian motion. Conversely, when α < 1, the regime is classified as
subdiffusive, i.e. the particle’s diffusion is slower than in an ideal Brownian scenario.
Finally, if α > 1, the tracer particle enters the realm of superdiffusive behaviour. In
practical scenarios, the tracer’s motion often transitions between these regimes over
time.

Further insights into the dynamics of the tracer particle are provided by the long-
time diffusion coefficient, denoted as Ds. This coefficient is directly related to the slope
of the MSD at long times:

Ds = lim
t→∞

1

2d

∂〈(∆r)2〉
∂t

(16)

where d is the dimensionality of interest.
To obtain more information on the origin of the different regimes in the tracer dif-

fusion, we have also calculated some observables that allow us to study the possibility
of heterogeneous dynamics in the system. However, given that our setup includes only
a single tracer in the system, aimed at circumventing tracer-tracer correlations, inves-
tigating dynamic heterogeneities entails analyzing numerous tracer trajectories. This
shift necessitates the transition from the typical calculation of observables via an en-
semble average to a trajectory average approach. In particular, the tracer correlation
function of a single trajectory, Φt

q(t), is defined as Φt
q(t) = cos [q · (∆r)]. The values of

interest of the wavevector q correspond to the peaks observed in the tracer-rod static
structure factor, defined as

S(q) =
1

NrNc

Nr∑
i=1

Nc∑
j=1

exp(−iq · (ri − rt)) (17)

where the first summation is performed over all Nr rod particles, and the second
over Nc independent configurations. We stress that the structure factor is calculated
for the equilibrium case, F = 0kBT/σ and it is therefore a real quantity. The tracer
intermediate scattering function is calculated as the trajectory average of the tracer
correlation function of a single trajectory, 〈Φt

q(t)〉. The susceptibility can be calculated
then as the standard deviation of the intermediate scattering function over different
realisations [58], in our case, different trajectories:

χ4,q(t) = 〈
[
Φt
q(t)
]2〉 − 〈Φt

q(t)〉2 (18)

The susceptibility function analyses how variable is the trajectory of the tracer up to
time t in different realisations. Previous results have shown that χ4,q(t) features a peak
in the time regime where the correlation function decays more strongly. The analysis
of dynamical heterogeneities has led in many works to identify clusters of particles,
or regions, with different mobility. However, in our study, this is not the case since
Eq. 18 applies to a single tracer particle. Here, χ4,q(t) allows us to analyse the extent
of differences among various trajectories in relation to the average behaviour. These
differences may suggest the presence of distinct transport mechanisms for the tracer
and hence of single-particle dynamic heterogeneities.
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3. Results

In this section, we analyse the dynamics of a tracer introduced into a bath of sphe-
rocylinders, exploring two distinct states: the isotropic phase and the smectic phase.
Very recently, we investigated the potential distortion of bath particles surrounding
the tracer [54, 39]. In Sm phases, when the applied force aligns parallel to the nematic
director and reaches sufficient intensity, it induces microstructural deformation in the
particle distribution around the probe, albeit not extending to longer length scales.
Under higher forces, a soft layer of rods forms ahead of the tracer, with a particle-free
wake developing behind it. Our calculations also reveal minimal coordinated ordering
of rods due to the dense packing of the Sm phase. These rods are uniformly oriented
and layered, efficiently dissipating energy from the tracer and limiting significant rota-
tion. Attempts to rotate the rods are promptly counteracted by neighboring particles,
resulting in modest reorientation. Conversely, when the tracer is forced to move perpen-
dicularly to the nematic director, deforming the surrounding microstructure becomes
more challenging, requiring higher forces to observe local distortion. We also notice
that significantly larger colloidal spheres can induce more significant distortions in Sm
phases, with formation of intriguing Saturn-ring defects and onion-like structures [59].
In the Sm phase, two cases have been studied, as the tracer experiences forces along or
perpendicular to the x -axis, which is aligned with the nematic director, as previously
noted. Our analysis reveals a superdiffusive behaviour at intermediate times for both
states and in both pulling directions. Additionally, we investigate the heterogeneities
in tracer dynamics, examining them as potential precursors to superdiffusion.

The simplest observable for the tracer dynamics is its mean squared displacement
(MSD), shown in Fig. 2 for the isotropic (top panel) and smectic phases (recall that
the MSD is corrected by the tracer average displacement). In the smectic state, we
depict the tracer displacement along the x -axis and in the y-axis in separate panels, in
order to discern the motion along directions parallel or perpendicular to the nematic
director, n̂. In the isotropic state, on the other hand, only the global MSD in the three
directions is studied. Note that short time diffusion stems directly from the DMC
microscopic dynamics, implying the absence of a short-time ballistic regime.

