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Abstract: Driven by the increasing care needs of residents in long-term care facilities, Ambient
Assisted Living paradigms have become very popular, offering new solutions to alleviate this burden.
This work proposes an efficient edge-cloud system for indoor activity monitoring in long-term care
institutions. Action recognition from video streams is implemented via Deep Learning networks
running at edge nodes. Edge Computing stands out for its power efficiency, reduction in data
transmission bandwidth, and inherent protection of residents’ sensitive data. To implement Artificial
Intelligence models on these resource-limited edge nodes, complex Deep Learning networks are first
distilled. Knowledge distillation allows for more accurate and efficient neural networks, boosting
recognition performance of the solution by up to 8% without impacting resource usage. Finally,
the central server runs a Quality and Resource Management (QRM) tool that monitors hardware
qualities and recognition performance. This QRM tool performs runtime resource load balancing
among the local processing devices ensuring real-time operation and optimized energy consumption.
Also, the QRM module conducts runtime reconfiguration switching the running neural network to
optimize the use of resources at the node and to improve the overall recognition, especially for critical
situations such as falls. As part of our contributions, we also release the manually curated Indoor
Action Dataset.

Keywords: machine learning; internet of things; real-time and embedded systems; distributed
systems; healthcare monitoring

1. Introduction

As life expectancy grows, societies are more susceptible to age-related diseases. This
situation has led to an increase in care needs for residents in nursing homes. In particular,
in European countries such as Spain or Germany, the number of long-term care workers
has grown on average by 30% since 2010 [1]. This fact poses a serious social and economic
challenge in terms of the resources needed to care for vulnerable older adults.

Multiple works point out that lifestyle monitoring improves well-being and thus,
healthy aging for the elderly [2,3]. Moreover, one in every four older adults (older than 65)
suffers a fall in a year [4]. Rapid assistance is crucial to avoid aggravating the consequent
medical problems such as blood clots or internal damages [5]. Ambient Assisted Living
(AAL) systems are ideal for monitoring patient or resident habits and their daily routines to
encourage active lifestyles [6]; also, these systems are enabled to provide a rapid response
when dangerous situations occur, such as falling or fainting. The assessment of key factors
such as the physical and cognitive functions of the elderly may also help adapt the system
response to, for example, the level of fall risk [7].

The advances in the Internet of Things (IoT), Information and Communication Tech-
nologies (ICT), and System-On-Module (SoM) devices have enabled the development of
Cyber–Physical Systems (CPS) which, in turn, facilitate cost-efficient e-Health solutions
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for diverse needs [8,9]. The integration of Artificial Intelligence (AI) with CPS has led to
Ambient Assisted Living (AAL) solutions that reduce healthcare costs while improving
patients’ quality of life [10,11]. CPS interconnects distributed elements of the physical world
with software components to provide responses to changing environments [12,13]. In our
case, these elements are edge processing nodes connected to cameras that are embedded in
efficient devices. CPSs provide substantial advantages to AAL systems such as scalability,
enabling the automatic deployment of multiple processing nodes in a distributed manner,
or adaptation, optimizing the resource usage and delivering highly accurate predictions
while providing rapid response to dynamic real-world scenarios [14].

Distributed edge-cloud computing takes advantage of the benefits of local processing
by bringing computation closer to the users and sources of data. The edge-cloud paradigm
contributes to reducing latency and bandwidth usage via edge processing while enabling
increased computational capacity through cloud computing [15]. In general, these edge-
cloud approaches use local nodes, which are resource-limited devices that are able to
run efficient AI solutions on low-power budgets. At the same time, Edge Computing
(EC) inherently ensures privacy by not transmitting any raw sensitive data out of the
local network [16]. Nevertheless, the analysis of local non-sensitive information such
as accuracy, prediction confidence, or hardware qualities from edge nodes favors global
decision-making [17]. Quality and Resource Management (QRM) tools are indeed in charge
of these monitoring purposes. QRM tools also perform the analysis of all these parameters
for the efficient orchestration of the available computing resources [14,18], optimizing the
overall system qualities [11]. This is the approach we follow for our distributed edge-cloud
systems, with the exception of the integration of the central server in the local network, so
data never leave this network.

Recent advances in AI, and specifically in Deep Learning (DL), have enabled the devel-
opment of edge-cloud AAL solutions [19,20]. Human Activity Recognition (HAR) is a pow-
erful example that classifies human actions analyzing data from different sources [21,22]:
sensor-based HAR uses smart devices such as smart wristbands, inertial sensors, or radio-
frequency-based devices especially for real-world healthcare applications [23,24]; video-
based HAR uses RGB video data [25]. One of the benefits of video-based methods is that
they are less intrusive and easier to adopt, as older people are sometimes reluctant to wear
any smart device.

Current DL solutions using video achieve state-of-the-art accuracy for action recogni-
tion thanks to 3D convolutional layers that extract spatio-temporal patterns [25]. However,
these large models are computationally expensive, with the undesirable effect of increasing
inference time, using lots of computational resources, and thus resulting in high power con-
sumption. One of the most popular techniques for facilitating the deployment of accurate
and efficient DL models on resource-limited devices for real-time inference is knowledge
distillation. Briefly, distillation manages to transfer the knowledge acquired by a complex
and accurate DL solution to a more efficient and simpler architecture [26]. The result is a
new solution that reduces inference time at the edge node while achieving high accuracy
by leveraging the knowledge of the complex model distilled for the simpler architecture.
This process can even help reduce the amount of input data streams (e.g., in multimodal
or multi-signal solutions) that need to be processed at inference time with minimal loss in
accuracy, resulting in a more efficient architecture [24,27]. In this work, we propose the
application of knowledge distillation to reduce computational complexity of Deep Learning
networks while simultaneously maintaining the recognition performance [28].

On the other hand, diverse and representative datasets are fundamental for HAR [29]
and, generally speaking, for DL solutions that are very data-dependent [30]. In fact, there
are several popular action video datasets for enabling the development of DL-based action
recognition solutions [29,31,32]. These large-scale datasets represent a wide variety of
human actions. However, they suffer from issues that pose a burden to indoor action
recognition with, e.g., samples with noisy labels, affected by severe camera motion, or
significant motion blur. This is particularly relevant when, as in our case, the actions
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to be recognized are a subset of the whole dataset. In order to overcome this problem,
we introduce the Indoor Action Dataset that contains daily life activities only in indoor
scenarios, with sample recordings that specifically avoid artifacts such as motion blur.

This work proposes an efficient IoT-based edge-cloud CPS for indoor monitoring of
a long-term care facility whose core is a set of local nodes distributed in different rooms.
These nodes run optimized and distilled Deep Learning (DL) networks—enabling AI on
the edge—to recognize actions from video streams. The system overview is depicted
in Figure 1. The overall aim of the system is to alleviate the burden of healthcare costs
of these institutions (e.g., nursing homes) while improving the quality of life of their
residents. Leveraging Edge Intelligence (EI), in the proposed solution, residents in every
room in the long-term care institution are kept under observation using smart vision edge
nodes. At the same time, orchestration and monitoring are performed by a Quality and
Resource Management (QRM) tool that runs on a central server. Firstly, this QRM tool
monitors node- and system-level qualities such as energy consumption, temperature, or
time performance, and also the overall prediction confidence of the system. By monitoring
the action confidence, the QRM tool is able to trigger an alarm to provide rapid assistance
as soon as a critical situation is detected. Secondly, the QRM tool orchestrates the optimal
use of the limited computational resources distributing computation among the nodes
using an Adaptive Load Balancing [33] approach that also must ensure real-time operation
while avoiding overloading of particular nodes.

