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The past years have been characterized by an upsurge in opaque automatic decision support systems, such as
Deep Neural Networks (DNNs). Although DNNs have great generalization and prediction abilities, it is diffi-
cult to obtain detailed explanations for their behavior. As opaque Machine Learning models are increasingly
being employed to make important predictions in critical domains, there is a danger of creating and using
decisions that are not justifiable or legitimate. Therefore, there is a general agreement on the importance of
endowing DNNs with explainability. EXplainable Artificial Intelligence (XAI) techniques can serve to verify
and certify model outputs and enhance them with desirable notions such as trustworthiness, accountability,
transparency, and fairness. This guide is intended to be the go-to handbook for anyone with a computer
science background aiming to obtain an intuitive insight from Machine Learning models accompanied by
explanations out-of-the-box. The article aims to rectify the lack of a practical XAI guide by applying XAI
techniques, in particular, day-to-day models, datasets and use-cases. In each chapter, the reader will find a
description of the proposed method as well as one or several examples of use with Python notebooks. These
can be easily modified to be applied to specific applications. We also explain what the prerequisites are for
using each technique, what the user will learn about them, and which tasks they are aimed at.
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1 Introduction

In machine learning, it should be acknowledged that system decisions can be faulty, as there are
factors intrinsic to machine learning systems that can lead to inadequate system behavior. This
is due to several reasons, such as bias in the data or issues with system design (such as network
structure, connectivity, optimization process, and code quality management). These factors can
impact system performance in terms of accuracy, false negatives, or false positives compared to
the ground truth. This is an inevitable feature of DNNs, rather than simply bugs in the system that
can be corrected. System performance can be largely insufficient to promote trust in the system,
and it could lead to catastrophic outcomes in critical applications where human lives may be at
stake. An interesting approach is to consider this situation from a software engineering point of
view. Following principles of dependable and robust system design might ensure safer system
operation. Therefore, there is a need for tools to understand a machine learning system’s behavior
and outputs—i.e., the need for explainability. Explainability here refers to making explicit the
details and reasons for a model outcome, to make its functioning clear or easy to understand [8].

Explainable AI (XAI) seeks to elucidate the internal workings of a machine learning model,
aiming to offer clear explanations regarding the methods, procedures and outputs of the model
in a manner comprehensible to users [1]. XAI techniques are increasingly being used by a wider
audience and are starting to be applied in multiple fields in industry and academia. More and more
techniques are appearing, and it can often be complex to interpret or convert their explanatory

ACM Comput. Surv., Vol. 57, No. 2, Article 50. Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0001-7375-9518
HTTPS://ORCID.ORG/0000-0003-3362-9326
https://doi.org/10.1145/3670685


A Practical Tutorial on Explainable AI Techniques 50:3

elements into actionable explanations—i.e., explanations that developers or experts can transform
into actions to fix the model. This article is a guide to some of the most commonly used XAI
methods, producing explanations in common format applied to models ingesting different types
of data (image, tabular, textual, and graphs) and models using neural-symbolic computation. We
also consider some user interface aspects that seek to offer better interaction between the system
and non-technical users, as in the case of neural-symbolic computation models producing natural
language explanations and counterfactual explanations.

As black-box Machine Learning models are increasingly employed to make important pre-
dictions in critical contexts [16, 21, 59], the demand for transparency is increasing from various
stakeholders in AI [72]. This is particularly true in the field of healthcare, where operations need
to be trusted for ethical and safety reasons [65]. With this motivation, all techniques presented
are accompanied by an example. Some techniques are also presented with a second application
in a different domain than the first application to show how our tutorials can be easily adapted to
different use cases.

The goal of this guide is to serve as a practical and readily usable tool for any developer wishing
to obtain some explanatory elements for the behavior of their deep learning model. These can
be used to complement efforts to regulate, audit, and govern AI systems [22]. Contrary to other
guides that focus on a specific data type [17], we provide a broader view of XAI methods by
addressing most of the data types and issues faced by users wishing to explain their models.
Dividing the tutorial based on the user’s input data type offers contextual relevance and should
help with accessibility and facilitate practical application. Tailoring examples and methods to spe-
cific data modalities allows users to better understand unique challenges and nuances, hopefully
promoting effective utilization in real-world scenarios. By providing detailed implementation
guidance for each data type, this tutorial is also a practical resource, easing the transition from
theory to application and offering a better learning experience.

In what follows, we describe an XAI method for each of the most common data types: tabular
in Section 2, images in Section 3, and text in Section 4, as well as a general method in Section 5.
We accompany these techniques with a description of the neural-symbolic methods used to make
explanations interactive in Section 6 as well as a method to render XAI explanations through
natural language generation in Section 7. Data, models, and Python Google Colab interactive
notebooks were made available and are free and open source to be reused with ease, adapted,
or used to consolidate learning or teaching. They are presented with a systematic introduction
of the fundamental theories and common practices. Use cases and suitability analyses for each
application, task, or data type are provided with concrete examples and interactive code. Table 1
summarizes the different methods presented here with their associated working demonstration
(Google Colab notebooks) to facilitate the reader’s exploration of the material. Figure 1 acts as a
flowchart/map for the readers to help find a method to use according to their types of data.

2 XAI Techniques for Tabular Data

Model-agnostic XAI techniques are meant to be applied to any machine learning model and
are applied after the model has been trained [18]. The flexibility of such methods lies in their
ability to explain any machine learning model [75]. In this text, we will explore two different post
hoc explanation methods for tabular data: SHapley Additive exPlanations (SHAP) [54] and
Diverse Counterfactual Explanations (DiCE) [62]. We present these methods because they
have important advantages in addition to being model-agnostic:

— SHAP has a solid theoretical foundation in game theory, which ensures the validity of the
explanation by following mathematical axioms. It provides contrastive explanations, com-
paring the prediction with the average prediction. This method is suitable for users who
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Table 1. The Different XAI Methods Explored in the Article with Associated Links to Google Colab

Implementations, which Can Be Used to Apply the Methods to Your Own Use-case

XAI method Datatype Explanation kind Task explained Dataset used

SHAP [54] Tabular Feature Importance Bipolar Disease Prediction Simula Depresjon [36]1

Original SHAP Repository: https://github.com/slundberg/shap

SHAP practical case guide: https://colab.research.google.com/drive/1AxdhD-ZkZya57-ePk6Nqg0Z8P2eMu9XX?usp=sharing

DiCE [62] Tabular Counterfactual Bipolar Disease Prediction Simula Depresjon [36]

Original DiCE Repository: https://github.com/interpretml/DiCE

DiCE practical case guide: https://colab.research.google.com/drive/12jw91RouPBc9slFwB2OWRwYB6Ckviiv3?usp=sharing

Transformers Interpret (TI) [68] Textual Feature Importance Sentiment Analysis MultiNLI corpus [105]2

Original TI Repository: https://github.com/cdpierse/transformers-interpret

TI practical case guide: https://colab.research.google.com/drive/1XGGXUYNC1M_jlmQUV5dZB3HVdQRXeghd

Grad-CAM [85] Image Visual Image Classification TCGA and Target [37]3

Original Grad-CAM Repository: https://keras.io/examples/vision/grad_cam/

Grad-CAM practical case guide: https://colab.research.google.com/drive/1ZXznvG_G1Y-JyHX9a_x6yKrXHhMp6tpm?usp=sharing

Layer-wise Relevance

Propagation (LRP) [61]
Graph Visual Image Classification TCGA and Target[37]

Original LRP for Graphs Repository: https://git.tu-berlin.de/thomas_schnake/demo_gnn_lrp

LRP for Graphs practical case guide: https://colab.research.google.com/drive/166FYIwxblfrEltkYqY_jiJoAm9VLMweJ?usp=sharing

Original GCExplainer Repository: https://github.com/CharlotteMagister/GCExplainer

GCExplainer for Graphs practical case guide: https://colab.research.google.com/drive/16ayMlyDzNubxSkpIBHXDvbEgpB88wBBK?usp=sharing

Logic Tensor

Networks (LTN) [87]
Textual Interactive Violence Risk Prediction COMPAS ProPublica[52]4

Original LTN Repository: https://github.com/logictensornetworks/logictensornetworks

LTN practical case guide: https://colab.research.google.com/drive/1Ip9Yb9gVRSRqaBKY9gOpiWn9pq3LovWG?usp=sharing

TS4NLE [29] Textual Natural Language Explanation Rendering UMLS [13]5

Original TS4NLE Repository: https://github.com/ivanDonadello/TS4NLE

TS4NLE practical case guide: https://colab.research.google.com/drive/1iCVSt7TFMruSzeg5DswLOzOR1n7xATbz

Note that certain methods can also be used for other data types than the one described in the table, including
multimodal data, but only the data types included in this tutorial are mentioned. All guides are accessible via
https://github.com/NataliaDiaz/XAI-tutorial.

need to be certain that the explanation provided for the behavior of their model is valid and
reflects what has happened within the model.

— DiCE produces counterfactual explanations, one of the best explanation types to understand
a model due to its similarity to the human cognitive process [95]. The explanation highlights
the minimal changes in the input required to obtain a contrastive output. It allows for the
production of explanations that are easily conveyable not only to developers but also to a
non-technical audience. This method is perfect for users who want an explanation that is as
meaningful and understandable as possible.

We apply these two methods one after the other to provide an understandable and easy-to-
modify example of use. We use each method for two use cases, one in finance and one in the
medical field, to emphasize their ease of use.

2.1 SHAP Analysis

In this section, we will discuss one of the most widely used model-agnostic methods, SHapley
Additive exPlanations (SHAP) [54], and its application to tabular data. SHAP enables us to
understand the contribution of each feature to the final prediction by testing the prediction
obtained by experimenting with all possible combinations of the presence and absence of features.

To put it simply, SHAP is like trying to determine how much each person should pay on a
restaurant bill by analyzing how much it would have cost if the person had not come to the
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Fig. 1. Map/flowchart of the XAI methods described in the article. This is of course non-exhaustive regarding
the existing XAI methods. It only refers to the methods discussed in this article. Moreover, the layer-wise
relevance propagation method is recommended when the data are neither textual, tabular, nor images, but
it can be used on these types of data as well. Also, SHAP and LTN can be used on images, but we include
here only the data types for which Python notebooks were provided.

restaurant. SHAP is based on game theory, specifically Shapley values. Shapley values, originating
from cooperative game theory, provide a fair and mathematically rigorous method for allocating
the contribution of each participant in a cooperative setting by averaging the marginal contribu-
tions over all possible orders in which individuals could join coalitions [88]. SHAP decomposes
the prediction of a model among all features involved by using an additive feature attribution
analysis:

д(x ′) = ϕ0 +

M∑
i=1

ϕix
′
i , (1)

where д(x ′) is the explanation model that matches the original model f (x) when x = hx (x ′) and
where x ′ ∈ {0, 1}M ,M is the number of input features andϕi ∈ R.ϕ0 represents the baseline model
(that is, the model without the feature i) while ϕi corresponds to the contribution of feature i to
the model prediction:

ϕi =
∑

S ⊆N \i

| S |!(M − |S | − 1)!
M!

