
Citation: Gámiz, M.L.;

Navas-Gómez, F.; Nozal

Cañadas, R.A.; Raya-Miranda, R.

Towards the Best Solution for

Complex System Reliability: Can

Statistics Outperform Machine

Learning? Machines 2024, 12, 909.

https://doi.org/10.3390/

machines12120909

Academic Editor: Phuc Do

Received: 13 November 2024

Revised: 5 December 2024

Accepted: 9 December 2024

Published: 11 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Towards the Best Solution for Complex System Reliability:
Can Statistics Outperform Machine Learning?
María Luz Gámiz 1 , Fernando Navas-Gómez 1 , Rafael Adolfo Nozal Cañadas 2 and Rocío Raya-Miranda 1,*

1 Department of Statistics and Operational Research, University of Granada, 18071 Granada, Spain;
mgamiz@ugr.es (M.L.G.); fjnavasg@ugr.es (F.N.-G.)

2 Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway; rca015@uit.no
* Correspondence: rraya@ugr.es

Abstract: Studying the reliability of complex systems using machine learning techniques involves
facing a series of technical and practical challenges, ranging from the intrinsic nature of the system
and data to the difficulties in modeling and effectively deploying models in real-world scenarios. This
study compares the effectiveness of classical statistical techniques and machine learning methods
for improving complex system analysis in reliability assessments. Our goal is to show that in
many practical applications, traditional statistical algorithms frequently produce more accurate
and interpretable results compared with black-box machine learning methods. The evaluation is
conducted using both real-world data and simulated scenarios. We report the results obtained from
statistical modeling algorithms, as well as from machine learning methods including neural networks,
K-nearest neighbors, and random forests.

Keywords: logistic regression; factorial analysis; isotonic smoothing; machine learning; supervised
learning; unsupervised learning; ANN; KNN; RF

1. Introduction

Reliability analysis of complex, multicomponent systems is crucial in engineering,
manufacturing, and operations research. It involves understanding and quantifying the
capacity of a system to perform its intended function over a specified period under given
conditions. Addressing the reliability of such systems requires a multifaceted approach that
integrates structural analysis, probabilistic modeling, and practical maintenance strategies.
These methodologies help engineers design more reliable systems, predict potential failures,
and develop effective maintenance plans to mitigate risks.

However, as the number of components increases, the lack of knowledge about the
structure of the system leads to an estimation problem with an overwhelming number of
features [1]. This results in exponential growth in dimensionality and sparse available data.
As a result, high-dimensional dependability analysis continues to be extremely difficult
because the majority of current techniques are plagued by the dimensionality curse [2].

The curse of dimensionality refers to the phenomenon where, in higher dimensions,
a local neighborhood loses its traditional “local” properties. A neighborhood containing
a fixed percentage of data points becomes disproportionately large, diverging from the
intuitive concept of locality [3]. If a local neighborhood contains 10 data points along each
axis, then there are 10d data points in the corresponding d-dimensional neighborhood. As
a consequence, much larger datasets are needed even when d is moderate, and such
large datasets are often not available in practical situations. This makes smoothing
techniques less effective in high-dimensional settings. In nonparametric regression, the
curse of dimensionality significantly impacts the convergence rate of prediction error,
which is proportional to n−2/(2+d). This illustrates that the required sample size n grows
exponentially with d to maintain a low prediction error [4].

Machines 2024, 12, 909. https://doi.org/10.3390/machines12120909 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12120909
https://doi.org/10.3390/machines12120909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3393-7022
https://orcid.org/0000-0001-5047-3349
https://orcid.org/0000-0001-6492-0218
https://orcid.org/0000-0002-2846-1592
https://doi.org/10.3390/machines12120909
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12120909?type=check_update&version=1

Machines 2024, 12, 909 2 of 28

To address this challenge, various strategies have been proposed, all of which incor-
porate a dimensionality reduction step [3]. In this context, we propose an initial step for
nonparametric fitting that reduces the dimensionality of the problem using a factor analysis
model. This approach aims to mitigate the effects of high dimensionality and improve the
practical utility of smoothing techniques.

Machine learning (ML), a form of applied statistics, focuses on using computational
power to estimate complex functions, unlike traditional statistics, which prioritize con-
fidence intervals and rigorous proofs of uncertainty [5]. ML employs algorithms to
detect patterns in data, predicting and assessing performance and failure risks in systems.
By doing so, it enhances design, maintenance, and safety. ML is defined as a collection
of techniques used to identify patterns in data to predict future outcomes or support
decision-making under uncertainty [6]. Over recent decades, ML has revolutionized fields
such as control systems, autonomous systems, and computer vision. Similarly, reliability
engineering and safety analysis are expected to follow this trend [7].

ML offers several advantages over traditional methods, including advanced predictive
capabilities, the ability to handle large, high-dimensional datasets, real-time monitoring,
and automation, all of which contribute to improved system reliability. Common applica-
tions of ML in reliability engineering include tasks such as estimating remaining useful
life, detecting anomalies and faults, monitoring system health, planning maintenance,
and assessing degradation. Studies like [7] highlight the potential of ML to transform
reliability and safety analysis. However, challenges such as data quality and model
interpretability must be addressed for ML to fully realize its potential (see [1] and references
therein). Interdisciplinary collaboration and hybrid approaches also show promise [1,8,9].
For instance, ref. [8] proposes a state monitoring algorithm combining a convolutional
neural network (CNN) with a random forest (RF) for data missing scenarios. The CNN
algorithm is designed to extract the distributed fault information from the available signals
and acquire the state features of the system, then the random forest algorithm processes
the state features and judges the system state, while ref. [9] combines reliability analysis
tools with ML to identify critical maintenance components and failure causes. Similarly,
ref. [1] integrates supervised and unsupervised learning techniques to analyze system status.

When applying ML, the question of which model performs best often arises. In 1997,
David Wolpert and William MacReady addressed this issue with the “No Free Lunch”
(NFL) theorem [10], which demonstrated that without assumptions about the data, no
model is universally superior. This implies that no model can consistently outperform
others in all scenarios. It underscores the importance of inductive biases, suggesting that
specialized algorithms are required for different types of data, as real-world problems often
exhibit low complexity [11]. Recent explorations extend the NFL theorem to quantum
learning protocols, revealing that quantum algorithms can achieve better sample com-
plexity under certain conditions, thus showcasing the theorem’s relevance in advanced
learning contexts [12]. Conversely, while the NFL theorem suggests limitations, it also
opens avenues for developing metalearning strategies that leverage correlations among
algorithms, potentially leading to improved performance in specific contexts [13].

The use of ML for reliability analysis in large-scale, complex systems is a key applica-
tion within Industry 4.0. In this context, the interconnection of sensors and smart devices
generates large volumes of data, which can be analyzed to enhance system efficiency
and safety. In systems with thousands of sensors, traditional reliability models based on
statistical distributions become inefficient. Machine learning techniques, such as deep
learning, are better suited for handling high-dimensional data. Algorithms like Random
Forest and Bayesian classification models can extract valuable information from the vast
datasets produced by sensors [14]. Industry 4.0 now includes diverse data sources, such as
temperature, vibration, and pressure sensors, and the application of ML algorithms enables
the integration and simultaneous analysis of these variables, detecting correlations that
might not be apparent with traditional techniques [15].

Machines 2024, 12, 909 3 of 28

Reliability analysis is fundamental in the design and maintenance of complex systems.
One key question is that, traditionally, systems have been analyzed under the assumption
that their components are independent, but this assumption becomes less valid as systems
grow in complexity. In reality, system components are often interdependent; they are
designed to work together to ensure the proper operation of the system. Addressing these
interdependencies is crucial for improving the accuracy of reliability predictions. A complex
system is characterized by the nonlinear interaction of its components, where the dynamics
of a system cannot be understood simply as the sum of its parts. These systems exhibit
emergent properties and adaptability and may have hierarchical structures. To model such
complex interactions, advanced methods like ML can be employed, which allow for the
consideration of nonlinear relationships between components. The analysis of complex
systems in the context of reliability needs to address these interdependencies to improve
the accuracy of reliability predictions. Traditional methods that assume independent
components are insufficient, and this is where machine learning (ML) methods, such as
neural networks, become valuable. These methods can model the complex interdependen-
cies between the components of the system, providing more accurate predictions. This
capability makes them ideal for reliability prediction, especially in systems with numerous
components that interact in ways that traditional methods may not easily capture. Until
2006, we lacked the knowledge to train neural networks to outperform traditional methods,
aside from a few specific cases [16]. In a neural network, we do not instruct the computer
on how to solve our problem; rather, it learns from observational data, discovering its own
solutions. The breakthrough in 2006 came with the advent of learning techniques for deep
neural networks [17].

Nevertheless, ML methods have to be adapted according to the area of application,
and it is necessary to incorporate the knowledge of experts to improve the accuracy and
reliability of the predictions [18]. Below are some of the ML methods that can be applied
to predict the reliability of a complex system with multiple components and possible
correlations between them.

This paper conducts a comprehensive comparative analysis between classical statistical
methods and widely used ML techniques to predict system reliability in complex systems
characterized by high dimensionality. In this context, high dimensionality refers to systems
with a large number of components, often grouped into independent blocks of correlated
units due to physical, functional, or operational dependencies, a common scenario in
engineering systems. These systems pose significant challenges to traditional reliability
analysis methods. The contributions of this paper are summarized as follows:

1. Efficient method for reliability analysis: we present an easy-to-run and computation-
ally efficient method specifically designed for reliability analysis in high-dimensional
complex systems.

2. Classical statistical methods for effective reliability: the proposed method, based on
classical statistical approaches, ensures interpretability, scalability, and robustness,
even in the presence of complex correlation structures between system components.

3. Performance comparison with machine learning: we compare the performance of
the FA-LR-IS algorithm, designed by the authors, with commonly used ML meth-
ods, including artificial neural networks (ANNs), k-nearest neighbors (KNN), and
random forests.

4. Practical relevance via extensive evaluation: The evaluation includes an extensive
simulation study and two real-world datasets. This ensures the practical relevance
and provides insights into the strengths and limitations of each methodology.

The rest of this paper is organized as follows: Section 2 first defines the problem
statement. Then it introduces the FA-LR-IS algorithm for estimating reliability in complex,
high-dimensional systems and discusses machine learning solutions to this problem.
Section 3 presents the traditional division of the data into the training and test sets, together
with the metrics for evaluating the models. In addition, the particular evaluation procedure
on the test sample for the FA-LR-IS algorithm is included. Section 4 presents numerical

Machines 2024, 12, 909 4 of 28

results from a simulation study and two real applications for the study of reliability in
systems composed of sensors. Section 5 provides a brief discussion on the topic, and
Section 6 ends with the conclusions.

