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SEPARABLE FUNCTORS IN CORINGS
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We develop some basic functorial techniques for the study of the categories of comodules
over corings. In particular, we prove that the induction functor stemming from every mor-
phism of corings has a left adjoint, called ad-induction functor. This construction general-
izes the known adjunctions for the categories of Doi-Hopf modules and entwined modules.
The separability of the induction and ad-induction functors are characterized, extending
earlier results for coalgebra and ring homomorphisms, as well as for entwining structures.
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1. Introduction. The notion of separable functor was introduced by Nastasescu et
al. [12], where some applications for group-graded rings were done. This notion fits
satisfactorily to the classical notion of separable algebra over a commutative ring.
Every separable functor between abelian categories encodes a Maschke’s theorem,
which explains the interest concentrated in this notion within the module-theoretical
developments in recent years. Thus, separable functors have been investigated in the
framework of coalgebras [8], graded homomorphisms of rings [9, 10], Doi-Koppinen
modules [6, 7], or finally, entwined modules [4, 5]. These situations are generaliza-
tions of the original study of the separability for the induction and restriction of
scalars functors associated to a ring homomorphism done in [12]. It turns out that all
the aforementioned categories of modules are instances of comodule categories over
suitable corings [3]. In fact, the separability of some fundamental functors relating
the category of comodules over a coring and the underlying category of modules has
been studied in [3]. Thus, we can expect that the characterizations obtained in [4] of
the separability of the induction functor associated to an admissible morphism of en-
twining structures and its adjoint generalize to the corresponding functors stemming
from a homomorphism of corings. This is done in this paper.

To state and prove the separability theorems, a basic theory of functors between
categories of comodules has been developed in this paper, making the arguments
independent from the Sweedler’s sigma-notation. The plan here is to use purely cate-
gorical methods which could be easily adapted to more general developments of the
theory. These methods had been sketched in [1, 2] in the framework of coalgebras over
commutative rings and are expounded in Sections 2, 3, and 4. In Section 5, a notion
of homomorphism of corings is given, which leads to a pair of adjoint functors (the
induction functor and its adjoint, called here ad-induction functor). The morphisms
of entwining structures [4] are instances of homomorphisms of corings in our setting.
Finally, the separability of these functors is characterized.

We use essentially the categorical terminology of [16], with the exception of the
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204 J. GOMEZ-TORRECILLAS

term K-linear category and functor, for K a commutative ring (see, e.g., [15, Section
1.0.2]). There are, however, some minor differences: the notation X € « for a category
A means that X is an object of #, and the identity morphism attached to any object X
is represented by the object itself. The notation .ilx stands for the category of all unital
K-modules. The fact that G is aright adjoint to some functor F is denoted by F 4 G. For
the notion of separable functor, the reader is referred to [12]. Finally, let f,g: X - Y
be a pair of morphisms of right modules over aring R, and let k : K — X be its equalizer
(i.e., the kernel of f —g). We will say that a left R-module Z preserves the equalizer
of (f,g) if k®erZ:K®rZ — X ®g Z is the equalizer of the pair (f ®r Z,g ®g Z). Of
course, every flat module g Z preserves all equalizers.

2. Bicomodules and the cotensor product functor. Firstrecall from [17] the notion
of coring. The concepts of comodule and bicomodule over a coring are generalizations
of the corresponding notions for coalgebras. We briefly state some basic properties
of the cotensor product of bicomodules. Similar associativity properties were stud-
ied in [11] in the framework of coseparable corings and in [2] for coalgebras over
commutative rings.

Throughout, A,A’,A”,... denote associative and unitary algebras over a commuta-
tive ring K.

2.1. Corings. An A-coring is a three-tuple (C,A¢,€¢) consisting of an A-bimodule
€ and two A-bimodule maps

Ac:C— Co4C, cc:C— A, (2.1)
such that the diagrams
Ac
C Co,C
Acl \LC@AAC
Ac®aC
Cos € ————C0,4C0,4C,
(2.2)
Ac Ac
C—— C@AC C—— C@AC
\ l‘t@AEC = \LE«;@At
C@AA A®A‘t
commute.
From now on, C,C’,C”,... will denote corings over A,A’, A", ..., respectively.

2.2. Comodules. A right C-comodule is a pair (M,py) consisting of a right A-
module M and an A-linear map py : M — M ® 4 € such that the diagrams

M o Mea€ M- Me,c
PM\L \LM@AAC \ lM@Aet (2.3)
AC
M®A¢LM®A¢®A¢ M®sA
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SEPARABLE FUNCTORS IN CORINGS 205

commute. Left €C-comodules are similarly defined; we use the notation Ay for their
structure maps. A morphism of right €-comodules (M, py) and (N, py) is an A-linear
map f: M — N such that the following diagram is commutative:

f

lpm lpw (2.4)
f

®4C
M®A¢%N®A¢.

The K-module of all right €-comodule morphisms from M to N is denoted by
Home¢ (M, N). The K-linear category of all right €-comodules is denoted by ¢. When
€ = A, with the trivial coring structure, the category .* is just the category of all right
A-modules, which is “traditionally” denoted by l4.

Coproducts and cokernels in M€ do exist and can be already computed in MA.
Therefore, M has arbitrary inductive limits. If 4€ is a flat module, then ¢ is easily
proved to be an abelian category.