For zero force, the tracer MSD shows a mild transition from short to long time
diffusion at intermediate times in both states and in both directions in the smectic
phase, corresponding to a transient caging of the tracer. However, upon increasing
the force, a superdiffusive regime emerges, characterised by a time window that shifts
towards earlier stages as the force magnitude increases. In this superdiffusive regime
the MSD grows faster than linear, reaching quadratic behaviour for the largest forces
(the exponent of the MSD vs. time curve is shown in Fig. 3). This transient regime is
consistently observed across all cases, transitioning into long-time diffusion, with the
exception being the largest perpendicular force in the smectic bath, where sufficiently
long times might not have been reached. This suggests a significant enhancement in
tracer diffusion for all force orientations, a phenomenon that we further discuss in the
subsequent analysis. It must be stressed that previous works of tracers in the smectic
phase found that the tracer moves preferentially within the interlayer planes. Here, we
find that for large forces, the tracers indeed seeps into the layers in a superdiffusive
regime, not only when it is pulled in the x direction, but also when the forcing acts
within the yz -plane. Finally, it’s worth noting that this entire phenomenology remains
consistent even when the force forms an angle with the nematic director, a case which
is not explicitly shown but corroborates the observed dynamics.

The stationary points (maximum or minimum) of the exponent of the MSD vs.
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Figure 2. Tracer mean squared displacement for different states and directions, as labeled. The bath is in the

isotropic phase (top panel), or in the smectic phase (intermediate and bottom panels). The continuous lines
show the MSD contributions for forces parallel to the nematic director, and dashed lines in the perpendicular

direction. We remind that the nematic director is parallel to the x-axis. Straight lines indicate the dependence

of the MSD on time at short and long timescales.
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forces at a 45o angle to the nematic director of the smectic phase. Data from passive microrheology (F = 0)
are also included on the vertical axis.

time curve, αst, is plotted as a function of the force for all cases in Fig. 3. For passive
microrheology, where no external force is applied, and for small forces, the occurrence
of superdiffusion is not observed. Instead, a subdiffusive regime emerges, indicating
the caging of the tracer in dense states. Consequently, in such cases, the stationary
exponent associated with this behaviour falls below one. For larger forces, the exponent
increases, eventually reaching a value of 2 for the smectic bath with a force applied
along the x -direction. However, for forces applied perpendicular to or diagonally with
respect to the nematic director, the trend mirrors that of the isotropic bath, with the
exponent approaching quadratic behaviour only for extremely large forces.

The long-time motion of the tracer pulled in the x -direction is modulated by the
LC layers, resulting in the “ripples” of the MSD observed for the largest forces in
the middle panel, and more clearly in Fig. 4, which plots the MSD corrected by the
long time diffusive motion, ∼ 2Dst. In various trajectories, when a sufficiently strong
force is applied, the tracer is propelled into the layer within comparable time scales,
resulting in in-phase oscillations. This is corroborated by the tracer’s position, as
depicted in Fig. 4 (thin lines), where we observe that the MSD exhibits a faster-than-
linear trend when the tracer displaces below the constant velocity trend. Conversely,
〈∆x2(t)〉 demonstrates sub-linear growth when the tracer moves above it.

This phenomenology is obviously absent for the isotropic bath, and when the force
is perpendicular to the layers (the tracer is pulled within the inter-layers y direction),
but also for small forces parallel to the nematic director. In the latter case, the tracer
does not explore the inner parts of the layers (for too small forces), or this explo-
ration is performed in an incoherent way, resulting in a simple linear growth of the
longitudinal MSD. In any case, it can explain the transient superdiffusive regime at
intermediate times as the coherent motion of tracers, and points that the arrange-
ments of the structure at the microscopic level is responsible for superdiffusion, in our
system. It must be mentioned, nevertheless, that superdiffusion was first reported in
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undercooled fluids of Yukawa particles, with no structure [60, 61], and also observed
in other structureless systems of spheres, such as the low density Lorentz gas [62]. In
all cases, though, it appears as a transient regime between short time dynamics and
long time diffusion.

The tracer self-diffusion coefficients, obtained from the slope of the long time lin-
ear growth of the MSD, are shown in Fig. 5. In all cases, this increases with the
external force, but it is maximal for the isotropic bath, as expected, and reaches a
plateau at large forces. This trend is inverse to that of the effective friction coefficient
obtained from the steady tracer velocity [39], although the Stokes-Einstein relation
should not be expected to hold for these far-from-equilibrium systems (particularly at
large forces). In any case, the tracer self-diffusion coefficient or the effective friction
coefficient indicate an important force-thinning regime, similar to the shear-thinning
observed in bulk rheology of viscoelastic fluids.