2. Approaches to Reliability Analysis
2.1. Problem Statement

Let us consider a system that can be found in one of two states: operative (1) and
failure (0). We denote Y the random variable representing the system state. The system is
composed of p units, which interact and work together to assure the system’s functioning.
For j = 1, . . . , p, unit j can be found in a state that is represented by a random variable
Xj taking values in [0, 1]. The states of the p units are collected in a random vector
(X1, X2, . . . , Xp) that we call the state vector. Depending on the underlying logic of the
system, some configurations of the state vector lead to the good performance of the system,
while for others the system is out of work. Then, our objective is to determine a function
that links the states of the units to the state of the system.

The reliability of a system is the probability that the system will be operational for
a particular configuration of the system. We consider the reliability of the system as a
function of the state vector:

R(x1, x2, . . . , xp) = P[Y = 1|X1 = x1, X2 = x2, . . . , Xp = xp], (1)

That is, we assume that given X1 = x1, X2 = x2, . . . , Xp = xp, Y follows a binomial
distribution with event probability R(x1, x2, . . . , xp), with R an unknown function for
which we do not assume any particular functional form. The only restriction is that R
meets the coherence conditions of the system, i.e., R(0, . . . , 0) = 0, R(1, . . . , 1) = 1, and R is
monotone in each argument.

Our main objective is to predict whether the system is operational given the state of
the components. This problem will be solved using different algorithms in the following
subsections. Some of the algorithms will only provide a classification of the system in one
of two categories, functioning or failure, but in other cases an estimation of the probability
that the system is working in terms of the components states is also provided. To learn
our algorithms, we need to observe a sample of systems. Let {X, Y} be the observed data,
where X is a matrix of dimension n × p. Each row of the matrix is a configuration of the
component states of system i, with i = 1, 2, . . . , n. Y is the n-dimensional vector of all
systems of the sample. The objective is to predict whether the system is operational given
the state of the components. In the following, we describe in detail the FA-LR-IS algorithm
and the basic elements of the ML methods that we will apply in our numerical analysis
in Section 4.

2.2. The FA-LR-IS Algorithm

As we have already mentioned, one of the primary goals in reliability analysis is to
mathematically represent the logic underlying a system. Assessing system performance,
even for simple structures, can be challenging, making it essential to develop effective
methods for modeling the relationship between the state of the system and its components.
Unlike some of the ML algorithms, the FA-LR-IS algorithm [1] not only classifies the
system as operative or failed; it provides other useful information. Specifically, the main
objective of the algorithm is to estimate the reliability function, that is, the probability
that the system is functioning in terms of its unit states as in (1). Finally, a ranking of
components can be established according to the importance of every component in the
system state. Understanding the importance of a unit as the impact that a one-unit change
in the component state has on the system behavior. In [19], we emphasize the importance
of using nonparametric regression, which produces estimators with good asymptotic
properties, although these estimators are not necessarily monotonic. In high-dimensional
scenarios, a methodology is proposed that combines factor analysis, logistic regression, and
isotonization. The combination of factor analysis and logistic regression was chosen for the

Machines 2024, 12, 909 5 of 28

following reasons: First, we consider factor analysis for dimensionality reduction, because
in complex systems with a large number of components, the total number of variables in the
regression problem we aim to solve is very high, many of them highly correlated [20–22].
In this context, factor analysis reduces dimensionality by extracting latent factors that
summarize the original data. This prevents issues like multicollinearity and overfitting
while maintaining the key relationships in the data. Second, in our practical application we
are interested in predicting the probability that the system is either operative or in failure
given a particular configuration of component states. As known, logistic regression is ideal
for predicting binary outcomes. It is interpretable, efficient, and well suited for modeling
the nonlinear relationships that are underlying in our problem. Finally, to ensure practical
relevance and interpretability of results, the model is expressed in terms of the original
variable by applying an inverse transformation, which is possible given the mathematical
formulation of the combination of these two models.

Here, we outline the algorithm described in [1] for constructing a statistical model that
predicts system reliability in complex systems with many interdependent components.

Let {X, Y} represent the observed data, where X is an n × p matrix. Each row of X,
for i = 1, . . . , n, corresponds to a configuration of component states in a system with p
dimensions. The state of each component is modeled by a random variable that takes
values within the interval [0, 1]. The components are not assumed to be independent. The
vector Y has dimension n, where for each i = 1, 2, . . . , n, Yi = 1 indicates that the system is
operational, and Yi = 0 otherwise.

2.2.1. Data Preprocessing

Center the matrix: X: Define Uj = (Xj − µj)/σj for each j = 1, 2, . . . , p. Let Σ0 be a
diagonal matrix, where the jth element is σj. Define M = 1p(µ1, µ2, . . . , µp), where 1p a
unit column vector of size p. We denote U = (X − M)Σ−1

0 , resulting in a matrix U with
dimensions n × p.

2.2.2. FA-RL-IS Algorithm

1. Apply factorial analysis (FA): we apply a FA algorithm to the scaled dataset U and
transform the data into a reduced set denoted as {Z, Y} with dimensions n × p0,
where p0 < p. Here, Z = UΓ, and Γ is the FA coefficient-matrix of dimension p × p0.

2. Fit a local-logistic model: a local-logistic model is fitted using the reduced dataset {Z, Y}
with the leave-one-out-cross-validation (LOOCV) criterion for bandwidth selection.

(a) Let h be the bandwidth, varying over the grid {h1, h2, . . . , hm}.
(b) Construct the local-logistic model based on {Z, Y} and estimate R̃h(zi) for all

i = 1, 2, . . . , n.
(c) Consider the leave-one-out (loo) dataset {Z, Y}(−i) for each i = 1, 2, . . . , n,

which exclude the ith observation. Define R̃(−i)
h (z) as the fitted model using

the loo dataset and estimate R̃(−i)
h (zi) for all i = 1, 2, . . . , n.

(d) The cross-validation score is defined as

Q(h) =
n

∑
i=1

R̃h(zi)
2 − 2

n

∑
i=1

YiR̃
(−i)
h (z).

(e) Define hCV = arg minh Q(h).

3. Let x0 represent a specific configuration of component states. We compute z0 =(
x0 − (µ1, µ2, . . . , µp)

)
Σ−1

0 Γ and construct a local-logistic model. For any z such that
∥z − z0∥ < hCV , the fitted model is given by

R̃CV(z) =
e(1,(z−z0)

t)b̂

1 + e(1,(z−z0)t)b̂
,

with b̂ = (b̂0, b̂1, . . . , b̂p0)
t vector of coefficients obtained using hCV .

Machines 2024, 12, 909 6 of 28

4. Let x0 be defined such that ∥(x − x0)Σ
−1
0 Γ∥ < hCV . Under this condition, we estimate

the local-logistic model within the state space of components using

R̂∗
CV(x) =

e(1,(x−x0)
t)β̂

1 + e(1,(x−x0)t)β̂
,

where the vector of estimated coefficients β̂ is given by

β̂0 = b̂0,

β̂ j = σ−1
j Γj·b̂−0, j = 1, 2, . . . , p;

where Γj· denotes the jth row of matrix Γ, and b̂−0 = (b1, . . . , bp0)
t.

5. Define R̂∗
CV(xi) =

eb0

1+eb0
, for i = 1, 2, . . . , n. Apply the isotonization algorithm outlined

in [19] to adjust these estimated values, thereby obtaining the estimated reliability for
the ith configuration of states of components, denoted as R̂CV(xi), i = 1, 2, . . . , n.
Let us denote r∗ the vector with components R∗

i = R̂CV(xi), i = 1, . . . , n. The problem
is to find r = (R1, . . . , Rn) ∈ Rn minimizing ∥r∗ − r∥ subject to Ar ≥ 0, for matrix
A of dimension (n − 1)× n and with elements A(i, i) = −1, A(i, i + 1) = 1, and
A(i, j) = 0 for j ̸= i, i + 1. The set C = {r ∈ Rn : Az ≥ 0} is a polyhedral convex cone
in Rn. To solve this problem, we will use the hinge algorithm presented in [23].

6. Analyze the labeled data using the ROC curve to calculate the (AUC) as described
below in Section 3.2 and evaluate the model.

Broadly speaking, the algorithm goes in this sense: The goal of the FA-LR-IS algorithm
is to estimate the probability of the system functioning based on its components perfor-
mance levels. However, with a large number of inputs, overfitting and higher prediction
errors may arise. To address this, once the data have been normalized, the algorithm first
reduces dimensionality using factor analysis (FA), which groups correlated variables into
factors that share common variance.

Next, a local-logistic model is built in the latent space rather than using the original
component states as inputs. The local regression model is constructed on the scores matrix
generated by the FA algorithm. Nonparametric regression ensures estimators with desirable
properties like consistency and normality, but these estimators are not inherently monotonic.
In a coherent system, however, the response variable of the regression model (the system
state) must be monotonic relative to the original variables (component states). Since the
features used in the local-logistic model lack clear physical interpretation, we cannot assume
monotonicity. Therefore, we propose an isotonization step after back-transformation to
ensure the model is expressed in terms of the original variables.

Finally, the estimated probabilities generated by the logistic regression model are
translated into classes or categories using the classification obtained from the ROC curve.

2.3. Artificial Neural Networks

Artificial neural networks (ANNs) are ML algorithms that simulate the learning mech-
anisms of biological organisms [17], having demonstrated success in a variety of areas, such
as natural language processing, speech recognition, and image recognition. The application
of neural networks in reliability estimation is based on their ability to model complex
relationships between input data (e.g., historical failure data or operating conditions) and
output results (such as failure probability, remaining useful life, etc.). Neural networks
significantly improve the ability to anticipate failures, optimize maintenance, and ensure
reliability in complex systems, especially in industries where the cost of a failure can be
high [24]. An example of this can be seen in [25]; the authors propose the use of neural
networks to predict the useful life of machines and components, highlighting the predictive
capacity of these models and illustrating the methodology with two studies: repair of
damaged units subjected to fatigue and a pump system in an industrial plant.

Machines 2024, 12, 909 7 of 28

ANNs are made up of units called neurons, which are interconnected in a structure
consisting of at least two layers: an input layer and an output layer. In the case of having
a hidden layer, it must have at least one hidden layer. The input layer receives the data
(relevant features such as operating conditions, runtime, sensor variables, etc.), while the
hidden layers process the information in an intermediate manner. Each neuron in these
layers performs a mathematical transformation based on the learned weights and biases.
Finally, the output layer produces the reliability estimate, such as the probability of failure
or the remaining lifetime. Each neuron takes a linear combination of the inputs and then
applies a nonlinear activation function. This process can be described as follows:

z(l)j =
n

∑
i=1

w(l)
ij x(l−1)

i + b(l)j

where the following is true:

• z(l)j is the value of neuron j in layer l.