[fX (S ∪ i) − fX (S)] , (2)
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where N is the set of all input features. The inner functioning of SHAP considers, for each feature
i , two different models: fS∪{i }(x) and fS (x). Then, it computes the difference in prediction between
both models. Then, the difference in prediction between both models, averaged over all possible
coalitions, is the credit attributed to feature i .

Due to the computational expense of considering all possible sets of features S and averaging
the difference in prediction due to feature i , SHAP generates a random sample of possible sets of
S to compute the average. This average is used to estimate feature importance. SHAP has several
desirable properties, including singularity detection (i.e., if the feature is locally zero, then the
SHAP value is also zero), local accuracy (i.e., for a specific input x , the explanation model matches
the output of the model f for the simplified input x ′), and consistency (i.e., if in a second model
approximation with a different subset of features the contribution of the feature is higher, then the
SHAP value will also be higher).

2.1.1 SHAP Use Case: Predicting Consumers Default. Credit Scoring refers to the problem of
deciding whether or not to accept a consumer’s loan application. Such models assist lenders and
are based on different kinds of data (e.g., performance of consumer’s previous loans, financial
information, personal data). In this particular use case, we build a model based on Extreme

Gradient Boosting (XGBoost) to assess the probability of default of the loan applicant [20].
Since in the financial industry, and especially in the credit scoring field, there is a need to
understand the decision-making process, we apply SHAP to understand the reasons behind the
model decision-making. XGBoost will predict a probability that subsequently will be mapped into
two classes. If the probability of the assessed loan is greater or equal to 0.5, then the model will
predict that the loan will be amortized. Otherwise, the customer will not be able to return the
loan. This is an excellent case to provide a counterfactual explanation scenario: “If criterion x was
different, then the loan would be granted.”

XGBoost [20], an ensemble technique that combines tree models with Gradient Boosting, has
rapidly gained interest in the credit scoring. The XGBoost works by sequentially adding weak
learners (i.e., decision trees) to an ensemble, each one correcting its predecessor.

In the financial industry, and specially in the credit scoring field, there is a need to understand
the decision-making process. Such needs have resulted in strict regulations, such as the European
General Data Protection Regulation (GDPR) and ethics guidelines for trustworthy AI [5, 23, 26].
Different XAI techniques can tackle the explainability issue of black-box models when treating
tabular data. More generally, most methods known as model-agnostic XAI techniques are applica-
ble in this case. In this guide, we introduce SHAP, a technique that reflects the importance level
contribution of each feature in the model to a given outcome.

We start by building the model. The data we dispose contains financial information about com-
panies, which are divided into two classes. The majority class (about 99%) represents companies
that do not incur into a default the year after. Since the dataset is highly imbalanced, we generate
synthetic data using SMOTE [19]. Then, we construct the XGBoost model, which will output the
probability that a company will be in default one year after. We compare the results of our model
with the credit rating of Tinubu Square (see Reference [73]). Finally, we apply the SHAP frame-
work to understand the main reasons why the model considers that a company is likely to suffer
financial difficulties.

We build a loan default predictor, i.e., a model that predicts a probability that is mapped into
two classes. If the probability of the assessed loan is greater or equal to 0.5, then the model will
predict that the loan will be amortized. Otherwise, the customer will not be able to return the loan.

SHAP facilitates the understanding of the model by displaying what features have been the most
relevant for the model and their impact in the final prediction. On one hand, the SHAP analysis
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Fig. 2. X-axis represents the SHAP value (i.e., contribution) for each feature of the loan default prediction
model, while y-axis indicates the features, ranked by importance from top to bottom. Each point represents
a data point (i.e., a single individual). Feature values are encoded using a color gradient. Negative values in
x-axis correspond to an increase in the probability of default.

shows us what variables influenced model’s output the most. On the other hand, SHAP analysis
does not explain how the magnitude of the different features affects the output of the model. This
is mainly due the following reasons: highly imbalanced, considerable volume of missing data, and
the scarce features used.

The contribution of each explanatory feature to the final prediction is based on a Shapley anal-
ysis of contribution decomposition for the default prediction. X axis represents the feature contri-
bution value (negative values in x axis increase the probability of default and vice versa). Features
are sorted according to the their relevance (i.e., SHAP average absolute value). In the studied case,
Figure 2 shows at the top the most relevant features for the model when predicting the loan’s de-
fault: the mean difference between the day the first payment due was paid and the day it had to
be paid, the age of the borrower, and his localization (latitude and longitude). The analysis results
are intuitive and show that large average delays in the payment of the first payment due increase
the probability of default. The SHAP analysis also shows that younger borrowers are more likely
to not repay the loan.1

2.1.2 SHAP Use Case: Predicting Bipolar Disease. Bipolar disorder, formerly called manic de-
pression, is a mental health condition that causes extreme mood swings that include emotional
highs (mania or hypomania) and lows (depression) that often come accompanied by different fea-
tures (i.e., physical and psychological features). For this particular use case, we build a model based
on XGBoost. Then, we apply SHAP to help psychiatrists understand the causes behind a potential
patient tendency towards a mania or depression episode.

1SHAP guide online: https://colab.research.google.com/drive/1HuhpUAl4s9ZIs3yWHsAExApLxGAv3NuH?usp=sharing
refined from https://github.com/slundberg/shap
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Fig. 3. X-axis represents the SHAP value (i.e., contribution) for each feature of the bipolar disease prediction
model, while y-axis indicates the features, ranked by importance from top to bottom. Each point represents a
data point (i.e., a single patient). Feature values are encoded using a color gradient. Negative values in x-axis
correspond to an increase in the probability of being diagnosed with a bipolar disease.

As explained in the previous use case, the SHAP technique facilitates the understanding of
the model by displaying what features had the most impact, i.e., contributed the most to the
model prediction. It also reveals how the magnitude of the different features affects—positively
or negatively—the probability of suffering a bipolar disease in the future.

In the studied case, Figure 3 shows at the top the most relevant features for the model when
predicting a bipolar disease: the variation in the activity measurement, the Montgomery Asberg

Depression Rating Scale (MADRS) at the moment the Actigraph was stopped (madrs2), the
mean of the activity measurement, and the MADRS at the moment the actigraph was initiated
(madrs1). The analysis results are intuitive and show that high values in the variation of the
activity measurements (activity_std) decrease the probability of being diagnosed with a bipolar
disease.2

2.1.3 SHAP Values Suitability Analysis: Pros and Cons. Among additive feature attribution
methods, SHAP is the only possible consistent, locally accurate method that obeys the missing-
ness property (i.e., a missing feature gets an attribution of zero). However, it is computationally
expensive, since as the number of features increases, the number of possible combinations
combinatorially explodes, leading to an expensive computation time. For tree-based models, there
is a version of SHAP [53] that allows to compute the exact SHAP values faster, in polynomial
time, by keeping track of the number of subsets S that flow into each node of the tree. Another
problem is that the Shapley values can change with the order of features selected, and thus,
for an exact computation of Shapley values, all possible combinations of subsets must be
considered.

Generally, XAI techniques such as SHAP only focus on explaining the model’s inner functioning.
However, they do not compare the level of alignment of the ML model explanation with human
expert interpretations (i.e., psychiatrists). Hence, there is a need for ML models in this domain to
meet experts’ criteria to allow trust. This is a crucial requirement for ML model adoption in critical
decision-making.

2SHAP guide online: https://colab.research.google.com/drive/1AxdhD-ZkZya57-ePk6Nqg0Z8P2eMu9XX?usp=sharing
adapted from https://github.com/slundberg/shap
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2.2 DiCE: Diverse Counterfactual Explanations

Some XAI techniques for tabular data focus on explaining the model by measuring the features that
impacted the most the prediction. However, there are methods that explain the model by providing
information of feature-perturbed versions of the analyzed instance, e.g., References [77, 104]. These
methods fall into the counterfactual (CF) explanations methods. In this section, we focus on
Diverse Counterfactual Explanations (DiCE) [62]. Intuitively, we seek to know what would
be the minimal change in the model’s input that would make its output different, and we turn this
search into an optimization problem.

DiCE considers the problem of generating counterfactual explanations from a set of counterfac-
tual, i.e., alternative events, to a given model output.

This is set as an optimization problem. Ideally, the set of CF examples should balance the va-
riety of the suggested CF instances (diversity) with the capability of the stakeholder to meet the
suggested changes (proximity) proposed by the CF framework. Furthermore, the CF explanations
need to be aligned with human experts’ criteria.

We present term-by-term the elements of the function to minimize [62]. The first term to be
encoded mathematically is the concept of diversity. Diversity is captured building on determi-

nantal point processes (DPP), a method for solving the subset selection problem with diversity
constraints. A DPP is a mathematical model for random point patterns that exhibit repulsion
between points. The probability distribution of the points is determined by the determinant of
a kernel matrix, reflecting the pairwise interactions and ensuring diversity in selected subsets,
making DPPs useful in applications such as diverse subset selection and recommendation
systems [93].

dpp_diversity = det(K), (3)

wheredet is the computation of the determinant of matrixK withKi, j =
1

1+dist (ci ,c j ) , anddist(ci , c j )
is a distance metric. ci represents each generated counterfactual explanation.

Proximity is quantified as the negative distance between the CF example’s features and the
original input’s. For each generated CF (ci ), we compute the distance between the CF and the
input x .

Proximity := − 1

k

k∑
i=1

dist(ci ,x). (4)

C is the generated set of k CFs generated for example x that minimizes the following function
(as in Reference [62]):

C(x) = arд minc1,c2, ...,ck

1

k

k∑
i=1

yloss(f (ci ),y) (5)

+
λ1

k

k∑
i=1

dist(ci ,x) − λ2dpp_diversity(c1, c2, . . . , ck ),

where yloss() measures the distance between the output of the model for the CF generated f (ci )
and the output we desire, i.e., the generated CF example. C is the set of k CFs that are close to
example x , with a high diversity within the CF generated and for which the outcome of the model
is as close as possible to the desired class. Both λ1 and λ2 are hyperparameters that balance the
three parts of the loss function.

