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Abstract—The work presented here is a novel biological 

approach for the compliant control of a robotic arm in real time 

(RT). We integrate a spiking cerebellar network at the core of a 

feedback control loop performing torque driven control. The 

spiking cerebellar controller provides torque commands allowing 

for accurate and coordinated arm movements. To compute these 

output motor commands, the spiking cerebellar controller 

receives the robot’s sensorial signals, the robot’s goal behaviour, 

and an instructive signal. These input signals are translated into 

a set of evolving spiking patterns, representing univocally a 

specific system state at every point of time. Spike Timing- 

Dependent Plasticity (STDP) is then supported, allowing for 

building adaptive control. The spiking cerebellar controller 

continuously adapts the torque commands provided to the robot 

from experience as STDP is deployed. Adaptive torque 

commands, in turn, help the spiking cerebellar controller to cope 

with built-in elastic elements within the robot’s actuators 

mimicking human muscles (inherently elastic). We propose a 

natural integration of a bio-inspired control scheme, based on the 

cerebellum, with a compliant robot. We prove that our compliant 

approach outperforms the accuracy of the default factory-

installed position control in a set of tasks used for addressing 

cerebellar motor behaviour: controlling six degrees of freedom 

(DoF) in (i) smooth movements, (ii) fast ballistic movements and 

(iii) unstructured scenario compliant movements.  

 

Index Terms— Adaptive spiking control, cerebellar modelling, 

compliant robotics, real-time (RT) control, spike timing-

dependent plasticity (STDP). 

I. INTRODUCTION 

S far back as the 17th century, John Donne’s famous “No 

man is an island, entire of itself” contrasted the idea of a 

self-sufficient object (an island) that does not interact with 

other objects against the importance of the interactions 

amongst people and their outcomes for society. Human 

being’s ability to interact with others has facilitated their 

collaboration and coordination of their actions towards 

achieving common goals. For many daily tasks, collaboration 
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between humans also involves physical human interaction, a 

technical term for a physical communication between two or 

more individuals in a shared context. The emergence of 

humanoid robots by the mid-nineties brought a new 

“individual” to interact within this shared context, thus 

extending the human-to-human interaction theory to human-

robot interaction theory, i.e. Human-Robot Interaction (HRI).  

Efforts to HRI are being incrementally devoted over the last 

years[1], addressing new application domains in which new 

generations of robots begin to coexist and physically interact 

with humans (e.g., rehabilitation therapy [2], social interaction 

[3], education [4]) in contrast to the traditional well-structured 

industrial robotic scenarios lacking HRI. Physical HRI implies 

robots operating in complex unstructured environments in 

which human actions cannot be modelled; thus, demanding 

robot behaviour to be autonomous, reactive under unpredicted 

actions, adaptive and safe (i.e. human-like behaviour) [5]. The 

achievement of such compliant behaviour can be addressed 

considering different design aspects of robotic hardware (rigid 

vs. flexible materials, elastic actuators, low power actuators, 

etc.) and software (position vs. torque control, adaptive control 

systems, etc.). 

Regarding hardware design, robots can be equipped with 

passive intrinsic compliance by means of different elastic 

components, muscle like actuators and/or soft materials. This 

approach, taking biology as an inspiration, offers a compliant 

alternative to classical rigid-bodied robots. Yet, traditional 

position control methods are not of direct application in the 

presence of elastic materials whose mathematical modelling is 

almost intractable, thus demanding new control strategies [6, 

7]. These traditional methods offer excellent accuracy for 

industrial rigid-bodied robots in well-structured environments 

(e.g. automated car factories) where HRI is explicitly avoided 

since neither safety nor compliance can be guaranteed. 

Compliance demands torque control, and torque control 

strategies based on dynamics modelling cannot be efficiently 

applied since the nonlinearities of elastic components make 

detailed modelling extremely complex [8]. Finding a solution 

for controlling biologically inspired robots carrying elastic 

components and low power actuators shall directly benefit 

from a better understanding of biological motor control itself.  

The control mechanisms encountered in biology are 

involved in a continuous learning process to cope with the 

complexity and changes in the body structure and dynamics. 

Artificial Intelligence (AI) can be used to replicate this 

learning process; in particular, widely used Artificial Neural 

Networks (ANNs) have been proposed and tested as a solution 
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for the control of these compliant robots without requiring 

prior knowledge of the robot dynamics [8, 9]. ANNs are 

vaguely inspired in the functioning of their biological neural 

network counterparts. They consist of interconnected 

computational units, called artificial neurons, whose entry 

information travels from one computational unit to another 

across the ANN. The entry information is processed, at a 

neuron level, via some non-linear function of the sum of 

neuron inputs and then it is transmitted through the neuron 

connections, i.e. typically represented by a real number. 

Neuron connections are adjusted as learning proceeds. ANNs 

are designed to address problems by considering well-

structured data typically using standard analogue 

representations for neural activity. They lack the ability to 

serve as the linkage between biological neural coding and 

movement coordination, thus side-lining any attempt at 

drawing biological analogies. Spiking Neural Networks 

(SNNs), also called the third generation of neural networks, 

constitute a more biologically plausible approach of neural 

networks as they model the information transfer and 

processing as occurs in biological neurons, i.e. via the precise 

timing of spikes (discrete events at points in time) [10]. 

Torque control deals with the robot inner dynamics, that is, the 

evolution through time of a physical system. This makes 

SNNs use of temporal coding adequate for capturing the 

temporal evolution of analogue sensorimotor signals [11], a 

pivotal feature in motor control and movement coordination 

[12]. SNNs intrinsic characteristics make them a suitable 

solution for adaptive robot control. 

Several areas of the Central Nervous System (CNS) 

contribute to the temporal coordination implied in motor 

control such as the premotor cortex, the parietal cortex, the 

primary motor cortex, and the cerebellum [13], which stands 

out by its role in the integration, regulation, coordination of 

motor processes and more importantly, motor learning [14-

17]. The cerebellum can be regarded as a separate area of the 

brain to which it is attached underneath the cerebral 

hemispheres, whose neural structure is highly regular in 

striking contrast to the cerebral cortex neural structure. This 

well-known structure makes it a suitable reference for the 

development of biologically plausible SNNs.  