• w(l)
ij is the weight connecting neuron i in the previous layer l − 1 to neuron j in the

current layer l.
• x(l−1)

i is the output of neuron i in the previous layer.

• b(l)j is the bias of neuron j in layer l.
• n is the number of neurons in the previous layer.

Then, an activation function g is applied to introduce nonlinearity, a(l)j = g(z(l)j);
for more details, see [17,26]. Depending on the type of study, selecting the appropriate
activation function allows the network to learn more complex patterns and perform more
sophisticated tasks. For reliability classification problems, activation functions such as
ReLU (Rectified Linear Unit) or the sigmoid are commonly used:

• ReLU: g(z) = max(0, z)
• Sigmoid: g(z) = 1

1+e−z

The sigmoid function is especially popular in the output layer for binary classification
problems, as it generates an output in the form of a probability [27]. This process is repeated
in all the hidden layers. In the last layer (the output layer), the output value Y, which
represents the probability of failure at a given time, is generated using an activation function
such as the sigmoid in the case of classification problems.

The ANN requires a learning process to adjust the weights and biases of the con-
nections, which incurs a computational cost. Algorithms such as gradient descent (GD),
stochastic gradient descent (SGD), adaptive gradient descent (AdaGrad), root mean square
propagation (RMSprop), and ADAM are commonly used to minimize the loss
function [17,28]. The ADAM algorithm updates the parameters of the neural network
according to the following expressions. For each iteration r = 1, 2, . . . , R

w(l),r+1
ij = w(l),r

ij +△w(l),r+1
ij = w(l),r

ij − η
∂L

∂w(l)
ij

= w(l),r
ij − η

m̂(r)
√

v̂(r) + ϵ
,

b(l),r+1
j = b(l),rj +△b(l),r+1

j = b(l),rj − η
∂L

∂b(l)j

= b(l),rj − η
m̂(r)

√
v̂(r) + ϵ

,

where L is a loss function, η is the learning rate, and m̂(r) and v̂(r) are correction biases for the
exponential moving average of the gradient and the exponential moving average of the squared
gradient, respectively. The parameter ϵ is a smoothing term that avoids division by zero.

Loss functions are critical in the training and validation stages, as they minimize the
difference between the system state predicted by the model and the actual state, allowing
for the correct fit of the model parameters, i.e., weights and biases. For regression problems,
the mean square error is typically used, while binary cross-entropy is an appropriate

Machines 2024, 12, 909 8 of 28

cost function for binary classification problems. The binary cross-entropy loss function is
obtained by applying:

L = BCE = − 1
n

n

∑
i=1

[
Yi · log(Ŷi) + (1 − Yi) · log(1 − Ŷi)

]
. (2)

For our problem we consider a feedforward neural network with three layers that
attempts classification. The input layer consists of p input neurons (X1, X2, . . . , Xp) with
sample information, H neurons in the hidden layers, and one neuron in the output layer, Y.
The model that generates the network is expressed as follows:

Ŷ = gB

(
bo +

H

∑
h=1

whogA

(
bk +

p

∑
i=1

Xiwih

))
,

where wih are the connection weights of the input i with neuron h of the hidden layer, who are
the connection weights of the hidden layer with the output layer, bo and bk are the bias terms,
and gA y gB are the activation functions in the hidden and output layers, respectively.

2.4. K-Nearest Neighbors

The K-nearest neighbors (KNN) algorithm is a supervised learning technique com-
monly used in classification and regression problems. In the context of reliability, KNN can
be applied to make predictions related to the probability of failure or lifetime of a system
based on historical data of similar failures. An example would be the prediction of the
remaining lifetime of electronic devices under accelerated stress conditions, where machine
learning models such as KNN are used to estimate the reliability of electronic components
with high levels of accuracy [29]. In [30], a methodology is presented that combines active
learning and the KNN algorithm to evaluate the reliability of engineering structures based
on the assessment of the fracture probability of cracked structures.

Using KNN, a system is classified based on data from other similar systems (neighbors).
If a majority of the nearby neighbors have failed under similar conditions, the algorithm
predicts that the system is also at risk of failure. The aim is to assign an unclassified point x,
i.e., a given configuration of component states, to the class state of the system represented
by a majority of its K-nearest neighbors. To do this, the distance between the point of
interest x and each point xi in the dataset, d(x, xi) is calculated. The K nearest neighbors
are selected, that is, those points that minimize the distance d(x, xi). Finally, the majority
class of the state of the system is determined among the nearest neighbors; the system state,
Ŷ, for point x will be the one that appears most frequently among the K neighbors.

The choice of the parameter K has a significant influence on the performance of the
model [31–33]. To choose the parameter K correctly, there are several alternatives, such
as opting for an odd value of K, which would avoid possible ties in the proportions of
membership in each class. The leave-one-out or K-fold cross-validation technique consists
of dividing the dataset into K subsets, using K − 1 of these to train the model and the
remaining subset to evaluate performance. This process is repeated K times, and the model
performance is averaged for different values of K. Another option is to try different values
of K, apply the method to sample points whose classification is known, and select the value
of K that minimizes the classification error. Empirically, one can highlight the square root
rule of the dataset size, which suggests that K should be approximately equal to the square
root of the total size of the dataset.

The importance of normalizing the data is also highlighted since the KNN algorithm
is sensitive to the scale of the variables. This algorithm is simple to implement and easy to
understand [34], but it can have a high computational cost if working with large datasets
due to the calculation of distances. In KNN algorithms, the choice of the distance metric
directly affects how the proximity between points in the feature space is calculated, which
in turn influences classification decisions [35]. The Euclidean distance is the most common

Machines 2024, 12, 909 9 of 28

metric; however, the Manhattan distance can also be used. Finally, we can mention the
Minkowski distance, which generalizes the two previous ones and whose expression is
given by

d(x, xi) =

(
n

∑
i=1

|x − xi|q
)1

q
. (3)

When q = 2, it is equivalent to the Euclidean distance, and when q = 1, it is equivalent
to the Manhattan distance.

For the problem we are considering, the method would be formulated according to the
following steps. The objective of the KNN algorithm is to classify a new observation x0 into
one of the classes Ŷ using the information from the K nearest neighbors in the feature space:

1. Let a dataset with n observations, where each observation i has p input variables
(features). This type of problem could involve features related to different system
reliability metrics, such as time to failure, failure rate, system age, repair time, etc. We
want to predict a class Yi ∈ {0, 1} for each observation.

2. Compute the distance between x0 and each observation xi in the set using the chosen
distance metric.

3. Choose the K neighbors with the smallest distances to x0.
4. The predicted class Ŷ is the one with the majority of votes among the K nearest neighbors.

2.5. Random Forest

Random Forest (RF) is a powerful ML technique that has been applied in the field
of reliability engineering to improve failure prediction, risk assessment, and maintenance
decision-making. Its ability to handle complex, high-dimensional data, as well as providing
insight into the most relevant factors affecting system reliability, makes it a particularly
valuable tool in real-world applications.

Several scientific studies have explored the use of RF in reliability engineering; for
example, to predict failures in semiconductor manufacturing equipment, demonstrating the
high accuracy and robustness of the algorithm in handling complex operational data [36]
to estimate product failures and warranty costs, highlighting the effectiveness of the
model in analyzing warranty claims data and in projecting future costs based on historical
failure data [37], and Ref. [38] proposes a model that integrates several machine learning
techniques, including radio frequency, to predict failures in secondary power distribution
networks. In particular, the model leverages the ability of radio frequency to identify
relevant patterns in meteorological data and historical fault records, critical factors for
predicting failures in power distribution systems.

In the field of reliability, RF operates by creating multiple independent and uncorre-
lated decision trees [39]. Each tree is trained on a randomly selected portion of the data,
and at each split within the tree, a random subset of component states is used. This process,
known as bagging or bootstrap aggregating, helps reduce model variance and prevent
overfitting. Once all decision trees are trained, the RF algorithm makes predictions by
combining the individual predictions from each tree. In classification problems, a majority
voting strategy is used: the system state that receives the most votes among all trees is
selected as the final prediction. The RF predictor is defined as the average of the predictions
from B independent decision trees, each trained on a randomly selected dataset:

Ŷ =
1
B

B

∑
i=1

Tb(xi),

where B is the total number of trees in the forest, and Tb is the b-th decision tree. That is, if
regression analysis is used, the probability that the system works will be the percentage
of trees that have classified the system as working. If classification analysis is used, the
estimate will be determined by majority vote. In this way, a final prediction is made that
depends on the predictions resulting from the set of trees produced. This approach makes

Machines 2024, 12, 909 10 of 28

RF particularly effective at handling large datasets with numerous features, providing
efficient computational performance tailored to solving complex problems in ML [40].

For our problem, we consider the implementation of the following:

1. Bootstrap sampling: Training samples are created by randomly selecting, with replace-
ment, a subset of component states for each tree. This procedure generates diverse
datasets for building varied trees, introducing diversity into the model.

2. Node splitting: Within each tree, nodes are split using the best possible partition
based on a random subset of features (or component states in this case). The goal is to
minimize the impurity of child nodes after each split. The most common measure for
classification is the Gini impurity or information gain (based on entropy).

G(p) = 1 −
K

∑
k=1

p2
k ,

where pk is the proportion of examples at the node that belongs to class k, and K is
the total number of classes. The splitting of each node is performed in such a way as
to minimize impurity.

3. Tree growth: trees are expanded to the maximum allowed size, without pruning except
for explicit constraints such as maximum depth or minimum number of samples
per leaf.

4. Aggregation of results: Once all trees are built, their predictions are combined to
produce the final estimate. For classification, each tree makes a prediction for a given
example. The class with the highest number of votes (majority voting) is selected.

The component state importance is based on the sum of the Gini impurity reduction,
weighted by the number of samples arriving at each node, and averaged across all trees.

3. EvaluationFramework
3.1. Splitting the Sample for Training and Testing

The main objective of splitting the dataset is to evaluate the performance of an ML
model objectively. The model is trained using only the training data, and its ability to
generalize to new data is evaluated on the test set, which has not been previously used.
Once the model has been trained on the training set, it is evaluated on the test set using
appropriate metrics depending on the type of problem.

The process of splitting a dataset into training and test data is critical to evaluate
the performance of an ML method. For this reason, to evaluate the proposed algorithm
that combines unsupervised and supervised learning methods and the other ML methods
previously introduced, we present the classic procedure that is common in this context, as
shown in Figure 1.