To gain further insight into the origin of this superdiffusion of the tracer, our at-
tention turns to the heterogeneity of its dynamics, using the dynamic susceptibility as
defined previously. For this analysis, we must first identify the most relevant wavevec-
tors in the dynamics of the system, studying the tracer-rod structure factor for the
isotropic and nematic phases (see Fig. 6). In the isotropic phase, S(q) approaches zero,
indicating a lack of characteristic distances due to the low density of rods. In contrast,
a negative intense peak is observed in the smectic phase for qσ ∼ 1 and a positive
one for qσ ∼ 2, corresponding to distances of 2π/q ≈ 6 and 3, respectively. The latter
marks the strong tracer-rod correlation in the direction of the nematic vector, at ∼ 3,
i.e. the LC layers as observed from the interlayer plane. In contrast, the negative peak
reports the strong anti-correlation at a distance ∼ 6, i.e. the nearest interlayer, where
there are no rods. Finally, let us note that in the calculation of these structure fac-
tors, all wavevectors compatible with the periodic boundary conditions were selected,
but the dominant contribution was from wavevectors parallel to the x direction (i.e.
parallel to the nematic director).

Fig. 6 indicates that there is no preferential wavevector for the tracer in the isotropic
bath, whereas q = 1 is the optimal choice for the smectic case, in the x-direction. Thus

11



10
-1

10
0

10
1

10
2

F σ/k
B
T

0,01

0,1

1

10

D
s

Isotropic

D
s,x

 for F || x
^

D
s,y

 for F || x
^

D
s,y

 for F || y
^

D
s,x

 for F || y
^

Figure 5. Tracer diffusion coefficients for the different baths and force directions, as labeled, as a function of

the external force. As in Fig. 3, the data from passive microrheology are presented in the y-axis.

0 1 2 3 4 5 6 7
q σ

-6

-4

-2

0

2

4

6

S
(q

)

Isotropic bath

Nematic bath

Figure 6. Tracer-rod equilibrium structure factor obtained at F = 0kBT/σ for the isotropic and smectic

baths, as labeled.

12



10
-2

10
-1

10
0

10
1

t / τ

0,00

0,20

0,40

0,60

0,80

1,00

<
Φ

q

t (t
)>

F =     0 k
B
T/σ

F =     2 k
B
T/σ

F =   10 k
B
T/σ

F =   40 k
B
T/σ

F = 200 k
B
T/σ

Exponential decay

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

t / τ

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

<
Φ

q

t (t
)>

F || x
^

F || y
^

q || x
^
     qσ = 1

10
-2

10
-1

10
0

10
1

t / τ

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

<
Φ

q

t (t
)>

F || x
^

F || y
^

Isotropic

q || y
^

qσ = 2π

Figure 7. Tracer self-intermediate scattering function for different forces, as labeled. The bath is in the

isotropic phase (top panel), or in the smectic phase. The wavevector is parallel to the x-axis with modulus
qσ = 1 in the middle panel. In the bottom panel, the wavevector has modulus qσ = 2π/6 and it is within the
yz-plane. Black and orange dashed lines are fits obtained, respectively, at F = 0kBT/σ and F = 200kBT/σ. In
the top panel, the thin dashed lines are exponential fittings to the curves.

13



we take the standard qσ = 2π for the dynamics of the tracer in the isotropic case and
perpendicular to the nematic director, and qσ = 1 for the dynamics parallel to the
x-axis. In all cases, forces in the x and in the y directions are considered.

Fig. 7 shows the tracer self-intermediate scattering function, as defined above, for the
istropic and smectic baths. In the smectic case, wavevectors parallel and perpendicular
to the nematic director are shown (middle and bottom panels, respectively), with
different moduli. The forces parallel and perpendicular to the nematic director are
shown with continuous and dashed lines, respectively. Generically, the application of
the external force provokes a faster decay of this correlation function.

In the isotropic bath (top panel), the wavevector modulus is qσ = 2π, as mentioned
above. It is worth noticing that although the separation between short-time and long-
time diffusion, namely the cage effect, is not observable in the MSD of the unforced
tracer, this correlation function decays as a stretched exponential, typical of viscoelas-
tic systems (a simple exponential fitting is presented for comparison, with the dashed
lines). For larger forces, on the other hand, the decay is compressed and faster than the
simple exponential, corresponding to the superdiffusion regime discussed previously.

In the smectic bath, the dynamics is faster in the direction of the force, as expected,
but all correlation functions decay faster for stronger forces. The tracer intermediate
scattering function in the smectic bath when the force is parallel to the nematic director
shows oscillations, reproducing the ripples in the MSD or the displacement. However,
because this function focuses on the relevant length scale, the oscillations are noticeable
even for intermediate forces at long times, which was hardly visible in the MSD. On
the other hand, in the y-direction, the dynamics of the forced tracer is similar to the
isotropic bath, with small differences only for small forces. This indicates that the
tracer moves in this region as in an isotropic environment.