The depicted scenario yields several elements: 1) the 

cerebellum; a highly regular neural structure, thus, easy to 

computationally replicate to some extent, which is responsible 

for motor learning and coordination, 2) an artificial SNN 

incorporating a continuous learning process at its core that is 

able to mimic biological neurons and neural processing, and 3) 

hardware compliant robots lacking compliant control 

strategies. Here, we conjugate these three elements taking a 

holistic approach in tackling the HRI compliance problem.  

Addressing this problem implies state-of-art challenges that 

we face along this work.  

First, we need the cerebellar-like SNN to operate in RT. 

Spiking neural processing in RT is a highly demanding task in 

terms of computational cost. Considering that our 

computational resources are limited, there must be a trade-off 

between network size, neuron complexity, network topology 

and temporal output resolution, which determines, to certain 

extent, the motor control accuracy. We further developed our 

spiking neural simulator (EDLUT) to accommodate, for the 

first time, a RT cerebellar SNN consisting of ~62 K leaky 

integrated and fired (LIF) neurons with ~36.4 M synapses, 36 

M of which are endowed with plasticity. 

Second, we need to implement an effective RT dialogue 

between the network spike domain and sensorimotor analogue 

domain. In closed loop, the movements caused as a 

consequence of the sensory stimuli require that the SNN 

generating the motor commands receives an adequate driving 

input to generate an adequate motor output. This task is 

entrusted to the primary motor cortex (M1) which generates 

this input drive as a transformed version of the initial sensory 

signal [18]. Here, we emulate this M1 sensory transformation 

using a set of analogue-to-spike/spike-to-analogue modules 

compatible with Robot Operating System (ROS). These 

modules operate in RT without compromising motor accuracy. 

Third, we need to cope with hardware/software compliance 

impositions. A compliant interaction with an unstructured 

environment [19] compels us to use a compliant robot (e.g. 

Baxter robot) in direct torque control. Using a compliant 

robot, such as Baxter, forces us to compensate, via the SNN 

controller, Baxter’s loss in precision and lower capacity to 

exert a force due to its inner hardware compliance. We 

provided a compliant control in which a cerebellar-like SNN is 

able to continuously learn the minimal torque values needed to 

execute certain motor tasks in RT even under changing 

operational and ambient conditions, i.e. perturbation forces 

that continuously readjust their module and direction, human 

collisions, and interactions. 

Finally, we need to assess the degree of goodness of the 

implemented solution. We have provided a compliant control 

in which a SNN is able to learn the adequate torque values in a 

safe manner. Furthermore, it is remarkable that our compliant 

control outperforms the accuracy achieved by the default 

factory-installed position control. 

All in all, this work is the answer to overcome the technical 

difficulties aforementioned whose actual outcome provides us 

with a novel control strategy for hardware compliant robots 

based on a spiking cerebellar structure, which replicates the 

biological learning mechanisms involved in motor control.  

II. MATERIAL AND METHODS 

A. Benchmarking the Cerebellar Controller; Behavioural 

Tasks 

We drew inspiration from the cerebellar role in motor 

control and movement coordination [15, 17] to implement a 

novel control strategy for hardware compliant robots. It is thus 

appropriate to evaluate our cerebellar-like model in the field of 

robot dynamics control in terms of performance under a set of 

different conditions. To this aim, we proposed a specific way 

of performing the experimental evaluation through two 

trajectory families. 

1) On the one hand, we tested our cerebellar controller in 

reaching movements; that is, fast, ballistic arm 
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movements with bell-shaped velocity profiles, i.e. s-

curve, towards a target point [20]. Arm reaching 

movements are primary used for characterising cerebellar 

pathologies in human motor control by measuring the 

time to target and precision to target. Arm dynamics 

control is critical due to the constraint at stake when 

moving masses. A single-joint limb movement in fast 

de/acceleration causes motion in all other limb joints thus 

arising interaction forces to be compensated by the 

cerebellum as well as our controller [21].  

2) On the other hand, we tested our cerebellar controller 

facing a set of fast movements in smooth trajectories 

consisting of sinusoidal-like profiles for both position 

and velocity per joint. The end-effector shall describe 

either circular or eight-like Cartesian trajectories in the 

horizontal plane [22, 23]. These trajectories are well 

suited for revealing the complex dynamics of a 6 DoF 

robotic arm [24], including interaction forces to be 

compensated by the cerebellar controller [21].  

These trajectory families were first designed in Cartesian 

space, providing 3D position and orientation for the end-

effector, and then translated into joint space using MoveIt! 

software [25]. This offline process allowed the pre-

computation of joint space trajectories that were later on used 

as cerebellar input. The circular trajectory in Cartesian space 

meets (1), whilst (2) describes the eight-like trajectory  
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where R denotes a 120 mm radius which is halved for the x 

coordinate in (2) to keep the eight-like trajectory within the 

working space limits of the robot. The z = α coordinate and 

the end-effector vertical orientation were kept constant to 

maintain the horizontal plane through the trajectories. Each 

trajectory lasted 2 seconds. 

Once the translation from Cartesian (x, y, z) to joint space 

positions (Q1 to 6) was completed, the joint velocity profiles (Q̇1 

to 6) were obtained as the position derivative over time. 

Regarding the target-reaching task, the centre of the circle 

trajectory was the starting position. Eight different points 

along the circular trajectory perimeter constituted the reaching 

targets following an even distribution at every 𝜋/4 radians. As 

aforementioned, this task tested the controller through point-

to-point multijoint movements with s-curve velocity profiles 

that provided fast acceleration/deceleration changes, i.e. 

ballistic movements. The subsequent high jerk values entailed 

high inertial forces to be compensated by the cerebellar 

controller. Each target-reaching movement lasted 2 seconds 

back and forth between the target and the central position, i.e. 

1 second to reach the target and 1 second to go back to the 

central position. These three different behavioural tasks 

provided us with a varying context to test the cerebellar 

network. For every task, the cerebellar network acquired those 

motor commands needed to achieve the desired goal 

behaviour through learning. The learning process was 

accomplished through the repetition over time of a specified 

trajectory.  

The performance evaluation was carried out comparing the 

goal and the actual behaviour, i.e. the desired and the actual 

joint positions. The average difference constitutes the position 

Mean Absolute Error (MAE), which is our performance 

evaluation metric following (3) and (4) 
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(4)  

where K = 1000 denotes the number of samples of the two 

second trajectories; and N = 6 is the number of joints. The 

MAE provided a numerical performance indicator for the 

quality of the cerebellar controller, thus allowing us to 

compare it against the default factory-installed position 

control. 