Data

Training
data

Test
data

Split
dataset

Model
estimate

Train the
model

Test the
model

Model
validation

80%

20%

Prediction

Figure 1. Splitting datasets.

3.2. Error Metrics for Model Evaluation

The most common error metrics in the context of ML algorithms for classification, as
they are in our case, are based on a confusion matrix based on the values of the original
response variable and the values predicted by the algorithm. The matrix has four entries

Machines 2024, 12, 909 11 of 28

that we call true positive (TP), true negative (TN), false positive (FP), and false negative
(FN), respectively; see Figure 2. In our context we call a “positive” when the system is
working, i.e., Y = 1, and a “negative” means that the system is in failure, Y = 0.

TP FP

FN TN

TRUE VALUES

P
R

ED
IC

TE
D

 V
A

LU
ES

1 0

1

0

TPV

TNV

SENSITIVITY SPECIFICITY

Figure 2. Confusion matrix.

Based on these measurements, the error metrics can be calculated as follows:

• Sensitivity: The systems are correctly classified as operative.

Sensitivity =
TP

TP+FN

It measures the probability with which the model correctly predicts that the sys-
tem works.

• Specificity: The systems correctly classified as failed.

Specificity =
TN

TN+FP

It measures the capacity (probability) of the model to detect failures in the system.
• Accuracy: The systems are correctly classified.

Accuracy =
TP+TN

TP+FP+TN+FN

The probability that, given a configuration of components, the model correctly classi-
fies the system.

• True Positive Value: The systems are correctly classified among all systems classified
as operative.

TPV =
TP

TP+FP
The probability that the system is working when the model predicts it to be.

• F1-Score: This is the harmonic mean of TPV and sensitivity. Both metrics are weighted
equally in the calculation, guaranteeing that the F1-Score accurately reflects the
reliability of the model.

F1-Score = 2 · TPV · Sensitivity
TPV + Sensitivity

A high F1-Score typically reflects a well-balanced performance, indicating that the
model can achieve both a high TPV and high sensitivity simultaneously.

The area under the curve (AUC) is a measure used to evaluate the performance of a
classification model. It is calculated as the probability that the predicted reliability for an
operative system is higher than that of a failed system [19]. The dataset is divided into
two groups: failed systems (denoted as AF) and operative systems (denoted as AO) with
respective sample sizes nF and nO (where the total sample size n = nF + nO).

A linear regression model, or any other classification model, predicts the reliability
R̂(x) for each system and assigns it to one of two classes, 0 for failed systems and 1 for

Machines 2024, 12, 909 12 of 28

operative systems. The AUC statistic quantifies the ability of the model to distinguish
between these two classes, and it is defined as

ÂUC =
1

nF · nO
∑

i∈AF

∑
j∈AO

I
(

R̂(xi) < R̂(xj)
)
. (4)

The ÂUC value thus be used as an assessment of the discriminatory power of the
classifier. The AUC ranges from 0 to 1, where the following is true:

• AUC=1, represents a perfect classifier with 100% discrimination power, meaning it
can distinguish between failed and operative systems without any error.

• AUC=0.5, indicates a classifier with no discriminatory ability, equivalent to random
guessing.

• AUC < 0.5, suggests that the classifier is performing worse than random guessing,
potentially due to an inverted prediction mechanism.

The AUC is particularly useful for comparing multiple classifiers. It provides a single
measure that summarizes the trade-off between true positive and false positive rates at
different classification thresholds. This makes it threshold-independent, unlike measures
such as accuracy, which depend on a specific decision boundary. The AUC is directly related
to the Receiver Operating Characteristic (ROC) curve, which plots the true positive rate
(sensitivity) against the false positive rate (1-specificity) for varying classification thresholds.
The AUC represents the area under this curve, summarizing the overall performance of
the model.

3.3. The Particular Case of FA-LR-IS

The various stages of the process are detailed below and illustrated in the flowchart
in Figure 3.

Start

Data 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛

Normalize 𝑿train Normalize 𝑿test

Let 𝜷train = 𝛽0, 𝛽1, … , 𝛽𝑛1
,

calculated based on 𝐛train

 𝑅𝐶𝑉
∗,train 𝒙

For 𝑋𝑖 ≼ 𝑋𝑙 do 𝑅𝑖 ≤ 𝑅𝑙, 𝑖, 𝑙 = 1, … , 𝑛1

 𝑅1, … , 𝑅𝑛1

Labeled train data from ROC curve

Evaluation

 𝒃train = 𝑏0, 𝑏1, … , 𝑏𝑛1

 𝒃test = 𝑏0, 𝑏1, … , 𝑏𝑛2

Let 𝜷test = 𝛽0, 𝛽1, … , 𝛽𝑛2
,

calculated based on 𝐛test

 𝑅𝐶𝑉
∗,test 𝒙

For 𝑋𝑖 ≼ 𝑋𝑙 do 𝑅𝑖 ≤ 𝑅𝑙, 𝑖, 𝑙 = 1, … , 𝑛2

 𝑅1, … , 𝑅𝑛2

Labeled test data from ROC curve

Determinate ℎ𝐶𝑉 = arg min
ℎ

𝑄 ℎ

where 𝑄(ℎ) is defined in terms
of 𝑅train(𝒛)

Data 𝑈1, 𝑌1 , … , 𝑈𝑛1
, 𝑌𝑛1

Calculate 𝒁test = 𝑼test𝚪train

with 𝑝0 < 𝑝

Data 𝑈1, 𝑌1 , … , 𝑈𝑛2
, 𝑌𝑛2

Find 𝒁train = 𝑼train𝚪train

with 𝑝0 < 𝑝

Evaluation

TestTrain

End

Figure 3. Training and testing stages of the FA-LR-IS algorithm.

3.3.1. Data Preprocessing

Center the matrix: Xtest: Define Uj = (Xj − µj)/σj for each j = 1, 2, . . . , p. Let Σ0 be a
diagonal matrix where the jth element is σj. Define Mtest = 1p(µ1, µ2, . . . , µp), where 1p is

Machines 2024, 12, 909 13 of 28

a unit column vector of size p. We denote Utest = (Xtest − Mtest)Σ
−1
0 , resulting in a matrix

Utest with dimensions n2 × p.

3.3.2. Model Estimation

1. Transform the data to a reduced set denoted {Ztest, Ytest}n2×p0 , with p0 < p, and
Ztest = UtestΓ, where Γ is the FA coefficient-matrix of dimension p × p0 obtained with
the scaled dataset Utrain.

2. Let x0,test represent a specific configuration of component states in the test dataset. We
compute z0,test =

(
x0,test − (µ1, µ2, . . . , µp)

)
Σ−1

0 Γ and construct a local-logistic model.
For any ztest such that ∥ztest − z0,test∥ < hCV , the fitted model is given by

R̃CV(ztest) =
e(1,(ztest−z0,test)

t)b̂test

1 + e(1,(ztest−z0,test)t)b̂test
,

with b̂test = (b̂0, b̂1, . . . , b̂p0)
t vector of coefficients obtained using hCV , the optimal

bandwidth selected with the LOOCV criterion applied to the train dataset.
3. Let x0,test be defined such that ∥(xtest − x0,test)Σ

−1
0 Γ∥ < hCV . Under this condition,

we estimate the local-logistic model within the state space of components using

R̂∗
CV(xtest) =

e(1,(xtest−x0,test)
t)β̂test

1 + e(1,(xtest−x0,test)t)β̂test
,

where the vector of estimated coefficients β̂test is

β̂0 = b̂0,

β̂ j = σ−1
j Γj·b̂−0, j = 1, 2, . . . , p;

where we denote Γj· the jth row of matrix Γ, and b̂−0 = (b1, . . . , bp0)
t.

4. Define R̂∗
CV(xi,test) =

eb0

1+eb0
.¡, for i = 1, 2, . . . , n2. Apply the isotonization algorithm

outlined in [19] to adjust these estimated values, thereby obtaining the estimated
reliability for the ith configuration of states of components, that is, R̂CV(xi,test),
i = 1, 2, . . . , n2.

5. Analyze the labeled test data using the ROC curve to calculate the (AUC) as in (4) and
evaluate the model.

4. Numerical Results

This section presents a simulation study of multiple systems, followed by an applica-
tion to two real-world datasets. These analyses demonstrate the strong performance of the
FA-LR-IS algorithm compared with the supervised learning methods mentioned above.

4.1. Simulations

To assess our method, we carried out a simulation study using systems with varying
configurations. Many scientific fields involve static or dynamic systems composed of
multiple components, which can be grouped into distinct, interacting blocks. We assume
that the structural logic of the system can be represented using a block diagram. Figure 4
presents a graphical representation of the four cases analyzed in this section.

The data for each case were generated as follows: We simulate M = 500 samples with
size n = 125. Let p represent the number of components in the system, with p taking
values of 9, 10, 15, and 25 in our examples. The resulting data are organized into a matrix
with p + 1 columns. The first p columns correspond to the states of the components,
denoted as X1, X2, . . . , Xp, where each Xk ∈ [0, 1], k = 1, . . . , p. The (p + 1)th column
represents the system state, Y, which is 1 if the system is operational and 0 otherwise.
Then the components are combined in blocks, denoted as Fj, for j = 1, 2, 3. for example, in
System 1. We assume that cor(Xk, Xk′) = 0.9 if components k and k′ are disposed of in the

Machines 2024, 12, 909 14 of 28

same block F and cor(Xk, Xk′) = 0 otherwise. This relationship is illustrated in Figure 4,
where the blocks containing dependent components are marked with dashed lines.

Figure 4. Configurations for the simulated systems.

The state of the system is simulated by incorporating a latent variable that is not
directly observable, represented as Y → N(Φ(X), σ), with X = (X1, X2, . . . , Xp) denoting a
specific configuration of the state vector. We set σ = 0.2, and the information regarding the
state of system Y is simulated from a binomial distribution, where the event probability is
defined by R(x) = P(Y > y0), with y0 = 0.5.

