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Abstract: Background: This study began with a search in three databases, totaling six libraries
(ChemBridge-DIVERSet, ChemBridge-DIVERSet-EXP, Zinc_Drug Database, Zinc_Natural_Stock,
Zinc_FDA_BindingDB, Maybridge) with approximately 2.5 million compounds with the aim of
selecting potential inhibitors with antiproliferative activity on the chimeric tyrosine kinase encoded
by the BCR-ABL gene. Methods: Through hierarchical biochemoinformatics, ADME/Tox analyses,
biological activity prediction, molecular docking simulations, synthetic accessibility and theoretical
synthetic routes of promising compounds and their lipophilicity and water solubility were real-
ized. Results: Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the
top100/base (600 structures), in comparison with the commercial drug imatinib, showed that only
nine exhibited the desired properties. In the prediction of biological activity, the results of the nine
selected structures ranged from 13.7% < Pa < 65.8%, showing them to be potential protein kinase
inhibitors. In the molecular docking simulations, the promising molecules LMQC01 and LMQCO04
showed significant values in molecular targeting (PDB 1IEP—resolution 2.10 A). LMQC04 presented
better binding affinity (AG = —12.2 kcal mol~! with a variation of 43.6 kcal mol~!) in relation to
LMQCO01. The LMQCO01 and LMQC04 molecules were advanced for molecular dynamics (MD)
simulation followed by Molecular Mechanics with generalized Born and Surface Area solvation
(MM-GBSA); the comparable, low and stable RMSD and AE values for the protein and ligand in each
complex suggest that the selected compounds form a stable complex with the Abl kinase domain.
This stability is a positive indicator that LMQCO01 and LMQCO04 can potentially inhibit enzyme
function. Synthetic accessibility (SA) analysis performed on the AMBIT and SwissADME webservers
showed that LMQCO01 and LMQCO04 can be considered easy to synthesize. Our in silico results show
that these molecules could be potent protein kinase inhibitors with potential antiproliferative activity
on tyrosine kinase encoded by the BCR-ABL gene. Conclusions: In conclusion, the results suggest
that these ligands, particularly LMQCO04, may bind strongly to the studied target and may have
appropriate ADME/Tox properties in experimental studies. Considering future in vitro or in vivo
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assays, we elaborated the theoretical synthetic routes of the promising compounds identified in the
present study. Based on our in silico findings, the selected ligands show promise for future studies in
developing chronic myeloid leukemia treatments.

Keywords: chronic myeloid leukemia; drug design; imatinib; binding affinity; molecular docking

1. Introduction

The development of new chemical entities (NCEs) with antiproliferative activity
targeting the BCR-ABL gene is pivotal in advancing the treatment of chronic myeloid
leukemia (CML). The BCR-ABL fusion gene, a result of the Philadelphia chromosome
translocation between chromosomes 9 and 22, produces a constitutively active tyrosine
kinase that drives the uncontrolled proliferation of leukemic cells [1]. Despite the clinical
success of first-generation tyrosine kinase inhibitors (TKIs) such as imatinib, the emergence
of resistance mutations and disease relapse remains a significant challenge, underscoring
the need for novel therapeutic strategies [2—4].

In recent years, biochemoinformatics has emerged as a powerful approach in the
rational design and discovery of NCEs. This interdisciplinary field combines computational
chemistry, bioinformatics, and hierarchical data analysis to efficiently screen large chemical
libraries, predict molecular interactions, and optimize lead compounds for enhanced
specificity and efficacy [5,6]. By leveraging these advanced computational techniques,
researchers can accelerate the drug discovery process and improve the precision of targeting
oncogenic pathways, including BCR-ABL.

Recent studies underscore the potential of hierarchical biochemoinformatics in iden-
tifying and optimizing inhibitors against Abl tyrosine kinase encoded by the BCR-ABL
gene. For example, structure-based virtual screening coupled with molecular dynamics
simulations has been utilized to discover potent inhibitors capable of overcoming resistance
mutations [7,8]. Additionally, machine learning algorithms have been increasingly applied
to predict the antiproliferative activity of compounds, thus facilitating the selection of
the most promising candidates for experimental validation [9-11]. These approaches not
only streamline the identification of effective NCEs but also provide insights into their
mechanisms of action at the molecular level.

Moreover, the integration of hierarchical clustering techniques allows for the system-
atic categorization of chemical entities based on their structural and functional characteris-
tics. This method enhances the ability to identify key molecular features that contribute to
the antiproliferative activity against BCR-ABL, thereby guiding the rational design of more
potent and selective inhibitors [12—14]. Such hierarchical approaches are instrumental in
prioritizing compounds for further development and clinical testing.

In this study, we aim to employ an hierarchical biochemoinformatics analysis to
discover and optimize new chemical entities with antiproliferative activity targeting the
BCR-ABL gene. Our methodology involves a multi-step process: initial virtual screening to
identify potential lead compounds, followed by molecular docking simulations to assess
their binding affinities and stability.

Subsequently, machine learning models will predict the biological activity of these
compounds, and hierarchical clustering will be used to categorize and refine the candidates
based on their structural and functional properties. Through this comprehensive approach,
we seek to enhance the efficiency and effectiveness of the drug discovery process, ultimately
contributing to the development of novel therapeutics for CML. By integrating state-of-
the-art computational tools and data-driven methodologies, this study aims to address the
current challenges in targeting BCR-ABL and to provide new insights into the design of
effective antileukemic agents. The general scheme summarizing the methodological steps
in this paper is shown in Figure 1.
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Figure 1. General scheme summarizing the methodological steps.

2. Results and Discussion

Ligand-based virtual screening was performed using the reference compound imatinib,
due to its crystallography being defined for tyrosine kinase antiproliferative activity (PDB
ID: 1IEP) in three commercial compound databases (ChemBridge-DIVERSet, ChemBridge-
DIVERSet-EXP, Zinc_Drug Database, Zinc_Natural _Stock, Zinc_FDA_BindingDB and
Maybridge), using the ROCS (Rapid Overlay of Chemical Structures) program v. 3.6.2.0,
by screening using shape similarity. This screening resulted in a total of 2000 structures
per database, totaling 12,000 structures based on the pivotal compound. The structures
obtained by ROCS screening were subjected to a new virtual similarity screening based on
electrostatic affinity with the pivot molecule, imatinib, using the EON program, v. 3.0.0.0.
This provided the “Top100” per database, resulting in 600 structures that advanced to
pharmacokinetic and toxicological predictions.