B. The Compliant Robot; the Baxter Robot 

The Baxter robot®, manufactured by Rethink Robotics™ 

[26], is a collaborative robot consisting of two arms with 

seven DoF. Baxter implements torque control and it is 

inherently compliant thanks to its series elastic actuators 

(SEAs) [27]. These SEAs interpose a spring between the 

motor/gearing elements and the final motor output. These 

springs are deformable under human interaction and, 

therefore, a built-in mechanism that inherently allows for safe, 

compliant physical HRI 

Prior to Baxter’s hands-on testing, we used the simulated 

version of Baxter available in Gazebo as a safe environment to 

develop and test the robot-cerebellum interface [28]. This 

interface was developed using ROS to control both the 

simulated and real robot. ROS allowed sending motor 

commands (torque commands) to the robot and receiving 

sensorimotor information (joints positions and velocities) from 

the robot sensors [29]. The designed trajectories for our study 

involved the torque control of 6 DoF of one arm of the robot. 

C. Cerebellar Control Loop 

The Baxter robot and the cerebellar network 

interconnection required the establishment of a dialogue in 

which the exchange of sensorimotor information modified the 

behaviour of one another. This dialogue was framed within a 

closed control loop with negative feedback. See Fig. 1 for a 

control loop overview.  

The cerebellar-like spiking model (implemented in EDLUT, 

see below) acted as the controller and computed a motor 

command at each time step (2 ms) to achieve the goal 

behaviour. To this aim, the controller computed the neural 

activity using as input information the robot state, the ideal 

trajectory to be performed by the robot arm, and the 
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instructive signal obtained. The robot state (actual position, Qa, 

and actual velocity, Q̇a, per joint) was provided by Baxter’s 

sensors and then mapped into control signals. The desired 

trajectory signals (position, Qd, and velocity, Q̇d, per joint) 

were provided by a trajectory generator module representing 

the motor cortex and other motor areas. The instructive ɛ 

signals (one per joint) were obtained by comparison of the 

desired trajectory and the robot state signals. Once the 

cerebellar network computed a motor command, it was sent to 

the robot inducing movement to the arm. Consequently, the 

cerebellar network input sensory information was modified, 

thus, closing the loop. Cerebellar input and output signals 

were updated every 2 ms (500 Hz) guaranteeing low latency, a 

mandatory requirement for RT control. 

The cerebellar controller ran in EDLUT simulator [30-32]. 

EDLUT is mainly oriented to embodiment experimentation so 

that neural computation can be slowed down/speeded-up to 

cope with RT requirements imposed by a real body, e.g. 

humanoid robot [33, 34]. Regarding the theoretical concepts 

underpinning our cerebellar controller, please see our previous 

works [33, 35] on spike-analogue interfaces, [22, 36-38] on 

cerebellar learning, [37-40] on cerebellar granular layer, and 

[38, 41] on cerebellar control loops and neurorobotics.  

D. Cerebellar Controller; the Neural Network 

The cerebellar network controller consisted of five neural 

layers: 1) Mossy fibres (MFs), 2) granule cells (GCs), 3) 

climbing fibres (CFs), 4) Purkinje cells (PCs), and 5) deep 

cerebellar nuclei (DCN) (see Fig. 2). The cerebellar network 

was in turn divided into six micro-complexes[42], each one 

focusing on controlling a different Baxter’s joint.  

The MFs constituted the input layer through which the input 

sensorimotor information was conveyed (actual and desired 

joint position and velocity trajectories translated into spiking 

patterns) towards the inner cerebellar network layers. These 

MFs projected excitatory afferents on both GCs and DCN. 

GCs, then, processed and re-coded this sensorimotor 

information in a sparse somatosensory neural activity that was 

later propagated by the parallel fibres (PFs) (i.e. excitatory 

GCs’ axons) to the PCs. These PCs, in turn, correlated this 

somatosensory activity coming from PFs with the neural 

activity conveyed by the CFs (i.e. excitatory inferior olive, IO, 

axons). The CF neural activity, generated in the olivary 

system, represented the mismatch between the actual and 

desired trajectories per Baxter’s joint and acted as an 

instructive signal. PCs underwent synaptic plasticity, that is, a 

supervised mechanism that correlated both PF and CF neural 

activities and adapted the PFs synaptic weight distribution 

accordingly. The cerebellar input-output response was 

adjusted and, therefore, the error movement minimised [43] in 

subsequent executions. Finally, the DCN closed the cerebellar 

loop via the excitatory synapses coming from MFs and CFs 

together with the inhibitory synapses from PCs. 

The DCN neural activity of each micro-complex ultimately 

drove each Baxter’s joint by means of a spike-to-torque 

command transformation.  

1) MFs (240) were modelled as input fibres able to 

propagate the sensorimotor information towards GCs and 

DCN at each simulation time step (2 ms). These 240 

fibres were organised into six groups of 40 fibres each, 

i.e. one group per joint. Each MF group was in turn 

subdivided into four equal subgroups on which actual 

and desired joint positions and velocities were directly 

mapped. Only four non-overlapped MFs per group were 

active at each simulation time step representing the actual 

input neural state.  

2) GCs (60,000) were modelled as LIF neurons emulating a 

state generator [40, 44, 45]. These 60,000 neurons were 

organised into six groups of 10,000 neurons each, i.e. one 

group per joint. Each GC received four input synapses 

[46] coming from each subgroup belonging to the very 

same MF group. The connectivity pattern between GC 

 
Fig. 1.  Schematic of the Cerebellar closed-loop control. The Mossy fibres 

(MFs) convey the sensory signals, whilst the climbing fibres (CFs) convey 
the instructive signals, thus providing the inputs to the cerebellar network. 

The deep cerebellar nuclei (DCN) drive the cerebellar torque output 

commands. MFs project sensorimotor information onto granular cells (GCs) 
and DCN. GCs, in turn, project onto Purkinje cells (PCs) through parallel 

fibres (PFs). PCs also receive excitatory inputs from the CFs. Finally, DCN 

receive excitatory inputs from the MFs and CFs and inhibitory inputs from 

the PCs. 