The structure function of each model is given in the following:

Machines 2024, 12, 909 15 of 28

• System 1. We examine a series-parallel system consisting of p = 9 components, as
depicted in Figure 4 (top plot). The system is organized into three blocks connected
in series. The first two blocks are arranged in parallel, containing three and four
components, respectively. The third block is made up of two components connected
in series. The structure function of this system is expressed as follows:

ϕ(x) = min(max(x1, min(x2, x3)), max(min(x4, x5), min(x6, x7)), min(x8, x9)),

where xj denotes the state of the jth component, j = 1, 2, . . . , 9.
• System 2. We examine a system consisting of a series–parallel combination with p = 10

components, as shown in Figure 4 (second plot). The system is arranged with four
parallel blocks connected in series. The first two blocks each contain two components,
while the last two blocks consist of three components each. The structure function for
this system is represented by the following expression:

ϕ(x) = min(max(x1, x2), max(x3, x4), max(x5, x6, x7), max(x8, x9, x10)),

where xj denotes the state of the jth component, j = 1, 2, . . . , 10.
• System 3. We analyze a bridge system consisting of p = 15 components, as shown in

the bottom plot of Figure 4 (third plot). The basic bridge structure has been modified
to incorporate redundancy, where each component is replaced by a block of three
parallel-connected units. The structure function of this system is expressed as follows:

ϕ(x) = max(min(x1, x4), min(x1, x3, x5), min(x2, x3, x4), min(x2, x5))

where xk = max(x3k−2, x3k−1, x3k) , for k = 1, . . . , 5, and xj denoting the state of the
jth component, j = 1, 2, . . . , 15.

• System 4. We consider a bridge structure with p = 25 components as displayed in
the bottom plot of Figure 4 (bottom plot). Again, a simple bridge structure has been
modified, introducing redundancy, but in this case, each node has been replaced by a
block consisting of a bridge structure with five components. The structure function
for this system is represented by the following expression:

ϕ(x) = max(min(x1, x4), min(x1, x3, x5), min(x2, x3, x4), min(x2, x5))

where

xj = max(min(x5j−4, x5j−1), min(x5j−4, x5j−2, x5j),

min(x5j−3, x5j−2, x5j−1), min(x5j−3, x5j)),

for j = 1, . . . , 5, and xk denoting the state of the kth component, k = 1, 2, . . . , 25.

Each sample χ = {(xi, yi), i = 1, . . . , n} is split into a training set and a test set, as
illustrated in Figure 1. We then have χ = {χ1 ∪ χ2}, with the corresponding set of indices
I = {1, 2, . . . , 125}, similarly divided into I = {I1 ∪ I2}, where I1 represents the indices of
the training set and I2 represents the indices of the test set. Accordingly,

car(I1) = 0.8 × n = n1

car(I2) = n − n1 = n2

The results presented below were obtained using the estimated reliability for each
system (S = 1,2,3,4) with a sample size of n = 125, ensuring that the sample split remains
consistent to facilitate reproducibility across methods; this guarantees that all algorithms
are applied to the same datasets.

1. The FA-LR-IS algorithm begins by reducing the number of features using a factor
analysis (FA) approach. This step identifies optimal factors representing the system.
To determine the appropriate number of factors (or blocks) required for dimensionality

Machines 2024, 12, 909 16 of 28

reduction, we employed the testing procedure implemented in the factanal function
in the R-4.4.2 software, as described in [1]. The goal is to maintain an effective
reduction in dimensionality without significant loss of information. Additionally,
bandwidth, another critical parameter for this method, was selected using cross-
validation techniques, as explained in Section 2.2.

2. For the artificial neural network (ANN) model, we employed a feedforward neu-
ral network with three layers, aimed at classifying the system state (0: failure, 1:
operative). The ANN architecture includes 50 input neurons, two hidden layers
with 15 and 80 neurons, respectively (both using ReLU activation), and a final
output neuron with sigmoid activation for binary classification. The network was
optimized using the ADAM algorithm with the binary cross-entropy loss function (2).
The ADAM algorithm, which combines AdaGrad and RMSprop to dynamically
adjust the learning rates of the parameters based on the first and second derivatives
of the gradient, was chosen due to its adaptability, ease of implementation, and
computational efficiency [28]. We ran the model for 125 epochs with a batch size
of 64. The architecture (layers and neurons) was selected by evaluating various
brute-force combinations.

3. We used a K-nearest neighbors (KNN) classifier with the number of neighbors set to
20, a value determined to be optimal through brute-force search. The distance metric
used was Minkowski distance, given in (3).

4. For RF we used a random forest classifier with 100 decision trees, which were chosen
through trial and error to balance performance without overfitting.

Below, we present a series of tables and graphs with different measures to compare
the FA-LR-IS algorithm with other ML methods.

First, AUC was used to assess the goodness of fit; a higher value of this measure means
that the model achieves better overall performance. Table 1 shows the mean and standard
deviation (SD) of the AUC calculated over all repetitions in the experiment. All values are
displayed in Figure 5; each system is color-coded for clarity. The FA-LR-IS algorithm, with
the highest values in the table, consistently outperforms the other methods across all system
configurations, demonstrating superior discriminatory power as a classification method.

Table 1. Mean and SD of area under the ROC curve (AUC), defined in (4).

Models
System 1 System 2 System 3 System 4

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

FA-LR-IS 0.8218 (0.1338) 0.7708 (0.1273) 0.7599 (0.1045) 0.7674 (0.0992)
ANN 0.6902 (0.1423) 0.6702 (0.1373) 0.6907 (0.0970) 0.6998 (0.0941)
KNN 0.5763 (0.1212) 0.5510 (0.0905) 0.6428 (0.0981) 0.6754 (0.0929)

RF 0.6315 (0.1395) 0.5928 (0.1110) 0.6632 (0.1021) 0.6894 (0.0933)
For each system the highest value appears in bold.

Next, we consider the Mean Squared Error (MSE) to evaluate the accuracy of a model.
Then, for each system, given a particular sample of a test dataset χ2 = {(xm

i , ym
i); i =

1, . . . , n2}, with m = 1, . . . , M, the MSEm was calculated using the formula:

MSE•
S,m =

1
n2

n2

∑
i=1

(
R̂•,m

S,i − RS(xm
i)
)2

, (5)

where RS(xm
i) represents the true reliability function for the structure S, and R̂•,m

S,i denotes
the reliability estimated using the corresponding method. Table 2 presents the average
values and standard deviations (SD) of MSE•

S,m across M repetitions; a lower MSE indicates
that the model predictions are very close to the actual values. Table 2 shows that FA-LR-IS
outperforms all other methods for Systems 3 and 4, achieving the lowest error, while ANN
performs comparably for Systems 1 and 2; although it can be seen in Figure 6 that FA-LR-IS

Machines 2024, 12, 909 17 of 28

and ANN perform similarly concerning MSE for the four systems considered, the values
are very similar.

FA-LR-IS ANN KNN RF
Model

0.2

0.4

0.6

0.8

1.0

Va
lu

e

System
1
2
3
4

Figure 5. Boxplot comparing AUC between models.

Table 2. Mean and SD of MSE for each system and model defined in (5).

Models
System 1 System 2 System 3 System 4

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

FA-LR-IS 0.0202 (0.0107) 0.0298 (0.0139) 0.0487 (0.0165) 0.0456 (0.0163)
ANN 0.0199 (0.0122) 0.0278 (0.0159) 0.0515 (0.0214) 0.0565 (0.0245)
KNN 0.3150 (0.0521) 0.2787 (0.0494) 0.1406 (0.0340) 0.1273 (0.0319)

RF 0.3307 (0.0519) 0.3009 (0.0490) 0.1568 (0.0379) 0.1503 (0.0381)
For each system the lowest value appears in bold.

FA-LR-IS ANN KNN RF
Model

0.0

0.1

0.2

0.3

0.4

Va
lu

e

System
1
2
3
4

Figure 6. Boxplot comparing MSE between models.

Table 3 provides the mean and SD for the accuracy of the estimator measured in
terms of predictive capacity as defined in Section 3.2 across repetitions. The FA-LR-IS
algorithm outperforms the other methods for Systems 3 and 4, while ANN performs best for
System 1 and KNN for System 2. That is, our algorithm has been shown to achieve a greater
predictive capacity in the case of a more complex system than if it is simpler. All values
obtained are displayed in Figure 7.

Machines 2024, 12, 909 18 of 28

Table 3. Accuracy, measured as indicated in Section 3.2.

Models
System 1 System 2 System 3 System 4

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

FA-LR-IS 0.8166 (0.1214) 0.7786 (0.1166) 0.7523 (0.0891) 0.7570 (0.0845)
ANN 0.8482 (0.0752) 0.8259 (0.0764) 0.7245 (0.0854) 0.6990 (0.0941)
KNN 0.8440 (0.0746) 0.8250 (0.0763) 0.7010 (0.0902) 0.6743 (0.0930)

RF 0.8482 (0.0730) 0.8263 (0.0763) 0.7068 (0.0919) 0.6880 (0.0927)
For each system the highest value appears in bold.

In Figure 7, the accuracy of the estimator, measured in terms of predictive capacity as
defined in Section 3.2, is shown.

FA-LR-IS ANN KNN RF
Model

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

System
1
2
3
4

Figure 7. Boxplot comparing predictive capacity between models.

Finally, given that FA-LR-IS and ANN were the most competitive methods, we
conducted direct bootstrap comparisons between them. For each measure (AUC, MSE, or
accuracy), the following procedure was implemented:
Steps

1. For the 500 sample realizations of the measure obtained for each method (FA-LR-IS
and ANN), calculate the difference between the means.

2. Combine all results from both methods and draw two samples with replacements
from this combined data, each of size 500. Calculate the means of these samples and
then compute the difference between them.

3. Repeat Steps 1 and 2 a total of 10,000 times to obtain an asymptotic bootstrap
distribution for the difference in means.

4. Calculate the p-value as the proportion of bootstrap differences that are less than
or equal to the absolute value of the observed difference in means from the initial
500 observations.

Table 4 shows the p-values for hypothesis tests assessing the equality of the measure-
ments obtained with each method. For AUC and MSE, FA-LR-IS significantly outperforms
ANN (p-value < 0.0001). Although ANN achieved better results in accuracy for Systems 1
and 2, the differences were not statistically significant. In contrast, FA-LR-IS significantly
outperformed ANN in Systems 3 and 4. Notably, when FA-LR-IS was superior, the
difference was statistically significant, whereas the advantage of ANN was not significant
in the cases where it performed better.

Machines 2024, 12, 909 19 of 28

Table 4. Comparing the p-value for each of the metrics for FA-LR-IS and ANN.