Figure 1. System overview. Cyber–Physical System for efficient indoor activity monitoring. The
solution is an edge-cloud platform with: (1) Distributed cameras in the residents’ rooms; edge
nodes locally run Deep Learning pipelines for action recognition on the videos, via distilled models.
Local nodes are low-powered System-On-Module (SoM) devices with integrated GPUs designed for
running machine learning solutions. Distillation is used to improve the efficiency of the solutions
given the limited computational capacity of the nodes and provides good recognition accuracy.
And (2) The central server collects action predictions from the edge nodes and system qualities
through the Quality and Resource Management platform ThingsBoard; the central server also triggers
reconfiguration commands to balance the load between the processing nodes to ensure real-time
operation. In the figure, room background colors indicate the resident’s potential risk of falling (green,
yellow, and red) according to their pathologies.

Eventually, one of the potential aims of this system is to foster healthy and active lifestyles:
the continuous monitoring of indoor actions will be the basis for a future system that reports
data to healthcare professionals and provides guidelines for personalized activities.

A key technological challenge is the integration of the aforementioned components
into a unique system. However, other tasks such as model architecture selection, model
optimization, deployment on the edge for real-time operation, runtime quality, and resource
monitoring and management, are also relevant aspects of this work. This integration allows
an efficient distributed CPS for action recognition that optimizes the use of limited resources.
Bear in mind that model optimization plays a crucial role in the system. Model optimization
via knowledge distillation enables the deployment of more accurate and efficient networks
at the edge. Moreover, distillation allows us to obtain efficient models to monitor multiple
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rooms on a single node while maintaining accuracy comparable to non-distilled resource-
intensive solutions.

Briefly, our main contributions are:

• The optimization of Deep Learning models via distillation to achieve efficient and
more accurate edge processing nodes while minimizing inference time by transferring
knowledge from more complex and even multimodal neural networks.

• The efficient orchestration of the computational resources on the edge addressed by the
QRM tool. It distributes processing among the local nodes following a Resource-based
adaptive load balancing approach [33,34].

• The Indoor Action Dataset (https://github.com/DaniDeniz/IndoorActionDataset,
accessed on 2 October 2024) includes recordings of several common scenes for indoor
daily life activities, a valuable resource for others working on action recognition.

• A distributed CPS for efficient action recognition that ensures real-time performance
(for up to 250 fps) on the edge and overall resource optimization.

This work is organized as follows: in Section 2, we review existing approaches for
action recognition, highlighting the need for optimizing complex architectures for deploy-
ment on resource-constrained devices. Then, Section 3 provides a detailed overview of
the proposed system’s architecture, focusing on edge AI models optimized via knowledge
distillation, and the introduction of a Quality and Resource Management (QRM) tool for
efficient resource orchestration. Next, in Section 4, we present performance metrics of the
neural network models, demonstrating real-time operation and resource efficiency at the
edge. Subsequently, Section 5 illustrates the system’s practical application, showcasing
how resource-efficient orchestration makes the most of limited computational resources.
Finally, in the Conclusion, we summarize our contributions and explore future directions
for this work.

2. Related Methods

As mentioned before, we focus on video-based solutions, since they provide the best
results in terms of accuracy [21,35]. Deep Learning has improved the performance of
Human Activity Recognition (HAR) compared to classic solutions based on hand-crafted
features [36].

Recent Deep Learning works that apply 3D Convolutional Neural Networks (3D-
ConvNets) obtain significant improvements in recognition performance [31] with respect to
previous approaches based on neural networks with memory, such as Recurrent Convolu-
tional Networks [37]. In both cases, network models try to capture the temporal evolution
of the action to perform classification. In addition, in recent years, some works have
introduced Transformer-based action recognition solutions, such as UniFormerV2 [38], Ze-
roI2V [39], OnmiVec [40], or VideoMAEv2 [41]. However, despite that, these architectures
achieve state-of-the-art evaluation performance in different action recognition datasets,
their computational complexity is significantly high with up to more than 1 billion pa-
rameters [41]. This makes these alternatives very costly to train and fine-tune, given their
large number of parameters. On the other hand, another architecture that offers accuracy
comparable with current state-of-the-art solutions with less than 25 million parameters is
the TwoStream Network [31] (see Figure 2).

The TwoStream Network comprises two parts: a first 3D-ConvNet stream that pro-
cesses RGB raw data, and a second 3D-ConvNet stream that learns from pre-computed
motion cues (estimated using the Optical Flow TV-L1 method). The Optical Flow estimates
describe the 2D motion between consecutive frames in terms of the speed and the direction
of the pixels in the scene. In our case, with a fixed camera, motion cues mainly come from
the subjects. Later on, the outputs from both streams are combined for the final prediction.
Despite being state-of-the-art in terms of accuracy, this model is also a very complex ar-
chitecture that demands a huge amount of computational resources. Its complexity poses
an obstacle to achieving real-time performance for action recognition on local nodes with
limited resources.

https://github.com/DaniDeniz/IndoorActionDataset
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Figure 2. Comparison of accuracy vs. model size in terms of number of parameters of state-
of-the-art video action classification solutions on the UCF-101 [32] and HMDB-51 [42] datasets.
The best variants (such as VideoMAE, with 1 billion parameters) offer the best evaluation results.
However, much lighter alternatives, such as TwoStream I3D, offer comparable results at much lower
computational cost, with around only 25 million parameters. Numbers shown in this figure are
retrieved from [31,39,41,43].

Simpler 3D-ConvNets architectures, such as RGBI3D [31] or S3DG [43], implement
action recognition solutions on the node, providing real-time operation. The RGBI3D [31]
is the DL architecture used for processing the RGB information in the TwoStream Network.
It is an inflated 3D version of the Inceptionv1 [44] model. This model, comprising stacked
Inception blocks, uses convolutions of different sizes to reduce computation and increase
the depth and width of the architecture. The S3DG is a model that replicates the RGBI3D
architecture, but includes cost-effective designs based on temporally separable convolutions
with spatio-temporal feature gating [43]. This results in a model with fewer parameters and
computationally more efficient that captures dependencies between feature channels [43].
Figure 3 shows the architecture of the Inception blocks of the RGBI3D and S3DG models,
and the procedure for the spatio-temporal feature gating (Gating 3D) operation.

The evolution and advances in the field of DL have led to the development of accurate
and unwieldy architectures, generally with millions of parameters used to process the
input data doing successive transformations to provide a prediction [44]. However, it
poses a challenge to deploy large DL models in devices with limited resources, such as
mobile phones or embedded systems, due to their computational complexity and memory
requirements [26]. Therefore, model optimization for embedded processing plays a crucial
role in enabling the deployment of accurate and computational efficient solutions on the
edge. For example, authors in [45] present HAR-SANet, an approach that uses model
optimization techniques such as convolution factorization or quantization to reduce the
computational complexity and thus, to speed up inference on low-power devices, meeting
real-time performance. In short, model optimization strategies are essential to speed up
inference of large models on the edge [45,46].

To ease this burden, different model compression and acceleration techniques, such
as quantization [47], low-rank factorization [48], or knowledge distillation [28], were
introduced. Quantization techniques consist of converting network parameter values from
floating-points into integers, reducing the complexity of operations, but also the algorithmic
precision. This method reduces memory footprint and inference overhead at the expense of
losing some accuracy [49,50]. Low-rank factorization, on the other hand, aims to minimize
the number of network parameters through Singular Value Decomposition. As a result,
computing is less demanding on the edge. However, it also impacts accuracy negatively [51].
Knowledge distillation is one of the most popular techniques for enabling the deployment
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of accurate and efficient DL models with real-time performance on low-power devices. For
example, ref. [52] relies on knowledge distillation for producing accurate and lightweight
models for visual positioning that run onboard Unmanned Aerial Vehicles with limited
resources. Another example is described in [53]: an efficient human pose estimation
model that achieves real-time operation on low-power embedded devices. Finally, ref. [54]
developed a fast and accurate depth estimation module based on knowledge distillation
that runs on mobile phones. One of the benefits of knowledge distillation compared to other
alternatives is that it compresses the model without compromising evaluation performance
in a non-architecture-dependent way [55]. This means that, for example, an ensemble of
large models with multimodal inputs can distill knowledge to a single architecture such as
a MobileNet [56]. Finally, regarding action recognition, the S3DG Distilled Network was
introduced in [57]. It focuses on improving evaluation performance using limited resources
and it is one of the baselines for our evaluation.