2.3. Bicomodules. Let py : M — M ®4 € be a comodule structure over an A’ — A-
bimodule M, and assume that p,; is A’-linear. For any right A’-module X, the right
A-linearmap X® 4 pp : X®4 M — X® 4 M®4C makes X® 4» M aright C-comodule. This
leads to an additive functor — ® 4 M : M4 — ME. When A’ = A and M = €, the functor
—®4C is left adjoint to the forgetful functor Uy : M — M~ (see [11, Proposition 3.1]
and [3, Lemma 3.1]). Now assume that the A’ — A-bimodule M is also a left €’-comodule
with structure map Ay : M — €’ ® 4, M. It is clear that py : M — M ® , € is a morphism of
left €’-comodules if and only if Ay, : M — €’ ® o M is a morphism of right €-comodules.
In this case, we say that M is a €’ — C-bicomodule. The €’ — C-bicomodules are the
objects of a K-linear category €.#¢ whose morphisms are those A’ — A-bimodule maps,
which are morphisms of €’-comodules and of €-comodules. Some particular cases are
now of interest. For instance, when €’ = A’, the objects of the category AM¢ are the
A’ — A-bimodules with a right €-comodule structure py : M — M ® , € which is A’-
linear.

2.4. The cotensor product. Let M € €% and N € SU¢". We consider M ®4 N and
Mo,Co4N as €' — €' -bicomodules with structure maps

MesN 2 Mo, Neuw €',  MesN-22" g MosN, (2.5
M®A¢®ANM»M®A¢®AN®A~C”, (2.6)
M®AC®ANAM®A—W»¢'®ArM®AC®AN. 2.7)

The map
Moy N -LUEANMEAN | o CouN (2.8)

is then a €' — €"-bicomodule map. Let MO¢N denote the kernel of (2.8). If €, and
A€ preserve the equalizer of (py ®4 N,M ®4 Ay), then MO¢N is both a €’ and a
¢”-subcomodule of M ® 4 N and, hence, it is a €’ —€’’-bicomodule.
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206 J. GOMEZ-TORRECILLAS

PROPOSITION 2.1. Assume that for every M € “M¢ and N € U¢", €, and 1 C"
preserve the equalizer of (py 4 N,M ® o Ay). There is an additive bifunctor

—Oc— 1 “MEXx UM — Cue”. (2.9)

In particular, the cotensor product bifunctor (2.9) is defined when €, and 4+ C" are
flat modules or when € is a coseparable A-coring in the sense of [11].

In the special case €' = A" and € = A", we have the bifunctor

’ "

—Oec— 1 AME XM — A A (2.10)
and, if we further assume that A’ = A” = K, we have the bifunctor
—O¢—: ME XM — M. (2.11)

2.5. Compatibility between tensor and cotensor. Let M € €€ and N € SU¢" be
bicomodules. For any right A’-module W, consider the commutative diagram

Wy (MOcN) ——=Wey (MesN) —= Weoy (Mo Co,N)

L) S e

00— (WeorM)OoeN —— (Weoay M)@aN —— (W M)®,Coa N

where  is given by the universal property of the kernel in the second row. This leads
to the following.

LEMMA 2.2. It follows from (2.12) that W' preserves the equalizer of (py ®4 N,
M®aAy) if and only if ¢ : W @4 (MO¢N) = (W @4 M)Oc¢N. In particular, @ is an
isomorphism if Wy is flat.

Next, we prove a basic fact concerning with the associativity of cotensor product.

PROPOSITION 2.3. Let M € M€, N € U, L € ¢"UC. Assume that €, Ly,
Loy €, and o»C" preserve the equalizer of (py ®4 N,M ®4 Ay), and that 4C, 4N,
AC®aN, and €}, preserve the equalizer of (pL ® a» M,L® 4» Ay). Then there is a canon-
ical isomorphism of €' —C" -bicomodules

LOe¢ (MOeN) = (LOe M) OeN. (2.13)
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SEPARABLE FUNCTORS IN CORINGS 207

PROOF. Since €, and 4~ C" preserve the equalizer of (py ® 4 N,M ®4Ay), we know
that it is a €’ — €"’-subbicomodule. Analogously, LO¢ M is a €’”" — C-subbicomodule of
L®a M. In the commutative diagram

00— (LogM)OeN —— (L®a M)OeN — (Lo € ®@a M)OcN

T S e

0—— (LI:lq;/M) QAN —— (L®A'M) QAN —— (L®A'¢, ®A'M) ®aN

the second row is exact because 4N preserves the equalizer of (pr ® 4» M,L ® 4 Ap).
The exactness of the first row is then deduced by using that ,€ ® 4 N is assumed to
preserve the equalizer of (p; ® 4» M,L® 4’ Ajy). Now, consider the commutative diagram
with exact rows

0—— (LogM)aeN —— (Ley M)OeN — (Lo €' ®©4 M)OcN .

wlT sz W3T (2.15)

0 —— Lo (MOe¢N) ——= Loy (MOeN) ——= Loy €' ® 4 (MOcN)

Lemma 2.2 gives the isomorphisms y, and g3, which induce the isomorphism ;.
O

3. Functors between comodule categories. This section contains technical facts
concerning with K-linear functors between categories of comodules over corings. Part
of these tools were first developed for coalgebras over commutative rings in [1, 2].
Roughly speaking, it is proved in this paper an analogue to Watts theorem, which
allows to represent good enough functors as cotensor product functors. Also is in-
cluded a result which states that, under mild conditions, a natural transformation
gives a bicomodule morphism at any bicomodule. This will be used in the statement
and proof of our separability theorems in Section 5.