 
Fig. 2.  Cerebellar scheme. Schematic representation of the main neural 

layers, cells, connections, and the plasticity site considered in the cerebellar 

model. 
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and MF groups was designed in a way that non-

overlapped GC neural activation could univocally 

represent all possible MF neural input combinations. 

Importantly, this connectivity pattern facilitated the 

transformation of the sensorimotor neural information 

into a set of somatosensory neural activations that were 

easy to read out by the subsequent PC layer. 

3) CFs (600) were modelled as input fibres able to 

propagate the instructive signal (mismatch between the 

actual and desired trajectories of each joint) towards PCs 

and DCN. These 600 fibres were organised into six 

micro-complexes of 100 neurons each, i.e. one per joint. 

Each micro-complex was also divided into two 

symmetrical subgroups, each one dedicated to control the 

clock/anticlockwise movement of the robot joint actuator 

(emulating the agonist/antagonist interplay in human 

muscles). A probabilistic Poisson process transformed the 

error obtained when comparing the actual and desired 

trajectories per joint into CF spiking neural activations. 

Each CF spike encoded well-timed information regarding 

the instantaneous error. The probabilistic spike sampling 

of the error ensured a proper representation of the whole 

error region over trials, whilst maintained the CF activity 

between 1 and 10 Hz per fibre (similar to 

electrophysiological data [47]). The error evolution could 

be sampled accurately even at such a low frequency [38, 

48]. 

4) PCs (600) were modelled as LIF neurons. These 600 

neurons were organised into six micro-complexes of 100 

neurons each, i.e. one per joint. Each micro-complex was 

also divided into two symmetrical subgroups, each one 

dedicated to control the clock/anticlockwise movement of 

the robot joint actuator. Each PC was connected to all 

PFs, thus receiving the sensorimotor information 

concerning all joints at once. CFs and PCs were one-to-

one connected maintaining the six-micro-complex 

architecture. Thus, each PC micro-complex received the 

same sensorimotor information via PFs, but a different 

instructive signal through its corresponding CFs micro-

complex. Correlating these two different sources of 

neural information allows each PC micro-complex to 

adapt the cerebellar input-to-output response of each 

Baxter’s joint via a plasticity mechanism that modified 

the overall PF synaptic weight distribution (see synaptic 

plasticity subsection). 
5) DCN (600) were modelled as LIF neurons. These 600 

neurons were organised into six micro-complexes of 100 

cells neurons each, i.e. one per joint. Each micro-

complex was also divided into two symmetrical 

subgroups, each one dedicated to control the 

clock/anticlockwise movement of the robot joint actuator. 

Each DCN cell was innervated by an inhibitory afferent 

from a PC and an excitatory afferent from the CF which 

simultaneously innervated the same PC. Each DCN cell 

also received excitatory projections from all MFs (which 

maintained the baseline DCN activity). This neural 

topology has been summarised in Table I. 

The DCN neural activity was then transformed into an 

analogue torque command (τcer) per micro-complex and then 

sent to Baxter`s actuators. This spike to analogue conversion 

was computed at each time step, Tstep = 0.002 s, using (5-7)  
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      (7) 

where  j 1,6 stands for the number of Baxter’s joints; 

 i 1,100 defines the DCN tag number within the micro-

complex related to joint j (first 50 DCN cells encoding the 

agonist movement whereas last 50 DCN cells encoding the 

antagonist movement); and δ(t) stands for the Dirac delta 

function representing a spike event. 

The spike to analogue conversion in (5) and (6) was then 

convolved with a mean filter (7) acting as a DCN activity 

eligibility trace; that is, a temporary record of the occurrence 

of DCN previous spike events. The fifteen-taps mean filter 

helped us to emulate the low-pass filter behaviour of muscles. 

The final torque output per joint was finally modulated by a 

factor α to adequate the normalised DCN output to the joint 

relative position, orientation and mass; αj = (0.75, 1.0, 0.375, 

0.5, 0.05, 0.05) N·m/spike.  

E. Spiking Neuron Models 

The cerebellar neural network consisted of LIF neurons [49] 

due to their minimal computational cost in spike generation 

and processing, a key factor in RT computation. Our LIF 

neurons only elicited a spike once their corresponding 

membrane potential reached a certain threshold and, 

immediately after, their membrane potentials were reset. The 

LIF neural dynamics was just defined by its membrane 

potential and its excitatory (AMPA and NMDA) and 

inhibitory (GABA) chemical conductances as follows 

m int ernal external

dV
C I I

dt
    (8) 

 int ernal l LI g V E     (9) 

      
   

ext ernal AMPA NMDA NMDA _ INF AMPA

GABA GABA

I g t g t g V E

g t V E

      

  
   (10) 

TABLE I 

NEURAL NETWORK TOPOLOGY 

Neurons Synapses 

Pre-

synaptic 

cells 

Post-

synaptic 

cells 

Number Type 

Initial 

weight 

(nS) 

Weight 

range 

(nS) 

240 MFs 60K GCs 240K AMPA 0.18 - 

240 MFs 600 DCN 144K AMPA 0.1 - 

60K GCs 600 PCs 36M AMPA 1.6 [0, 5] 

600 PCs 600 DCN 600 GABA 1.0 - 

600 CFs 600 PCs 600 AMPA 0.0 - 

600 CFs 600 DCN 600 AMPA 0.5 - 

600 CFs 600 DCN 600 NMDA 0.25 - 
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where Cm denotes the membrane capacitance; V is the 

membrane potential; Iinternal is the internal current and Iexternal is 

the external current. EL is the resting potential and gL the 

conductance responsible for the passive decay term towards 

the resting potential. Conductances gAMPA, gNMDA and gGABA 

integrate all the contributions received by each receptor type 

(AMPA, NMDA, GABA) through individual synapses, being 

gNMDA_INF the NMDA activation channel. These conductances 

were defined as decaying exponential functions [30, 49] where 

their values were directly incremented proportionally to the 

synaptic weights (wi) upon each presynaptic spike arrival 

(Dirac delta functions). When the membrane potential reached 

a threshold (Vthr), it was then reset to EL during the refractory 

period (Tref). The configuration parameters for the three 

neurons modelled are shown in Table II. 