2.1. Pharmacokinetic Properties Prediction

At this stage, the 600 structures obtained from the ligand-based virtual screening of the
EON software were subjected to pharmacokinetic and subsequently toxicological activity
prediction. Not all molecules will have biological antiproliferative activity for tyrosine
kinase, due to unsatisfactory pharmacokinetic properties or presence of toxicophoric groups.
At this stage, efficient filter selection is essential to access the best pharmacokinetic results
for the development of future promising drugs.

Among the filters used to evaluate the pharmacokinetic profile are #stars or “drug-
like”, molecular weight (MW), Solvent Accessible Surface Area (ASAS) along with its
hydrophobic component (HFOAS) and hydrophilic component (HFIAS), molecular volume
(MV), number of hydrogen bond acceptors (HBOs) and donors (DLHs), n-octanol/water
partition coefficient (logP), solubility parameter (logS), predicted Caco-2 cell permeability,
blood-brain barrier partition coefficient (logCS), skin permeability (logKp), number of
predicted primary metabolites (#metab), percent human oral absorption (%OHA), and
polar surface area (PSA) [15].
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Using the parameters stipulated by Malolo et al. (2015) [15], a total of 178 struc-
tures were selected after pharmacokinetic analysis of results from the six commercial
compound databases (ChemBridge-DIVERSet, ChemBridge-DIVERSet-EXP, Zinc_Drug
Database, Zinc_Natural_Stock, Zinc_FDA_BindingDB and Maybridge). All candidates
were compared with the values obtained for imatinib, the reference compound, in order
to obtain the molecules with the best pharmacokinetic profiles which then passed to the
toxicological prediction stage via Derek Nexus v. 4.1.0 software.

The software was used to find plausible, probable or certain alerts for carcinogenicity,
mutagenicity, genotoxicity, hepatotoxicity and teratogenicity. The results of this prediction,
which can be seen in Table 1, resulted in molecules that did not present any toxicity alerts.
These were selected as promising drugs for the later stage of biological activity prediction,
which was performed via the Pass Online Prediction server [16,17].

Table 1. Toxicological alerts for imatinib obtained from Derek Nexus v. 4.1.0 software.

Compound Toxicity Prediction Alert Toxic Group Toxicity Alert

Simple Aniline

Imatinib Methemoglobinaemia N Plausible
R 2

R4 = H, Me or hydrolysable group

It is noteworthy that the pivotal compound, imatinib, presented a “plausible” alert
for methemoglobinemia, as it contains compounds that will probably be metabolized or
hydrolyzed to form a simple aniline, which is the cause of this activity in humans, rats,
and mice. This fact reinforces the choice of the molecules resulting from the screening as
candidates for the subsequent stages [18]. This alert may be the cause of the most reported
adverse reactions (>30%): edema, nausea, vomiting, muscle cramps, musculoskeletal
pain, diarrhea, rash, fatigue, and abdominal pain [19]. The pharmacokinetic properties
analyzed were observed according to the range of values accepted for drugs described by
Malolo et al. (2015) [15], as can be seen in Table 2, and limits were defined close to those
indicated by the pivotal molecule, imatinib.

Table 2. Pharmacokinetic values of compounds obtained by virtual screening that showed biological
activity for the purpose of the research.

Entry Compounds #Stars SNC %AOH #Metab  Volume QPPCaco QPlogCS HFOAS HFIAS

Reference Imatinib 3 1 91.058 8 493.610 75.791 —0.391 338.382 95.970

Compounds LMQCo01 BindingDB1944 0 -2 83.755 4 456.562 188.827 —1.755 356.054 181.360
resulting from LMQC02 Omega39040 0 0 82.665 2 461.451 75.894 —0.561 421.652 125.478
virtual LMQC03  ZINC29051126 0 0 100.000 3 489.250 125.654 —0.465 365.621 102.632
screening LMQC04 Omega9146 0 0 100.000 4 459.909 181.654 —0.671 345.025 111.375
based on LMQCO05  BindingDB50001859 0 0 87.507 5 385.508 246.411 —0.466 477.384 105.572
imatinib LMQCO06 BindingDB31046 0 0 100.000 5 281.357 1582.196 —0.493 233.195 84.007
LMQCo07 BindingDB50335522 0 -1 86.157 7 406.536 56.082 —1.202 497.059 158.911

LMQC08 Omega48308 0 0 82.759 5 372423 349.361 —0.291 441.534 89.584

LMQC09 Omega45294 0 0 83.631 2 367.468 201.737 —0.262 270.567 114.733

These descriptors must present values in a certain range to verify their potential for later development as a drug.
The number of calculated properties that fall outside the required range for 95% of known drugs (#Stars) must
be in the recommended range of 0 to 5. Activity in the central nervous system (CNS) follows the scale of —2
(inactive) to +2 (active). The hydrophobic component of the solvent accessible surface area (HFOAS) should
remain in the recommended range of 0.0 to 750.0 A2. The hydrophilic component of the solvent accessible surface
area (HFIAS) has a recommended range of 7.0 to 330.0 AZ2. The total volume of the molecule should remain in
the range 500 to 2000 A3. Number of hydrogen donors is in the range 0 to 6. The number of hydrogen bonds
accepted by the molecule should remain in the range 2-20. The permeability of the Caco-2 cell membrane, in
nm/s, should be in the range <5 low, >500 high. The logarithm of the predisposed partition coefficient of the
blood-brain barrier should remain in the range —3.0 to 1.0. The number of probable metabolic reactions should
be at most 8 and the percentage of human oral absorption above 80% is considered high, and values below 25%
indicate low absorption [15].
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The computational study of ADME parameters is a fundamental tool for drug dis-
covery, selection and development of bioactive compounds with a view to preclinical and
clinical studies due to its speed, low cost and reduction in the number of experiments
involving animals [20-22].

All compounds submitted to pharmacokinetic predictions presented #star = 0, which
indicates that all calculated parameters were within the recommended range for 95% of
known drugs. The overall ADME conformity index, drug similarity parameter (indicated
by #stars), was used to evaluate the pharmacokinetic profiles of the isolated compounds.
The #stars parameter indicates the number of property descriptors calculated by QikProp
v. 2014-3 [23] that are outside the optimal range of values for 95% of known drugs.