2.2.1 DiCE Use Case: Predicting Consumer’s Default. We will focus on the use case presented
in Section 2.1.1. As mentioned before, the credit scoring is used to assess the probability that a
borrower will not repay his credit. These models are used to identify the cases where the loan must
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Fig. 4. Counterfactual examples generated using DiCE [62]. Green points are cases where the loan applicant
would be approved. We selected a set of variables that are the easiest for the customer to vary (i.e., employ-
ment status, the behavior on the payment of previous loans, and the loan amount demanded). We generate
three different CF examples for the consumer, but the amount of CFs to be generated can be decided by
the user of DiCE or the applicant—if unsatisfied with previous CFs. However, the number of CF that can be
generated is limited by the restrictions imposed to create new CF examples.

be denied. In this particular use case, the interest is in advising the customer (i.e., the stakeholder)
what to do to get the credit. We are interested in generating counterfactual examples for the clients
with denied loans.3

In Figure 4, we generate three counterfactual explanations for a given loan applicant. Initially,
the considered applicant has been denied the loan by the Random Forest [15] model. The CF ex-
amples show which features the applicant should change to get the loan approved. For example,
if the applicant had a job and the amount of the loan was smaller, then the loan would have been
approved (bottom right point in the Figure 4).

2.2.2 DiCE Use Case: Predicting Bipolar Disease. In this particular use case, as presented in
Section 2.1.2, there is a particular interest in providing psychiatrists with the criteria that would
change the model output (i.e., a change in the diagnosis of bipolar disease)

In Table 2, we generate two counterfactual explanations for a given patient. The trained model
(i.e., Random Forest) predicts a given patient has no bipolar disease. CF examples show which
features should change to be diagnosed with bipolar disease. The example in Table 2 shows that if
the patient was older, then the diagnosis (CF instance 2 in Table 2) would have been positive (i.e.,
Bipolar Disease).

2.2.3 DiCE Analysis: Pros and Cons. Advantages of using DiCE include the agnosticism of the
method as a capability of generating high number of unique counterfactual explanations for any
given ML model. It equally allows to produce explanations that are easily conveyable not only
to developers but also to non-technical audiences. However, currently, the disadvantage of DiCE

3DiCE guide available at https://colab.research.google.com/drive/1nUTTTfcCuxsnZmaJpfvLsxRB4FFaORVK?usp=sharing.
We implemented DiCE using the framework developed by Mothilal et al.: https://github.com/interpretml/DiCE
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Table 2. Comparison between the Features that DiCE Modifies to Change the Model Outcome from 0
(No Bipolar Disease) to 1 (Bipolar Disease) for a Single Patient (i.e., Case)

Patient Data Age MADRS 1 MADRS 2
Unipolar Depressive

Probability
Bipolar II

Probability

Original Data 45–49 24 25 0.72 0.28

CF instance 1 50–54 24 21.2 0.36 0.64

CF instance 2 65–69 24 20.5 0.48 0.52
All other features remained fixed.

is that works only for differentiable models, since it uses gradient descent for the optimization
process. Gradient descent is an iterative optimization algorithm used in machine learning to adjust
the parameters of a model by computing and moving in the direction of the steepest decrease in a
cost function [14].

3 XAI Techniques for Image Models

Convolutional Neural Networks (CNNs) and Vision Transformers constitute the state-of-art
models in all fundamental computer vision tasks (image classification, object detection, instance
segmentation). CNNs are built as a sequence of convolutional and pooling layers that automatically
learn and entails extremely complex internal relations between features. At the end of the sequence,
one or multiple fully connected layers are used to match the output features map into scores.

While some XAI techniques try to delve inside the network and interpret how the intermediate
layers see the external world [92], this guide presents a technique that seeks to understand the
decision process of a CNN by mapping back the model output to the input space to see which
parts of the image were discriminative for the prediction. This choice is motivated by the simplicity
offered by visual understanding of explanatory elements that can be relevant for a wide audience.
Thus, there is no prerequisite to understand and use this kind of explanation, which can be useful
to anyone who wants to know which pixels are relevant for an image classification. Moreover
gradient-based methods are usually faster to compute than model-agnostic methods, which makes
it very suitable for people with limited computing power or real-time requirements.

3.1 Grad-CAM Use Case: Image Classification

Gradient-weighted Class Activation Mapping (Grad-CAM) [85] uses the gradients (of any
target concept) flowing into the final convolutional layer to produce a coarse localization map,
highlighting the important regions in the image for predicting the concept. Intuitively, the Grad-
CAM technique makes it possible to know which part of the image contributed the most to the
model’s prediction. The goal of Grad-CAM is to visualize where in an image a convolutional layer
looks for a particular prediction. It examines which regions are active in the feature maps of the
final convolutional layers to understand how the CNN makes judgments.

Grad-CAM offers visual justifications for CNN judgments. In contrast to other techniques, the
gradient is back-propagated to the last convolutional layer rather than all the way back to the
original picture to create a coarse localization map that highlights key areas of the original image.
Grad-CAM assigns each neuron a relevance value for the prediction. Explained intuitively, the
output of a Grad-CAM is an image of the same size as the input image of our neural network, in
which each pixel is colored according to its importance in the final prediction. Different CNNs
can be explained with Grad-CAM; it works for any network having using gradient descent.

To obtain the class-discriminative localization map Lc
Gr ad−CAM

for any class c , i.e., a visual
representation that highlights the key regions in an input, such as an image, relevant for
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ALGORITHM 1: Grad-CAM Algorithm: Computing a class activation map as output explanation
for a given classified image

Require: Input Image I , Classifier C
1: Step 1: Isolate the last convolutional layer of model C
2: LastLayer ← C .LastConvolutionalLayer
3: Step 2: Create a model mapping the input image to the activations of the last layer
4: ActivationMap ← LastConvModel(I ,LastLayer )
5: Step 3: Create a model mapping the activations of the last layer to the class predictions
6: PredMap ← PredModel (LastLayer .Output ,C .Output)
7: Step 4: Compute activations of the last layer
8: Activations ← ActivationMap(I )
9: Step 5: Compute class predictions

10: Predictions ← PredMap(Activations)
11: Step 6: Compute the gradient of the top prediction
12: TopPrediction ← Max(Predictions)
13: GradTopPrediction← TopPrediction.Gradient
14: Step 7: Multiply each channel in the activation map by the mean of the across the dimensions.
15: PooledGradients ← Pool(GradTopPrediction)
16: for i ∈ Ranдe(Activations) do

17: Activations[i] ← Activations[i] ∗ PooledGradients[i]
18: end for

19: Step 8: Return the heatmap for class C activation as the mean of the activation map:
20: return ClassActivationMap ← Mean(Activations)

predicting a specific class in tasks like object detection or image classification, Grad-CAM
computes the gradient yc of the score for class c with respect to the feature map activation Ak for
feature map k of a convolutional layer. These gradients are global-average-pooled by summing
feature map activations Ak

i, j over the width i and height j of the activation map containing Z
pixels to obtain the neuron importance αc

k
, defined as:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
i, j

. (6)

The output of Grad-CAM, heatmap Lc
Gr ad−CAM

, is obtained by performing a weighted combi-
nation of activation maps, he output of intermediate layers in a neural network, with a Rectifier

Linear Unit (ReLU) activation function. We usually normalize the heatmap and color it to make
it more visually interpretable.4

Lc
Gr ad−CAM = ReLU

(∑
k

αc
kA

k

)
. (7)

The goal of visualizing class activation maps in a CNN is to ensure that the model is taking a
decision for the right reason and that it does not contain any inner bias due to learned spurious
correlations or purposely misleading selected data. Taking as example Figure 5, a binary classifier
was trained to classify pictures of lymphoid tissue and esophagus membrane. We want the model
to be able to predict that the RGB input image represents an esophagus membrane, because it

4Grad-CAM guide available at: https://colab.research.google.com/drive/1ZXznvG_G1Y-JyHX9a_x6yKrXHhMp6tpm
adapted to a medical use case from https://pyimagesearch.com/2020/03/09/ and https://colab.research.google.com/drive/
1bA2Fg8TFbI5YyZyX3zyrPcT3TuxCLHEC?usp=sharing adapted to an additional domain from https://keras.io/examples/
vision/grad_cam/
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Fig. 5. Grad-CAM example on a medical image representing an esophagus membrane and classified as such
by a binary classification model using VGG16 trained on TCGA (Cancer Genome Atlas).5Superimposed vi-
sualization of Grad-CAM’s heatmap and the input image, showing the model mostly used the bottom and
the top of the image to make its prediction.

contains features typical of an esophagus. An expert in the medical field would be able to verify
that the hottest regions are the ones that should be used to make the prediction.

3.2 Grad-CAM Suitability Analysis: Pros and Cons

The Grad-CAM technique has the advantage of being easy to understand, as the explanation
is visual and easy to implement for any gradient-based model, as it does not require to modify
the model architecture. However, the interpretation of the heatmap is subjective and therefore
induces a human bias, since the explanation does not come directly from the model but from
an interpretation that the user makes, based on what it is able to recognize on the heatmap
[30]. Also, the Grad-CAM is class-discriminative but lacks the ability to show fine-grained
importance, as the heatmap is coarse and not in high-resolution. This means that it can determine
globally which region contributed the most to detecting a certain class, but not precisely which
pixels. Guided Grad-CAM [84] proposes a high-resolution class-discriminative visualization
by combining Grad-CAM with existing fine-grained visualizations. Nevertheless, the validity
of explanations obtained by saliency-based techniques can be misleading [3], as it was shown
the relationship between “good” saliency and generalization performance is tenuous and that
improved generalization is not always accompanied by improved heatmaps [97].

4 XAI Techniques for Language Models

Most of the information available worldwide is in text form, from legal documents to medical
reports. A variety of deep learning models have been applied to improve and automate complex

5Available at the GDC Data Portal https://portal.gdc.cancer.gov/
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language tasks. Examples of such tasks include, but are not limited to, tokenization, text classifica-
tion, speech recognition, machine translation, and document summarizing.

Among the existing Natural Language Processing (NLP) models, we analyzed transformers
models for two pivotal reasons: They rely on the attention mechanism (i.e., initially designed for
neural machine translation), and they are exceptionally effective for common natural language

understanding (NLU) and natural language generation (NLG) tasks [96]. Thus, this section
of the tutorial focuses on a method for explaining the outputs of transformer models, specifically
for NLP tasks. As the use of this method in this context is specific to transformers, we begin this
section with a reminder of this architecture.

The Transformer architecture functions by assessing the significance of different parts of the
input data. Initially, it deconstructs the sentence into individual words or parts of words (tokens).
To grasp the context of each word—how each word is related to every other word in the sentence—
the model examines all the words in a sentence simultaneously. Subsequently, the model employs
the so-called attention mechanism to emphasize the parts of the sentence that are more relevant
to understanding the current word. In text generation, the transformer leverages the context it
has acquired to predict the next word in a sequence. This is done by calculating probabilities for
numerous potential next words and selecting the one with the highest probability. Following this,
it incorporates this new word into the sequence and repeats the process until a complete sentence
or paragraph is generated.