F. Synaptic Plasticity 

The adaptive motor process of the cerebellar network was 

implemented through a STDP mechanism located at PF-PC 

synapses. This STDP mechanism balanced long-term 

potentiation (LTP) and long-term depression (LTD) at PC 

synaptic level as follows 

   
j iPF PC PFspikeLTP w t t dt       (15) 

     
CFspike

j i

t

PF PC CFspike PFspikeLTD w t k t t t dt  



      (16) 

where ∆WPFj–PCi(t) denotes the synaptic weight change 

between the j
th

 PF and the target i
th

 PC; α = 0.002 nS is the 

synaptic efficacy increment; δPF is the Dirac delta function 

corresponding to an afferent spike from a PF; β = -0.001 nS is 

the synaptic efficacy decrement; and the kernel function k(x) is 

defined as 

 
  k

LTD k

x d
1

k d

k

LTD k

k

x d
e if x dk x d

0 if x d









 
     
  

 (17) 

where τLTD = 100 ms is the time constant that is aligned with 

the biological sensorimotor pathway delay (~100 ms), the time 

period elapsed from the sensory information reception to, 

information transmission along nerve fibres, neural processing 

time responses and the final motor output response [50]. dk = 

0,07 s allows for the adjustment of the kernel width. The 

kernel maximum value (k(x) = 1) is obtained when x = -τLTD, 

and zero or close to zero when x > -dk or x < -τLTD – 10 · (τLTD - 

dk). The STDP rule defined by (15-17) caused a fixed 

synaptic efficacy increment (LTP) each time a spike arrived 

through the PFs to the target PC and a variable synaptic 

efficacy decrement (LTD) each time a spike arrived through a 

CF to the target PC. The amount of synaptic decrement 

depended on the activity arrived through the PFs prior to the 

CF spike. Both activities were convolved using the integrative 

kernel defined in (17) and were multiplied by the synaptic 

decrement β. The effect on the presynaptic spikes arriving 

through PFs was maximal during the 100 ms time window 

(τLTD = 100 ms) before the postsynaptic CF spike arrival, thus 

accounting for the sensorimotor pathway delay [38, 41, 51]. 

This STDP mechanism correlated the neural activity 

patterns coming through the PFs towards PCs with the 

instructive signals coming from CFs towards PCs. This 

correlation process at PC level identified certain PF activity 

patterns codifying certain sensorimotor information and, 

consequently, diminished the PC output activity by a PF-PC 

synaptic weight reduction. A reduction on the PC activation 

caused a subsequent reduction on the PC inhibitory action 

over the target DCN. Conversely, in the absence of any 

correlation, the STDP mechanism increased the PC output 

activity by a PF-PC synaptic weight potentiation. Since the 

DCN were driven by a near constant baseline MF activation, a 

lack of PC inhibitory action would cause an increasing DCN 

activity whereas an incremental PC inhibitory action would do 

otherwise. Well-timed sequences of increasing/decreasing 

levels of DCN activation during the learning acquisition 

process ultimately shaped the cerebellar output activity and 

diminished the overall error.  

G. ROS modules implementation 

The control loop consisted of three main elements: 1) 

trajectory generator, 2) cerebellar controller, and 3) Baxter 

robot. The implementation and communication amongst these 

three elements were developed using ROS, allowing 

modularity. Fig. 3 depicts the control loop diagram in which 

each block defines a ROS module and each black arrow 

represents a ROS topic that establishes the communication 

between ROS modules exchanging either analogue signals or 

spike trains.  

This control loop was designed accounting for the 

sensorimotor pathway delay (~100 ms) [52]. The 100 ms delay 

comprised the efferent (𝛿e = 50 ms) and afferent (𝛿a = 50 ms) 

pathway delays (Fig. 3 dashed red arrows). A motor command 

originated at time t on the cerebellum was applied by the robot 

actuators at time t + 𝛿e and its effect sensed back at the 

TABLE II 

NEURONS MODEL PARAMETERS 

Parameters GC PC DCN 

Cm (pF) 2.0 100 2.0 

GL (nS) 1.0 6.0 0.2 
EL (mV) -65.0 -70 -70.0 

EAMPA (mV) 0.0 0.0 0.0 

EGABA (mV)   -80.0 

𝜏AMPA (ms) 1.0 1.2 0.5 

𝜏NMDA (ms)   14.0 

𝜏GABA (ms)   10.0 

Vthr (mV) -50.0 -52.0 -40.0 
Tref (ms) 1.0 2.0 1.0 
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cerebellar network at time t + 𝛿e + 𝛿a. The cerebellar plasticity 

mechanism described in (15-17) compensated for this 

sensorimotor delay.  

The control loop assisted the cerebellar controller in the 

generation of the torque commands able to minimise the 

mismatch between the reference signal (desired joint position 

and velocity) and the robot state (actual joint position and 

velocity). To that, different ROS modules were implemented: 

1) The trajectory generator module generated the desired 

trajectory signals, whilst the Baxter robot generated the 

actual state signals and executed the motor commands. 

2) The RT cerebellum module accommodated the cerebellar 

controller implemented in EDLUT (imported in ROS as a 

C++ library). This module received, computed, extracted 

and propagated the neural activity towards the next ROS 

module.  

3) Desired, actual and instructive signals needed to be 

transformed into spike trains that the cerebellum could 

process. The MF and CF analogue2spike modules carried 

out this transformation.  

4) The error estimator module provided the cerebellar 

controller with the instructive signal needed for neural 

adaptation. The error estimator module required 

comparing desired and actual trajectories.  

5) The cerebellar output spiking signals needed to be 

transformed into analogue commands that Baxter robot 

could process. The DCN spike2analogue module, using 

(5) and (6) transformed the spike trains into torque 

commands, which were lately smoothed out by the mean 

filter module using (7).  

6) The torque command module closed the loop sending the 

torque commands obtained from the mean filter module 

to the Baxter robot.  

7) The supervisor module was implemented as a safe 

mechanism mimicking mechanical brakes. A supervisor 

module maintained Baxter within a safe working range 

during the first stages of neural adaptation. Only at the 

event of any of the joints getting outside its working 

range, the supervisor module added a corrective torque 

value to the cerebellar torque command to prevent 

damages. 

All modules were synchronised thanks to a reference time 

signal extracted from Baxter’s internal clock running under 

the Network Time Protocol (NTP), ensuring RT [53]. Each 

event, i.e. analogue signal or spike train, generated on a ROS 

module carried a time stamp indicating the event processing 

time to the subsequent module. Each target module 

incorporated an input buffer in which events were stored for 

later synchronous processing according to their time stamps. 