Metrics System 1 System 2 System 3 System 4

AUC <0.0001 <0.0001 <0.0001 <0.0001
MSE <0.0001 <0.0001 <0.0001 <0.0001

Accuracy 0.5986 0.0304 0.0198 <0.0001

4.2. Scalability Analysis

We have calculated the execution time based on sample sizes of 50, 100, 250, 500, and
1000, simulated from System 4 shown in Figure 4. On the one hand, the FA-LR-IS algorithm
has been implemented using a 3.60-GHz Intel Core i5-8600K processor. On the other hand,
the simulations for the ML methods have been performed using a 2.20-GHz Intel Xeon
processor. The simulation results are shown in Table 5. We observe that the execution time
for all the methods grows with the sample size, with the AF-RL-IS algorithm standing
out. The cross-validation method used for bandwidth selection makes the time to increase
exponentially. However, this algorithm yields the best goodness of fit, as can be seen from
the AUC, MSE, and accuracy results for System 4 shown in Tables 1–3. As for the ML
techniques, we see that the ANN algorithm provides longer execution time than RF and
KNN, the latter being the one that yields the smallest execution time and worse results
for the AUC, MSE, and accuracy measures. The KNN method is sensitive to data scaling;
therefore, it exhibits low execution times due to the variables being normalized beforehand.
In this context, we can assert that, for System 4, the models that take the longest to train
are those that yield the best goodness-of-fit results. However, despite the comparison
of the different methods studied, it should be noted that their recorded execution times
are not directly comparable, as they were not performed under the same conditions. The
ML techniques have been implemented using Python 3.10.12, with optimized functions
that have been tested by a large team of professionals. In contrast, the FA-LR-IS method
has been implemented in R-4.4.2, utilizing functions developed by the authors that are
not fully optimized for computational efficiency. Additionally, this software has more
limited resources for performing complex calculations with large datasets. In this regard,
we propose the creation of an R package in the short term, where the functions will be
optimized. The package will be made available on the CRAN repository and on our
personal website, www.reliastat.com.

Table 5. Recorded execution time (in seconds) for the training dataset with the different algorithms
for System 4, for sample size n.

Sample Size FA-LR-IS ANN KNN RF

50 16.5942 4.8824 0.0009 0.1699
100 44.9332 5.0662 0.0046 0.1974
250 193.1672 6.2501 0.0050 0.1676
500 692.8524 7.4171 0.0046 0.1842

1000 2508.6760 8.9800 0.0081 0.2221

4.3. First Real Case Study: A Water Pump Sensor Monitoring System

We analyze a dataset concerning an industrial structure; in particular, we have
performance measurements of a water pump installed in a small area. The dataset was
sourced from the data platform www.kaggle.com (accessed on 1 February 2024), and a
statistical analysis of this data is presented in [41]. The sample information was collected by
a set of sensors monitoring various components of the water pump over time. Specifically,
50 sensors measured parameters such as temperature, pressure, vibration, load capacity,
volume, and flow density, among others, every minute from April 1st, 2018, to August
31st, 2018. In total, there are 220.320 observations. Limited information is available
regarding the behavior of the sensors, but according to the study of one of the experts who
have analyzed the data (available on the data website), the intermediate group of sensors

www.reliastat.com
www.kaggle.com

Machines 2024, 12, 909 20 of 28

(sensor16–sensor36) corresponds to the performance of two impellers, while the first 14
sensors monitor aspects related to the engine.

The data consist of a longitudinal follow-up of a single system, with observations taken
at one-minute intervals between consecutive data points. To ensure that the systems in the
sample are independent, we did not use all the available records. Instead, we increase the
time gap between the data points we analyze. In [1] we considered a small sample with all
records taken in the first minute of every day and focused the study on building a ranking
of components in terms of the effect that changes in each component had on the reliability
of the system. In this case, we consider sampled data at one-hour intervals, resulting in a
sample size of n = 3672, and we applied the same algorithms used in previous simulations.
Specifically, we implemented the FA-RL-IS algorithm following this procedure:

1. We split the sample into training (80%) and test (20%) sets (Step 1).
2. To train the model, we proceeded as follows:

(a) Data normalization: since the scales of the sensor measurements vary, it was
necessary to normalize the data to avoid the influence of variables with larger
scales and ensure comparability.

(b) Factor analysis: this step involved:

i. Examine possible correlations. The correlation matrix with all variables
is shown in Figure 8. Some sensor groups, such as the intermediate
group, show high positive correlations within the group.

X2
X3
X4
X5
X6
X7
X8
X9

X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34
X35
X36
X37
X38
X39
X40
X41
X42
X43
X44
X45
X46
X47
X48
X49
X50
X51

X1X2X3X4X5X6X7X8X9
X10X11X12X13X14X15X16X17X18X19X20X21X22X23X24X25X26X27X28X29X30X31X32X33X34X35X36X37X38X39X40X41X42X43X44X45X46X47X48X49X50

−1.0

−0.5

0.0

0.5

1.0
Corr

Figure 8. Correlation matrix for water pump sensor monitoring system.

ii. Determine the appropriate number of factors. Using the R package
psych [42], we determined the number of factors to extract, based on a
scree plot (Figure 9).

iii. Conduct the factor analysis. We used the fa function from the psych
package to perform an exploratory factor analysis of latent variables
using maximum likelihood. The correlation matrix was decomposed
into eigenvalues and eigenvectors, estimating the commonalities for
each variable across the first five factors. Factor loadings and interfactor
correlations were also obtained.

(c) Local-logistic estimation: We then fitted a local-logistic model in the space of
the first five factors, p0 = 5, and back-transformed the results to the original

Machines 2024, 12, 909 21 of 28

feature space, p = 50. The bandwidth parameter was estimated through cross-
validation. We now had a model that predicts the probability that the machine
is functioning (reliability function) based on the sensor values.

(d) Classification: After estimating the probabilities with the logistic regression
model, we translated these probabilities into classes or categories. For this, we
used the classification obtained via the ÂUC, see (4).

3. Test the model:

(a) Normalize the data.
(b) Transform the data to a reduced set.
(c) Local-logistic estimation. We applied the same model used to predict the

reliability function to the test dataset.
(d) Classification. We classified the observations in the test set using the same

method as with the training set.

4. Metrics: All previous steps generated results to compute error metrics on the training
dataset. We calculated these error metrics using the test dataset, fitting the local-
logistic model, and applying the bandwidth obtained in Step 2(c) on the training data.
The test set was classified using the model obtained with the training set.

0 10 20 30 40 50

0
5

10
15

Scree plot

Factor Number

Eigen values of factors

Figure 9. Scree plot for water pump sensor monitoring system.

In addition to the proposed algorithm, we also executed the ANN, KNN, and RF
algorithms using the same sample split and parameters as in the simulations. Table 6
shows the error metrics calculated on the test dataset. We observe that the KNN algorithm
yields the highest specificity, accuracy, TPV, and F1-Score, while ANN shows the highest
sensitivity and the same accuracy and F1-Score as KNN. The proposed algorithm shows
high and competitive values comparable to the other ML algorithms, except for specificity,
where it underperforms relative to the other methods.

Machines 2024, 12, 909 22 of 28

Table 6. Error metrics defined in Section 3.2 calculated on test water pump sensor dataset.

FA-LR ANN KNN RF

Sensitivity 0.9845 0.9942 0.9927 0.9927
Specificity 0.9167 0.9792 1 0.9792
Accuracy 0.9809 0.9932 0.9932 0.9918

TPV 0.9941 0.9985 1 0.9985
F1-Score 0.9898 0.9963 0.9963 0.9956

For each error metric the highest value appears in bold.

4.4. A Second Real Case Study: Condition Monitoring of Hydraulic Systems

We analyze a dataset containing information collected from a hydraulic system.
The dataset is available on the website archive.ics.uci.edu (accessed on 20 September
2024). The data contain useful information for developing predictive models to detect faults
early, contributing to the safety and operational efficiency of these systems. These data have
been analyzed in several works, exploring the use of advanced data analysis techniques,
such as multivariate statistics, sensor fault compensation, and automatic feature extraction,
to improve condition monitoring in complex hydraulic systems [43–45].

The data were collected using a hydraulic test rig. This rig features two circuits: a
primary working circuit and a secondary cooling-filtration circuit, both linked through
an oil tank. The system performs cyclic load tests of 60 seconds, during which it records
process parameters such as pressures, flow rates, and temperatures. Simultaneously, the
conditions of four key hydraulic components (cooler, valve, pump, and accumulator) are
varied in a controlled manner. A total of 2205 observations are recorded, involving 17
sensors. The target condition value recoded was the “stable flag”: 1 if conditions were
stable and 0 if static conditions might not have been reached yet.

We have also applied to this dataset the ML algorithms considered previously, i.e.,
ANN, KNN, and RF, as well as our FA-LR-IS algorithm. The main results are summarized
in the following:

1. We split the sample into training (80%) and test (20%) sets (Step 1).
2. To train the model, we proceeded as follows:

(a) Data normalization.
(b) Factor analysis: This step involved the following:

i. Examine possible correlations. The correlation that exists between the
variables is remarkable, as can be seen in Figure 10.

ii. Determine the appropriate number of factors to extract, based on
(Figure 11).

iii. Conduct the factor analysis.

(c) Local-logistic estimation. We then fitted a local-logistic model in the space of
the first three factors, p0 = 3, and back-transformed the results to the original
feature space, p = 17. The bandwidth parameter was estimated through
cross-validation.

(d) Classification. After estimating the probabilities with the logistic regression

model, we translated these probabilities into classes or categories via the ÂUC;
see (4).

3. Test the model: do steps 3(a–d) as in the previous example.
4. Metrics: We calculated the error metrics using the test dataset, fitting the local-logistic

model and applying the bandwidth obtained in Step 2(c) on the training data. The
test set was classified using the model obtained with the training set.

Finally, we executed the ANN, KNN, and RF algorithms using the same sample split.
Table 7 shows the error metrics calculated on the test dataset. We observe that, in this
case, the RF algorithm yields the highest values in almost all metrics, followed by the

archive.ics.uci.edu

Machines 2024, 12, 909 23 of 28

KNN algorithm. The FA-LR-IS algorithm shows high values comparable to the other ML
algorithms, proving to be a strong competitor.

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X1 X2 X3 X4 X5 X6 X7 X8 X9
X10 X11 X12 X13 X14 X15 X16

Corr

−1.0

−0.5

0.0

0.5

1.0

Figure 10. Correlation matrix for hydraulic system data.

5 10 15

0
2

4
6

8
10

Scree plot

Factor Number

Eigen values of factors

Figure 11. Scree plot for hydraulic system data.

Machines 2024, 12, 909 24 of 28

Table 7. Error metrics defined in Section 3.2 calculated on test hydraulic system dataset.

FA-LR ANN KNN RF

Sensitivity 0.9542 0.6725 0.9613 0.919
Specificity 0.7962 0.9108 0.8344 0.9172
Accuracy 0.8980 0.7574 0.9161 0.9184

TPV 0.8944 0.9317 0.913 0.9526
F1-Score 0.9223 0.7812 0.9365 0.9365

For each error metric the highest value appears in bold.