Let € and D be corings over K-algebras A and B, respectively, and consider a K-linear
functor

F:MC — uP. (3.1)

3.1. Let T be a K-algebra. For every M e TM¢, consider the homomorphism of K-
algebras

T =End (Tr) — Hom¢ (T®1r M, T ®1 M) = Hom¢ (M,M) — Homy, (F(M),F(M)) (3.2)

which induces a left T-module structure over F(M) such that F(M) becomes a T — -
bicomodule. We have two K-linear functors

—@rF(=),F(—®r—) :MT xTME — P, (3.3)
We construct a natural transformation

Y—,—:_®TF(_)_’F(_®T_)- (3.4)
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208 J. GOMEZ-TORRECILLAS

Let Y7 be the unique isomorphism of B-comodules making the following diagram
commutative

Yr,M

T®rF(M) F(TerM)

I

(3.5)

n

F(M)

To prove that Y7y is natural at T, consider a homomorphism f : T — T of right
T-modules and define g : F(M) — F(M) by g(x) = f(1)x for every x € F(M). Since
g is just the image under (3.2) of f(1) € T, it follows that g is a morphism of right
B-comodules. Moreover, g makes the following diagram commutative:

F(M) F(M)

T T (3.6)

F( M)
F(TorM) —2L2™ _ F(TerM)

In the diagram

F(M) & F(M)

F(M)
T®rF(M) AT TerF(M)

(3.7)

F(ferM)

F(T®rM) F(T®rM)

the commutativity of the front rectangle, which gives that Yr y is natural, follows from
the commutativity of the rest of the diagram. From Mitchell’s theorem [13, Theorem
3.6.5], we obtain a natural transformation

Yf,M:—®TF(M)—>F(—®TM). (3.8)

Moreover, if F preserves coproducts (resp., direct limits, resp., inductive limits) then
Yx,um is an isomorphism for Xt projective (resp., flat, resp., any right T-module).

PROPOSITION 3.1. If the functor F preserves coproducts, then Y__ : — @7 F(—-) —
F(—®7—) is a natural transformation. Moreover, if F preserves direct limits, then Y, _ is
a natural isomorphism for every flat right T-module X. Finally, if F preserves inductive
limits, then Y_ _ is a natural isomorphism.
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SEPARABLE FUNCTORS IN CORINGS 209

PROOF. By Section 3.1, Y_ y is natural for every M € TIE. Thus, we have only to
show that Yy _ is natural for every X € MT. We argue first for X = T. Let f: M — N be
a homomorphism in TU¢. From the diagram

F(M) F(f) F(N)
T F(M) ATW) Ty F(M)

(3.9)

F(Terf)

F(TerM) F(T®rN)

we get that Y4 _ is natural. Now, use a free presentation TY — X to obtain that Yy,
is natural for a general X7. The rest of the statements are easily derived from this.
O

LEMMA 3.2. Letn:F, — F» be a natural transformation, where F;,F» : M¢ — U2 are
K-linear functors which preserve coproducts.

(1) For every M € e, Ny :Fi(M) — F>(M) is a T —D-bicomodule homomorphism.

(2) Given X € M" and M € TS, the diagram

nNxerM

F (X®TM) _— Fz(X@TM)
Yx,MT YX'MT (3.10)

Xernm

XerFi (M) ——— = X®7F> (M)

is commutative.

PROOF. We need just to prove that (3.10) commutes for X = T. In this case, the
diagram can be factored out as

NTerM
Fi(TerM) o F>(T®rM)
Yo Fi(M) — T F2(M). (3.11)
= Y1,M =
T
TorFy(M) criv TorFa(M)
Since all trapezia and triangles commute, the back rectangle does, as desired. a
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210 J. GOMEZ-TORRECILLAS

LEMMA 3.3. Let T,S be K-algebras and assume that F : M€ — MP preserves coprod-
ucts. Given X € M5, Y € SUT, and M € TME, the following formula holds:

Yx,yerM © <X®SYY,M) = Yxogy M- (3.12)

PROOF. The equality will be first proved for X = S. Consider the diagram

n

S®5F(Y®TM) F(Y@TM)
‘m M
Ys yerm S®sY @7 F(M) = YeorF(M). (3.13)
F(S®sY ®rM) = F(Y®rM)

The back rectangle is commutative by definition of Y ys,m, while the other two par-
allelograms are commutative because Y_ _ is natural. Therefore, the right triangle is
commutative. The equality is now easily extended for X = §® and, by using a free
presentation S — X — 0, for any X. O

3.2. Natural transformations and bicomodule morphisms. Let M € €A(¢ be a bi-
comodule. A functor F : ¢ — MP is said to be M-compatible if Yerm and Yo, ¢ v are
isomorphisms. By Proposition 3.1, the functor F is M-compatible for every bicomod-
ule M if either the functor F preserves inductive limits or €, is flat and F preserves
direct limits. In case that F is M-compatible, define Ar(y) as the unique A’-linear map
making the following diagram commutative

AF()

F(M) C ®a F(M)

\ / (3.14)
F(Anm) Yer M

F(C’ ® A M)

PROPOSITION 3.4. Let F be an M-compatible functor which preserves coproducts.
The A’-linear map Apy) is a left €'-comodule structure on F(M) such that F(M) be-
comes a €' —D-bicomodule. Moreover, given Fy,F» : M¢ — MP M -compatible functors
and a natural transformation n : Fy — F», the map ny : F1(M) — F>(M) is a ¢’ — D-
bicomodule homomorphism.

PROOF. In order to prove that the coaction Ap«) is coassociative, consider the
diagram
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SEPARABLE FUNCTORS IN CORINGS 211
AR (M) ,
F(M) C o4 F(M)
A¢r @ 41 F(M)
CosF(M) ————————Ceydran—>=C @y C' ®4 F(M)
C'® 4 F(M) C'® ey Ye' m

/
C o F(C’ ® A M)

Ye' M \ Yere ¢/ M

Yo ¢l
¢ e M Fur) )
F(M) F(C' ®4 M)
% ‘mm
’ F(cl‘x’A’AM) ’ 7 ’
F(C'®a M) F(C'®a €' 04\ M).