Figure 3. (a) Inception block of the RGBI3D [31] architecture, an inflated 3D version of the Incep-
tionv1 [44]. (b) Inception block of S3DG [43] network using temporally separable convolutions and
spatio-temporal feature gating (Gating 3D). Note how the spatio-temporal filters with 3 × 3 × 3
kernels from the RGBI3D are split into two convolutions with a spatial (1 × 3 × 3) and a temporal
(3 × 1 × 1) filter. These filters are computationally more efficient because they compute fewer floating-
point operations compared to the spatio-temporal convolution. On the right, the spatio-temporal
feature gating operation is shown. This operation is used for capturing dependencies between
feature channels.

3. Efficient Distributed CPS for Indoor Action Monitoring

Our system is designed to be deployed in long-term care institutions, such as nursing
homes, although it can be easily adapted to hospitals or other residential facilities.

The hardware components of this solution are:

• A set of integrated video processing nodes running on a low budget Jetson Nano
System-on-Module (SoM), which is an integrated and miniaturized full system. These
are embedded modules equipped with a cost-efficient GPU that is capable of executing
machine learning solutions in real time on low-power budgets.

• A central server (Jetson Xavier SoM) that monitors and collects data from the local
edge nodes thanks to a QRM tool. The QRM tool orchestrates computing resources
using a load balancing tool to efficiently distribute video processing among the edge
nodes. Runtime monitoring and reconfiguration also enable the ability to trigger
alarms in case of critical situations, such as the fall of a resident.

As shown in Figure 1, the plan is to deploy the system on a residential care home. All
local processing nodes and the central server are located inside the facility and data are
not to be shared out of the local network due to the sensitive nature of the information.
For the final deployment, processing nodes are decoupled from cameras, and a resource
management module will ensure the efficient use of resources, processing multiple video
feeds at the same edge device. Additionally, note that every room in Figure 1 has a different
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background color: green, yellow, or red. Based on an assessment of the cognitive and
physical state of the resident conducted by a healthcare professional, this color indicates
the resident’s fall risk: low-, mid-, and high-level, respectively [7]. The value in the scale
determines the likelihood of suffering falls and thus, in our case, determines the analysis
to be performed in order to optimize the use of computing resources and ensure the best
care of the resident. For example, Alzheimer’s patients are known to wander off at night,
and thus their risk should be rated as high (red). The module in charge will take this into
account and perform the most accurate recognition to robustly detect falls and prevent any
further dangerous consequences.

The objective of our efficient distributed CPS can be formulated as the optimization in
Equation (1), aiming to finding a system configuration that minimizes the objective,

min

α ∑
i

∑
j

Cij · xij + β

(
Pmin −

∑i ∑j Pij · xij

∑i ∑j xij

)2
 (1)

subject to ∑
j

Cij · xij ≤ Ri (2)

where Ri is the total computational capacity of the hardware resource i, and Cij is the
computational load of the model j in the hardware resource i. Moreover, Pmin is the
minimum evaluation performance required for the models in each case (in our case, it
is set to 1) and Pij ∈ [0, 1] is the evaluation performance of the model j in the hardware
resource i. Finally, xij is a binary variable that indicates if the model j is executed in the
hardware resource i. We also set a constraint to ensure that the total computational load of
all the models running on a particular resource i, do not exceed the computational capacity
available on hardware resource i. α and β are the weights that let us modulate the total
importance of the computational load and the evaluation performance of the models used
for the action monitoring.

In the next subsections, we first explain the different models for indoor action monitor-
ing, the distillation techniques to optimize these computationally intensive DL models, the
Quality and Resource Management module that takes care of resource orchestration, and
its policy for triggering reconfiguration when the system requires more accurate inference
or confirmation of a critical action such as a fall.

3.1. Indoor Action Recognition

Firstly, we designed a TwoStream version of the S3DG network [57], analyzing RGB
data and motion cues for indoor action recognition. This alternative achieves high recogni-
tion performance, but it is also computationally intensive.

For this reason, we choose efficient DL architectures that achieve reasonable accuracy
but with lower computational budget. We also adapted the DL models for processing
a reduced temporal and spatial resolution with respect to the original ones; the spatial
downsampling of the inputs drastically reduces the resources needed to run an inference
at the expense of retraining. Specifically, 3D-ConvNets models based on the RGBI3D [31]
and S3DG [57] networks were selected and adapted in this way for the final deployment at
the edge.

3.2. Distillation

Through distillation, it is possible to transfer the knowledge extracted by larger models
or, as in our case, by an ensemble of individually trained models (using RGB images and
motion cues) to a single simpler neural architecture [28]. Distilled models are trained on a
dataset, and then a soft target distribution is employed, using as reference the cumbersome
model with a high temperature in its softmax. The softmax function transforms the model
raw prediction into a probability distribution with values that sum up 1. Equation (3)
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shows the softmax function, where z are the raw unnormalized outputs of the model and τ
is the temperature.

qi =
exp(zi/τ)

∑j exp(zj/τ)
(3)

The standard softmax function uses τ = 1. For distillation, higher temperature values
are set to obtain targets with a softer distribution. Softer targets provide information about
the inter-class relationships, which is useful to make the model learn how to generalize [28].

We expect to improve the recognition performance of the DL models using our Indoor
Action Dataset through knowledge distillation [28]. We select the most powerful architec-
ture (TwoStream) as the Teacher, and the Students that are efficient DL architectures with
sampled inputs.

For distillation, the next steps were followed: (1) Input data are augmented with
operations such as random rotation, resizing, or cropping; (2) the Teacher and Student
networks are fed with the same input data, (although the Student input is downsampled);
(3) the distillation loss (LKL) is computed using Kullback–Leibler divergence [58] to evaluate
the difference between the probability distribution of predictions between the Teacher and
the Student; (4) the student cross-entropy loss (LCE) with respect to the sample label is also
computed; (5) the final loss (see Equation (4)) is obtained combining the losses computed
in steps 3 and 4 setting λ = 0.1 to weigh the contribution of LKL (90%) and LCE (10%) to
the global loss. In Equation (4), τ refers to the temperature, ψ to the softmax function, Zs
and Zt are respectively the student and teacher predictions, and y stands for the true label
of the sample. Hence, the Student is optimized primarily to match the predictions of the
Teacher; and (6) back-propagation is applied on the Student to minimize Lglobal .

Lglobal = (1 − λ)LKL(ψ(Zs/τ), ψ(Zt/τ)) + λLCE(ψ(Zs), y) (4)

Note also that every model is distilled using the temperature values τ ∈ [1, 9]. High
temperature values help to extract information about the inter-class relationships. This is
useful for transferring how the Teacher tends to generalize.

Figure 4 shows an overview of the approach followed to distill the knowledge from
the multimodal TwoStream architecture that uses RGB and motion cues, to more efficient
DL models that use lower-resolution RGB data. Sampling the input size negatively impacts
the baseline accuracy but also reduces the amount of floating-point operations (FLOPS)
required to perform an inference. This is fundamental for embedding more efficient DL
models that achieve lower inference times while maintaining recognition performance.