The blood-brain barrier is a specific structure that protects, controls and regulates the
homeostasis of the central nervous system by separating the brain from systemic blood. For
a drug with biological activity in the CNS, a high penetration value is necessary. However,
this study seeks structures without activity in the CNS; thus, they should present low
penetration values, minimizing side effects [24]. The values for the predictions of the
brain/blood partition coefficient (QPlogCS) should be less than 1, for molecules inactive in
the CNS. Therefore, in this analysis, the structures that presented the lowest values were
selected, which were the nine structures highlighted in Table 2.

The values for %OAH are above 85% for all structures, values considered high, accord-
ing to the literature [15]. Properties such as HFOAS and HFIAS were within the acceptable
range for all selected structures. When comparing the values obtained from the in silico
study for certain pharmacokinetic properties to experimental results of imatinib deposited
on the Drug Bank website [25], we can see that the software obtained approximate results of
%OAH (98%), CNS (0.7624) and HFIAS (86.28). These approximate values guarantee credi-
bility to the methodology used, reinforcing the use of the filters chosen to select possible
drugs for the subsequent stage.

2.2. Biological Activity Prediction

After toxicological prediction, the four selected compounds (Table 3) were analyzed
for potential biological activity using the PASS Online server [17]. The software assesses the
overall biological potential of a drug-like organic molecule. PASS provides simultaneous
predictions of many types of biological activity based on the structure of organic com-
pounds. Thus, PASS can be used to estimate biological activity profiles for molecules before
their chemical synthesis and biological testing. It provides the studied compound with a
Pa value (probability of being active) that estimates the chance that the studied compound
belongs to the subclass of active compounds (it resembles the structures of molecules,
which are the most typical in a subset of “active” compounds in the PASS training set),
and a Pi value (probability of being inactive) that estimates the chance that the studied
compound belongs to the subclass of inactive compounds (it resembles the structures of
molecules, which are the most typical in a subset of “inactive” compounds in the PASS
training set) [26].

For a compound to show potential anticancer activity, it needs to eliminate cancer
cells while leaving normal tissue unharmed. Recent studies have developed drug classes
including: antimetastatic agents, which alter malignant cell surfaces to reduce metastatic
potential; biological response modifiers, which adjust metabolic and immune responses;
and antineoplastic agents, which inhibit tumor growth and destroy cancer cells [27].

The prediction of biological activity of the four compounds obtained in the screening
presented biological activity values for inhibition of tyrosine kinase activity and BCR-ABL
related to the emergence of proliferative activity of CML. The Pa and Pi values can be
seen in Table 3. Compound LMQC04 had the most satisfactory result, coming close to the
values of the pivot compound, with compounds LMQCO01 and LMQCO04 being selected for
molecular docking study.
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Table 3. Compounds that exhibit biological activity values for tyrosine kinase inhibition activity.

Compound Structure Biological Activity Pa @ pi [

Imatinib 0.802 0.005

LMQC01 : : P/ / 0 0.457 0.049
—=T
: Protein Kinase Inhibitor
LMQCO02 ! ' : 0.137 0.049
—O\
LMQCO04 N \ 0.658 0.021
f
LMQC08 N 0.222 0.013

[2l Pa = probability of being active (Pa > 0.000 or Pa = 1.000); [’ Pi = Probability of being inactive (Pi = 0.000).

2.3. Molecular Docking Study

According to the literature, the binding mode prediction using docking should present
an RMSD value lower than 2.0 A in the crystallographic pose of the ligand [28-32]. There-
fore, these results with the methodological proposal using these parameters are satisfactory.
We emphasized in our previous study the use of molecular docking tools to search for new
potential leads or hits [33-37].

The comparison between the crystallographic ligand imatinib (red color) and the best
conformation predicted by molecular docking (green color) can be seen in Figure 2, which
shows the pose with an RMSD value of 0.4721 A.
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RMSD = 0.4721

Figure 2. Superpositions of the ligand with crystallographic pose (in red) with the calculated poses
(in green)—ADbl Kinase Domain (organism Mus musculus, PDB ID 1IEP), showing an RMSD value
equal to 0.4721 A.

Redocking showed a binding affinity (AG) of —13.03 kcal mol~!, close to the experi-
mental value of —11.18 kcal mol~!, with a variation of +1.85 kcal mol~L. This indicates
that our docking protocol is effective for evaluating the molecular binding mode of this
type of complex (see Table 4).

Table 4. Binding affinity values of the studied compounds obtained from the docking simulations
against the Ab1 kinase domain.

. Experimental Binding . Predicted Binding
Ligand Affinity (kcal mol 1) Ki @M) Affinity (kcal mol~1)
Imatinib —11.18 [2 13.0 [38] -13.3
LMQCO1 - - —86
LMQC04 - - —122

[al Values calculated from experimentally determined inhibition constants (Ki), found in the PDBs, according to the
equation AG = R.T.InKi [39,40], were R (gas constant) = 1.987 x 1073 kcal/(mol K) and T (temperature) = 310 K.

Figure 3 shows the molecular docking results for imatinib (PDB ID 1IEP), with interac-
tion sites around the alpha-helix (residues Leu348 to Glu286-Met290) and the beta-sheet
(residues Tyr253-Val256, Thr315-Met318, Ile360, Leu370, and Ala380-Phe382). Hydrogen
bonds were observed with residues Glu286, Thr315, Met318, 1le360, and Asp381, supporting
data from literature studies [38].

Ile360A

2

o
R/&\fﬂﬁjslﬁ Val2B89A

Met290A

;
ﬂ' Tyr2s3a

Phe3gza

Phe317A

Figure 3. Interactions of imatinib with key amino acid residues in the active site of the Ab1 kinase domain.

The compound LMQCO1 presented a binding affinity value of —8.6 Kcal mol~?; in
relation to the pivot compound, this result was below expectations. In the molecular
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docking study, it presented four hydrogen interactions with Tyr253, Thr315, Glu286 and
Asp381, seven pi-alkyl interactions with the amino acids Leu248, Val256, Ala269, Ala280,
Met290, and Val299, and finally, two pi-pi interactions paired with Phe382 and Phe317.
For compound LMQCO01, interactions around the alpha helix between amino acid residues
Leu248 and Glu286-Met290 were observed in the active site of the enzyme. Interactions
with amino acid residues Tyr253, Thr315 and Ala381-Phe382 are located around the beta
sheet, when compared with the imatinib molecule in the active site of the protein (see
Figure 4 and Figure S1 in Supplementary Materials).