When a sentence is decomposed into tokens, which can be words or parts of words, each token
is converted into a numerical representation. These numerical representations are then used to
produce three distinct types of vectors for every token: query vectors, key vectors, and value vec-
tors. The query vector represents the token that the model is currently analyzing. Every token in
the sentence is associated with a key vector. These key vectors are instrumental in determining the
compatibility or relationship between the token under analysis (represented by the query vector)
and all other tokens in the sentence. The model computes a score by comparing the query vector
with each key vector, which indicates how much focus (or weight) should be placed on each token
in the sentence in relation to the token being analyzed, i.e., attention score. Tokens with higher
scores are considered more relevant to the context of the current token. After calculating the at-
tention scores, the model utilizes the value vectors of each token. These value vectors contain the
substantive information about each token. Based on the attention scores, the model calculates a
weighted sum of these value vectors, thereby highlighting the information from tokens that are
more pertinent.

In practice, the encoder represents the input as a set of key-value pairs, (K,V), with dimensions
dk and dv , respectively. The decoder packages the previous output into a query Q of dimensionm
and obtains the next output by mapping this query against the set of keys and values [103]. The
matrix of outputs, also known as the score matrix, determines the importance of a specific word
with respect to other words.

The score matrix is the result of a scaled dot-product, where the weight assigned to each output
is determined by the dot-product of the query with all keys (Equation (8)).

Attention(Q,K,V) = softmax

(
QK	
√
dk

)
V . (8)

The attention mechanism repeats h times with different, learned linear projections of the
queries, keys and values to dk , dk , and dv dimensions, respectively. The independent attention
outputs of each learned projection are then concatenated and linearly transformed into the
expected dimension [103].
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Fig. 6. High-level overview of the BERT Transformer model: The input comprises a sequence of tokens em-
bedded into vectors, while the output consists of a sequence of vectors linked to the input tokens via index.
The encoder employs a multi-head attention mechanism to compute queries, keys, and values from the en-
coder states. Additionally, the encoder feed-forward network incorporates information from other tokens
to enhance model integration. However, the decoder utilizes a masked multi-head attention mechanism to
compute queries, keys, and values from the decoder states. Furthermore, the decoder’s multi-head atten-
tion mechanism examines the source of the target tokens, drawing queries from the decoder states and keys
and values from the encoder states. Finally, the decoder feed-forward network incorporates additional token
information, further enhancing model integration (original image from Reference [96]).

MultiHead(Q,K,V) = Concat (head1, . . . , head h)WO ,

where headi = Attention
(
QWQ

i ,KW
K
i ,VWV

i

)
.

(9)

In multi-head attention (Equation (9)), h represents the number of parallel attention layers
(heads), and theWs are learnable parameter matrices, specifically,WiQ ∈ Rdmodel×dk ,WiK ∈
R

dmodel×dk ,WiV ∈ Rdmodel×dv , andWO ∈ Rhdv×dmodel .

4.1 An Example of Transformer Architecture: Bidirectional Encoder Representations

from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) [24] is a machine
learning technique based on transformers for pre-training in NLP, developed by Google. The
distinctiveness of this technique lies in its application of bidirectional training to understand the
context of a word based on all of its surroundings (both left and right of the word) rather than
just the words that precede it, as in traditional unidirectional language models (e.g., OpenAI
GPT [74], ELMo [67]). This way of processing words allows BERT to learn to unambiguously
contextualize words. By repeating this process multiple times (i.e., multi-head), BERT can learn
different contexts between different pairs of words. Figure 6 describes the BERT architecture. To
define the prediction goal, BERT utilizes two techniques: Masked Language Modeling (MLM),
inspired by the Cloze Procedure [91], and Next Sequence Prediction (NSP) [47]. The former
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involves substituting approximately 15% of the tokens with a mask token and querying the model
to predict the values of the masked tokens based on the surrounding words. The latter involves
training the model by providing pairs of sentences as input to learn to predict whether the second
sentence in the pair is the subsequent sentence in the original document.

Due to the increased attention received by Transformer models, there are numerous interfaces
available for exploring their inner workings and interpreting their decisions, including those made
by BERT.

Captum6 is a comprehensive toolkit developed on top of PyTorch, designed to enhance model
interpretability. At its core, it offers a range of attribution algorithms, which are techniques used
to assign importance scores to different input features or components of a model. These scores
help explain why a model made a particular prediction, thus improving our understanding of its
decision-making process.

Attribution algorithms provided by Captum can be categorized into three main groups:

— Primary Attribution Algorithms: These algorithms focus on attributing the model’s output
predictions directly to its input features. By quantifying the importance of each input feature,
they reveal which features are most influential in driving the model’s decisions.

— Layer Attribution Algorithms: Layer attribution algorithms delve deeper into the model’s
architecture by attributing output predictions to individual neurons within a hidden layer.
This allows for a more nuanced understanding of how different parts of the model contribute
to specific predictions.

— Neuron Attribution Algorithms: Neuron attribution algorithms offer a granular analysis by
attributing the influence of a single internal neuron to the model’s input. This level of de-
tail helps uncover the specific activations and transformations occurring within the model,
providing deeper insights into its decision-making process [48].

4.2 Explaining Transformer Models with Transformer-Interpret

Transformer-Interpret is an efficient tool that relies on Captum and HuggingFace7 pre-trained
models. It offers user-friendly methods to explain most common natural language processing tasks
performed by Transformer models, including sequence classification, zero-shot classification, and
question answering:

— Sequence Classification: assigns a category to a whole text sequence based on overall content,
like labeling texts with their sentiment.

— Zero-shot Classification: classifies texts into categories unseen during training, using the
model’s ability to generalize based on context and semantics.

— Question Answering: generates or identifies answers to questions from a given text, focusing
on the model’s comprehension and information retrieval capabilities.

Thanks to attribution methods, Transformer-Interpret elucidates the workings behind these
tasks. The default attribution method utilized by Transformer-Interpret is Integrated Gradients

(IG) [90], which visualizes the importance of input features in the model’s predictions. To achieve
this, IG computes the integral of gradients with respect to inputs along the path from a given
baseline to the input.

The integrated gradient along the ith dimension for an input x and baseline x ′ is defined as
follows:

InteдratedGradsi (x) :=
(
xi − x ′i

)
×

∫ 1

α=0

∂F (x ′ + α × (x − x ′))
∂xi

dα , (10)

6Captum: https://github.com/pytorch/captum
7HugginFace: https://huggingface.co/
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where ∂F (x )
∂xi

is the gradient F (x) along ith dimension. α is the scaling coefficient.
IG’s aims to satisfy two desirable axioms for an attribution mechanism:

— Sensitivity. If a modification in a feature’s value leads to a change in the classification output,
then that feature should have a non-zero attribution, as it means this feature must have
played a role in the classification.

— Implementation Invariance. The attribution method result should not depend on the param-
eters of the neural network, i.e., two neural networks giving the same output for a certain
input should have the same attribution even if their weights are different.

Early attempts at interpretability in neural networks relied on gradient-based feature impor-
tance scores, which, while implementation-invariant, often fell short of meeting the sensitivity
criterion. A feature’s modification does not always result in a non-zero gradient, potentially ob-
scuring its actual influence on the model’s output. Integrated Gradients addresses this limitation
by establishing a baseline—a hypothetical input designed to represent an “uninformative” state
from which any deviation is meaningful–and calculating the cumulative gradient effect from this
baseline to the actual input. This cumulative effect elucidates how variations in a feature’s value
from the baseline contribute to changes in the output, thereby integrating sensitivity into gradient-
based attribution.

This is fundamental to the methods used to explain Transformer tasks by Transformer-Interpret.
For the purpose of this tutorial, we will concentrate on sentiment analysis and zero-shot classifi-
cation, applying them to COVID-19 content on Twitter. Sentiment analysis is a type of sequence
classification where the goal is to determine the sentiment expressed in a piece of text, such as
positive, negative, or neutral. When applied to COVID-19 content on Twitter, sentiment analysis
can help understand public opinion and emotions regarding the pandemic. Zero-shot classification
is particularly useful for analyzing Twitter data, because it allows the classification of tweets into
newly emerging categories without retraining the model. For example, as the pandemic evolves,
new variants, symptoms, or treatments may become topics of discussion. Zero-shot classification
can identify these new categories based on the context provided by the tweet, even if the model
has never seen them before.

The sections that follow describe the functionality of two tools offered by Transformer-
Interpret, which are useful for our analysis: the Sequence Classification Explainer, used for
sentiment analysis, and the Zero-Shot Classification Explainer, used for identifying emerging
categories or sentiments.

4.2.1 Sequence Classification Explainer. Consider a model designed for sentiment analysis, cat-
egorizing sentiments into three distinct labels: “positive” (0), “neutral” (1), and “negative” (2).
Sequence Classification Explainer helps us specify the target sentiment by its index, such as in-
dex 2 for “negative” sentiment, to compute attributions.

The explainer provides insights into the model’s decision-making process by analyzing different
embedding types. By default, it examines word embeddings (“0”), focusing on the semantic mean-
ing of words. Alternatively, it allows for the exploration of position embeddings (“1”), assessing
the impact of word placement within the sequence on the model’s classification.

4.2.2 Zero-Shot Classification Explainer. Zero-Shot Classification involves assigning labels to
text examples without having seen examples of those labels during training. This task is particu-
larly challenging, as it requires the model to understand and generalize from its training data to
unseen categories.
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Fig. 7. Zero-shot classifier on COVID-19 content from Twitter. Data from Reference [63].

The Zero-Shot Classification Explainer provides a way to understand how a model makes these
predictions. It does so by returning a table with attributions for every label, showing the contribu-
tion of different parts of the input text to the assignment of each label.

For example, when analyzing tweets related to COVID-19 to categorize them into themes such
as “public health advice,” “misinformation,” or “vaccine updates” without having been explicitly
trained on these labels, the explainer aids in identifying which words or phrases are most influen-
tial in determining each category.

Figure 7 shows the application of the Zero-Shot Classification Explainer to categorize tweets
related to COVID-19 into predefined labels. The True Label is the actual category label for the text.
Predicted Label is the category label predicted by the model with a probability score in parentheses,
and it represents the confidence of the model in its prediction. The Attribution Label is the label for
which the attribution score is calculated. The Attribution Score is the numerical value showing the
influence of the input text on the predicted label. Negative scores indicate that the text negatively
influenced the prediction for that label, while positive scores suggest a positive influence. The Word
Importance shows the text being analyzed with certain parts highlighted. The color coding (red for
negative, green for positive, and white for neutral) is based on the attribution score and indicates
the words or phrases that most significantly impacted the model’s prediction for each label. The
“CLS” token mentioned in the Word Importance column is a special token used in Transformer
models like BERT, which stands for “classification” and is used as an aggregate representation of
the input for classification tasks.