Figure 4. Distillation architecture example. We use the most complex and accurate alternative
(TwoStream network) as a Teacher. Then, we select a Student, which is more efficient and receives a
similar input with a lower temporal and spatial resolution. We train the Student, taking into account
how different the distribution of its prediction is compared to the Teacher. Note that motion cues are
only required in training and distillation phases to feed the Teacher. Student distilled models are fed
only with RGB videos. Higher temperature (τ) leads to softer distribution between classes.
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3.3. Quality and Resource Management (QRM)

In a resource-constrained environment, it is crucial to optimize the use of computa-
tional resources for running tasks, ensuring real-time operation [59]. Moreover, an adaptive
distributed edge processing approach helps to manage the efficient use of local limited
computational resources for monitoring residents’ daily activities. The decision-making on
how to allocate local devices to the computation to ensure real-time processing is carried
out by the QRM on the central server. The QRM module monitors the action confidence
and node hardware qualities, such as time performance or energy consumption.

Note that, in our case, the DL models are GPU intensive, and their performance is
highly dependent on the computational capacity of the GPU. For this reason, the average
GPU usage, therefore, serves as an indicator of the computational load of the local nodes, as
done in previous works [60,61]. Particularly, the estimated computational load for real-time
execution for each model is pre-calculated offline before deploying the system to avoid the
monitoring overhead. This implies that every machine learning architecture is executed
beforehand at the edge, and the average GPU utilization is monitored for a fixed time (30 s)
while processing a video feed and stored to be checked when the system is running. The
mean GPU usage reflects the estimated computational load for analyzing a particular room
depending on the resident’s risk. From now on, we will refer to this quality simply as the
computational load.

3.3.1. Resource Orchestration

The QRM tool follows a Resource-based Adaptive Load Balancing approach [33]. The
load balancing algorithm distributes video processing favoring the edge node with the
lowest computational load to prevent overloading while guaranteeing real-time operation.
The load balancing method collects computational load information from the local nodes
in a Load Information Table. The computation distribution considers the number of rooms
and the risk level of the residents analyzed by each processing node. A Resource-based
orchestration is followed, and the processing is distributed depending on the resources
available on the local nodes and the computational load of the tasks (see Figure 5). This dy-
namic load balancing method monitors the task allocation periodically to equally distribute
processing across the nodes [34]. The process for dynamic load balancing starts with our
algorithm retrieving a list of the node workloads from the Load Information Table. This
information includes the rooms that each node is processing and the computational load of
each task. Afterwards, the dynamic load balancing monitor evaluates the consequences of
reallocating one of the tasks from the node with the highest workload into the node with
the lowest workload. Job reallocation is done if it minimizes the difference between the
computational load from both nodes.

3.3.2. Runtime Reconfiguration Policy

The model to perform activity analysis depends on each resident’s fall risk. Resource-
intensive but more accurate alternatives are assigned to residents with higher risk. More-
over, when the system detects that no significant action takes place or that a room is empty,
action recognition is turned off, and a simple Motion Detection method is run. The motion
detection component is based on thresholding, and simply computes the absolute differ-
ence of pixel values between two non-consecutive frames. Analyzed frames are separated
by a one-second time interval since the elderly tend to move very slowly, so differences
between the adjacent frames might be subtle. If the absolute value of the sum of differences
is significant, the module considers that there is motion in the scene. According to our
experiments, setting this threshold between 10 and 15% to rate pixel-level differences yields
the best results. This module aims at reducing computation in a simpler way, without
adding significant processing overhead. This simpler estimation greatly reduces resource
usage while still allowing to monitor the room, and running action recognition when
meaningful activity is actually detected.
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Figure 5. Resource-based adaptive load balancing diagram example. The central server gathers
the computational load from the processing nodes, filling in the load information table (center).
Tasks are distributed between edge nodes following a Resource-based approach. This means that
video processing is assigned to the nodes with the lowest computational load to equally distribute
computation among the edge nodes. In the figure, the example shows a new resident room to be
monitored (blue lines, resident #N) and how processing is deployed to edge_node_#1 which, at the
moment, is the node with the lowest workload.

The runtime reconfiguration is carried out to confirm whether a resident might have
suffered a potentially harmful situation. This is addressed by re-analyzing the video using
the most accurate DL alternative to reduce false alarms and improve the recognition of
dangerous situations. This analysis is offloaded to the central server using the most accurate
alternative when the DL model on the node predicts a fall with medium-low confidence.

The QRM follows the policy shown in Figure 6. When a critical situation is not
identified with high confidence on the edge, the video is offloaded to the central server and
re-analyzed with the most accurate model (in this case, Distilled S3DG_64_196) to confirm
whether to trigger an alarm. This runtime reconfiguration contributes to optimizing the
use of resources at the edge while reducing false alarms and improving the recognition of
critical situations, reaching a sensitivity of up to 93.75% and precision above 99% for fall
identification. In addition, the re-analysis of the action looking for confirmation takes less
than 2 s, giving enough time to the caregivers for immediate assistance.

Figure 6. Runtime reconfiguration policy. Action recognition is addressed on the node using the
fittest operating mode to the resident’s risk level. If no activity is detected for more than 30 s, only the
Motion Detector is performed. Furthermore, when the action recognition module on the edge cannot
distinguish properly whether a critical situation occurred, videos are re-analyzed with the most
accurate model, offloading the computation to a more powerful embedded device (Jetson Xavier,
central server). The offloaded task takes less than 2 s, enabling rapid assistance from caregivers.
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4. Discussion and Results

In this section, we first describe the nature of our Indoor Action Dataset, which is
a collection of common indoor daily life activities. Next, we analyze the performance
of several DL architectures for action recognition and compare them with their distilled
alternatives. By distilling the knowledge from complex to simpler and less resource-
intensive architectures, we aim to design a computational- and energy-efficient solution.

Regarding local edges, our NVIDIA Jetson SoM devices run the action recognition
solutions. These power-efficient embedded devices have four ARM microprocessors and a
4GB GPU with 128 CUDA cores. These are miniaturized full systems that are very limited
in terms of computational capabilities compared to high-end GPUs. However, these SoMs
are also optimized for efficient execution as stand-alone platforms in real scenarios.

Models running on local edges are optimized through TensorRT to enhance their
throughput. In particular, their memory footprint and power budgets are reduced by
limiting bitwidths for floating-point operations, fusing kernels and layers, or selecting
the best hyperparameters for convolutional layers. Finally, the Triton Inference Server is
integrated for low-latency deployment of multiple DL alternatives on the edge.

4.1. Indoor Action Dataset

To overcome the lack of quality and representative video data for indoor action
recognition we designed a new dataset, namely the Indoor Action Dataset. This dataset
was built recording samples of an average of 10 min videos with people carrying out indoor
actions. Afterwards, the videos were manually curated, assigned to training, validation
or testing split, and sampled into 3 to 5 s labeled clips. In total, five different subjects
collaborated in the recordings, in a variety of indoor scenarios such as bedrooms, kitchens,
or living rooms.

The dataset includes samples of ten different classes of activities such as cleaning,
eating, sitting down, standing up, blowing the nose, walking, watching tv, as well as
classes that represent potentially risky situations such as falling down or lying on the floor.
Additionally, we included a no-action class with indoor spaces where no activity is carried
out or no person is on the scene. This class is useful to reduce DL models bias from the
scene background. This representative Indoor Action Dataset is limited in terms of the
number of total samples (around 1300) compared to large-scale datasets, but it serves the
purpose of our work. Data are split into training (55%), validation (15%), and testing (30%).
Bear in mind that every clip extracted from each video is assigned to the same split. The
average number of samples per class is 122 (±63σ), although it is imbalanced. We select
a larger proportion of elements for testing than for validation because we aim to retain a
sufficiently large test set to accurately assess the model’s generalization capabilities across
a variety of indoor actions and scenarios, while ensuring adequate representation of classes
for obtaining reliable performance metrics.