The RT cerebellum module, however, allowed for 

asynchronous processing of the events stored at its 

input/output activity buffers thanks to the RT mechanism 

incorporated in EDLUT [34]. On the event of empty input 

buffers, the neural simulation was halted. On the event of an 

almost empty output buffer, the neural simulation was 

speeded-up (see [34] for an in-depth review on RT neural 

simulation). Hence, the RT cerebellar module could deal with 

neural activity volleys encountered during the cerebellar 

simulation that could not be processed synchronously. 

III. RESULTS 

We tested our cerebellar-like controller under different 

conditions, i.e. behavioural tasks, considering the default 

factory-installed position control mechanism as a performance 

baseline to validate the results. The aforementioned circular, 

eight-like and target reaching trajectories constituted our 

cerebellar benchmarking, which was completed with a set of 

interactions in an unstructured environment to test 

compliance. 

A. Circular Trajectory 

This first behavioural task consisted in following a 120 mm 

radius circular path in the horizontal plane (xy) repeated over 

time to facilitate learning and adaptation, each trial having a 

time duration of 2 seconds. The STDP mechanism governing 

the learning process modulated the cerebellar output (see 

Methods), driving the robot’s behaviour towards the goal. The 

behavioural evolution through time is illustrated in Fig. 4. 

Three snapshots were taken at three different moments of the 

cerebellar learning process: initial, intermediate, and final 

stage.  

1) Initial learning stage: The cerebellar-model started 

learning from scratch. At an initial learning stage [Fig. 4 

(left column)] the synaptic adaptation mechanism at PF-

PC synapses that correlated the somatosensory 

information with the CF instructive signal was not 

effectively deployed yet. Thus, the inhibitory action from 

PCs onto DCN was of marginal utility; making the DCN 

output activity saturated as it solely responded to the 

excitation coming from MF and CF afferents [Fig. 4 (a), 

first row]. Consequently, the corresponding initial torque 

commands [Fig. 4 (a), second row] were far from leading 

the robot towards the desired goal [Fig. 4 (a), third row; 

 
Fig. 3.  Detailed cerebellar closed-loop control scheme.  
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and (d)]. As depicted in Fig. 4 (d), the density function 

generated from 10 trials before t1 snapshot [Fig. 4 (left 

column)] reveals that the robot was still exploring the 

working area, performing low consistent, dispersed 

movements.  

2) Intermediate learning stage: At an intermediate learning 

stage [Fig. 4 (central column)], the synaptic adaptation 

allowed the recognition of some somatosensory patterns 

at the PCs, which was reflected in an emerging 

differentiated DCN activity between agonist and 

antagonist subgroups at each micro-complex [Fig. 4 (b), 

first row]. Consequently, the robot’s behaviour began 

getting closer to the desired goal [Fig. 4 (b), third row; 

and (e)].  

3) Final learning stage: Once the learning process reached 

advanced stages [Fig. 4 (right column)] the robot 

executed the desired trajectory with minimal error. The 

agonist/antagonist DCN activity was clearly 

differentiated at each micro-complex [Fig. 4 (c), first 

row], and translated into the required torque commands 

via a spike-to-analogue conversion (see Methods). The 

synaptic adaptation process was reflected in a clear 

evolution of the torque values compared to previous 

stages, directly affecting the robot output behaviour. All 

joints closely followed the desired trajectory at this stage 

[Fig. 4 (c), third row] and, consequently, the end-effector 

barely missed at describing the desired circular path [Fig. 

4 (f)], having a consistent behaviour around the goal 

trajectory over trials. 

The overall performance through the learning process is 

depicted in Fig. 4 (g); illustrating how the cerebellar-like 

controller performance was improved as adaptation and 

learning were fulfilled. MAE evolution indicates that the 

cerebellar controller needed about 300 trials (i.e. 600 seconds) 

to converge, outperforming the accuracy of the default 

factory-installed position control baseline (0.019 ± 0.003 vs. 

0.077 ± 0.0004, Table III). 

B. Eight-like Trajectory 

The eight-like trajectory was concentric to the previously 

discussed circle-shaped; it had a “radius” of 120 mm and each 

trial lasted 2 seconds. In terms of robot dynamics, the eight-

like trajectory was more demanding than the circular 

trajectory, as faster and steeper changes in velocity module 

and direction were required for trajectory completion[24]. 

Nonetheless, the obtained results were equally satisfying (see 

Table III). 

1) Initial learning stage: At an early learning stage [Fig. 5 

(left column)] the robot’s behaviour was clearly far from 

the desired goal. DCN activity at this stage responded 

exclusively to the excitatory drive from MF-DCN and 

CF-DCN afferents, thus, it was saturated [Fig. 5 (a), first 

row]. The MAE value was high (0.165) and the 

performed trajectory was far from the goal [Fig. 5 (a), 

third row; (d), and (g)]. 

2) As learning progressed, the PF-PC synaptic adaptation 

mechanism begun shaping the DCN activity causing an 

incipient neural activity differentiation between agonist 

and antagonist micro-complexes [Fig. 5 (b), first row]. In 

 
Fig. 4.  Behavioural evolution through circular trajectory trials (2 s). (a) 

Initial learning stage (t1=18-20 s). (b) Intermediate learning stage (t2=318-
320 s). (c) Final learning stage (t3=998-1000 s). The first row depicts the 

cerebellar output activity (DCN layer), whereas the second row shows its 

analogue conversion into torque commands. The third row illustrates the 
desired vs. actual trajectory per joint. (d), (e), and (f) reveal the desired vs. 

actual trajectory of the end-effector in Cartesian space at t1, t2, and t3 

respectively, along with the density functions corresponding to the performed 
trajectories of the prior 10 trials. (g) Represents the position Mean Absolute 

Error (MAE) per trial through the learning process. Comparison of the MAE 

of each joint and the mean of all joints with the default factory-installed 
position control baseline performance.  
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consequence, the corresponding torque values 

significantly differed from those of early stages [Fig. 5 

(b), second row], and the robot’s behaviour began getting 

closer to the desired one [Fig. 5 (b), third row; and (e)].  

3) Finally, once learning was fully deployed the robot 

behaved as desired [Fig. 5 (c), third row; and (f)]. The 

DCN activity was clearly sculpted to produce the needed 

torque commands to perform the desired trajectory [Fig. 