ALA
A:269
i
a
\\ \\O
() V»\
vk
] \
THR : y
S 4315 g AT‘Z’;* A:317
A:381 TEC D
GLU MET
A:286 A:290 255 LEU
ALA
VL : A:248
s A:380

Interactions

[ Conventional Hydrogen Bond [T Pi-Pi Stacked [ | Pi-Alkyl
|:] Carbon Hydrogen Bond D Pi-Pi T-shaped

[ pi-sigma [ Ayl
Figure 4. Predicted interactions between the BCR-ABL tyrosine kinase active site and
compound LMQCO1.

The compound LMQCO04 presented a binding affinity value close to imatinib
(—12.2 Kcal mol~1); in relation to the others, this was the most satisfactory result. It
presented three hydrogen interactions with Thr315, Glu286 and Asp380, four pi-sigma
interactions with the amino acids Leu248, Leu370, Val256 and Val289, five mt-alkyl interac-
tions with Phe317, Val299, Ala380, Met290, and Ala269, and finally, two pi-pi interactions
paired with Phe382 and Tyr253, totaling 14 interactions (see Figure 5 and Figure S2 in the
Supplementary Materials).

MET
A:318
PHE ALA
A:317 VAL A:380
LEU A:299 e
A:248 4
e ASP
R GLU) ‘A:381
LEUN ALA . 4:286
A:370- _A:269
A
»
PHE \
A:382 )
:
TYR . d
A:253 f ¥ VAL
: X A:289
VAL
A:256 THR

A:315

Interactions

D Conventional Hydrogen Bond Q Pi-sigma I:l Alkyl

[:I Carbon Hydrogen Bond I:l Pi-Pi Stacked I:[ Pi-Alkyl

]:] Halogen (Cl, Br, I) [ Pi-Pi T-shaped
Figure 5. Predicted interactions between the active site of BCR-ABL tyrosine kinase and the
compound LMQCO04.
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After performing the molecular docking study and comparing the results with the
template compound, the interaction around the alpha-helix of the protein occurs with
residues Leu248, Glu286-Met290, while in the beta sheet, it occurs between residues Tyr253-
Val256, Thr315-Met318, Leu370, and Ala380-Phe382. These interactions demonstrate that
the compound LMQC04 has its main interactions in the active site of the protein, leading to
its consideration as a promising drug candidate (see Figure 5).

Quantitative data on the types of interactions and their respective distances and
binding affinities between the ligands and the BCR-ABL tyrosine kinase receptor are shown
in the Supplementary Materials. It was verified that, among the structures, the increase
in the diversity of interactions with different amino acids can result in a decrease in the
binding affinity values, which indicates a greater degree of spontaneity of the interactions.

Interactions with the residue Thr315 occurred in the LMQCO01 and LMQC04 structures
in addition to imatinib. Interactions with the amino acid Leu370 occurred only in the
LMQCO04 structure. Interactions with the amino acid Ala269 also occurred in two structures.
Interactions with the amino acid Val269 occurred in one structure and with Tyr253 occurred
in two structures. Interactions with the amino acids Glu286 and Met290 occurred in
two structures. These amino acid residues presented the highest number of interactions,
indicating that they may have important relevance for inhibitory activity. The structures
presented three or more hydrogen bond interactions, which may be a cause of the decrease
in the electron affinity values, since this type of interaction between the receptor and the
ligand indicates the stabilization of the complex, being responsible for the stability of the
bioactive conformations.

All compounds tested presented satisfactory binding affinity values, with emphasis
on the compound LMQC04 (—12.2 kcal mol~1!). This compound presented binding affinity
close to imatinib; however, in the toxicological screening, there was no alert for toxicophoric
groups. This compound was selected as a promising candidate for antiproliferative activity
in CML cells with possibly fewer adverse effects. After analyzing the results, an additional
study was performed to investigate Structure—Activity Relationship (SAR), Molecular
Overlay, Synthetic Accessibility and Theoretical Synthetic Route of Promising Compounds
and Lipophilicity and Water Solubility.

2.4. Molecular Dynamics Simulations

In Molecular Dynamics (MD), the dynamic behavior of a molecular system is simulated
to assess protein-ligand complex stability. MD simulations were performed using the
Desmond module of Schrodinger, and the resulting trajectories were analyzed with the
Simulation Interaction Diagram. Figure 6a shows the protein’s Root Mean Square Deviation
(RMSD), indicating conformational changes in the complex compared to the apo-protein.
The LMQCO01 complex presented higher RMSD values in the first 168 ns in comparison to
the other complexes studied, and presented lower RMSD values, remaining stable in the
last 132 ns. Although the LMCQO1 complex deviates from the apo-protein, the maximum
difference was about 3.6 A. The imatinib and LMQC04 complexes remained stable, with
RMSD changes under 2.2 A throughout 300 ns. Since all protein-ligand complexes showed
stable RMSD values, MM-GBSA binding energy was used for further analysis.

The Molecular Mechanics energies combined with the Generalized Born and Surface
Area continuum solvation (MM-GBSA) line plots (Figure 6b) presented for ligands interact-
ing with protein target C-Abl kinase provide insights into the binding affinity over time dur-
ing molecular dynamics simulations. The relatively lower r_psp_ MMGBSA_AG_Binding
value suggests stronger binding affinity, which is a desirable characteristic for potential
inhibitors. All ligands demonstrate consistently low binding free energy throughout the
300 ns simulation, indicating a stable interaction with the target. The reference compound
imatinib showed the lowest binding energy values, ranging from —115.62 to —80.72 kcal
mol~!, with a mean of —101.03 kcal mol~!. For LMQCO04, the binding energy was consis-
tent around —96.80 to —67.98 kcal mol~!, with a mean of —83.25 kcal mol~! which is more
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stable and has lower energy than LMQCO01, which presented an energy variation between
—92.36 to —48.77 kcal mol~!, with an average of —69.00 kcal mol 1.
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-~~~
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225
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Figure 6. RMSD alignment analysis among apo-protein and ligand-complexes for C-Abl kinase
domain (PDB ID: 11EP) (a) based on 300 ns MD analysis. MMGBSA_AG_Binding value line chart for
300 ns MD simulation (b).