5. Discussion

One significant limitation of our study is the inability to train a deep learning model
for comparison with our custom statistical model. While deep learning models typically
outperform ANNs, they require substantial datasets to learn effectively [46]. Unfortunately,
our datasets are insufficient in size to support the training of such a model. Additionally,
the computational resources necessary for training deep learning models are beyond our
current capabilities. The need for multiple data sources, such as labeled and unlabeled
data in semi-supervised learning, adds another layer of complexity to determining the
right dataset size. This requires careful consideration of how to balance different types
of data [47]. Designers must also consider performance targets, collection costs, and
penalties for failing to meet these targets, which complicates the decision-making process
regarding dataset size. Training large models with very large datasets can take months of
computational power [48], although several strategies have been proposed to curtail the
trial and error time [49].

A key advantage of classical statistical models over ML models is interpretability.
While ML models often operate as black boxes, classical statistical models are explicitly
defined through mathematical equations, which are more objectively quantifiable.

Although some ML methods attempt to overcome this limitation using procedures
like SHAP for all ML models or MDI for random forests, these methods require fine-
tuning numerous hyperparameters to achieve optimal performance. In contrast, in our
probabilistic approach, implemented through the FA-LR-IS algorithm, the only tuning
parameter is the bandwidth or smoothing parameter, which is determined via cross-
validation, making it entirely data-driven and not sensitive to user-selected options. Our
statistical methodology is fully non-parametric, allowing it to be flexible enough to capture
complex relationships among variables, such as non-linearity and interactions.
That being said, we acknowledge the high predictive power of ML methods, which operate
with lower computational complexity even with large amounts of data compared with
our statistical model, as demonstrated in Table 5, included in the new version of the
paper. For this reason, one of our future research directions is to propose a hybrid method
that combines the computational power of ML methods with the objectivity and clear
formulation of a statistical model. Table 8 summarizes the strengths and weaknesses of
each method.

An interesting avenue for future research could involve measuring the performance
of FA-LR-IS against a deep learning model over time. Because of the simulations, we
hypothesize that our statistical model will initially outperform deep learning models
in scenarios where the system is new and data availability is limited, due to its lower
dependency on large volumes of data. However, as the system matures and accumulates
more data, the deep learning model may exhibit superior performance.

We aim to explore several questions in future work: At what point does this shift
occur? How does it differ from system to system? Is the improvement worth the cost of
deploying a deep learning model?

There are also models of ANNs that allow for feedback loops, known as recurrent
neural networks (RNNs). While RNNs have been less influential than feedforward
networks, partly because their learning algorithms are less powerful to date, they are still
extremely interesting. RNNs more closely resemble the way our brains operate, and they

Machines 2024, 12, 909 25 of 28

may be capable of solving important problems that feedforward networks can only tackle
with great difficulty. RNNs are more effective for large and complex datasets, while classical
methods are better suited for smaller, univariate datasets. RNNs consistently outperform
ARIMA and exponential smoothing in terms of accuracy, especially for seasonal time
series, as demonstrated in various studies. RNNs exhibit lower Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) compared with classical methods,
indicating superior forecasting capabilities. RNNs are particularly advantageous for long-
term forecasts, whereas ARIMA may perform better in short-term predictions [50,51].

Table 8. Comparison of strengths and weaknesses of FA-LR-IS algorithm with ML methods.

Methods Data
Requirements

Computational
Cost Overfitting Interpretation

AF-LR-IS
Overcome other
methods with
small datasets

Longer execution
time

Bandwidth
parameter can be

tuned to avoid
overfitting

Easy to interpret

ANN Requires large
datasets

Intensive training
and resources

Overfitting due to
hyperparameter

Difficult to
interpret due to

complex structure

KNN Requires large
datasets

Limited scalability
with large datasets

Similar to
AF-LR-IS

Relatively easy to
interpret

RF Requires large
datasets

Moderate, but the
ensemble nature

increases
complexity

Lower risk of
overfitting due to

ensemble
approach

Harder to interpret
because of the

ensemble
approach

6. Conclusions

In this paper, we refine a previously introduced probabilistic algorithm to align
with the standard ML framework of training and testing. This refinement allows us
to systematically evaluate its performance, showing it outperforms leading ML methods
such as RF and ANN in the following sense. Unlike black-box ML models, our probabilistic
approach is fully interpretable, providing meaningful insights into the system state and
quantifying individual component importance. By combining the procedural strengths of
ML with the transparency of probabilistic modeling, we present a robust, hybrid algorithm
that is both powerful and practical for engineering applications. To apply ML techniques,
it is essential to carry out a thorough analysis of the data beforehand and reflect on which
approach would be most appropriate, whether using ANN, KNN, or another algorithm.
Additionally, we explore the use of ML methods like RF for reliability estimation, an area
traditionally dominated by probabilistic parametric approaches, and conduct an extensive
comparison of classical statistical methods versus ML techniques in the reliability context.

To illustrate the benefits of our method, we carried out a simulation study and applied
it to two real datasets. In all instances, the FA-LR-IS algorithm yielded favorable results
regarding model accuracy, making it a strong competitor for any ML method. The algorithm
even is able to identify internal dependency structures in the system. In summary, the FA-
LR-IS algorithm can be considered a versatile and effective option when there is uncertainty
about which method to use, acting as a general solution in situations of uncertainty.

In the simulations, KNN and RF have been shown to offer less accurate estimations
of the reliability of the system, providing considerably poorer results than the FA-LR-IS
algorithm and the ANN. This is because these estimates are only averages and are not
formulated with a mathematical expression that depends on the state of the system.

This study suggests that the FA-LR-IS model is not intended to be a definitive solution
but rather an intermediate step while better resources are being developed. This idea is
reinforced by the conclusion that there is no single method to solve all reliability estimation
problems. The FA-LR-IS is presented as a versatile and effective solution in scenarios with
uncertainty, aligning with the need to use diverse tools depending on the context.

Machines 2024, 12, 909 26 of 28

Future work will focus on investigating the flexibility of the FA-LR-IS algorithm in
quantifying the localized effects of specific units on system performance, comparing these
findings with the machine learning methodologies discussed in this paper, as well as other
methods. It is also proposed to extend machine learning techniques, such as random
forests (RFs), to address the problem of reliability estimation while ensuring that system
consistency conditions are met. In this context, the approach will focus on analyzing
methods to optimize the selection of input samples for tree growth. Additionally, the study
will explore more accurate methods for determining the optimal criteria for splitting the
nodes of the regression trees used in building the random forest model. A measure will also
be developed to quantify the impact of each individual component on the overall system
performance, allowing for a ranking of components within the system structure. Managing
the weakest areas would allow preventing failures that result in significant economic losses.
This approach would facilitate the design of preventive maintenance policies aimed at
mitigating the probability of failures originating in the most vulnerable components.

Author Contributions: Conceptualization and supervision, methodology, software, validation, inves-
tigation, resources, writing—original draft preparation, writing—review and editing, visualization,
M.L.G., F.N.-G., R.A.N.C. and R.R.-M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by ERDF/Spanish Ministry of Science and
Innovation—State Research Agency, under grant PID2020-120217RBI00, and the IMAG-María de
Maeztu grant CEX2020-001105/AEI/10.13039/501100011033.

Data Availability Statement: Data are publicly available through www.kaggle.com (accessed on 1
February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

R(x1, x2, . . . , xp) Reliability of the system as a function of the components states.
n, n1, n2 Sample sizes of the observed dataset, training set and test set.
p, p0 Numbers of components. Optimal number of factors.
X Matrix of the components states of system.
Y Vector of system states.
Xtrain, Xtest Data matrix of training and test set.
Ytrain, Ytest Response vector of training and test set.
Σ0 Diagonal matrix whose elements are standard error.
Mtrain, Mtest Mean matrix of training and test set.
1p Unit column vector of size p.
Utrain, Utest Centered matrix of training and test set.
Ztrain, Ztest FA score-matrix of training and test set.
Γtrain FA coefficient-matrix of training set.
h, hCV Bandwidth. Optimal bandwidth based on cross-validation.
R̃h Estimated reliability based on reduced dataset with bandwidth h.
{Ztrain, Ytrain}(−i) Leave-one-out dataset.

R̃(−i)
h Fitted model using the leave-one-out dataset.

Q(h) Cross-validation score.
x0,train Specific configuration of component states in the training set.
z0,train Specific configuration of reduced data in the training set.
R̃CV Fitted model using optimal bandwidth.
b̂train Vector of coefficients based on optimal bandwidth within reduced space

in the training set.
R̂∗

CV Fitted model within the original state space of components.
β̂train Vector of coefficients within the original state space of components in the

training set.

www.kaggle.com

Machines 2024, 12, 909 27 of 28

R̂CV Isotonized fitted model.
x0,test Specific configuration of component states in the test set.
z0,test Specific configuration of reduced data in the test set.
b̂test Vector of coefficients based on optimal bandwidth within reduced space

in the test set.
β̂test Vector of coefficients within the original state space of components in the

test set.
AF, AO Failed and operative systems sample.
nF, nO Failed and operative systems sample size.
cor(Xk, Xk′) Correlation between components k y k′.
I, I1, I2 Set of indices of the observed data, training data and test data.
RS, R̂S True and estimated reliability function for the structure S.
MSE Mean square error.

References
1. Gámiz, M.L.; Navas-Gómez, F.; Nozal-Cañadas, R.; Raya-Miranda, R. Unsupervised and supervised learning for the reliability

analysis of complex systems. Qual. Reliab. Eng. Int. 2023, 39, 2637–2658. [CrossRef]
2. Li, M.; Wang, Z. Deep learning for high-dimensional reliability analysis. Mech. Syst. Signal Process. 2020, 139, 106399. [CrossRef]
3. Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Taylor & Francis: Milton Park, UK, 1996.
4. Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J. The elements of statistical learning: Data mining, inference and prediction.