We also use a large-scale dataset selecting examples for indoor activities only, from
publicly available datasets: Kinetics [31], Charades [29], STAIR [62], Moments in Time [63],
or UCF-101 [32]. This Heterogeneous Activity Dataset, with more than 14,000 videos, with
an average duration of 10 s, is a refined version of the Combined Indoor Action Video
(CIAV) dataset [11]. Around 75% of clips are assigned to the training split, 10% to the
validation split, and we reserve 15% for testing purposes. The CIAV dataset is manually
curated to avoid feeding the network with erroneous labels and to homogenize action
labels, especially considering that our application focuses only on the recognition of indoor
activities, a small subset of the whole dataset. However, the quality of the data representing
indoor actions is still poor (e.g., some samples suffer from sudden and fast camera motion
or severe motion blurring). Nevertheless, the use of a larger dataset enables generalization,
preventing overfitting.
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4.2. Indoor Action Recognition Evaluation

Several alternatives based on 3D convolutions and Recurrent Convolutional networks
for action recognition are compared in this section. Concretely, we selected the RGBI3D [31]
and S3DG [57] 3D-ConvNets architectures as the baselines for our models. For the sake of
completeness, we have also designed a Recurrent 2D DL model using a 2D convolutional
backbone (MobileNetV2 [56]) trained jointly with a Long Short-Term Memory (LSTM)
layer [64].

4.2.1. Training Procedure

Different configurations for the network architectures (RGBI3D, S3DG, and Recur-
rent2D) were considered with variations in spatial resolution and the temporal dimension.
Specifically, we sampled equally distanced frames, selecting [8, 16, 32, 64] equidistant frames
out of short sequences of 64 frames; also, inputs were sampled at different spatial resolu-
tions [112, 140, 168, 196, 224].

For training, first, every alternative was pre-trained on the large-scale Heterogeneous
Activity Dataset. Next, the resulting model was fine-tuned with the Indoor Action Dataset.
Following this approach helps to take advantage of the knowledge provided by the large-
scale dataset improving the model generalization and thus, it fosters specialization for
actions of interest in our Indoor Action Dataset.

Subsequently, the model alternatives were distilled using a TwoStream network as a
Teacher to improve their recognition performance while maintaining time performance
or resource usage. Note that the TwoStream S3DG network selecting 64 frames with
224 × 224 resolution is used as the Teacher. The TwoStream S3DG is the most complex
model (250 GFlops) and it reaches 89.47 F1-Score, running at less than 7 fps at our edge
nodes, far away from real-time performance (at least 25 fps).

4.2.2. Analysis

We have compared the different models in terms of time performance and accuracy,
using the test set from the Indoor Action Dataset. On the one hand, our accuracy metric
is the macro F1-Score (simply referred as F1-Score from now on). The F1-Score is the
harmonic mean between the precision and the recall per class and, also, it equally weighs
the contribution of each class. On the other hand, the time performance is measured in
frames per second (fps) running the inference on our edge nodes. The computational
requirements of the models in terms of resource usage determine the inference time. More
specifically, lower resource usage also means faster inference (more fps) and lower energy
budgets compared to more computationally complex alternatives that take more time to
perform inference and require higher power consumption.

In particular, Table 1 shows a selection of the distilled architectures and highlights
the percentage improvement in the F1-Score after distillation. Architectures are labeled
in the way ‘model_tmpSampling_spResolution’: where ‘model’ is the model backbone
architecture, ‘tmpSampling’ is the temporal resolution, and ‘spResolution’ the spatial
resolution. For example, RGBI3D_16_112 is a model based on the RGBI3D model which
uses 16 frames (out of 64) of 112 × 112 spatial resolution.

Notably, before distillation, the mean F1-Score was 80.62 ± 6.82, and after distillation,
the average F1-Score improvement reached 3.2%. Although it may seem a marginal
improvement, it significantly varies among the proposed models, reaching up to 8.3%
improvement for RGBI3D_16_112 and 7.1% for S3DG_64_140. More importantly, the
inference time for processing the video feed of 2560 ms (64 frames at 25 fps) does not
increase despite this accuracy improvement.
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Table 1. Distillation improvement on DL architectures (the percentage before ↑ indicates the improve-
ment with respect to the F1-Base).

Architecture Time (ms) F1-Base F1-Distilled

RGBI3D_8_224 401 80.85 84.88 (5.0% ↑)
RGBI3D_16_112 239 76.34 82.65 (8.3% ↑)
RGBI3D_16_224 751 86.16 86.52 (0.4% ↑)
RGBI3D_64_140 1275 85.23 88.06 (3.3% ↑)
RGBI3D_64_168 1804 84.65 87.56 (3.4% ↑)
RGBI3D_64_196 2408 87.67 90.55 (3.3% ↑)

S3DG_8_224 416 84.41 85.63 (1.4% ↑)
S3DG_16_112 256 78.12 79.90 (2.3% ↑)
S3DG_16_224 807 86.55 88.13 (1.8% ↑)
S3DG_64_140 1306 78.56 84.12 (7.1% ↑)
S3DG_64_168 1842 88.18 89.13 (1.1% ↑)
S3DG_64_196 2553 87.04 91.74 (5.4% ↑)

Recurrent2D_8_224 133 75.19 76.64 (1.9% ↑)
Recurrent2D_16_112 96 64.32 66.78 (3.8% ↑)
Recurrent2D_16_224 303 74.98 76.91 (2.6% ↑)
Recurrent2D_64_168 633 71.80 73.16 (2.1% ↑)

For visualization purposes, Figure 7 only shows the most representative models,
considering those with good accuracy vs. time performance trade-offs. The left axis shows
the F1-Score achieved by the DL models (F1-Score before distillation in orange). The red
line denotes the inference time in fps reached by the optimized DL architectures running
on the edge devices (see right axis). Models are shown in the horizontal axis, using stacked
columns that show the F1-Score in orange and the improvement reached after distillation in
blue. Note the efficiency vs. accuracy trade-off for the different models: on the right part of
the figure, models reach the highest accuracy at the expense of higher inference times; the
left part shows models with time performance above 250 fps, but achieving around 10 less
points of F1-Score. In summary, training very accurate alternatives with the maximum
F1-Score has a huge impact in terms of resource usage and time performance. Also bear
in mind that the input size of the DL models (temporal and spatial resolution) directly
impacts accuracy and time performance: lower resolution leads to more efficient (but less
accurate) alternatives.

As for the improvement via distillation, the blue color in columns (also annotated),
shows how much the F1-Score of the DL models is improved through distillation by ac-
quiring knowledge from the TwoStream Teacher network. For example, the F1-Score of the
most efficient network shown is enhanced up to 82.65, an 8% accuracy increase maintaining
inference time. This means that the accuracy gap between the most efficient distilled alter-
native Distilled RGBI3D_16_112 and the most accurate architecture S3DG_64_196 (before
distillation) is reduced from 12 to only 4 F1-Score points. Moreover, the distilled alternative
uses 87% less computational resources (14 vs. 102 GFlops), meaning a 10× reduction in
inference time. In other words, before distillation and comparing these two models, the
RGBI3D_16_112 offer 5.45 points of F1-Score per GFlop. After distillation, this efficient
model offers 8% more points of F1-Score per GFlop, which is significantly higher compared
to the S3DG_64_196 that offer 0.85 F1-Score points per GFlop.