(3.15)

We want to see that the top side is commutative. Since F is assumed to be M-com-
patible, we have just to prove that the mentioned side is commutative after composing
with the isomorphism Y¢'s ,, ¢/ i This is deduced by using Lemma 3.3, in conjunction
with the naturality of Y_ y and the very definition of Ary). The counitary property is
deduced from the commutative diagram

A’ @, F(M) F(A ®4 M)
cer® 4 F(M) F(M) Fleg ® 4 M) (3.16)
=L
Yer m
€ @4 F(M) F(C' @a M).

To prove the second statement, consider the diagram

n
Fi (M) = F> (M)
F1(Apm) W\
UC’@A/M AFZ{M)
AF () Fi(C' @4 M) F(CeosM). (3.17)
YoM , L YoM
C'e M
C'@A'Fl(M) ¢’®A/F2(M)

Both triangles commute by definition of Af, ) and A, (), and the upper trapezium is
commutative because n is natural. The bottom trapezium commutes by Lemma 3.2.
Therefore, the back rectangle is commutative, which just says that ny is a morphism
of left €’-comodules. This finishes the proof. |

8508017 SUOLULLIOD BAITE1D 3|0l jdde aup A pausenob ake s3piie WO ‘38N 4O S3INI 10} AXe1q 1 8UIIUO AB]IA UO (SUORIPUOD-PUR-SLLBY W00 A8 1M ARe1q] 1)U UO//SANY) SUORIPUOD Pue SWie | 84} 88S *[7202/2T/2T] uo Arigi auliuo A8im epeuel 8 pepSRAIUN Ad X0/ZT0Z0ZTLTTITOS/SSTT OT/I0p/L00™A8 1M ARelq 1)Ut uo//Sdny Wol) papeojumod ‘ ‘200 ‘96€9



212 J. GOMEZ-TORRECILLAS

THEOREM 3.5. Assume that €4 is flat. If F : M¢ — MP is exact and preserves di-
rect limits (e.g., if F is an equivalence of categories), then F is naturally isomorphic to
—0cF(C).

PROOF. Let py — N ®4 € be a right C-comodule. We have the following diagram
with exact rows

PN®AF(C)=N®AAp(c)

00— NO¢F(€) ——= N®,F(C) Ne,CoF(C)
|
| = :J/YN,O: :J/YNMA,C
A c—
0 F(N) F(N®4C) Honeat™Neade) | p(Ne,Ce,C)
(3.18)

where the desired isomorphism is given by the universal property of the kernel. O

4. Co-hom functors. This section contains a quick study of the left adjoint to a
cotensor product functor, if it does exist. The presentation is inspired from the one
given in [18, Subsection 1.8] for coalgebras over a field.

Let €, D be corings over K-algebras A and B, respectively.

DEFINITION 4.1. A bicomodule N € YU® is said to be quasi-finite as a right -
comodule if the functor — @4 N : M4 — MP has a left adjoint hp (N, —) : MP — MA. This
functor is called the co-hom functor associated to N.

The natural isomorphism which gives the adjunction is denoted by

@y y:Homy (hp(N,X),Y) — Homp (X,Y ®4 N), (4.1)

for Y € MA, X € MP.

4.1. Let 0:id — hp(N,—) ®4 N be the unit of the adjunction (4.1). Therefore, the
isomorphism ®y y is given by the assignment f — (f ® 4 N)Ox. In particular, the map

X 2 1y (N, X) @4 N 2240 1 (N, X) @4 CouN 4.2)
determines an A-linear map
Phy(N,x) - hp (N, X) — hp(N,X) ©,4C (4.3)

such that (Id®4An)0x = (Pnyv,x) ®41d)Ox. The coaction pn, (v,x) makes hp(N,X) a
right €-comodule. Therefore we have a functor hp (N, —) : M2 — ME.
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SEPARABLE FUNCTORS IN CORINGS 213
4.2. The following is a basic tool in our investigation.

PROPOSITION 4.2. Let N be aC—D-bicomodule. Assume that g3 preserves the equal-
izer of (py ® 4N, Y ® 4 AN) for every right C-comodule Y (e.g., g2 is flat or € is a cosep-
arable A-coring in the sense of [11]).

(1) If N is quasi-finite as a right D-comodule, then the natural isomorphism (4.1) re-
stricts to an isomorphism Hom¢ (hp (N, X),Y) = Homp (X, YOeN). Therefore, hy (N, —)
is left adjoint to —O¢N.

(2) Conversely, if —0¢N : ME — MP has a left adjoint, then N is quasi-finite as a right
C-comodule.

PROOF. (1) We need to prove that if f € Homu (hp (N, X),Y), then f is C-colinear if
and only if the image of (f ® 4 N)0Oyx is included in YO¢N. But these are straightforward
computations in view of the definition of the contensor product.

(2) Since the inclusion €Co¢N = €® 4 N splits-off, we get from Section 2.5 the natural
isomorphism (- ®,C)O¢N = —®4 (COcN) = —®4 N. Now, the functor — ® 4 € is right
adjoint [3, Lemma 3.1] to the forgetful functor Uy : M¢ — M and, by hypothesis,
—O¢N is right adjoint to the functor hy (N, —) : MP — MC. This implies that — ®4 N is
right adjoint to Ushp (N, —), as desired. O

EXAMPLE 4.3. Let N € %U(8. Then Nj is quasi-finite if and only if —® 4 N : (4 — M5
has a left adjoint, that is, if and only if 4N is finitely generated and projective. In such
a case, the left adjoint is — ® g Homyu (N, A) : M8 — MC. Notice that taking B = K, we
obtain a canonical structure of right €-comodule on N* = Homy (N, A) for every left
C-comodule N such that N is finitely generated and projective as a left A-module.