5 (c)], maintaining a stable behaviour over trials (0.017 ± 

0.003). 

The greater difficulty of the eight-like trajectory was noted 

in a lower convergence speed for the cerebellar-like controller 

to reach a stable behaviour (Table III shows a slower MAE 

convergence speed than the circular trajectory). However, the 

final performance accuracy obtained also outperformed the 

default factory-installed position control baseline (0.017 ± 

0.003 vs. 0.063 ± 0.0003). 

C. Target Reaching  

This task consisted of eight different reaching movements, 

sharing the same starting point. The challenge lied in the high 

speed of the movements and the randomness in the order of 

trials (transitions between the eight reaching movements were 

stochastic). The growth in complexity for the cerebellar 

controller was illustrated by a lower MAE convergence speed 

entailing higher standard deviation values inter trials and the 

need of more trials to reach stability than in the two previous 

behavioural tasks (Table IV). Nevertheless, the cerebellar-like 

controller was able to perform these ballistic movements, 

improving its performance through learning and reaching 

again better accuracy than the default factory-installed 

position control mechanism [Fig. 6] (0.019 ± 0.006 vs. 0.026 ± 

0.006).  

Therefore, not only the cerebellar-like controller was able to 

perform accurate smooth trajectories but also fast-ballistic 

movements.  

D. Unstructured interactions  

Aiming at testing the compliance of the cerebellar 

controller, we tested its response in an unstructured 

environment. Whilst performing the circular trajectory, some 

interactions were undertaken [Fig. 7]. First, the dynamics of 

the robotic arm was modified in two different ways: i) By 

adding a 0,5kg payload to the end-effector attached to a rod, 

mimicking a pseudo “conical pendulum”. The tension force of 

 
Fig. 5.  Behavioural evolution through eight-like trajectory trials (2 s). (a) 

Initial learning stage (t1=18-20 s). (b) Intermediate learning stage (t2=318-

320 s). (c) Final learning stage (t3=998-1000 s). The first row depicts the 
cerebellar output activity (DCN layer), whereas the second row shows its 

analogue conversion into torque commands. The third row illustrates the 

desired vs. actual trajectory per joint. (d), (e), and (f) reveal the desired vs. 
actual trajectory of the end-effector in Cartesian space at t1, t2, and t3 

respectively. Also the density functions corresponding to the prior 10 trials 

are depicted. (g) Represents the position Mean Absolute Error (MAE) per 
trial through the learning process. The MAE of each joint is illustrated as 

well as the average MAE of all joints, completed with the default factory-

installed position control baseline performance.   
 

TABLE III 
CIRCULAR AND EIGHT-LIKE TRAJECTORIES: 

LEARNING STAGES MAE 

 

Cerebellar torque control (trials) 
Position control 

(trials) 

[0-100] [100-200] [400-500] [0-500] 

MAE 

○ 
0.115 ± 

0.055 

0.036 ± 

0.013 

0.019 ± 

0.003 

0.077 ± 

0.0004 

∞ 
0.111 ± 

0.034 

0.046 ± 

0.013 

0.017 ± 

0.003 

0.063 ±     

0.0003 

 

TABLE IV 
TARGET REACHING: LEARNING STAGES MAE 

 
Cerebellar torque control (trials) Position control (trials) 

[0-100] [300-400] [900-1000] [0-1000] 

MAE 
0.155 ± 

0.050 

0.043 ± 

0.024 

0.019 ± 

0.006 
0.026 ± 0.006 
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the rod acting on the robot varied with the alignment between 

the payload and the end-effector. ii) By attaching an elastic 

band to apply an elastic force that tried to return the band to its 

natural length. In both cases, the cerebellar-like controller 

successfully adapted to the new context after a learning 

period.  

Subsequently, human interactions were performed: i) A 

human was able to move the robotic arm by applying an 

extremely low force (i.e. one-finger push). ii) A human 

grabbed the robotic arm and moved it through the working 

space with no opposition from the robot. iii) A human got in 

the way of the robotic arm trajectory with no risk for injury. 

These results allow us to confirm that the cerebellar-like 

controller was able to accurately perform the desired 

trajectories, no matter the dynamics modifications; and 

guaranteed a safe human-robot interaction as no damages were 

suffered when interrupting the robot’s task, at either human or 

robot side.  

Four movies are included as supplementary material to fully 

illustrate the cerebellar learning and adaptation process. The 

target reaching, eight-like, and circular trajectory movies show 

from up to down and left to right the following clips, all of 

them playing synchronised RT information: i) a frontal shot of 

the robot performing the trajectory; ii) the evolution of the 

position MAE per trial; iii) a nadir shot of the robot 

performing the trajectory; iv) the trajectory being performed 

by the end-effector in Cartesian space; v) the cerebellar output 

activity (DCN layer spikes); vi) the corresponding torque 

commands obtained from the spike-to-analogue conversion of 

the DCN activity. Different cuts corresponding to an initial, 

intermediate, and final learning stage verify the behavioural 

evolution.  

Finally, the unstructured environment movie shows the 

cerebellar adaptation and, therefore, robot adaptation, to 

unknown, unstructured scenarios; thus, proving compliance. 

IV. CONCLUSION 

Physical HRI implies controlling nonlinearities at the 

robotic end, thus demanding adaptive control. In this work, 

taking biology as an inspiration, we expand the family of RT 

adaptive robot controllers beyond machine learning [54], 

fuzzy logic [55, 56] and ANNs [9, 57] solutions. We present a 

novel biologically plausible motor control architecture with a 

cerebellar-like SNN controller at its core that is able to drive a 

6 DoF robot via torque commands in RT. 

The intrinsic characteristics of SNNs, i.e. timing 

codification of evolving sensorimotor states, make them an 

appealing approach for motor control architectures [11, 12]. 

However, computational cost has been the major drawback for 

implementing RT SNN controllers [58]; constraining their 

applicability to little versatile hardware solutions [59, 60], 

simulated scenarios [56, 58], or RT with low resolution 

control signals [61].  