From the data shown in the table, we can infer that the model seems to be performing well, as
the predicted labels match the true labels. The model is most confident about its prediction for the
“health” and “vaccine” labels, as suggested by the higher absolute attribution scores (note that they
are negative, which could be due to the model’s design where perhaps a negative score indicates
a stronger influence for a positive match). The phrase “it is important that everyone turns up for
their shots” is a significant contributor to the classifications related to “health” and “vaccine,” which
makes intuitive sense. The word “shots” in the context of “guns” has a positive attribution score,
indicating a different kind of influence on the classification compared to the health and vaccine
contexts.

5 XAI Techniques to Explain Image, Text, and Graph Classification Models:

Layer-wise Relevance Propagation (LRP)

Layer-wise Relevance Propagation (LRP) is a method that produces a heatmap for every
input data sample [61]. The heatmap’s data structure and size are the same as the input’s, and its
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highlighted parts denote the areas of the input that played the highest role in the classification,
as Figure 8 shows. LRP is an XAI method that applies to several neural network architectures and
thereby to several types of data that they can process. Each subsection next deals with a type of
data, showing that LRP is flexible enough to handle different data modalities.

LRP’s methodology is based on the Taylor expansion of a function f (x) at point a, as expressed
by Equation (11):

f (x) = f (a) + f ′(a)
1!
(x − a) + f ′′(a)

2!
(x − a)2 + · · · (11)

Provided that a neural network is computing a non-linear function f (x) of its input x, the func-
tion can be expanded near a root point x̃. The higher-order terms can be considered negligible and
represented by a constant ϵ .

f (x) = f (x̃) +
(
∂ f

∂x

����
x=x̃

)T

(x − x̃) + ϵ = 0 +
∑

p

∂ f

xp

����
x=x̃

(xp − x̃p )︸���������������︷︷���������������︸
Rp (x)

+ϵ . (12)

Since f (x̃) = 0, and assuming without loss of generality that x̃ is an image composed by pixels
p, one can re-write Equation (12) as follows:

f (x) = 0 +
∑

p

∂ f

xp

����
x=x̃

(xp − x̃p )︸���������������︷︷���������������︸
Rp (x)

+ϵ . (13)

The goal of LRP is to redistribute the neural network output onto the input variables; i.e.,
the relevance R j to lower-level relevances {Ri }. Starting from the output layer, one can restate
Equation (12):

∑
j R j =

(
∂(

∑
j Rj )

∂{xi }

����
∂{x̃i }

)T

({xi } − {x̃i }) + ϵ =

∑
i

∑
j
∂Rj

∂xi

����
∂{x̃i }
(xi − x̃i ) + ϵ .

(14)

∑
j

R j =

(
∂(

∑
j R j )

∂{xi }

����
∂{x̃i }

)T

({xi } − {x̃i }) + ϵ (15)

=
∑

i

∑
j

∂R j

∂xi

����
∂{x̃i }
(xi − x̃i ) + ϵ . (16)

One of the challenges of LRP is to find a neighboring point x̃ of x, for which f (x̃) = 0 (root point).
A good root point removes the elements of a datapoint x that cause f (x) to be positive. For example,
in the case of object detection and a classifier that discriminates between images containing an
object and images that do not, an optimization method should look for a similar image that contains
an object not recognizable from the classifier—hence, the output f (x̃) = 0. Examples of such images
are some that contain blur or have parts that are relevant for the recognition of the object replaced
with grey/black (non-informative) pixels.

The main difference between Grad-CAM and LRP is that although both of them compute gradi-
ents, the first one computes the gradient concerning the feature maps activations of CNNs, whereas
the second one does it also for other types of architectures, not necessarily CNNs, and it is done
in a per-neuron basis. Although it also is a heatmapping method, Grad-CAM does not compute
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Fig. 8. Layer-wise Relevance Propagation (LRP) applied onto various neural network architectures, each of
them processing different types of data.

relevance per se but rather tries to locate the part of the input image that is responsible for the
predicted label. Grad-CAM is only applied to CNN architectures (and Graph Convolutional Neural
Networks [71]), whereas LRP is more universal and has been customized/adapted for new major
neural network architectures.

5.1 LRP Applied onto Fully Connected (FC) Neural Network that Solves a Regression

Problem

In this task,8 the interest is in computing the relevance at particular elements of a small, fully con-
nected neural network. The network consists of only one input layer (its neurons are indexed by (i),
one hidden (j) and one output layer (k). xi represents the values of the input neurons, x j the outputs
of the hidden layer neurons, and xk the outputs of the output layer neurons. The nonlinear function
of the hidden layer is the ReLU, which is expressed by the equation x j =max(0,

∑
i xiwi j +bj ).wi j

are the weights between the ith and jth layer and bj the bias (omitted in this task). The nonlinear
function performed by the output layer is the sum pooling function, expressed by xk =

∑
j x j .

The fully connected neural network used in the first task is depicted in Figure 9. Relevance of
each neuron at each layer (indexed by i, j, and k correspondingly) is computed by the following
set of equations:

Rk = xk =
∑

j

x j , (17)

, R j = x j =max

(
0,

∑
i

xiwi j + bj

)
, (18)

Ri =
∑

j

w2
i j∑

i′w
2
i′j

R j , (19)

where i ′ denotes all neurons of the input layer, including the ith neuron. In this equation, i corre-
sponds to one particular neuron in the input and i ′ is an index over all of them.

The relevance of the neuron in the output layer is completely specified by the sum of its inputs,
since this is its functionality. The relevance of each neuron in layer j is derived by using Equa-
tions (13) and (16): R j = Rk (x̃) + ∂Rk

∂x j

��
{x̃ j } · (x j − x̃ j ) = x j = max(0,

∑
i xiwi j + bj ). Since the ReLU

8Notebook on LRP for a Fully Connected (FC) Neural Network using synthetic data: https://colab.research.google.com/
drive/1Md2Rz3Ff1r05zq98cYndiEqrhg-DGYPv?usp=sharing
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Fig. 9. Fully connected neural network used in the first task. It is composed of 3 neurons in the input layer,
5 neurons in the hidden layer, and 1 neuron in the output layer. The activation function that was used is the
Rectified Linear Unit (ReLU).

Fig. 10. The functionality of a neuron of a fully connected neural network with five inputs, five weights, the
sum of their corresponding multiplication, and the application of a nonlinear activation function.

nonlinearity is used, it is ensured that {∀j : x̃ j ≥ 0} and ∂Rk

∂x j
=

∂
∑

j x j

∂x j
= 1. Therefore, the root

point x̃, for which Rk (x̃) = 0 is x̃ = 0. The computation of the relevances Ri of each neuron in layer
i has a derivation that is out of scope for this article. Nevertheless, it is important to note that the
relevance is proportional to the squared weight of the connection—keeping in mind that weights
can take both negative and positive values.

The relevance of the neurons of each layer (in general) is computed by using the relevances of
neurons of the next one.

The overall goal of the task is to understand how the interplay between values of the input
and the network weights define the computed relevance values. To better explain this, Figure 10
depicts the functionality of a neuron in a fully connected neural network. For convenience and
without loss of generality, we can think that this is the neuron in the output layer k of the task (see
also Figure 9). Each input x j1 to x j5 will be multiplied by a corresponding weight (w1 to w5), and
then the sum of all those multiplications x j1w1 + · · · + x j5w5 comprises the input of the nonlinear
activation function. In this case, the Rectified Linear Unit (ReLU) was used.

For a fixed input, the exercises deal with two cases: The first one sets weights that are not
randomly chosen. Thereby, positive weights multiplied by positive input values will generate a
high positive value that in turn will consist of the input to the activation function. Those parts
will be, in retrospect, the ones that will have higher relevance in general. On the contrary, weights
near zero will “suppress” all highly positive or highly negative input values. The second case is
quite the opposite of that: Random weights do not show any preference for input values. By those
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means, one can compare the situation of a trained vs. not-trained neural network that has randomly
initialized weights.

The overall goal of the task is to understand how the interplay between values of the input
and network weights defines the computed relevance values. When the weights are randomly
distributed, only the highest input values will manage to create a high activation (with few excep-
tions). When the weights are not randomly distributed, then some relatively high values might be
suppressed (by multiplication with a small weight) and not create a high activation. However, some
relatively small values, when multiplied with a high weight value, might induce a high activation.
By those means, one can compare the situation of a trained vs. not trained neural network.

It is important to emphasize the difference between the backpropagation procedure, which oc-
curs several times during the training of a neural network, and the backpropagation of relevance,
which happens only once after the training is completed. Furthermore, two properties of LRP are
used for verification of the computations with unit tests [81], namely, positivity and conservation
(Equation (20)) of relevance of the neurons at each layer:

∀x ,p : Rp (x) ≥ 0,
∑

i

Ri =
∑

j

R j , (20)

where x is the input, p represents any neuron of the network, and layer i precedes layer j.

5.2 Explaining a GNN Performing Node Classification on Graphs with GNN-LRP

Graph Neural Networks (GNNs) perform three main types of tasks on graph datasets: node
classification, link prediction, and graph classification. They can be thought of as an extension of
Convolutional Neural Networks (CNNs) that process non-grid structured data, therefore the
filters cannot operate by the same means.

One of the simplest architectures is called GCN (Graph Convolutional Network) [82]. The
rules for aggregation and combination (Equation (21)) of the information lying in the features of
the neighboring nodes and edges are:

Zt = ΛHt−1, Ht = ρ(ZtWt ), (21)

where t denotes the layer, and Λ is the Laplacian matrix of the input graph, which can be a scene,
protein interaction, social media, a knowledge graph, and so on; ΛHt−1 is the representation of
the previous layer,Wt are the weights, and ρ is the non-linear activation function. The GNN-LRP
method [82] applies constraints (piecewise linear and positive homogeneity) to this nonlinearity
(here, ReLU is used). Equation (21) is re-written, and the GNN-LRP rule for computing the rele-
vance R jK L... of neuron j after one has processed nodes K and L by all neurons k that gathered
information from node K becomes:

R jK L... =
∑
k ∈K

λ J Khjw
∧
jk∑

J

∑
j ∈J λ J Khjw∧jk

RkL..., (22)

where K ,L are elements (nodes or edges) of a walk on the input graph. A walk on the graph in-
volves nodes that are processed by corresponding neurons at layers labeled processed by neurons
with k, l indexes (capital letter subindexes represent nodes, while at the same time, they also de-
note all neurons with that corresponding non-capital index that process those nodes). Weightw∧

jk

is a weighted sum (denoted by the ∧) of the elements of matrixWt that links neuron j to neuron k
parameterized by a user-provided parameter дamma, which for different values, facilitates expla-
nations with varying visual presentation. Typically, a range of дamma values is used where each
of them corresponds to a different level of detail representation; the data scientist can try them
individually for each example graph. For some values of gamma—and in relation to the sign of the
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computed relevances—the importance (positive or negative)9 will be attributed to a few elements,
thereby being more “concentrated.” For others, more neighbors of a really important element are
considered relevant, too, making the presentation of relevances more “coarse.” λ J K is the element
of the Laplacian matrix Λ corresponding to the connection between nodes J and K , hj is the acti-
vation of neuron j, RkL... is the relevance of neuron k after one has processed node L. The “. . . ”
indicates that the walk contains, in general, further nodes.