Figure 8 shows the F1-Score vs. inference time on the edge trade-off from the distilled
models. This figure aims to clarify the selection of the fittest models to be deployed on
the edge. One should choose the architectures with higher throughput (lower inference
times) and higher accuracy values. In the figure, these models are highlighted at the top left
(connected by a yellow line): Distilled RGBI3D_16_112, Distilled S3DG_8_224, and Distilled
S3DG_16_224. More accurate models do not allow us to run inference for more than one
resident in real-time in the same edge node and thus, they are not good candidates for
deployment. Running less resource-intensive models enables simultaneously processing
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more than one video stream in the same edge node, optimizing the overall computing
resources of the distributed system. Finally, and despite of the last sentence, we do select
the Distilled S3DG_64_196 model for confirming potentially risky situations, such as falls.
In this case, we require a very accurate (although costly) model to reduce false positives
that will be executed on the central server.

Figure 7. Evaluation performance of the selected alternatives for action recognition. The F1-Score
value is given in the left vertical axis and each stacked column is also annotated with the F1-Score
improvement achieved through distillation (blue). The right vertical axis shows the time performance
on edge devices (fps); models (columns) are ordered from higher to lower time performance from left
to right (red line). For instance, distilled alternatives located in the middle of the horizontal axis offer
great accuracy vs. time performance trade-off. Specifically, models such as Distilled S3DG_16_224
or Distilled RGBI3D_64_140 achieve higher accuracy compared to the most resource-intensive non-
distilled architecture (S3DG_64_196—25 fps), with an F1-Score above 88% and meeting real-time
performance running at 79 and 50 fps respectively.

Figure 8. F1-Score vs. inference time trade-off from distilled student models. The inference time
in milliseconds indicates the time required to perform an inference for a sample clip of 2560 ms
(64 frames at 25 fps) on the edge node. In the chart, one should look for models with high throughput
(lower inference times) and high F1-Score values. Therefore, for the final system deployment we
select the alternatives located on the top left side of the figure (the front connected by a yellow line),
because they provide a better F1-Score vs. resource usage trade-off.
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4.3. Distributed Edge Processing

Briefly, analyzing the residents’ habits through distributed local processing offers several
advantages such as efficient processing and real-time execution, privacy protection, bandwidth
usage, and cost reduction compared to using high-end expensive cluster platforms.

As mentioned before, the proposed system uses the selected distilled models in Table 2,
where the models for low-, mid-, and high-level fall risk residents are described. The
characterization includes the average F1-Score, the computational load, and the F1-Score
for falling down, a critical action for our system. Note how the model assigned to residents
with higher risk offers better F1-Score value for the class ‘falling down’.

Table 2. Computational load in Jetson Nano.

DL Model Fall Risk F1-Score F1-Score Comp. Load
Fall Down Avg.

RGBI3D_16_112 low-level 90.32 82.65 10%
S3DG_8_224 mid-level 93.33 85.63 17%
S3DG_16_224 high-level 96.77 88.13 32%

Motion Detector - - - 3%

To assess the generalization capabilities of the selected solutions, we also evaluated
the distilled models training on the Indoor Action Dataset and testing on other public
datasets. This allows us to test on unseen residents and rooms, and assess how the models
perform under special circumstances like blur, haze, or bad lighting conditions. Evaluation
is carried out by selecting the test samples from classes that match the activities that our
solution is designed to classify. Specifically, the test set comprises 668 and 214 samples from
Kinetics and Fall Dataset respectively. Table 3 shows that the alternative that re-analyzes
critical situations reaches up to 90% F1-Score on the public Fall Detection dataset. For
reference, we include in this table the evaluation performance obtained from a state-of-the-
art Transformer-based architecture, UniFormerV2-L14 [38]. This model, with more than
350 million parameters only pre-trained in Kinetics-600, achieves very good evaluation
results on the subset of the Kinetics test set. However, this architecture can only capture a
subset of 5 out of 10 the indoor actions that our models are trained with. Note also how
our solutions, with less than only 12 million parameters each and fine-tuned on the Indoor
Action Dataset, offer reasonable levels of accuracy on datasets with artifacts or challenging
scenarios as shown for Kinetics. Models that perform well on our dataset also demonstrate
higher evaluation metric scores on the other datasets.

Table 3. Models tested on public datasets.

Model Fine-Tuned Distilled Fall Detection [65] Kinetics-600 [31]
F1-Score F1-Score

UniFormerV2-L14 [38] ✗ ✗ - 97.66%

RGBI3D_16_112 ✓ ✓ 81.51% 64.53%
S3DG_8_224 ✓ ✓ 76.28% 74.14%
S3DG_16_224 ✓ ✓ 85.75% 78.95%
S3DG_64_196 ✓ ✓ 89.95% 80.62%

Finally, Figure 9 shows the results using the Distilled RGBI3D_16_112 model for low-
risk residents: for the fall, the model is not able to reach an acceptable confidence. However,
the model for high-risk residents achieves 97% confidence for that sample.



Electronics 2024, 13, 4786 16 of 21

Figure 9. Prediction confidence for the Distilled RGBI3D_16_112 network over four test samples
from Indoor Action Dataset: sitting down, walking, watching tv, and falling down. The Distilled
RGBI3D_16_112 model is not able to classify the fall with good confidence. Therefore, a reconfigura-
tion will be triggered to confirm what really occurred. Bear also in mind that, for this same sample,
the model assigned for monitoring residents with high-level fall risk (Distilled S3DG_16_224) directly
identifies that the person suffered a fall with a confidence that is higher than 97%.

5. Use Case: Monitoring Residents in a Long-Term Care Institution

In this section, we study the benefits of the proposed solution for monitoring residents
in a long-term care institution. We focus our analysis on the contribution of the QRM
tool for the design of a computationally efficient and accurate solution. We validate our
edge-cloud system considering its deployment on the nursing home shown in Figure 1.

Our final objective is to minimize the number of processing nodes while maintaining
the maximum possible accuracy for the activity monitoring. Our model optimization and
the adaptive distributed processing allow multiple rooms to be monitored using a single
edge node. Next, each room is analyzed using the DL model assigned to the risk of the
resident (see again Figure 6). When inference confidence is low, runtime reconfiguration is
activated, running the most accurate model (Distilled S3DG_64_196) to determine whether
to trigger an alarm for a fall or dismiss it as a false positive. The adaptive load balancing
tool running at the QRM module on the central server guarantees real-time processing
without overloading any specific node.

For the scenario in Figure 1, we have eight rooms to be monitored: three with low-level
risk residents, two with mid-level risk residents, and three with high-level fall risk residents.
Taking into account the proposed optimization in Equation (1), let us discuss the different
possible scenarios:

1. Non-distilled models are deployed. The system monitors every resident with the
S3DG_64_168 model that offers similar recognition performance as the distilled model
assigned for high-risk. However, running this non-distilled model on the node results
in 72% of computational load. This configuration requires eight edge nodes (one node
per room) to run this configuration.

2. Distilled models are deployed but no QRM module is integrated. All residents are
monitored using the distilled S3DG_16_224 DL model and running this model on the
node results in 32% computational load. This configuration requires three edge nodes.

3. Distilled models are deployed but no QRM module is integrated. All residents are
monitored using the distilled RGBI3D_16_112 DL model and running this model on
the node results in just 10% computational load. The configuration only requires one
edge node.

4. The system uses distilled models and the QRM module is integrated. A different
model is assigned to each resident according to their risk of falling (see Table 2). Only
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two nodes are required to run this configuration, resulting in the best alternative
considering the accuracy vs. required edge nodes trade-off.