Here, this main issue has been overcome; a ~62 k neuron 

sized SNN, endowed with plasticity (36M plastic synapses), 

has been proven a valid RT robot controller. The implemented 

cerebellar plasticity mechanism (STDP) turns dispensable the 

availability of a detailed dynamic model of the robot. The 

cerebellar-like SNN is able to self-adapt and learn from 

scratch to control a given robot, making unnecessary any prior 

dynamics knowledge. Thus, the complexity of modelling 

nonlinear systems is tackled, and this SNN controller 

constitutes a plausible solution to control not only our Baxter 

robot, but any torque controlled robot. Previously achieved 

SNN position control [61, 62] does not provide compliance as 

physical perturbations/interactions are not supported; hence, 

the importance of reliable torque control towards achieving 

safe physical HRI. 

 
Fig. 7.  Performance in an unstructured environment. Whilst performing the 

already learnt circular trajectory a set of unstructured interactions were 

undertaken: i) A ½ kg payload was attached to the end-effector and later on 
detached. ii) An elastic band was attached to the end-effector and later on 

detached. iii) A series of physical Human-Robot interactions. The figure 

depicts the position MAE through trials as interactions are undertaken, 
illustrating the cerebellar adaptation to unknown scenarios.   
 

 
Fig. 6.  Behavioural evolution through target reaching trials (2 s). Each trial 

consisted of one of the eight possible tasks. (a) Initial learning stage (t1=158-
160 s). (b) Intermediate learning stage (t2=598-600 s). (c) Final learning 

stage (t3=1998-2000 s). (a), (b), and (c) depict the last performed trajectory 

for each of the eight possibilities in Cartesian space prior to t1, t2, and t3 
respectively. The density functions reveal the end-effector behaviour over the 

last 80 trials, grouping the eight possible tasks by trajectory direction. (d) 

Represents the position Mean Absolute Error (MAE) per trial through the 

learning process. The MAE of each joint is illustrated as well as the mean 

MAE of all joints. High standard deviation values reflect how some reaching 

movements were more demanding than others. The position control baseline 
is the average MAE of the default factory-installed under the same stochastic 

distribution over trials. 
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The variety of demanding dynamic tasks in terms of control 

requirements here accomplished proves our SNN cerebellar-

like controller a valid solution. Our SNN controller succeeded 

in terms of position accuracy, high-speed movements and 

compliance since the baseline performance (i.e. default 

factory-installed position control) was utterly improved in all 

the experimental behavioural tasks.  

The development of biologically plausible controllers 

appears as a driving force for the evolution of robotics towards 

more advanced, intelligent, bio-inspired and compliant robots. 

Furthermore, the embodiment of biologically accurate 

artificial neural networks implies a great opportunity for 

neuroscience studies. These neural network models can be 

computationally simulated under different biologically 

relevant tasks to give a consistent idea about how the CNS 

neural network may operate.  
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Fig. 1.  Schematic of the Cerebellar closed-loop control. The Mossy fibres (MFs) convey the sensory signals, 
whilst the climbing fibres (CFs) convey the instructive signals, thus providing the inputs to the cerebellar 

network. The deep cerebellar nuclei (DCN) drive the cerebellar torque output commands. MFs project 
sensorimotor information onto granular cells (GCs) and DCN. GCs, in turn, project onto Purkinje cells (PCs) 
through parallel fibres (PFs). PCs also receive excitatory inputs from the CFs. Finally, DCN receive excitatory 

inputs from the MFs and CFs and inhibitory inputs from the PCs. 
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Fig. 2.  Cerebellar scheme. Schematic representation of the main neural layers, cells, connections, and the 
plasticity site considered in the cerebellar model. 
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Fig. 3.  Detailed cerebellar closed-loop control scheme. 
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Fig. 4.  Behavioural evolution through circular trajectory trials (2 s). (a) Initial learning stage (t1=18-20 s). 
(b) Intermediate learning stage (t2=318-320 s). (c) Final learning stage (t3=998-1000 s). The first row 

depicts the cerebellar output activity (DCN layer), whereas the second row shows its analogue conversion 
into torque commands. The third row illustrates the desired vs. actual trajectory per joint. (d), (e), and (f) 
reveal the desired vs. actual trajectory of the end-effector in Cartesian space at t1, t2, and t3 respectively, 

along with the density functions corresponding to the performed trajectories of the prior 10 trials. (g) 
Represents the position Mean Absolute Error (MAE) per trial through the learning process. Comparison of the 

MAE of each joint and the mean of all joints with the default factory-installed position control baseline 
performance. 
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Fig. 5.  Behavioural evolution through eight-like trajectory trials (2 s). (a) Initial learning stage (t1=18-20 
s). (b) Intermediate learning stage (t2=318-320 s). (c) Final learning stage (t3=998-1000 s). The first row 
depicts the cerebellar output activity (DCN layer), whereas the second row shows its analogue conversion 
into torque commands. The third row illustrates the desired vs. actual trajectory per joint. (d), (e), and (f) 
reveal the desired vs. actual trajectory of the end-effector in Cartesian space at t1, t2, and t3 respectively. 

Also the density functions corresponding to the prior 10 trials are depicted. (g) Represents the position Mean 
Absolute Error (MAE) per trial through the learning process. The MAE of each joint is illustrated as well as 

the average MAE of all joints, completed with the default factory-installed position control baseline 
performance.   
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Fig. 6.  Behavioural evolution through target reaching trials (2 s). Each trial consisted of one of the eight 
possible tasks. (a) Initial learning stage (t1=158-160 s). (b) Intermediate learning stage (t2=598-600 s). 
(c) Final learning stage (t3=1998-2000 s). (a), (b), and (c) depict the last performed trajectory for each of 
the eight possibilities in Cartesian space prior to t1, t2, and t3 respectively. The density functions reveal the 
end-effector behaviour over the last 80 trials, grouping the eight possible tasks by trajectory direction. (d) 
Represents the position Mean Absolute Error (MAE) per trial through the learning process. The MAE of each 
joint is illustrated as well as the mean MAE of all joints. High standard deviation values reflect how some 

reaching movements were more demanding than others. The position control baseline is the average MAE of 
the default factory-installed under the same stochastic distribution over trials. 
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Fig. 7.  Performance in an unstructured environment. Whilst performing the already learnt circular trajectory 
a set of unstructured interactions were undertaken: i) A ½ kg payload was attached to the end-effector and 
later on detached. ii) An elastic band was attached to the end-effector and later on detached. iii) A series of 

physical Human-Robot interactions. The figure depicts the position MAE through trials as interactions are 
undertaken, illustrating the cerebellar adaptation to unknown scenarios.   
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