The task of graph classification contains three parts. At first, Barabasi-Albert graphs are created
by the user. These are random scale-free networks that have a preferential attachment mechanism
with user-defined growth factors. Nodes and edges can represent anything that can be approxi-
mated by a scale-free graph (a graph that has a degree distribution according to the power law).
Examples of such graphs are citations and social networks. This growth factor will be the label for
the prediction. The GNN that will be used for this prediction is defined in the second part, along
with the corresponding functions for training and computing relevances. The third part deals with
training the network, using a test set to compute its performance and then applying GNN-LRP to
compute and display a plot showing the walk’s relevances.

The most important goal of this task is to understand what the computational path of a GNN
is, and its recursive nature, to comprehend how this leads naturally to the relevance of walks in
the graph. Our notebook10 is a slightly changed version of the researchers’ original.11 The task is
studying whether the layer walk relevances are plausible and how they change if the length of the
walk on the graph is changed, in juxtaposition with an adaptation of the GNN layer sizes (changing
its amount and size in terms of neurons) to obtain a model output and output explanation that is
consistent with the ground truth and the expectations of a domain expert.

For example, let us assume we have a scene graph of a medical image with cells and links.
Cells are represented by nodes and have various features such as size, color, or shape. It might
be that a classification lies on the relevance of the size of a particular node of the graph. Paths
that contain this node are expected to have high relevance because of this node; nevertheless, this
importance will be distributed to the rest of the elements of this path, although they might be
not at all decisive/relevant on their own. To distill that the characteristics of this particular node
were responsible, the user is required to compare several walks containing it and its neighboring
elements. GNN-LRP might not be the most adequate XAI method for this use case.

One important challenge of all XAI methods is the explainability of misclassified samples. LRP
does not at the moment provide a substantial and quantifiable benefit in comparison with other
heatmapping methods; nevertheless, the perturbation analysis deals with misclassified samples in
a more robust way than other methods, because the performance is influenced (i.e., drops) mono-
tonically after the removal of the relevant elements (nodes or edges) in sorted order.

5.3 Explaining a GNN Performing Node Classification on Graphs with GCExplainer

The GCExplainer is an explanation method that can be applied to both node and graph
classification-solving GNN architectures [57]. It has a different way of operating on each layer

9The relevance is positive on all elements of an input example that contribute to the prediction in a manner that increases
the confidence of the neural network. For example, in a two-class classifier that discriminates between images of animals
and cars, an input image containing parts of both classes will be eventually classified as one of the two, but the confidence of
the classifier is not expected to be very strong. Assuming that the decision is the car, the areas containing animals should
have negative relevance, because they lessen the prediction strength of the classifier. All areas that “speak against” the
predicted class are expected to have negative relevance. If they were removed from the image, then they would increase
the confidence of the prediction—which is the main principle of counterfactual explanations.
10Notebook on LRP for a GNN trained on graph data https://colab.research.google.com/drive/166FYIwxblfrEltkYqY_
jiJoAm9VLMweJ?usp=sharing
11GNN-LRP: https://git.tu-berlin.de/thomas_schnake/demo_gnn_lrp
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Fig. 11. Results of clustering of the activations of the fourth layer of a Graph Convolutional Neural Network
(GCN) [46] with the use of t-distributed Stochastic Neighbor Embedding (t-SNE) clustering method. It is
assumed that the number of clusters is k = 5 and each of the points in the scatter plot represents one node
in the graph that is classified by the GCN.

of the GNN than GNN-RLP, since it follows the assumption that the activation of each layer con-
tains information about concepts relevant to the task solution that are captured by the GNN. This
draws a parallel with the way the learned filters of a CNN are formed through training with the
ones on the lower layers trained to recognize basic visual structures, whereas the ones on the
higher layers are sensitive to combinations of the basic visual structures [4, 50]. Therefore, an in-
spection of those outputs after training that led to a sufficiently good performance can reveal those
concepts and most importantly distinguish them from each other.

Whereas GNN-LRP and GNNExplainer [108]—the first explanation method for GNNs—analyze
single instances, the GCExplainer provides global and unsupervised explanations; a possibility
that the aforementioned explanation methods can only achieve by aggregating the results of
several local explanations. To compute global explanations from single instance explanations, the
GCExplainer first applies a dimensionality reduction method—one of Principal Component

Analysis (PCA) [66], t-distributed Stochastic Neighbor Embedding (t-SNE) [94], Density-

based spatial clustering of applications with noise (DBSCAN) [34], or Uniform Manifold

Approximation and Projection (UMAP) [58]—on 2 dimensions for the output of each layer
of the GNN. This 2-D space can be inspected by the user and an estimation of the number k of
potential clusters—each of which will represent a concept—can be made. What is more, the use of
the mean Silhouette Coefficient [78] can also provide quantitative information about a good value
for k .

After the clustering is finished, all nodes in each cluster as well as their neighborhoods can be
visualized as in Figure 11 and Figure 12. The expectation is that all nodes in a cluster will have
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Fig. 12. Depiction of five nodes (in green) as well as their 1-hop neighborhoods (colored pink) that are near-
est to the centroid of each cluster. Each row contains the nodes of one concept, and in each row, the leftmost
element is the nearest to the cluster’s centroid, the second is the second nearest, and so on. By visual obser-
vation and without measuring the Graph Edit Distance (GED) between the graphs in each row, one can see
the similarity between all subgraphs of one concept. The labels (ground truth, not the predicted ones) of the
nodes are also depicted above the subgraph.

similar node feature values and the structure of the graph “around” them will also not deviate
substantially. The number of neighborhood hops that are adequate for the user to decide on the
coherence of the concept is also an adaptive parameter represented by the variable n, and it can
be that multiple concepts are grouped in the same cluster. The higher the n, the more complex the
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concept appears to the user. Overall, this is a method that practically implements the Human-in-
the-Loop principle [76], where the user adapts two values: the number of the clusters k according
to his/her domain knowledge and a clustering metric and the size of the neighborhood through n.
The more k increases, the more detailed the concept is and the more fine differences between the
concepts appear.

The suitability of this explanation method can also be measured by XAI Quality metrics, as
described in several recent research works [31, 83]. A discovered concept’s purity can be measured
by the Graph Edit Distance (GED) [2], which equals the number of operations necessary to
transform one graph into another. This is an indicative metric for the graph structure diversity
around nodes that are clustered in the same concept, and the higher the n, the less likely it is for
this metric to have a value near zero; nevertheless, the features of the nodes’ values should also be
taken into account for their similarity. The concept completeness score [106] is computed through
an individual Machine Learning (ML) model (not the original GNN) that performs classification
on all inputs that were clustered as belonging to a particular concept. The higher the predictive
performance of this classifier, the higher the completeness score; a Decision Tree (DT) having
sufficiently high performance can be indicative of completeness and at the same time provide
decision-making rules as a meta-explanation for reasoning about the coherence and separability
of the clustered concepts.

In a further research step, the inventors of the GCExplainer incorporated it in an encompass-
ing framework [45] that measured the overlap between human-expressed concepts and the ones
discovered by the method through Mutual Information (MI) [56]. This process involves three
concrete steps: (1) alignment of human and explainer concepts, (2) refinement of the concepts and
parameters of the GCExplainer according to the degree of alignment in the first step, as repre-
sented by a Confusion Matrix (CM), and (3) improvement of the concepts’ purity and complete-
ness. This process leads to an explanation where all discovered concepts are as pure and complete
as possible, comprising a so-called interpretation representation of the dataset [45].

The exercise notebook12 is a slightly changed version of the researchers’ original.13 Users can
adapt the values for the parameters k (number of clusters) and n (number of hops around the ex-
plained node) with some additional information about the adequacy of the explanation (explained
variance ratio for PCA and silhouette score of the clustering).

5.4 LRP Suitability Analysis: Pros and Cons

The existence of both positive and negative relevance values [7, 79] is one of the impactful prop-
erties of LRP. Considering the explanation of one input sample, let us say an image, a heatmap
produced by LRP contains both positive and negative values, whereas a heatmap from another
explainability method, for example, Sensitivity Analysis (SA) [10] only contains negative val-
ues. In practical terms, for SA there is no differentiation of which parts of the input enhance the
certainty and confidence of a prediction, which ones are an indication of another class (if we are
dealing with a classification problem), and which parts are rather neutral (ideally in images in the
background). This comprises the forefront for counterfactual explanations [11] and the creation
of Probabilistic Graphical Models [98] as explanations, since the sequential removal of positively
important components of the input sample have been shown to lead to a monotonic decrease of
performance in the case of a correct prediction—and the opposite phenomenon for a misclassified
one.

12Notebook on GCExplainer for a GNN performing node classification on graph data: https://colab.research.google.com/
drive/16ayMlyDzNubxSkpIBHXDvbEgpB88wBBK?usp=sharing
13GCExplainer: https://github.com/CharlotteMagister/GCExplainer
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This gives the opportunity to domain experts that helped with the preparation of the dataset
to change its characteristics in a semi-automated way, since they do not have the time to go
through that many heatmaps to understand and improve the behavior of the model. Therefore,
Semi-automated Spectral Relevance Analysis was invented [51]. This method was inspired by the
detection of a so-called “Clever-Hans” effect in a high-performing neural network that was clas-
sifying images of the PASCAL VOC2007 dataset. The neural network learned that this tag was so
indicative for accurate prediction of the class “horse” that even experiments with images with cars
and this tag were classified as “horse.” To be able to semi-automatically separate between explana-
tions that classify an image as “horse” because it actually contains a horse and those that contain
some artifact, one can cluster the LRP heatmaps. If the resulting clusters are relatively far from
each other, then one can assume that the neural network has found different ways to classify those
images and maybe some of them are Clever-Hans.