Finally, let us note that the relaxation time scale can be obtained from the decay of
the correlation function (not shown). This features a behaviour similar to the effective
friction coefficient, or the inverse diffusion coefficient, as they all measure, in different
ways the same phenomenon.

The dynamical susceptibility, as calculated according to Eqn. (18), quantifies the
standard deviation of the tracer’s intermediate scattering function. Essentially, it mea-
sures the degree of variability among different trajectories. This is shown in Fig. 8 for
the same cases as Fig. 7. As previously reported for bulk systems [58], the susceptibil-
ity reaches its maximum value when the system undergoes relaxation. Similarly, in our
analysis the tracer susceptibility exhibits this characteristic behaviour. Consequently,
the peak in χ4,q shifts towards shorter times with increasing force magnitude across all
cases. Furthermore, in the isotropic state, the susceptibility diminishes with increasing
forces, indicating a greater similarity among tracer trajectories.

In the smectic bath the tracer dynamical susceptibility is larger than in the isotropic
case, and behaves differently. The dynamics in the direction of the nematic director
(intermediate panel) depends strongly on the direction of the force; when the force is
parallel to n̂, the susceptibility is maximal for intermediate forces, in the force thinning
regime, where the diffusion coefficient varies more strongly, and also corresponding to
the lowest force where superdiffusion is observed (with an exponent of the MSD close
to 2). We interpret this non-monotonic behaviour of the susceptibility function for in-
termediate forces and when they are parallel to the nematic director as the appearance
of the dynamic heterogeneities as we defined them in Section 2. Increasing the force
helps the tracer diffuse through the smectic layers, though this is not always observed
in all trajectories. These variations in the tracer’s diffusion mechanism in smectic fluids
lead to dynamic heterogeneities, resulting in an increase in the peak of χ4,q(t). Upon
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increasing the force magnitude, more and more trajectories show the tracer moving
between layers, making the system dynamics more homogeneous. However, when the
force is perpendicular to n̂, the susceptibility decreases upon increasing the force. No-
tably, the case without force, F = 0kBT/σ, lies in between, but even for small forces,
this is broken.

For the dynamics in the interlayer planes, q ⊥ n̂ (bottom panel), the dynamics shows
only mild dependence on the force, with a slight increase when q is parallel to F, but
the values are notably higher than in the isotropic case. It cannot be ruled out that
a maximum appears at even larger forces. Indeed, the correlation with superdiffusion
in this context appears to be less straightforward.

Finally, let us also note that the overlap correlation function [58] was also translated
to tracer dynamics but the results were very similar to those of the self-intermediate
scattering function. The dynamical susceptibility was also similar, but its intensity
was less sensitive to the tracer dynamics, due to its definition. We have, therefore,
shown here only the analysis based on 〈Φt

q(t)〉 and its dynamical susceptibility.

4. Conclusions

Microrheology has emerged as a valuable technique for probing the mechanical char-
acteristics of complex materials at small scales, particularly in the realms of viscoelas-
ticity and viscoplasticity. In this study, we investigated a system comprised of sphero-
cylinders in both an isotropic state and within the smectic phase, employing a spherical
tracer. Our findings reveal a superdiffusive behaviour induced by external forces, no-
tably heightened within the smectic bath, particularly when the force aligns parallel
to the nematic director. However, it is remarkable that such behaviour is also observ-
able in other directions and within the isotropic bath. Furthermore, we calculate the
dynamical susceptibility to explore the system’s heterogeneities, transitioning from
ensemble average to trajectory average analysis. The susceptibility results unveil a
peak within the timeframe corresponding to the relaxation of the correlation function,
notably maximized for intermediate forces aligned parallel to the nematic director.
Regardless of force orientation, the tracer’s dynamics within the smectic bath exhibit
greater heterogeneity compared to the isotropic state.

The analysis of tracer superdiffusion, as depicted in Figs. 2 and 3, in conjunction
with the findings from the dynamical susceptibilities discussed earlier, reveals that es-
tablishing a definitive correlation between them proves elusive. While superdiffusion,
induced by external forces and observable in all directions, is notably clearer when
forces align parallel to the nematic director and in the direction of the force, a direct
correspondence with dynamical heterogeneities is not straightforward. In instances
where superdiffusion is prominent, dynamical heterogeneities reach their peak. More-
over, in the isotropic bath, superdiffusion becomes more pronounced for larger forces,
coinciding with a decrease in χ4,q. This trend holds true in the smectic bath when the
force aligns parallel to the nematic director, but not when it is perpendicular. Intrigu-
ingly, distinct trends emerge for wavevectors oriented in different directions. Notably,
for qσ = 1, a non-monotonic trend is indeed observed.
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