Math. Intell. 2005, 27, 83–85.
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
7. Xu, Z.; Saleh, J.H. Machine learning for reliability engineering and safety applications: Review of current status and future

opportunities. Reliab. Eng. Syst. Saf. 2021, 211, 107530. [CrossRef]
8. Xu, Y.; Sun, K.; Zhang, Y.; Chen, F.; He, Y. A State Monitoring Algorithm for Data Missing Scenarios via Convolutional Neural

Network and Random Forest. IEEE Access 2024, 12, 137080–137088. [CrossRef]
9. Daya, A.A.; Lazakis, I. Systems reliability and data driven analysis for marine machinery maintenance planning and decision

making. Machines 2024, 12, 294. [CrossRef]
10. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
11. Goldblum, M.; Finzi, M.; Rowan, K.; Wilson, A.G. The no free lunch theorem, Kolmogorov complexity, and the role of inductive

biases in Machine Learning. arXiv 2024, arXiv:2304.05366.
12. Wang, X.; Du, Y.; Liu, K.; Luo, Y.; Du, B.; Tao, D. Separable power of classical and quantum learning protocols through the lens of

no-free-lunch theorem. arXiv 2024, arXiv:2405.07226.
13. Wolpert, D.H. The implications of the no-free-lunch theorems for meta-induction. J. Gen. Philos. Sci. 2023, 54, 421–432.
14. Aikhuele, D.; Nwosu, H.; Ighravwe, D. Data-driven model for the evaluation of the reliability of sensors and actuators used in

IoT system architecture. J. Reliab. Intell. Environ. 2022, 9, 135–145. [CrossRef]
15. Choi, W.H.; Kim, J. Unsupervised Learning approach for anomaly detection in industrial control systems. Appl. Syst. Innov. 2024,

7, 18. [CrossRef]
16. Paluszek, M.; Thomas, S.; Ham, E. Practical MATLAB Deep Learning, Last ed.; Apress, Berkeley, CA, USA, 2022.
17. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: New York, NY, USA, 2018.
18. Hussain, M.; Zhang, T.L.; Chaudhry, M.; Jamil, I.; Kausar, S.; Hussain, I. Review of prediction of stress corrosion cracking in gas

pipelines using machine learning. Machines 2024, 12, 42. [CrossRef]
19. Gámiz, M.L.; Navas-Gómez, F.; Raya-Miranda, R. A machine learning algorithm for reliability analysis. IEEE Trans. Reliab. 2021,

70, 535–546. [CrossRef]
20. Afanaseva, O.; Afanasyev, M.; Neyrus, S.; Pervukhin, D.; Tukeev, D. Information and Analytical System Monitoring and

Assessment of the Water Bodies State in the Mineral Resources Complex. Inventions 2024, 9, 115. [CrossRef]
21. Kozlowski, E.; Mazurkiewicz, D.; Sep, J.; Zabinski, T. The use of principal component analysis and logistic regression for cutter

state identification. In Proceedings of the International Conference on Engineering, Technology and Innovation, Kuala Lumpur,
Malaysia, 19–20 October 2021; pp. 396–405.

22. Zuo, J.; Gan, H.; Li, H. A study of ancient glass classification problem based on multiple logistic regression. Highlights Sci. Eng.
Technol., 2022, 22, 265–269. [CrossRef]

23. Meyer, M.C. Semi-parametric additive constrained regression. J. Nonparametric Stat. 2013, 25, 715–730. [CrossRef]
24. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.

Syst. Saf. 2018, 172, 1–11. [CrossRef]
25. Herzog, MA.; Marwala, T.; Heyns, P.S. Machine and component residual life estimation through the application of neural

networks. Reliab. Eng. Syst. Saf. 2009, 94, 479–489. [CrossRef]
26. Liu, J.; Wu, Q.; Sui, X.; Chen, Q.; Gu, G.; Wang, L.; Li, S. Research progress in optical neural networks: Theory, applications and

developments. PhotoniX 2021, 2, 5. [CrossRef]

http://doi.org/10.1002/qre.3311
http://dx.doi.org/10.1016/j.ymssp.2019.106399
http://dx.doi.org/10.1016/j.ress.2021.107530
http://dx.doi.org/10.1109/ACCESS.2024.3441244
http://dx.doi.org/10.3390/machines12050294
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s40860-022-00179-0
http://dx.doi.org/10.3390/asi7020018
http://dx.doi.org/10.3390/machines12010042
http://dx.doi.org/10.1109/TR.2020.3011653
http://dx.doi.org/10.3390/inventions9060115
http://dx.doi.org/10.54097/hset.v22i.3386
http://dx.doi.org/10.1080/10485252.2013.797577
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1016/j.ress.2008.05.008
http://dx.doi.org/10.1186/s43074-021-00026-0

Machines 2024, 12, 909 28 of 28

27. Singh, Y.; Saini, M.; Savita. Impact and performance analysis of various activation functions for classification problems. In
Proceedings of the IEEE International Conference on Contemporary Computing and Communications (InC4), Bangalore, India,
21–22 April 2023; pp. 1–7.

28. Reyad, M.; Sarhan, A.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 2023,
35, 17095–17112. [CrossRef]

29. Qiu, Y.; Li, Z. Neural network-based approach for failure and life prediction of electronic components under accelerated life stress.
Electronics 2024, 13, 1512. [CrossRef]

30. Guo, K.; Yan, H.; Huang, D.; Yan, X. Active learning-based KNN-Monte Carlo simulation on the probabilistic fracture assessment
of cracked structures. Int. J. Fatigue 2022, 154, 106533. [CrossRef]

31. Ghosh, A.K. On optimum choice of k in nearest neighbor classification. Comput. Stat. Data Anal. 2006, 50, 3113–3123. [CrossRef]
32. Li, J.; Zhang, J.; Zhang, J.; Zhang, S. Quantum KNN classification with K value selection and neighbor selection. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2024, 43, 1332–1345. [CrossRef]
33. Li, Y.; Yang, Y.; Che, J.; Zhang, L. Predicting the number of nearest neighbor for kNN classifier. IAENG Int. J. Comput. Sci. 2019,

46, 662–669.
34. Tiwari, S.P.; Manohar, M.; Shukla, S.K. A reliable protection scheme for high resistance fault detection in wind generator-integrated

HVDC transmission system using ensemble of kNN. In Electrical Engineering; Springer: New York, NY, USA, 2024.
35. Abu Alfeilat, H.A.; Hassanat, A.B.A.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.B.S. Effects of

distance measure choice on K-Nearest Neighbor classifier performance: A review. Big Data 2019, 7, 221–248. [CrossRef]
36. Puggini, L.; Doyle, J.; McLoone, S. Fault detection using Random Forest similarity distance. IFAC Pap. Online 2015, 48, 583–588.

[CrossRef]
37. Kizito, R.; Scruggs, P.; Li, X.; Kress, R.; Devinney, M.; Berg, T. The application of Random Forest to predictive maintenance.

In Proceedings of the IISE Annual Conference, Orlando, FL, USA, 9–22 May 2018.
38. Makota, D.T.; Shililiandumi, N.; Iddi, H.U.; Bagile, B.B. A big data-based ensemble for fault prediction in electrical secondary

distribution network. Cogent Eng. 2024, 11, 2340183. [CrossRef]
39. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32.:1010933404324. [CrossRef]
40. Payette, M.; Abdul-Nour, G. Machine learning applications for reliability engineering: A review. Sustainability 2023, 15, 6270.

[CrossRef]
41. Alagarsamy, P. Predict Pump Failure Before It Happens Using Deep Learning Model. 2021. Available online: https://

becominghuman.ai/predict-pump-failure-before-it-happens-using-deep-learning-model-dc886bfa073e (accessed on 15 July
2024).

42. Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R Package Version 2024, 2, 9.
43. Helwig, N.; Pignanelli, E.; Schütze, A. Condition monitoring of a complex hydraulic system using multivariate statistics.

In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Pisa, Italy, 11–14 May 2015;
paper PPS1-39.

44. Helwig, N.; Schütze, A. Detecting and compensating sensor faults in a hydraulic condition monitoring system. In Proceedings of
the 17th International Conference on Sensors and Measurement Technology, Nuremberg, Germany, 19–21 May 2015.

45. Schneider, T.; Helwig, N.; Schütze, A. Automatic feature extraction and selection for classification of cyclical time series data. Tech.
Mess. 2017, 84, 198–206. [CrossRef]

46. Bansal, A.; Sharma, R.; Kathuria, M. A systematic review on data scarcity problem in deep learning: Solution and applications.
ACM Comput. Surv. 2022, 54, 1–29. [CrossRef]

47. Mahmood, R.; Lucas, J.; Álvarez, J.M.; Fidler, S.; Law, M.T. Optimizing data collection for Machine Learning. arXiv 2022,
arXiv:2210.01234.

48. Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.F.; Jun, H.; Kianinejad, H.; Patwary, M.A.; Yang, Y.; Zhou, Y. Deep Learning
scaling in predictable, empirically. arXiv 2017, arXiv:1712.00409.

49. Calvo-Pardo, H.F.; Mancini, T.; Olmo, J. Optimal deep neural networks by maximization of the approximation power. Comput.
Oper. Res. 2023, 156, 106264. [CrossRef]

50. Zou, X.; Wang, K.; Lu, J.; Wu, D. Time series forecasting of emission trends using recurrent neural networks. Comput. Life 2024,
12, 12–18. [CrossRef]

51. Rani, S.; Kaur, R.; Desai, C. Enhancing time series forecasting accuracy with deep learning models: A comparative study. Int. J.
Adv. Res. 2024, 12, 315–324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00521-023-08568-z
http://dx.doi.org/10.3390/electronics13081512
http://dx.doi.org/10.1016/j.ijfatigue.2021.106533
http://dx.doi.org/10.1016/j.csda.2005.06.007
http://dx.doi.org/10.1109/TCAD.2023.3345251
http://dx.doi.org/10.1089/big.2018.0175
http://dx.doi.org/10.1016/j.ifacol.2015.09.589
http://dx.doi.org/10.1080/23311916.2024.2340183
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/su15076270
https://becominghuman.ai/predict-pump-failure-before-it-happens-using-deep-learning-model-dc886bfa073e
https://becominghuman.ai/predict-pump-failure-before-it-happens-using-deep-learning-model-dc886bfa073e
http://dx.doi.org/10.1515/teme-2016-0072
http://dx.doi.org/10.1145/3502287
http://dx.doi.org/10.1016/j.cor.2023.106264
http://dx.doi.org/10.54097/ezvnav34
http://dx.doi.org/10.21474/IJAR01/19257

	Introduction
	Approaches to Reliability Analysis
	Problem Statement
	The FA-LR-IS Algorithm
	Data Preprocessing
	FA-RL-IS Algorithm

	Artificial Neural Networks
	K-Nearest Neighbors
	Random Forest

	EvaluationFramework
	Splitting the Sample for Training and Testing
	Error Metrics for Model Evaluation
	The Particular Case of FA-LR-IS
	Data Preprocessing
	Model Estimation

	Numerical Results
	Simulations
	Scalability Analysis
	First Real Case Study: A Water Pump Sensor Monitoring System
	A Second Real Case Study: Condition Monitoring of Hydraulic Systems

	Discussion
	Conclusions
	References