However, LRP is of great value to software developers and data scientists as well, because they
can improve the neural network’s architecture by pruning [107], data, feature, loss, and gradient
augmentation [102], according to the results of this method. This has been shown to have great
benefits in efficiency and explainability as well, and the fact that this is a method applied to different
architectures for various types of data opens the path for actionable insights and Actionable XAI

(AxAI) [80].
On the negative side, LRP is still a method for local explanations, even if the Semi-automated

Spectral Relevance Analysis mentioned before has alleviated this fact to a large extent. Inevitably,
as one can also see in the GNN-LRP notebook, a node or an edge that belongs to several walks will
have a different relevance value w.r.t. the walk that the user is currently observing. Particularly if
there are both negative and positive relevance values for one and the same element of the graph, the
user has to think actively about the fraction of the neighborhood the walk represents and reason
how the components of the graph contributed to potentially diverging values. This is an already
studied problem between different XAI methods [49] but not an expected phenomenon in the same
XAI method. It is important to remember that the GNN’s training process uses all neighboring
elements’ information when updating the embeddings, therefore the existence of a well-defined
and even synthetically generated ground-truth is not an integral solution for this method. However,
the GCExplainer’s results reflect the influence of the neighborhood in a more cohesive manner,
since there is no need to distill the dynamics of relevance in neighboring elements. Nonetheless,
both GNN-LRP and GCExplainer lack one important property that is present in the first explainer
of GNNs, the GNNExplainer [108], which can identify the important features of nodes and edges
(and not just the nodes and edges themselves). A user study that would compare those two as well
as explainability methods for GNNs that create causal models (for the purposes of quantifying
causability) like the PGMExplainer [98] constitutes valuable future work.

Furthermore, although perturbation analysis and counterfactual explanations are useful for ex-
plainability, after the removal or addition of elements in the input sample, the redistribution of
relevances w.r.t. the prediction outcome is not always consistent, and there are no extensive user
studies. For some architectures in image processing like ResNet [39] that contain residual connec-
tions, it has been reported in the GitHub forum that the resulting heatmaps are not as good as for
other CNN architectures without residual connections. This is due to the LRP’s backpropagation
properties; nevertheless, researchers on LRP can extend their method to new architectures, and
therefore the scientific community can expect improvements in those deficiencies.

6 Neural-symbolic AI for Interactive Explainability in Neural Networks

Neural-symbolic Learning and Reasoning seeks to integrate principles from neural network learn-
ing with logical reasoning. Symbolic systems operate on symbols with reasoning performed over
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such abstract, discrete entities, following logical rules. In principle, this process in itself should
allow for better explainability than distributed representations at the level of data. Neural net-
works operate at the sub-symbolic (or connectionist) level. Individual neurons do not necessarily
represent an abstract entity or a readily recognizable concept.

The integration between both symbolic and sub-symbolic levels as promoted by neural-
symbolic systems seeks to bridge data-driven information processing—frequently encountered
in perception and pattern recognition—with reasoning and explanation at a higher level of
abstraction. Realizing this integration should facilitate a range of benefits, such as achieving repre-
sentations that are abstract, re-usable, and general-purpose. Having these representations readily
available could concretely tackle some of the pressing issues with current deep learning practices.

6.1 XAI in Neural-symbolic AI

Explainability in neural-symbolic systems has been traditionally approached by learning a set of
symbolic rules—known as Knowledge Extraction from trained neural networks—and evaluating
how well the rules may approximate the behavior of the neural network by measuring the per-
centage of matching predictions on a test set, which is referred to as the fidelity of the extracted
symbolic explanation to the neural network.

Most contemporary explainability methods are not powerful enough to guarantee the soundness
and completeness of the explanation w.r.t. the underlying model, which is typically a very large
neural network. Metrics such as fidelity lack a reliable way of expressing uncertainty associated
with the lack of completeness results.

The measured fidelity is seen as a proxy for how close an explanation might be to the
representation of the underlying model. By the same token, it is not a metric of the capacity to
find semantically meaningful representations. For this, a more interactive approach is needed, as
outlined in the caption of Figure 13.

6.2 Framework for Interactive Explainability

In a tightly integrated neural-symbolic system, XAI occurs as part of the neural-symbolic cycle. In
this framework, we can query and revise information and consolidate existing background knowl-
edge. The system can utilize background knowledge to provide meaningful semantics for the expla-
nations, facilitating human-machine interaction and hopefully achieving the desired higher-level
properties.

By applying the neural-symbolic cycle multiple times, partial symbolic descriptions of the
knowledge encoded in the deep network can be checked and, through a human-in-the-loop
approach [42], incorporated into the cycle as a constraint on the learning process. This enables
an interactive integration of a desired behavior, notably fairness constraints, by validating and
incorporating knowledge at each cycle, instead of (global or local) XAI serving only to produce a
one-off description of a static system.

Therefore, the neural-symbolic cycle can be seen as a common ground for communication and
system interaction. Symbolic knowledge representation extracted from the learning system at an
adequate level of abstraction for communication with users should allow knowledge consolida-
tion and targeted revision. The key challenge, therefore, is the efficient extraction of this abstract
knowledge from very large networks.

We shall illustrate how the Logic Tensor Network (LTN) framework is used for explainable
classification, subsequently addressing some undesired model properties according to the pipeline
in Figure 13. In the example shown in the figure, we use the Shapley method, but any other XAI
method could have been chosen. A logical neural network querying mechanism is then integrated
into the process to produce insight into the model during the knowledge revision process.
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Fig. 13. Illustration of the LTN pipeline for continual interactive learning: Revision is carried out by querying
a deep network interactively and learning continually, thus applying the neural-symbolic cycle multiple
times. Explanations extracted from the network using, e.g., SHAP, can highlight bias or undesired properties
in feature importance. Equally, querying the network in LTN-style shows the satisfiability of specific model
properties, such as fairness constraints, which can subsequently be added to the knowledge base K for
further training. Doing this, we can answer questions such as: How does the model behave for a specific group

of individuals compared to others?, translating into FOL queries and checking their degree of satisfiability
(sat()) (cf. Section 6.4). Subsequently, such desired queries can be added to the optimization function. This
process concludes once it has been shown to reduce bias at a subsequent SHAP explanation.

6.3 Logic Tensor Networks (LTN) for Explainable Model Revision

The framework used in this approach and accompanying notebook14 is LTN [9, 86, 87]. However,
instead of treating the learning of the parameters from data and knowledge as a single process, we
emphasize the dynamic and flexible XAI nature of the process of training from data, querying the
trained model for knowledge, and adding knowledge in the form of constraints for further training,
as part of a cycle whose stopping criteria are governed by a fairness metric. Furthermore, we focus
on the core of the LTN approach: constraint-based learning from data and first order logic (FOL)

knowledge. We make the explanation approach iterative by saving the learned parametrization
at each cycle in our implementation. For simplicity, we also replace the original LTN imple-
mentation, which uses Neural Tensor Networks with a feed-forward Neural Network. This also
demonstrates the agnostic nature of the approach: LTN-based XAI is independent of the network
model.

Whereas many inherently neural-symbolic methods come with stringent architectural con-
straints on the model itself, our LTN adaptation is model-agnostic, since LTN as a framework
solely requires the ability to query any deep network (or any ML model) for its behavior, that is,
observing the value of an output given a pre-defined input. The predictive model itself can be cho-
sen independently, with the LTN acting as an interface to provide an explanation of the model to
the user in the form of targeted FOL queries.

Logic Tensor Networks [9, 87] implement a many-valued FOL language L, which consists of a
set of constants C, variablesX, function symbols F , and predicate symbols P. Logical formulas in
L allow to specify background knowledge related to the task at hand. The syntax in LTN is that of
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FOL, with formulas consisting of predicate symbols and connectives for negations (¬), conjunction,
disjunction and implication (∧,∨,→), and quantifiers (∀,∃).

Learning in the LTN framework for explanation: LTN functions and predicates are learn-
able. Thus, the grounding of symbols depends on a set of parameters θ . With a choice of a multi-
layer perceptron as model, each logical predicate is represented by a feed-forward mapping, where
σ denotes the sigmoid activation function, which ensures that predicate P is mapped from Rmxn

to a truth-value in [0, 1].
Since the grounding of a formula Gθ (ϕ) denotes the degree of truth of ϕ, one direct training

signal is the degree of truth of the formulas in the knowledge baseK . The aggregate truth-value of
all the formulas inK is computed by averaging all terms using the geometric mean, but alternative
approaches are possible [9]. The objective function θ = SatA(Gθ (K)) is therefore the satisfiability
of all formulas inK , which is maximized by training the model parameters. In its simplest form of
binary classification without constraints, K will consist of one term for positive examples in the
dataset and one term for negative examples. In summary, the core extension applied to a regular
neural network optimization enabled by LTN is that of querying with many-valued first-order
logic and learning with knowledge base constraints.

Continuous querying for model understanding: LTN inference using first-order logic
clauses is not only a post hoc explanation in the traditional sense. It allows that inference forms
an integral part of an iterative process, allowing for incremental explanation through the distilla-
tion of knowledge guided by data. We achieve this by computing the value of a grounding Gθ (ϕq),
given a trained network (set of parameters θ ), for a user-defined query ϕq .

Specifically, we save and reinstate the learned parameters stored in the LTN implementation.
This is done by storing the parameters θ resulting from each learning cycle. A query is any logical
formula expressed in first-order logic. Queries are evaluated by calculating the grounding G of any
formula whose predicates are already grounded in the multilayer perceptron or even by defining
a predicate in terms of existing predicates. For example, the logical formula ∀x : (A(x) → B(x))
can be evaluated by applying the values of x , obtained from the dataset, to the trained Neural
Network, obtaining the values of output neurons A and B in (0,1) (corresponding to the truth-
values of predicates A and B, respectively); and calculating the implication with the use of the
Reichenbach-norm and aggregating for all x using the p-mean, as exemplified below.

A query can explain AI systems by connecting different model outputs, aggregating inputs for
summarizing the behavior of a system in specific domains or relating specific inputs with specific
features against each other and the output. In Reference [99], it is demonstrated that this frame-
work can be extended to include intermediate representations, thus providing an understanding
of how concepts are logically associated with particular output classes.

Logical formulas used for such explanations follow semantics for logical connectives that are
defined according to fuzzy logic semantics: Conjunctions are approximated by t-norms (e.g.,
min(a,b)), disjunctions by t-conorms (e.g.,max(a,b)), negation by fuzzy negation (e.g., 1 − a), and
implication by fuzzy implications (e.g., max(1 − a,b)). The universal quantifier is defined as the
generalized mean, also referred to as p-mean.