In Table 4, we show a comparison of how optimal each system configuration is, again
using the optimization in Equation (1). The table shows the scenarios along with their
average accuracy (F1-Score), the number of edge processors they use, and the optimization
value shown in the last column (lower values are better). We use α to weigh how reducing
the total computational load consumed by the models impacts the optimization, and β to
weigh the evaluation performance that the solution offers (in our case, α = 0.15, β = 5).

Table 4. Analysis of system configuration in different scenarios.

Scenario Distilled Models QRM F1-Score ↑ # Edge ↓ Optimization ↓

1 ✗ ✗ 88.18 8 1.4549
2 ✓ ✗ 88.13 3 0.9775
3 ✓ ✗ 82.65 1 0.9875
4 ✓ ✓ 85.45 2 0.9675

Bolded values represent the best-performing configuration. Arrows next to metrics indicate optimization
direction: ↑ denotes that a higher value is better, while ↓ denotes that a lower value is better.

First, we observe how using distilled models is crucial to significantly improve the
system optimal configuration (Scenario#1 vs. Scenario#2) by reducing the number of
edge nodes from eight to only three, with very limited loss in evaluation performance.
Finally, our proposal (Scenario#4) that uses distilled models that integrates the QRM tool
and assigns a different model to each resident based on their risk of falling, leads to the
best result in the optimization (minimum). This alternative offers the best evaluation
performance vs. resource usage trade-off, requiring only two nodes that also guarantee
real-time processing (see also Figure 10): edge_node#1 analyzes three low-level, one mid-
level, and one high-level fall risk residents (amounting to 10 + 10 + 10 + 17 + 32 = 79% of
computational load); and edge_node#2 takes care of video streams from one mid-level, and
two high-level fall risk residents (17 + 32 + 32 = 81%). Eventually, if a new resident needs
to be monitored, it will be assigned to edge_node#1, the node with the lowest workload.

Note that this adaptive distributed system is highly scalable. New rooms to be moni-
tored can be easily added without the need of deploying more processing nodes or ad-hoc
networks, until the edge processing nodes reach their maximum computational capacity.

Figure 10. Computational load for the optimal configuration of the edge devices analyzing different
residents of the nursing home in Figure 1. Edge_node#1 analyses residents from rooms 1, 2, 3, 4,
and 7. Edge_node#2 processes the cameras from rooms 5, 6, and 8. The load balancing algorithm
distributes processing among edge nodes dynamically. If a new room needs to be analyzed, it will
be automatically assigned to the least loaded node. Bear in mind that the adaptive load balancing
tool also continuously monitors the task allocation to equally distribute processing across nodes as
described in Section 3.3.
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6. Conclusions

In this work, we presented an optimized edge-cloud system for activity monitoring
using knowledge distillation. We propose an efficient CPS for indoor action monitoring to
be deployed in facilities such as nursing homes, providing better care for residents while
reducing long-term care costs via edge intelligence.

Edge Computing enables efficient activity recognition, real-time execution, and pri-
vacy preservation. However, local processing devices are also very limited in resources.
Therefore, it is crucial to optimize the DL architectures to embed them on the edge devices,
enabling AI on them. We prove how the distillation of knowledge from more complex
neural architectures improves accuracy of efficient models, while maintaining run-time
operation. Also, it offers accuracy on par with models that require up to 10x more resources.
Specifically, distilling from an ensemble of multimodal streams improves the F1-Score
of one of the most computationally efficient models (Distilled RGBI3D_16_112) by 8.3%
(reaching up to 82.65%) while performing inference at more than 250 fps.

The overall optimization of the system is addressed by the QRM tool that runs on
the central server. Most importantly, the QRM tool that monitors node- and system-level
qualities also carries out runtime reconfiguration to optimize the resources on the node
and improve the recognition of falls for up to 4% (from 93.06% to 96.77%, a very relevant
increase considering the critical nature of this action). In our case, the QRM also runs a
resource-based adaptive load balancing algorithm that performs the runtime distribution
of computation among the available nodes, preventing overloading while guaranteeing
real-time operation.

Our edge-cloud system integrates the aforementioned components with the focus on
leveraging an accurate and resource-efficient solution. In particular, the integration of these
modules reduces up to 75% the computational budget required to deploy the system, and
consequently also reducing the hardware cost: in our use case scenario, the initial system
without QRM requires eight edge devices and the last one only two.

Moreover, we are releasing our Indoor Action Dataset in an effort to foster research
for these indoor monitoring systems.

As future work, we plan to build a system that provides guidelines for activities and
reports data to healthcare professionals based on the continuous monitoring of indoor
actions for promoting healthy lifestyles.
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11. Deniz, D.; Isern, J.; Solanti, J.; Jääskeläinen, P.; Hnětynka, P.; Bulej, L.; Ros, E.; Barranco, F. Efficient reconfigurable CPS for
monitoring the elderly at home via Deep Learning. Eng. Appl. Artif. Intell. 2022, in press.

12. Deniz, D.; Barranco, F.; Isern, J.; Ros, E. Reconfigurable cyber-physical system for lifestyle video-monitoring via deep learning. In
Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna,
Austria, 8–11 September 2020; IEEE: New York, NY, USA, 2020; Volume 1, pp. 1705–1712.

13. Isern, J.; Barranco, F.; Deniz, D.; Lesonen, J.; Hannuksela, J.; Carrillo, R.R. Reconfigurable cyber-physical system for critical
infrastructure protection in smart cities via smart video-surveillance. Pattern Recognit. Lett. 2020, 140, 303–309. [CrossRef]

14. Sau, C.; Rinaldi, C.; Pomante, L.; Palumbo, F.; Valente, G.; Fanni, T.; Martinez, M.; van der Linden, F.; Basten, T.; Geilen, M.;
et al. Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis
ECSEL Project. Microprocess. Microsyst. 2021, 87, 104350. [CrossRef]

15. Maheshwari, S.; Raychaudhuri, D.; Seskar, I.; Bronzino, F. Scalability and performance evaluation of edge cloud systems for
latency constrained applications. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA,
USA, 25–27 October 2018; IEEE: New York, NY, USA, 2018; pp. 286–299.

16. Faliagka, E.; Skarmintzos, V.; Panagiotou, C.; Syrimpeis, V.; Antonopoulos, C.P.; Voros, N. Leveraging Edge Computing ML
Model Implementation and IoT Paradigm towards Reliable Postoperative Rehabilitation Monitoring. Electronics 2023, 12, 3375.
[CrossRef]

17. Cao, K.; Hu, S.; Shi, Y.; Colombo, A.W.; Karnouskos, S.; Li, X. A survey on edge and edge-cloud computing assisted cyber-physical
systems. IEEE Trans. Ind. Inform. 2021, 17, 7806–7819. [CrossRef]

18. Shekhar, S.; Gokhale, A. Dynamic resource management across cloud-edge resources for performance-sensitive applications. In
Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid,
Spain, 14–17 May 2017; IEEE: New York, NY, USA, 2017; pp. 707–710.

19. Patel, A.D.; Shah, J.H. Performance analysis of supervised machine learning algorithms to recognize human activity in ambient
assisted living environment. In Proceedings of the 2019 IEEE 16th India Council International Conference (INDICON), Rajkot,
India, 13–15 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–4.

20. Ardito, C.; Di Noia, T.; Di Sciascio, E.; Lofú, D.; Mallardi, G.; Pomo, C.; Vitulano, F. Towards a trustworthy patient home-care
thanks to an edge-node infrastructure. In Proceedings of the HCSE 2020—8th IFIP WG 13.2 International Working Conference,
Eindhoven, The Netherlands, 30 November–2 December 2020; Springer: New York, NY, USA, 2020; pp. 181–189.

21. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition:
A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

22. Qiu, S.; Fan, T.; Jiang, J.; Wang, Z.; Wang, Y.; Xu, J.; Sun, T.; Jiang, N. A novel two-level interactive action recognition model based
on inertial data fusion. Inf. Sci. 2023, 633, 264–279. [CrossRef]

https://stats.oecd.org/Index.aspx?DatasetCode=HEALTH_STAT
http://doi.org/10.3233/NHA-170039
http://dx.doi.org/10.1186/s13643-020-01385-8
http://dx.doi.org/10.15585/mmwr.mm6537a2
http://www.ncbi.nlm.nih.gov/pubmed/27656914
http://dx.doi.org/10.1007/s00779-018-01196-8
http://dx.doi.org/10.1016/S0140-6736(05)67604-0
http://dx.doi.org/10.3390/electronics12163449
http://dx.doi.org/10.3390/info14070388
http://dx.doi.org/10.3390/s20144005
http://dx.doi.org/10.1016/j.patrec.2020.11.004
http://dx.doi.org/10.1016/j.micpro.2021.104350
http://dx.doi.org/10.3390/electronics12163375
http://dx.doi.org/10.1109/TII.2021.3073066
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1016/j.ins.2023.03.058


Electronics 2024, 13, 4786 20 of 21

23. Hegde, N.; Bries, M.; Swibas, T.; Melanson, E.; Sazonov, E. Automatic recognition of activities of daily living utilizing insole-based
and wrist-worn wearable sensors. IEEE J. Biomed. Health Inform. 2017, 22, 979–988. [CrossRef] [PubMed]

24. Mardanpour, M.; Sepahvand, M.; Abdali-Mohammadi, F.; Nikouei, M.; Sarabi, H. Human activity recognition based on multiple
inertial sensors through feature-based knowledge distillation paradigm. Inf. Sci. 2023, 640, 119073. [CrossRef]

25. Chen, C.F.R.; Panda, R.; Ramakrishnan, K.; Feris, R.; Cohn, J.; Oliva, A.; Fan, Q. Deep analysis of cnn-based spatio-temporal
representations for action recognition. In Proceedings of the IEEE Conference on CVPR, Nashville, TN, USA, 20–25 June 2021;
pp. 6165–6175.

26. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
27. Sepahvand, M.; Abdali-Mohammadi, F. A novel method for reducing arrhythmia classification from 12-lead ECG signals to

single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation. Inf. Sci. 2022, 593, 64–77.
[CrossRef]

28. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
29. Sigurdsson, G.A.; Varol, G.; Wang, X.; Farhadi, A.; Laptev, I.; Gupta, A. Hollywood in homes: Crowdsourcing data collection

for activity understanding. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; Springer: New York, NY, USA, 2016; pp. 510–526.

30. Challa, H.; Niu, N.; Johnson, R. Faulty requirements made valuable: On the role of data quality in deep learning. In Proceedings
of the 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), Zurich,
Switzerland, 1 September 2020; IEEE: New York, NY, USA, 2020; pp. 61–69.

31. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the IEEE
Conference on CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 6299–6308.

32. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,
arXiv:1212.0402.

33. Park, G.; Gu, B.; Heo, J.; Yi, S.; Han, J.; Park, J.; Min, H.; Piao, X.; Cho, Y.; Park, C.W.; et al. Adaptive load balancing mechanism
for server cluster. In Proceedings of the 2006 International Conference on Computational Science and Its Applications, Glasgow,
UK, 8–11 May 2006; Springer: New York, NY, USA, 2006; pp. 549–557.

34. Khan, S.; Nazir, B.; Khan, I.A.; Shamshirband, S.; Chronopoulos, A.T. Load balancing in grid computing: Taxonomy, trends and
opportunities. J. Netw. Comput. Appl. 2017, 88, 99–111. [CrossRef]

35. Saleem, G.; Bajwa, U.I.; Raza, R.H. Toward human activity recognition: A survey. Neural Comput. Appl. 2023, 35, 4145–4182.
[CrossRef]

36. Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. Int. J. Comput. Vis. 2022, 130, 1366–1401. [CrossRef]
37. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on CVPR, Boston, MA,
USA, 7–12 June 2015; pp. 2625–2634.

38. Li, K.; Wang, Y.; He, Y.; Li, Y.; Wang, Y.; Wang, L.; Qiao, Y. UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with
Video UniFormer. arXiv 2022, arXiv:2211.09552. [CrossRef]

39. Li, X.; Wang, L. ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video. arXiv 2023, arXiv:2310.01324.
[CrossRef]

40. Srivastava, S.; Sharma, G. OmniVec2 - A Novel Transformer Based Network for Large Scale Multimodal and Multitask Learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA,
16–22 June 2024; IEEE: New York, NY, USA, 2024; pp. 27402–27414. [CrossRef]

41. Wang, L.; Huang, B.; Zhao, Z.; Tong, Z.; He, Y.; Wang, Y.; Wang, Y.; Qiao, Y. Videomae v2: Scaling video masked autoencoders
with dual masking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 17–24 June 2023; pp. 14549–14560.

42. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.A.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011;
Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.V., Eds.; IEEE Computer Society: New York, NY, USA, 2011; pp. 2556–2563.
[CrossRef]

43. Xie, S.; Sun, C.; Huang, J.; Tu, Z.; Murphy, K. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8 September 2018;
pp. 305–321.

44. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

45. Chen, Z.; Cai, C.; Zheng, T.; Luo, J.; Xiong, J.; Wang, X. RF-Based Human Activity Recognition Using Signal Adapted
Convolutional Neural Network. IEEE Trans. Mob. Comput. 2023, 22, 487–499. [CrossRef]

46. Li, G.; Ma, X.; Wang, X.; Yue, H.; Li, J.; Liu, L.; Feng, X.; Xue, J. Optimizing deep neural networks on intelligent edge accelerators
via flexible-rate filter pruning. J. Syst. Archit. 2022, 124, 102431. [CrossRef]

47. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.
Adv. Neural Inf. Process. Syst. 2015, 28, 3123–3131.

http://dx.doi.org/10.1109/JBHI.2017.2734803
http://www.ncbi.nlm.nih.gov/pubmed/28783651
http://dx.doi.org/10.1016/j.ins.2023.119073
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1016/j.ins.2022.01.030
http://dx.doi.org/10.1016/j.jnca.2017.02.013
http://dx.doi.org/10.1007/s00521-022-07937-4
http://dx.doi.org/10.1007/s11263-022-01594-9
http://dx.doi.org/10.48550/ARXIV.2211.09552
http://dx.doi.org/10.48550/ARXIV.2310.01324
http://dx.doi.org/10.1109/CVPR52733.2024.02588
http://dx.doi.org/10.1109/ICCV.2011.6126543
http://dx.doi.org/10.1109/TMC.2021.3073969
http://dx.doi.org/10.1016/j.sysarc.2022.102431


Electronics 2024, 13, 4786 21 of 21

48. Yu, X.; Liu, T.; Wang, X.; Tao, D. On compressing deep models by low rank and sparse decomposition. In Proceedings of the
IEEE Conference on CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 7370–7379.

49. Kwasniewska, A.; Szankin, M.; Ozga, M.; Wolfe, J.; Das, A.; Zajac, A.; Ruminski, J.; Rad, P. Deep learning optimization for edge
devices: Analysis of training quantization parameters. In Proceedings of the IECON 2019—45th Annual Conf. of the IEEE
Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; IEEE: New York, NY, USA, 2019; Volume 1, pp. 96–101.

50. Tonellotto, N.; Gotta, A.; Nardini, F.M.; Gadler, D.; Silvestri, F. Neural network quantization in federated learning at the edge. Inf.
Sci. 2021, 575, 417–436. [CrossRef]
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