Detailed analyses regarding imatinib, LMQCO01 and LMQC04 are shown below.
Figure 7a represents the imatinib ligand in complex with the Abl-kinase domain; the
RMSD values of the protein (blue line) fluctuate around a relatively narrow range (with a
minimum value of 1.57 A, and a maximum of 4.66 A), suggesting that the protein maintains
a stable conformation throughout the simulation. The ligand RMSD also shows limited fluc-
tuation (with a minimum value of 0.97 A, and a maximum of 3.83 A), indicating that once
bound, the ligand remains consistently positioned within the binding site of the enzyme.

Figure 7b shows that Asp381 forms an H-bond with amide oxygen 94% of the time.
Asp381 also forms an H-bond with a piperazine nitrogen atom and water 56% of the time.
Glu286 forms an H-bond with the nitrogen atom of the amide group 38% of the time.
His361 forms an H-bond with the piperazine nitrogen atom and water 52% of the time.
Thr315 forms an H-bond with a nitrogen atom of the pyrimidine ring 60% of the time.
Met318 forms an H-bond with the nitrogen atom of pyridine 98% of the time.

The histogram indicates that the dominant bonds are H-bond and water bridge;
Glu286, Thr315, Met318, and Asp381 were major protein-ligand interaction involvers
(Figure 7c). The Root Mean Square Fluctuation (RMSF) plot (Figure 7d) indicates protein
behavior during the ligand binding process. The relatively low RMSF value suggest that
the presence of the ligand does not lead to significant increases in structural flexibility,
indicating stability.



Pharmaceuticals 2024, 17, 1491 11 of 23

A
o @ (b) €

A
A HIS
. PHE N'H 361

Protein RMSD (A)
(¥) asiy puebi
)
v
T

12 ’ - 0 A
MET
& a7
0.6 MET.
os & . 318
0
00 x
l
o 50 100 150 200 250 300 315
Time (nsec) ) Charged (negative) Polar e Pi-Pi stacking Solvent exposure
) -cati
= Ca = (Lig) fiton Prot Hydrophobic Water —® Pi-cation
56
o] @
a0
=
w 32
)
=
o 24
0.2 _ _ . 16
00 -+ - ]
0.8
I TS L SR P I B P R SR R TN R W T P L AN R T oy PR -3
NIV SIS SN RS A I 5 O P S S I T i o
PLEP T ELE LSPGO L E

+
T
<]
3
a
&
I
<
S
=
<]
°
=
<
=2
a
-
3
E]

I Water bridges Halogen bonds o 50 100 150
Residue Index

= C-alphas

Figure 7. Result of 300 ns MD analysis for imatinib binding to the Abl-kinase domain. The protein—
ligand RMSD plot of imatinib bound to the Abl-kinase domain (a) (PDB ID: 1IEP). Ligand—protein
contact interactions scheme with the protein residues of imatinib bound to Abl-kinase (b). Protein—
ligand contacts histogram of the interaction fraction of H-bond (green), hydrophobic bond (purple),
ionic bond (magenta), and water bridges (blue) for imatinib (c). RMSF plot of imatinib (d) protein—
ligand complex.

Figure 8a shows that the LMQCO01 ligand complexed with the Abl kinase domain
displays more RMSD fluctuation in both protein and ligand compared to the Abl kinase—
imatinib complex, yet remains within a narrow range, indicating stable interactions with
some structural flexibility. In the first 125 ns, protein and ligand RMSD values overlap.
Figure 8b shows the LMQCO04 ligand with the Abl kinase domain, where protein RMSD
remains low and stable, suggesting minimal deviation from its initial conformation. The
ligand’s stable RMSD suggests consistent interaction with the protein, with RMSD differ-
ences remaining within 1.4 A, indicating strong stability in both complexes. These low and
stable RMSD values suggest that LMQCO01 and LMQCO04 form stable complexes with the
Abl kinase domain, potentially inhibiting enzyme function.

Figure 8c illustrates Ligand-Protein Contacts for LMQCO01: Lys271 and Asp381 form
H-bonds with an amide group and water 31% and 33% of the time, respectively. Met318
forms an H-bond with the sulfonamide group 41% of the time, and Thr315 forms an H-bond
with the indole group 73% of the time.

For LMQCO04 ligand interactions (Figure 8d), it is observed that Glu286 forms an
H-bond with the nitrogen atom of the amide group in the ligand structure 46% of the
time. Asp381 forms an H-bond with the amide oxygen in the ligand structure 67% of the
time, and Val379 forms an H-bond between amide oxygen and water 44% of the time. In
Figure 8e,f, we can still observe the presence of the H-bond, water bridge, hydrophobic,
and halogen bonds, which will tend to make the complexes stable.

RMSF plots show each protein residue’s flexibility during the simulation; lower values
indicate rigidity, while higher values indicate flexibility. Our RMSF data (Figure 8g,h)
reveal the protein’s dynamic behavior upon ligand binding.
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Figure 8. Result of 300 ns MD analysis for LMQCO01 and LMQCO04 binding to the Abl-kinase domain.
The protein-ligand RMSD plot of LMQCO1 (a) and LMQCO04 (b) bound to the Abl-kinase domain
(PDB ID: 1IEP). Ligand—protein contact interactions scheme with the protein residues of LMQCO1 (c)
and LMQCO04 (d) bound to Abl-kinase. Protein-ligand contacts histogram of the interaction fraction
of H-bond (green), hydrophobic bond (purple), ionic bond (magenta), water bridges (blue), and
halogen bonds (orange) for LMQCO01 (e) and LMQCO04 (f). RMSF plot of LMQCO01 (g) and LMQCO04 (h)

protein-ligand complex.
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For both LMQCO01 and LMQC04 complexes with the Abl kinase, RMSF values suggest
that ligand presence does not increase structural flexibility, which would imply destabiliza-
tion. Instead, the ligands appear to maintain or enhance enzyme stability. Additional MD
simulation details are provided in Supplementary Figures S3-57 and Table S4.

2.5. Structure—Activity Relationship (SAR) and Molecular Overlay

The LMQCO01 and LMQC04 molecules were looked up in the PubChem database [41]
to obtain data on their biological activities. The LMQCO01 molecule is delavirdine, a
non-nucleoside reverse transcriptase inhibitor with activity specific for HIV-1. The study
identified that this molecule has already been patented as an antileukemic agent.