EXAMPLE 4.4. Given an A-coring € and a K-algebra homomorphism p : A — B, we
can consider the functor — ® 4 € : M8 — ME, which is already the composite of the
restriction of scalars functor (—), : MF — M4 and the functor — @4 € : M* — ME. Since
these functors have both left adjoints, given, respectively, by the induction functor
—®4B:MA - M? and the underlying functor Uy, : M — M4, we get that the composite
functor — ®4 B : M€ — MB is a left adjoint to — ®4 € : MB — ME. Clearly, — ®4 € =
—®p (B®,C) and, thus, B® 4 € becomes a quasi-finite comodule.

5. Separable homomorphisms of corings. We propose anotion of homomorphism
of corings which generalizes both the concept of morphism of entwining structures [4]
and the coring maps originally considered in [17]. An induction functor is constructed,
which is shown to have a right adjoint, called ad-induction functor. The separability
of these two functors is characterized in terms which generalize both the previous
results on rings [12] and on coalgebras [8]. Our approach rests on the fundamental
characterization of the separability of adjoint functors given in [10, 14].

Consider an A-coring € and a B-coring I, where A and B are K-algebras.

DEFINITION 5.1. A coring homomorphism is a pair (p,p), where p : A — B is a
homomorphism of K-algebras and @ : € — D is a homomorphism of A-bimodules,
and such that the following diagrams are commutative
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214 J. GOMEZ-TORRECILLAS
€ ¢asc c—=< -4
W
® Do, ¢ ? (5.1)
WpH H €n

o p——>B

D——Dopgh

where wpp: Do — DRy is the canonical map induced by p: A — B.

Throughout this section, we consider a coring homomorphism (@, p) : € — D. We
define the induction and ad-induction functors connecting the categories of comod-
ules M€ and P,

5.1. We start with some unavoidable technical work. For every B-bimodule X, de-
note by oy : B®4 X — X ®p B the B-bimodule morphism given by b ®4 x — bx ®p 1.
Given B-bimodules X, Y, a straightforward computation shows that the diagram

ox®aY
B3sX® Y ——— = X®3B®,4Y
\LB®A‘UX’Y \LX@BUY (52)
OXepY

BosX®pY ——————= X®pY®;3B

commutes, where wyxy: X®4Y — X®pY is the obvious map. We have as well that, for
every homomorphism of B-bimodules f : X — Y, the following diagram is commuta-
tive:

B
Bo X — 2 pe,y

\LO’X lu’y (53)
S

®pB

X®pB ——>Y®pB

5.2. The induction functor. Let Ay : M — €C®4 M be a left €-comodule. Define XM :
M - D®,M as the composite map

M = ID@AM
Am
DN o
C@AM
and AB®AMZB®AMHID®BB®AM as
ABo M
BeoaM DegBosM
(5.5)
B®AXM op®aAM
B®AID®AM
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SEPARABLE FUNCTORS IN CORINGS 215

PROPOSITION 5.2. The homomorphism of left B-modules Age ,»r endows B® 4 M with
a structure of left D-comodule. This gives a functor B® 4 — : il — 2.

PrROOF. Consider the diagram

Ay
M ID@AM
A @AM
M oA \LD@M/\M
A Desdym
M CeosM Deo,CosM
(2) (3) //
RAPOAM
XM ¢:®AM Coadm ID@AID@AM
POAM ¢®A¢®AM wID,D®AM
(1)
DesM T Dephes M.
HOA
(5.6)

The pentagon labeled as (1) commutes since @ is a homomorphism of corings. The
four-edged diagram (2) is commutative since M is a left comodule. The commutation
of the quadrilateral (3) follows easily from the displayed decomposition of D ® 4 XM.
Therefore, the pentagon with bold arrows commutes. Now consider the diagram

/AB@ANI\

BosM DegBesM
BoaAMm
\
B®AXM B®AD®AM (5) D@BB®AXM
/\B®AM (4) \LB@,@?@AXM
()’D®AID®AM
B®AD®AM B®AID®AID®AM E®33®AD®AM
Bopwppn®aM ID@B/\B@AM
B®AAp®AM ’
e M B DegdDeo, M (6) DopopeAM
(7) Tpepgp®AM
ID@BB(X)AM ID@BID(X)BB@AM

\AD®BB®AM/

We have proved before that (4) is commutative. Moreover, (5) is obviously commuta-
tive and (6) and (7) commute by (5.2) and (5.3). It follows that the outer curved diagram

(5.7)
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216 J. GOMEZ-TORRECILLAS

commutes, which gives the pseudo-coassocitative property for the coaction Agg ,m. TO
check the counitary property, let (yy : M — A®4 M be the canonical isomorphism. We
get from the commutative diagram

A
M - DesM
k A\:
oY CosM ep®AM (5.8)
Ad
A M Dol BosM
A
that the diagram
ABo M
BoaM DepBeosM
\ N
B@A?\M\\\\A Tp@AM
B®AB®AM
Beauy Ep®BAAM (59)
Boaen®aM Bo oM

_— _—
BsAM Bonpai BB M o B®gBo, M

commutes, where tgg,m : B®4 M — B®z B®4 M denotes the canonical isomorphism.
Therefore, Agg v : B&®sM — D®gB®4 M is a left D-comodule structure map. In order
to show that the assignment M — B® 4 M is functorial, we will prove that B®4 f is a
homomorphism of left D-comodules for every morphism f : M — N in L. So, we have
to show that the outer rectangle in the following diagram is commutative

Boaf

B M BesN

\ /

B®AXM B®AXN
BoDhosf

ABe M B®AD®AM%A'B®AID®AN ABe N (5.10)

Es T

E(X)BB®AM DogBonf D®33®M.

From the definition of XM, XN and the fact that f is a morphism of C-comodules, it
follows that the upper trapezium commutes. The lower trapezium is commutative by
(5.3). Since the two triangles commute by definition, we get that the outer rectangle is
commutative and B®4 f is a morphism in 2. O
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SEPARABLE FUNCTORS IN CORINGS 217

5.3. Proposition 5.2 also implies by symmetry that for every right C-comodule py; :
M — M ®4C, the right B-module M ® 4 B is endowed with a right D-comodule structure
Pre,s M ®sB ~ M®sBepD given by pye,s = (M ®4 0p)(Om ®4 B), where py =
(M®s@)py and Op : D4 B — BegD is the obvious map. We can already state the
following.

PROPOSITION 5.3. The assignment M — M ® 5 B establishes a functor —®, B : ME —
MP,

5.4. The ad-induction functor. Consider the left D-comodule structure
)\B®A¢ZB®A¢—>ID®BB®A¢ (5.11)

defined on B® 4 € in Section 5.2.
We have, as well, a canonical structure of right €-comodule

B®AA¢!B®A¢—>B®A(C®AC. (5.12)

PROPOSITION 5.4. The B— A-bimodule B® , € is a D — C-bicomodule, which is quasi-
finite as a right C-comodule. Therefore, if AC preserves the equalizer of (py ®p B ®4
C,Y ®pApe,c) for every right D-comodule Y, then the functor

—Op(BosC) : MP — ME (5.13)

is right adjoint to

—@sB:ME— M2, (5.14)

PROOF. Since the comultiplication A¢ is coassociative, we get that the diagram

Ac
X %

¢®A¢

A¢ lc@AAC DesA¢c (5'15)

C E@A(t

«:®A¢®A¢

X¢®A¢

¢®A¢ ID@AQ:@AQ:

is commutative. This implies that the left trapezium of the following diagram is com-
mutative:
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218 J. GOMEZ-TORRECILLAS
)\B®A¢
B®A¢ ID@BB®AQ:
B®A_ID®A¢
B®AAC lB®AD®AAC DRB®AAC (5'16)
B®AID®AC®A¢:
Apg,c®aC
B®A¢®A¢ ID@BB®A¢®AC

Since we know that the rest of inner diagrams are also commutative, we obtain that
the outer diagram commutes, too. This proves that B® 4 € is a D — C-bicomodule.

We will see that B® 4 € is a quasi-finite right C-comodule, that is, that —® 4 B : M€ —
M3 is left adjoint to —®@gB®,C : ME — MCE. Now, these functors fit in the commutative
diagrams

A et e e U MA
_WT / \ g (5.17)
—®pB®AC —®AB
J‘/tB

where U, denotes the forgetful functor. Since — ® 4 B is left adjoint to — ® B and Uyk
is left adjoint to — ® 4 €, we get the desired adjunction. The rest of the proposition
follows from Proposition 4.2. O

REMARK 5.5. This proposition applies in the case that ,€ is flat or when D is a
coseparable B-coring in the sense of [11].

5.5. The unit. Let A¢: € — C®4B®zB®4C be the composite map
€2 o, €~ (Co,BozBoLC, (5.18)

where t maps c®c’ € C®,C to c® 1 ® 1® ¢’. This map is a homomorphism of €-
bicomodules. The unit 0 of the adjunction —®4B 4 —®pB®4 € at a right C-comodule
M is given by the composite map

M2 Mo, € —224C pe, BogBo,C, (5.19)

where gy : M - M®,,Bo®gBmaps m € Mtom®41®p1. We see, in particular, that 6¢ =
A¢. By Proposition 4.2, 0y factorizes throughout (M ® 4 B) Oy (B® 4 €) and, therefore, it
gives the unit 0y, for the adjunction —®, B 4 —0Op(B®4 €) at M. So, the multiplication
A¢ finally induces a map,

A@!C—>(¢®AB)DD(B®A¢), (5.20)
which is a homomorphism of C-bicomodules.

We are now ready to state the characterization of the separability of the induction
functor.
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THEOREM 5.6. Assume that €, preserves the equalizer of (py ®p B®p ®,C,Y ®p
Apg,¢) foreveryY e MP, and that X 4 preserves the equalizer of (Pce, s ®3B®AC,C®4
B®pAgs,c) for every X € ME. The functor —®4 B : ME — MP is separable if and only if
there is a homomorphism if C-bicomodules

w¢1(¢®AB)DD(B®AC)—>¢ (5.21)
such that w¢A¢ = C.

PROOF. Assume that —® 4B is separable. By [10, Theorem 4.1] or [14, Theorem 1.2],
the unit of the adjunction

0:1,c — (—®4B)Op(Be,D) (5.22)

is split-mono, that is, there is a natural transformation w: (-®4B)Op(B®4€) — 1 ¢
such that w0 =1 ;¢. By Lemma 2.2 the functor (- ®4 B)Op(B®4€) is C-compatible.
By Proposition 3.4, w¢ is a €-bicomodule map. Obviously, w¢A¢ = C.