The different selection approaches are justified by their efficiency, potential for thera-
peutic innovation, and strategic alignment with current trends in pharmaceutical develop-
ment. This approach accelerates the discovery of new treatments by maximizing the use of
pre-existing drugs, and contributing significantly to the fight against leukemia.

The LMQCO04 molecule does not have any patents filed. It is only reported that it has
antiviral activity (against dengue virus 2 and bovine viral diarrhea virus 1) and cytotoxic
activity for the BHK-21 and A-549 cell lines [41]. The LMQCO01 and LMQC04 molecules
were subjected to molecular overlay with the pivot molecule, aiming to measure their steric
and electrostatic similarity (see Table 5).

Table 5. Molecular overlap of the LMQCO01 and LMQC04 molecules with the pivot molecule (imatinib).

Molecul 1
Compound Pivot Molecule olecular Overlay
50 est/50 elt 70 est/30 elt 100 est
LMQCO01 I nib 0.41 0.57 0.82
LMQC04 matini 041 0.58 0.83

est: steric contribution; elt: electrostatic contribution.

The overlay results showed that both molecules have a similarity of 41 to 50 est (50%
steric contribution), see Table 5. For 70 est and 100 est (70% steric contribution and 100%
steric contribution, respectively) there was a very small variation in the values obtained.
The values ranged from 57% to 58% for 70 est and 82% to 83% for 100 est (see Table 5).

The results obtained demonstrate the great similarity between the superimposed
molecules and the pivot, as visualized in the graphical representation of the molecular
overlay (see Figure 9).

(a) 50 est/50 elt 70 est/30 elt 100 est
3 L{ ) y
;@ 'ﬁg Ch
\\ \ N
(b) 50 est/50 elt 70 est/30 elt

Figure 9. Graphical representation of the molecular overlay analysis between molecules (a) LMQCO01
(yellow) and (b) LMQCO04 (blue) with the reference molecule (imatinib—green).

2.6. Synthetic Accessibility

The synthetic accessibility of imatinib, LMQCO01 and LMQC04 was predicted using
SwissADME and AMBIT-SA to obtain a more accurate parameter (see Table 6). The results
via SwissADME indicated that all compounds have Synthetic Accessibility Score (SA)
compatible with easy difficulty syntheses.
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Table 6. Synthetic accessibility values for imatinib, LMQCO01 and LMQCO04 predicted via SwissADME

and AMBIT-SA.
Synthetic Accessibility Score
Compound
SwissADME AMBIT-SA
Imatinib 3.78 65.70
LMQC01 4.46 58.32
LMQC04 3.43 55.26

However, the SA score obtained by the LMQC and pivot molecules are compatible
with synthesis of medium difficulty. Therefore, these results together indicate that synthetic
accessibility is not an obstacle to the large-scale production of the compounds studied.

2.7. Theoretical Synthetic Routes Proposed to Compounds LMQCO01 and LMQC04

Compound LMQC 01 can be synthesized according to the procedure carried out by O.
S. Pedersen et al. [42]. A coupling reaction between piperazine I and indole carboxylic acid
derivative II using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) as activating
agent will produce intermediate III.

Finally, through a sulfonylation reaction with mesyl chloride and pyridine with previ-
ous reduction of the nitro moiety of derivate III using hydrogen (H;) and nickel (Ni) in
ethanol (EtOH), the desired compound LMQC 01 will be produced (Figure 10).

HN 9 J\
\ — + OyN EDC A N/H HN
HN N mCOOH ON NH @N
N N 2 74
H N
| Il ]l
o
1) Hy, Ni, EtOH J\
) Hz Ni O\\S/ NN N
o) @
2) Mesyl chloride, HN NH N~
Pyridine, rt |

Ny
LMQC 01

Figure 10. Synthetic route of the compound LMQC 01. Starting materials I and II are
commercially available.

Furthermore, we have designed an alternative strategy based on the construction
of indole derivative VI with aniline IV and ketone V via aerobic cross-dehydrogenative
coupling using palladium (II) acetate (Pd(OAc),) as catalyst, oxygen as oxidant, acetic acid
(AcOH) and dimethyl sulfoxide (DMSO) as solvents. Subsequently, reaction of intermediate
VI and substituted piperazine I in EtOH will originate the target compound LMQC 01 [43]
(Figure 11).
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Figure 11. Alternative synthetic route of the compound LMQC 01. 4 A MS (molecular sieves).
Starting materials I, IV and V are commercially available.

Compound LMQC 04 can be obtained by a method reported in previous work of E. S.
Leal et al. [44] (Figure 12). Treatment of quinazoline derivative XIII with excess of thionyl
chloride (SOCl,) under reflux conditions will originate double chlorinated quinazoline
XIV. Secondly, nucleophilic reaction between intermediate XIV and aminopyridinol XV
using cesium carbonate (CsCOs) as a base and DMF as solvent will give derivative XVI.
Lastly, the target carboxamide LMQC 04 will be obtained by amidation with carboxylic acid
XVII moderated by DIPEA and 1-benzotriazolyl-oxytris-(dimethylamino)phosphonium-
hexafluoro-phosphate (BOP) as coupling reagents.

o NEN N2
SOC'2 SN Nar O csco,, DMF g
g A —— 2
reflux Cl N HoN 100 °C SN XV
| >
XIv XV c N

\ OH <
BOP, DIPEA
S o

XVl

k LMQC 04

Figure 12. Synthetic route of the compound LMQC 04. Starting materials XIII, XV and XVII are
commercially available.

2.8. Prediction of Lipophilicity and Aqueous Solubility via SwissADME Webserver

The predicted LogP values via SwissADME [45-47] for the two selected molecules
and imatinib are shown in Table 7. LogP is considered an important ADME descriptor. It is
a parameter used to express how lipophilic a given molecule is [45]. This property affects
the tendency of a compound to decompose in non-polar environments versus aqueous
environments. Increased lipophilicity can generally lead to increased permeability, protein
binding and volume of distribution [48-50].
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Table 7. Prediction of LogP values for two selected molecules and imatinib via SwissADME
and consensus.

Compound  iLOGP  XLOGP3  WLOGP  MLOGP  Siicos-IT - Consensus

LogP LogP
Imatinib 4.04 3.52 3.49 2.15 3.69 3.38
LMQCO01 2.68 211 2.65 0.75 0.53 1.75
LMQC04 3.67 4.77 5.66 2.06 5.29 4.29

For a more assertive analysis, it is necessary to consider the consensus LogP, as it is
an average of the predictions of the other five methods. Therefore, the values obtained for
LMQCO01 and LMQC04 were 1.75 and 4.29, respectively, while imatinib resulted in 3.38. It
is worth mentioning that such positive values indicate reasonable lipophilicity for the use
of these compounds as drugs [48-50] (see Table 7).

Aqueous solubility is an important requirement for any drug intended to be ad-
ministered orally or parenterally, as a sufficient amount of active ingredients must be
administered in a small volume [51]. The predicted LogS values via SwissADME for the
selected and pivot molecules are shown in Table 8.

Table 8. Prediction of LogS values for two selected molecules and imatinib via Swiss ADME and

consensus.
. Silicos-IT Consensus
Compound ESOL LogS Ali LogS LogSw LogS
Imatinib -5.07 —5.02 —9.67 —6.59
LMQCO01 —3.88 —4.24 —5.75 —4.62
LMQC04 —5.92 —6.98 —9.63 —7.51

According to Sepay et al. (2020) [51], predicted LogS values between —4 and —6
indicate moderate solubility, between —2 and —4 good solubility and values greater than
—6 indicate poor solubility. The predicted LogS value of imatinib was —6.59, indicating that
it has poor solubility; consequently, no molecule was excluded from the study based only
on this parameter. The tested molecules presented values in the range of good solubility
(LMQCO01) and poor solubility (LMQC04).

3. Material and Methods
3.1. Selection of Compounds

In this study, a ligand-based virtual screening was performed on the pivotal compound
4-[(4-methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-pyridin-3-ylpyrimidin-2yl)amino]
phenyl]benzamide, imatinib (STI-571), due to its defined crystallography at the active site
of the tyrosine kinase enzyme (PDB ID 1IEP). Virtual screening was performed in three com-
mercial compound databases, totaling six libraries (ChemBridge-DIVERSet, ChemBridge-
DIVERSet-EXP, Zinc_Drug Database, Zinc_Natural_Stock, Zinc_FDA_BindingDB, May-
bridge), using the ROCS V2.4.1 (Rapid Overlay of Chemical Structures—similarity by
shape) program [52,53]. The aim was to score the three-dimensional overlaps, compar-
ing the conformation and volume of the compounds in the databases with the reference
structures (STI-571) to obtain the “Top2000/base”, totaling 12,000 structures.

One of the fundamentally important characteristics is the shape of the structures,
since it plays a crucial role in molecular selectivity between the ligands and the biological
target [54]. Subsequently, ligand-based virtual screening was performed in the EON
(electrostatic similarity) software [55], aiming to compare the electrostatic surfaces of
the structures selected from the ROCS with the reference structures. The EON program
calculated the Tanimoto electrostatic index of the structures from the six databases and
the structure of imatinib (STI-571), in addition to calculating new partial charges for the
input structures. The results are grouped according to score and classified based on the
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“ET_combo” analogous to the “ComboTanimoto” [55]. The electrostatic classification based
on the “ET_combo” score ranges from 1.0 (identical) to negative values resulting from the
overlap of positive and negative charges. Thus, we obtained the “Top100/base”, totaling
600 compounds for performing pharmacokinetic and toxicological predictions, which will
be performed with the aid of the QikProp [23] and Derek Nexus [56] programs.

3.2. Pharmacokinetic and Toxicological Properties Predictions

The study of the absorption, distribution, metabolism, excretion and toxicity (ADME/Tox)
properties for the compounds selected by virtual screening aimed to exclude from the study
structures with unsatisfactory pharmacokinetic and toxicological data. The program used
in this stage was QikProp [23]. This program made predictions of the pharmacokinetic
properties of the 600 structures resulting from the electrostatic similarity screening, analyz-
ing the chemical structure of each molecule as a whole and basing its predictions on the
3D structure.

With the aid of the DEREK NEXUS software, toxicity predictions were made by an-
alyzing the carcinogenicity, mutagenicity, genotoxicity, hepatotoxicity and teratogenicity
properties. The program considers data on chemical structures and toxicity reports in the
literature to perform a comparison with the groups present in the molecules analyzed [56].
For each group that has something potentially toxic, the program generates an alert (prob-
able, plausible, improbable, possible, certain, impossible, doubtful). At the end of the
procedure, an analysis of the structure as a whole and the potential toxicity of the molecule
is obtained. Compounds with the best pharmacokinetic and toxicological properties were
then selected for a later stage of predicting biological activity.

3.3. Biological Activity Prediction

Biological activity prediction was performed using the PASS software [16,17], which
is based on the suggestion that the chemical structure of compounds is closely related to
their biological activity. The software was used to predict the potential biological activity
of the compounds with the best ADME/Tox predictions, and the compounds that had
satisfactory results for tyrosine kinase antiproliferative activity and BCR-ABL inhibition
were subjected to molecular docking study.

3.4. Molecular Docking Study

Molecular docking is a method used to predict the interaction between a small
molecule and a protein at the atomic level, which allows us to characterize the behavior of
small molecules at the binding site of target proteins, as well as to elucidate fundamental
biochemical processes [57]. The docking process involves two basic steps: the prediction of
the ligand conformation, as well as its position and orientation within the sites (generally
referred to as pose) and the evaluation of the binding affinity [58].

The molecular docking study was carried out using the AutoDock Vina 1.1.2 pro-
gram [59] and the PyRx 0.8 graphical interface [60]. In this study, the Lamarckian Genetic
Algorithm (LGA) was used, with standard parameters of the genetic algorithm (with a
population size of 150), a maximum number of evaluations of 250,000, a maximum number
of generations of 27,000 and a crossing rate of 0.8, following the protocol of the Applied
Computational Chemistry research group at the Federal University of Amapa. In this study,
re-docking was performed to validate the methodology.

The crystallographic model selected in the Protein Data Bank (PDB) was tyrosine
kinase (BCR-ABL) complexed with imatinib (PDB ID 1IEP), with a resolution of 2.1 A [38].
To identify the possible ligand-macromolecule combinations, the search algorithm used
was the Lamarckian Genetic Algorithm (LGA), which presents the best results in the search
for the global minimum [61].