To prove the converse, we need to construct a natural transformation w from the
bicomodule map we¢. Given a right €-comodule M, consider the diagram

pPM@ABopDRBa,C
M®AB®BD®BB®A<C M®A¢®AB®BID®BB®A¢
PMe BO®BB®AC M®AB®BP\B®A¢ M®ADC®AB®BB®A¢ M®A¢®AB®B/\B®AC
pPM®ABopB®AC
M®AB®BB®A¢ M®A¢®AB®BB®A¢
KM

(M®AB)Op(B®s€) >Me, ((CoaB)Op(BoaC))

(5.23)
where the vertical are equalizer diagrams (here, we are using the definition of the
cotensor product and the fact that M, preserves the equalizer of (p¢e s ®5B®AC,C®4

B®pAge,¢)). If we prove that the top rectangle commutes, then there is a unique dotted
arrow Ky making the bottom rectangle commute. The identity

<M®AC®AB®BAB®A¢> (pM®AB®BB®A¢> = (pM®AB®BD®BB®A¢) <M®AB®B/\B®A(C)

(5.24)
is obvious; so we need just to prove that
(M®4pco,s@5B04C) (Pu@sBesBeAC) .
= (pM®AB®BB®BID®BB®AC)(pM®AB®BB®A¢), '
which is equivalent to
(M®Ap¢®AB) (pM®AB) = <PM®AB®BID)PM®AB, (5.26)
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220 J. GOMEZ-TORRECILLAS

and this last identity is easy to check. Now, consider the diagram

oM

M M®AB®BB®AC
\ , /
M— > (M®,B)Op(BoAC)
PM \LPM lKM PM®ABRBBRAC
M®AA¢

Mo, ——= Mo, ((CosB)Op(BoaC))

M®A¢ M®A¢®AB®BB®A¢:
(5.27)

By Lemma 3.2, we have that M ® 4 Oy = Ous ,¢. Since 0 is natural, and Oy = A¢, this
implies that the external rectangle commutes. We know that the four trapezia com-
mute, whence the internal rectangle commutes as well. Define wy = (M ®4€¢) (M ®p
w¢) kv, which gives a natural transformation w : (-®4B)0Op(B®4€) — 1 ,¢. Moreover,

wMGM = (M®AE¢)(M®A w(g)KMeM
= (M®a€c) (M®awc)(M&a0u)pu (5.28)

= (M®A€M)pM =M.

Therefore, w0 =1 ¢ and, by [14, Theorem 1.2], the functor — ®4 B is separable. |

The counit map €¢ : € — A is a homomorphism of A-corings, where we consider on
A the canonical A-coring structure. When applied to €¢, Theorem 5.6 boils down to
the following corollary.

COROLLARY 5.7 (see [3, Theorem 3.5]). For an A-coring €, the forgetful functor
Ua : ME — MA is separable if and only if there is an A-bimodule map y:€®,C — A
such that yA¢ = €¢ and, in Sweedler’s sigma notation,

cayy(cey®ac’) =y(c®ac())c(,, VYe,c’ eC. (5.29)

PROOF. Obviously, the forgetful functor coincides with —® 4 A, so that we get from
Theorem 5.6 a characterization of the separability of this functor in terms of the
existence of a €-bicomodule map w¢ : €®4 € — € such that weA¢ = €. Now, notice
that the adjointness isomorphism

Hom¢ (C ®a (t,(t) =~ Homyu ((t ®a C,A) (5.30)
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SEPARABLE FUNCTORS IN CORINGS 221

transfers faithfully the mentioned properties of w¢ to the desired properties of y =
EcW¢. O

5.6. The counit of the adjunction. Let é¢ be the homomorphism of B-bimodules
that makes commute the following diagram

B®A¢®AB B
mT (5.31)

lB@Aefﬂ@AB
Beap®aB

B®,A®4B————>B®,B®,B

where m : B® , B® 4 B — B is the obvious multiplication map. Define, for every right B-
module Y, xy = uy (Y ® 4€¢), where uy : Y ®p B — Y is the canonical isomorphism. This
natural transformation x gives the counit of the adjunction —®4B 4 — ®p (B®4 €).
By Section 4.2, the counit of the adjunction — ®, B -+ —Op (B ®4 €) is given by the
restriction of x to (—Op(B®4C€)) ® 4 B. We use the same notation for this counit. Now,
define @ as the B-bimodule map completing the diagram

B®A¢®AB L‘D
B®AW®AEl (5-32)

mp

B®AID®AB

where my : B® 4D ®4B — D is the obvious multiplication map given by the B-bimodule
structure of . We claim that ¢ is a D-comodule map. To prove this, we first show
that the diagram
(PoOp(BesC))®aB——DezBo,Co4B
/\B®AC®ABT lxn (5.33)
Bo C®4B - bio}
is commutative. This is done by the following computation, where 71 : B®3B®4B — B
denotes the obvious multiplication map
XD (AB®A¢®AB) = Up (E@Aéc) (0D®A<C®AB) (B@A&@AB)
= U (ID@Bm) (ID@BB®Ap®AB) (ID@BB®A6¢®AID)
° <UD®A¢®AB) (B@Aq)@Att@AB) (B@AA¢®AB)
= Up (ID@Bm) (ID@BB(X)AQD@AB) (ID@BB®Acp®AB)
° <UD®A¢®AB) (B@A(p®A¢®AB) (B@AAq;@AB)
= Up (E@Bm) (E®3B®A6D®AB) (UD@A(D@AB)
° (B@Aqu(t@AB) (B@AA¢®AB)
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222 J. GOMEZ-TORRECILLAS
= Up (B@Bm) (ID@BB(X)AG;D@AB) (O’;D®AZD®AB>
o (BeA@@sp®4B) (BosAc®4B)
= Up (ID@B%) (ID@BB(X)BED@AB) (0’13®BID®AB> (B®AwDVE®AB)
o (BeA@@sp®4B) (BosAp@4B)
= Up (E@BWL) (E@BB@BED@AB) (U;D®BID®AB)
o (BeAAp®4B) (BoA@®4B)
= Up (D@BWL) (O’ID®B€D®AB) (B®AAD®AB) <B®A<p®AB)
= Up (ID@B%) (O’;@@BB@AB) (B®AID®B€;D®AB)
o (BeAAp®4B) (BoA@®4B)
= pp (Do) (0p@sBosB) (Bos@®AB)
= Up (B@Bm) (O’D®AB®AB) (B@AquB) = Q.
(5.34)

We know that Apg,c ®4 B is a homomorphism of D-bicomodules and that, by Section
3.2, Xp is D-bicolinear, too. This proves that ¢ : B®4C®4 B — D is a homomorphism
of D-bicomodules.

We are now in a position to prove our separability theorem for the ad-induction
functor.

THEOREM 5.8. Assume that 4B and ,C preserve the equalizer of (pp ®B®,C,M ®p
Age ) for every right D-comodule M (e.g., AB and AC are flat or D is a coseparable B-
coring in the sense of [11]). The functor —Op(B® 4 €) : MP — M is separable if and only
if there exists a D-bicomodule homomorphism vy : 1D — B, C® 4 B such that vy = D.

PROOF. If —0Op(B®,C€) is separable then, by [14, Theorem 1.2], there exists a nat-
ural transformation

vilyw — (-Op(Bea€))®4B (5.35)

such that xv = 1 ;». In particular, xpvp = I and, by Proposition 3.4, vy is abicomodule
map (in fact, we easily get that the functor (—0Op (B®4€)) ® 4 B is D-compatible from the
fact that DOy (B® 4 €) is a direct summand of Doz B® 4 € as a left B-module). The map
Ao ,c ® 4 B gives an isomorphism of D-bicomodules B, Co4B = (POp(BesC)) 4B,
which implies, after (5.33), that

D:XBVD:®(AB®A¢®AB)71VD . (5.36)

Thus, Vp = (Ape,c ®4 B) “1vp is the desired D-bicomodule map.

For the converse, assume that there is a D-bicomodule map vy : D — Be,C®4 B
such that ¢vp = . For each right D-comodule M, we prove that the homomorphism
of the right D-comodules

Mepvy

M2 Meyh M®pB,C®4B (5.37)

8508017 SUOLULLIOD BAITE1D 3|0l jdde aup A pausenob ake s3piie WO ‘38N 4O S3INI 10} AXe1q 1 8UIIUO AB]IA UO (SUORIPUOD-PUR-SLLBY W00 A8 1M ARe1q] 1)U UO//SANY) SUORIPUOD Pue SWie | 84} 88S *[7202/2T/2T] uo Arigi auliuo A8im epeuel 8 pepSRAIUN Ad X0/ZT0Z0ZTLTTITOS/SSTT OT/I0p/L00™A8 1M ARelq 1)Ut uo//Sdny Wol) papeojumod ‘ ‘200 ‘96€9



SEPARABLE FUNCTORS IN CORINGS 223

factorizes throughout (MOp (B®4€)) ® 4 B. Since 4B preserves the equalizer of (py ®p
B®AC,M ®pApg,¢), we know that

(MoOp(Bes€))®aB=MOp(BesC®B). (5.38)
Therefore, we need just to check the equality
(pM®EB@sC®sB) (M ®5Vn)pm = (M ®5Aps,co48) (M ®5 V) Py (5.39)
This is done by the following computation:

(M ®p )\B®AC®AB) (M ®p l’>ID)p1\4
= (M®BD®B\A/D)(M®BA;D),DM = (M®BID®B\A’D)pM (5.40)
= (pm®sVp)pM = (PM®pB®AC®AB) (M ®gVp)pu.

Thus, we have proved that the natural transformation given in (5.37) factorizes
throughout a natural transformation

vy M — (MDD(B®A¢))®AB. (5.41)

This means that we have a commutative diagram

M Mepvp
M—>Meplh) ——> Me3B®,C®,B

(ME\}D(B@JAC))@ABTM

Finally, we show that vy, splits off x»; by means of the following computation:

PMXMVM = PMXM (M®B\7D)PM
= XMepb (pM®BB®AC®AB) (M®317D>pM (x is natural)
= <M®BXID> (pM®BB®A¢Z®AB) (M®B\7;D)pM (by Lemma 3.2) (5.43)
= <M®BXID) <M®BAB®A¢®AB> (M®B\7;D)pM (Vp is bicolinear)

= (Mesd) (Mesvs)prr = par.

Since py is a monomorphism, we get xp vy = M. By [14, Theorem 1.2], —0Op (B® 4 €)
is a separable functor. |

By applying the stated theorem to €¢ : € — A we obtain the following corollary.

COROLLARY 5.9 (see [3, Theorem 3.3]). Let € be an A-coring. Then the functor
—®4C is separable if and only if there exists an invariant e € € (i.e., e € € satisfying
ae = ea for every a € A) such that ec(e) = 1.

PROOF. This follows from Theorem 5.8 taking that the A-bimodule homomorphisms
from A to € correspond bijectively with the invariants of € into account. ]
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5.7. Final remarks. Brzezinski showed [3, Proposition 2.2] that if (A,C), is an en-
twining structure over K, then A ®x C can be endowed with an A-coring structure in
such a way that the category .*®x€ is isomorphic with the category J§(y) of en-
twined (A, C)y-modules. It turns out that every morphism of entwining structures
(f,9) : (A,C)y — (B,D), in the sense of [4] gives a coring morphism (f ®x g, f) :
A®g C — Bog D. Some straightforward computations show that the statements of
the separability theorem [4, Theorem 3.4] correspond to our Theorems 5.6 and 5.8. In
fact, we can give the notions of totally integrable and totally cointegrable morphism
of entwining structures to the framework of morphisms of corings (¢,p) : € — D by
requiring the existence of the splitting bicomodule maps w¢ and vy, respectively. In
the first case, the existence of w¢ can be transferred, if desired, to the existence of
certain bimodule map with extra properties by means of the adjointness isomorphism

Hom¢ ((C®4B)Op (B®4C€),€) = Homy ((C®4B)Op (Be,C),A). (5.44)
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