For this purpose, the crystallographic ligand was removed from the complex (PDB
ID 1IEP), and subsequently replaced with the original receptor with the coupling pa-
rameters validated by calculating the Root Mean Square Deviation (RMSD) to obtain the
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best conformation, following the previously validated protocol adopted by our research
group [62-64].

The target protein structure (PDB ID: 11EP) was downloaded in *PDB format from the
RCSB Protein Data Bank [65] and used in the preparation of the ligand and receptor via the
Discovery Studio (DS) Visualizer 17.2.0 program [66]. Afterwards, the compounds were
coupled and their binding affinity energies were calculated for the target. The DS program
was used for the calculation of RMSD and utilized to generate the interactions between the
inhibitors and the receptor.

In selecting the best combination of parameters, the location of the conformation
with the lowest RMSD in the most populated cluster and with the lowest binding affinity
was considered. To visually evaluate the best result obtained from the validation, the
conformation obtained by X-ray diffraction (PDB ID 11EP) was superimposed on the
conformation with the lowest RMSD obtained in the docking. After validation, a molecular
docking study was performed with the structures selected in the virtual screening.

The spatial coordinates (X, Y and Z) were determined in the active site region according
to the observed interaction between the enzymes and their respective original ligands. The
coordinates used for the center and the size of the grid can be seen in Table 9. Visualizations
as well as distance measurements of the interactions between the ligands and enzymes
were performed using the DS program.

Table 9. Protocol used in the validation of the molecular docking study.

Enzvme Inhibitor Spatial Coordinates Grid Dimensions
Y of the Grid Center (Angstrom)
BCR-ABL Tyrosine Kinase o X =14.79 X=16.5
(PDB ID 1IEP) Imatinib Y =52.87 Y =25.0
Z=1594 7 =20.47

3.5. Molecular Dynamics Simulations

Molecular dynamics simulations were performed using the Desmond v7.7 module [67,68]
of the Schrodinger software package as implemented in Maestro [69]. All complexes were
placed in an orthorhombic water box at a buffer distance of 10 A and solvated with SPC
water models. A 0.15 M NaCl salt concentration was added and additional Na*/Cl~ ions
were added to neutralize the systems. The MD was performed in the NPT ensemble at a
temperature of 300 K and 1 atm pressure over 300 ns with recording intervals of 1.2 ps for
energy and 300 ps for trajectory.

Simulations were run with the OPLS4 force field. Plots and figures were sketched
with the Desmond simulation interaction diagram tool of Maestro. The binding energy
between the protein-ligand complexes was calculated over the 300 ns period with ther-
mal_mmgbsa.py python script provided by Schréodinger, which takes a Desmond trajectory
file, splits it into individual snapshots, runs the Prime-MMGBSA [70-72] calculations on
each frame, and yields the average calculated binding energy.

3.6. Structure—Activity Relationship (SAR) and Molecular Overlay

The structure-activity relationships (SAR) were realized following methodology sim-
ilar to that proposed by Ferreira et al. (2019) [73], Silva et al. (2023) [74], and Lima et al.
(2022) [47]. A search for the promising compounds was carried out in the PubChem
database [41] in order to obtain information related to experimental data, patents or re-
search with such molecules selected in virtual screening [75].

The molecular overlay was realized according to the methodology proposed by
Santos et al. (2022) [76] and da Silva Costa et al. (2018) [77]. The chemical structures
were superimposed, considering the contributions (%) of steric and electronic fields. The
analyses were performed using the DS program with the contributions of 50%, 70% and
100% of the steric field.
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3.7. Synthetic Accessibility and Theoretical Synthetic Route of Promising Compounds

Synthetic accessibility (SA) is an important factor in the selection of potential bioactive
compounds. SwissADME [45-47] performs fragment-based SA prediction [76-83] by
analyzing more than 13 million compounds. The method used is based on the fact that
frequent fragments imply high SA, i.e., easy synthesis, and rare fragments imply low SA,
i.e., difficult synthesis. SA scores range from 1 (very easy) to 10 (very difficult).

3.8. Lipophilicity and Water Solubility via SwissADME Webserver

This analysis aimed to determine solubility data for promising compounds for future
in vitro and in vivo assays, focusing on accurate dilution, solution preparation, and solvent
selection. Various methods can estimate LogPo/w for different chemical groups. In this
work, we used multiple lipophilicity prediction methods to improve accuracy by allowing
selection of the best method or achieving a consensus value through comparison [78].

The SwissADME webserver offers five prediction methods for accurate data on
promising compounds for future biological assays. XLOGP3 is an atomic method with
corrective factors, using reference LogP values as a baseline [79]. WLOGP is another
atomistic method without corrective factors, based on the Wildman and Crippen frag-
mentation approach [80]. MLOGP uses a topological method that applies multiple linear
regression on 13 lipophilicity-related molecular descriptors [81]. SILICOS-IT is a hybrid
method combining 27 fragments and 7 topological descriptors via FILTER-IT software [83]
(https:/ /www.hydac.com/en/online-tools/filter-it2 /, accessed on 12 April 2024). Fi-
nally, iLOGP is a physics-based method that calculates the free energy of solvation in
n-octanol and water using Born’s implicit solvent equation and solvent-accessible surface
area (GB/SA) [47].

Water solubility (LogS) is a key factor in determining compound dilution and appro-
priate administration. SwissADME offers three topological methods for assessing water
solubility: the ESOL method [84], the Ali method [85] and the SILICOS-IT method [82].

4. Conclusions

In this comprehensive study of ADME/Tox and the molecular interactions of the stud-
ied compounds, together with docking and molecular dynamics simulations, we concluded
that the ligands and the protein had low and stable RMSD values, suggesting that the
selected compounds form stable complexes and have potential as inhibitors of the tyrosine
kinase enzyme encoded by the BCR-ABL gene. Our in silico results showed that the studied
molecules could be potent protein kinase inhibitors with potential antiproliferative activity
on the enzyme. In conclusion, the results suggest that these ligands, particularly LMQC04,
may bind strongly to the studied target and may have appropriate ADME/Tox properties in
experimental studies. Considering future in vitro or in vivo assays, we elaborated the theo-
retical synthetic route of the promising compounds identified in the present study. Based
on these findings, the selected ligands showed promise for future studies in developing
chronic myeloid leukemia treatments.

Supplementary Materials: The following supporting information can be downloaded at:
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