Algorithm 2 illustrates the steps we take to continuously refine Knew with a human-in-the-
loop. The queries are derived from questions that a user might have about the model’s response:
How does the model behave for a specific group? How does the model behave for particular edge
cases? These questions can be translated into FOL-queries. Simultaneously, an XAI method further
informs the user about possible undesired model behavior, which may not be as apparent as the
above common questions. In Figure 13, XAI method SHAP reports a disparity in how the variable
immigrant status is used by the model for black and white inpatients when predicting the risk of
violence in a psychiatric hospitalization setting [89].
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The XAI technique SHAP is used together with LTN queries to highlight such findings and
subsequently address them by adding knowledge to Knew and retraining, as will be illustrated in
the next section and the accompanying notebook. This cycle can be repeated until the revision
process delivers satisfactory results to the user with respect to model performance and behavior.

6.4 Case Study on Violence Reiteration Prediction in a Psychiatric Hospitalization

Setting with a Deep Neural Network within the LTN Framework for Explainable

Revision

We demonstrate the method mentioned above using a well-known fairness-related COMPAS
dataset from ProPublica.14 For additional examples using alternative datasets, as well as compar-
isons with alternative methods, we refer the reader to Reference [101]. We use a case study of
violence risk prediction of inpatients in a psychiatric hospitalization, i.e., to predict whether inpa-
tients tend to reiterate violent behavior or not during their stay [89].15 Typical features of this case
study encode sociodemographic information such as sex, race, immigration status, and so on. ML
algorithms tend to generate false positives in presence of a protected group versus an unprotected
group (black vs. white, immigrants vs. non-immigrants). In this case, a bias on such features may
compromise fairness. The presented framework (based on XAI (SHAP)+LTN) shows how such
MLOps pipeline can detect it and tackle it.

A trained network is queried to return the truth value associated to the predicate used for the
classification task G(D(T )) for the entire training set T . This will allow us to answer how the
model treats similar individuals across protected and unprotected groups. Using quantile-based
discretization, we obtain answers to the question: How does prediction for equally sized groups for
each protected and unprotected variable differ across different risk categories for violence? We de-

14The demonstration of the method, the XAI + LTN pipeline (on which XAI techniques such as SHAP can be em-
bedded for interactive explanations), and the data are accessible at https://github.com/benediktwagner/nesyxai/blob/
master/experiments/fairness/1_LTN_fairness_tutorial.ipynb. The original LTN repository adapted for this method is: https:
//github.com/logictensornetworks/logictensornetworks
15https://informatics.bmj.com/content/bmjhci/29/1/e100459/DC1/embed/inline-supplementary-material-1.pdf?
download=true
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termine whether the model achieves parity between black and white prisoners in the same risk
category on aggregate. Querying such axioms reveals a low level of satisfiability (satϕi

≈ 0.5), sug-
gesting that the model is learning undesirable disparities in groups with medium risk of violence.
Thus, the model predicts bad behavior more often for the protected group than for the unprotected
group of the same risk category. In groups where the risk of violence is very low or very high, there
are no significant differences in violence prediction of the model for the protected and unprotected
group, which is in line with the desired notion of group fairness [32].

We confirm the disparity between groups by calculating their Shapley values. Since the SHAP
method uses the same units as the original model output, we can decompose the model output
using SHAP and compute each feature’s parity difference among protected and unprotected groups
using their respective Shapley value.

We can subsequently reviseK using the queriesϕi of the different groups as soft constraints and
are able to revise the network to decrease the undesired disparities while retaining high accuracy
as measured in Reference [101] and the notebook.14 In this demonstration, only model outputs
combined with protected attributes are used to inform the queries, as the focus is primarily query-
ing the output concerning unfair treatment. A further query could answer how predictions differ
across groups of a specific age in combination with protected attributes.

Any combination of features or even intermediate representations—such as feature activations
in a CNN—as well as a combination of models are available and can be queried using the LTN
framework through fuzzy logic. Furthermore, the latest iteration of the LTN framework allows for
dynamic masking, which means that the explanation iterations and revision could be further auto-
mated within the LTN framework using custom masks. Such custom masks, for example, remove
the necessity of manual discretization into parity groups by performing automatic grouping based
on dynamically changing output logits.

In our example, however, the user can vary the number of user-defined queries and discretiza-
tions groups into different granularities. It is worth emphasizing the flexibility of such approach
w.r.t. further queries and its potential use with alternative fairness constraint constructions. With
the increasing complexity of models as well as fairness definitions, rich languages such as fuzzy
FOL can be beneficial to adapt to regulatory and societal changes to notions of fairness. One ex-
ample would be a simple adaptation of the value p in the aggregation using the p-mean. Using
larger values for p, the fairness notion converges from group fairness towards individual fairness,
as the generalized mean, converging from a simple average towards themin value, gradually (with
higher relative importance for lower values).

Integrating XAI methods with neural-symbolic approaches allows us to learn about the unde-
sired behavior of a model and intervene to address discrepancies. Effecting such intervention is
ultimately the goal of the field of AI alignment, to which the techniques of interactive explainabil-
ity have a major contribution to make, as advocated in Reference [100]. We have demonstrated an
interactive model-agnostic method and an algorithm for fairness in healthcare and have shown
how one can remove demographic disparities from trained neural networks by using a continual
learning LTN-based framework.

7 Rendering XAI Explanations through a Template System for Natural Language

Explanations (TS4NLE)

Methods presented during the previous sections provide good explanations. However, the way
in which an explanation is presented is sometimes as important as the content of the explanation,
because an explanation is only as good as its audience’s understanding of it. Therefore, we present
a method to render XAI Explanations through Natural Language Generation. This method is
aimed at anyone who wants to display their explanation in the best possible way so it is perfectly
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understandable by their user, whether they are a developer or an end-user with no knowledge of
deep learning.

All methods discussed above provide outputs in a structured format that can be represented
in a graph-like way. Such a format enables the design of different strategies for transforming the
provided outputs into a representation that can be easily understood and consumed by the target
user.

Explanations generated starting from structured formats such as the one mentioned above help
users in better understanding the output of an AI system. A better understanding of this output
allows users to increase the overall acceptability in the system. An explanation should not only
be correct (i.e., mirroring the conceptual meaning of the output to explain), but also useful. An
explanation is useful or actionable if and only if it is meaningful for the users targeted by the
explanation and provides the rationale behind the output of the AI system [30]. For example, if
an explanation has to be provided on a specific device, then such a device represents a constraint
to be taken into account for deciding which is the most effective way for generating the explana-
tion. Such explanation can be in natural language/vocal messages, visual diagrams, or even haptic
feedback.

In this section, we focus on the generation of Natural Language Explanations (NLE). Produc-
ing these carries a challenge, given the requirement of adopting proper language with respect to the
targeted audience [8] and their context. Briefly, let us consider a sample scenario occurring within
the healthcare domain, where patients suffering from diabetes are monitored by a virtual coaching
system in charge of providing recommendations about healthy behaviors (i.e., diet and physical ac-
tivities) based on what patients ate and which activities they did. The virtual coaching system inter-
acts with both clinicians and patients, and when an undesired behavior is detected, it has to gener-
ate two different explanations: one for the clinician containing medical information linked with the
detected undesired behavior—including also possible severe adverse consequences; and one for the
patient, omitting some medical details and, possibly, including persuasive text inviting to correct
the patient’s behavior in the future. The end-to-end explanation generation process, from model
output to an object usable by the target users, requires a building block in the middle supporting
the rendering activity. Such rendering requires explanations having a formal representation with a
logical language equipped with predicates for entities and relations. This formal representation can
be directly represented as an explanation graph with entities/nodes and relations/arcs. It allows: (i)
its own enhancement with other concepts from domain ontologies or Semantic Web resources and
(ii) an easy rendering in many human-comprehensible formats. Such an explanation graph can be
easily obtained from the XAI techniques explained above. For example, the explanatory features
and the output class provided by SHAP can be regarded as the nodes of the explanation graph,
whereas arcs are computed on the basis of the SHAP features values. SHAP’s output is one of the
possible inputs that the TS4NLE strategy can process. Indeed, TS4NLE is agnostic with respect
to the type of model adopted by the ML system, since it can work with any approach providing
an output that can be represented with a graph-like format. The explanation graph can also work
as bridge for accessing different types of knowledge usable, for example, to enrich the content
of natural language explanations by respecting privacy and ethical aspects connected with the
knowledge to use.

Explanations require a starting formal (graph-like) representation to be easily rendered and
personalized through natural language text [29]. The generation of such natural language expla-
nations can rely on pipelines that take the structured explanation content as input and, through
several steps, perform its linguistic realization The work in Reference [29] injects in such a pipeline
a template system that implements the text structuring phase of the pipeline. Figure 14 shows the
explanation generation process starting from a SHAP analysis of a model output.
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Fig. 14. The images show the process of transforming a SHAP output into an explanation graph that is then
transformed into its equivalent natural language explanation. Features contained within the SHAP output
are transformed into concepts linked with a knowledge base related to the problem’s domain. Such a knowl-
edge base is exploited also for extracting relationships between the detected concepts. This preliminary ex-
planation graph can be enriched with further knowledge extracted from publicly available resources (e.g., the
Linked Open Data cloud) as well as with private data (e.g., personal health records). Finally, the explanation
graph, through the NLE rendering component, is transformed into a natural language explanation.

As mentioned above, generating natural language explanations starts from the creation of
the explanation graph, since it provides a complete structured representation of the knowledge
that has to be transferred to the target user. As first step, the features of the SHAP output are
transformed into concepts of the explanation graph and they are, possibly, aligned with entities
contained within the knowledge base related to the problem’s domain. Such entities represent
the first elements composing the explanation graph that can be used as collector for further
knowledge exploited for creating the complete message. Besides the alignment of SHAP output
features with the domain knowledge, such a knowledge base is exploited for extracting the rela-
tionships among the identified concepts. The extraction of such relationships is fundamental for
completing the explanation graph as well as for supporting its transformation into its equivalent
natural language representation. Once the alignment between the SHAP output and the domain
knowledge has been completed, the preliminary explanation graph can be extended in two ways.
First, public available knowledge can be linked to the preliminary explanation graph for complet-
ing the domain knowledge. Let us consider as example the explanation graph shown in Figure 15.
Some medical information associated with the identified food category may not be contained
in the domain knowledge integrated into the local system. Hence, by starting from the concept
representing the food category, we may access, through the Linked Open Data cloud, the UMLS16

knowledge base for extracting information about the nutritional disease risks connected with
such a food category. Besides public knowledge, the explanation graph can be enriched with user

16Unified Medical Language System (UMLS): https://www.nlm.nih.gov/research/umls/index.html
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Fig. 15. Explanation graph for users exceeding in cold cuts consumption in the diet & healthy lifestyle ad-
herence application.

information provided if and only if they are compliant with respect to possible privacy constraints.
User information can be provided by knowledge bases as well as probabilistic models. Also, in this
case, TS4NLE is agnostic with respect to the external source to exploit. In the use case we present
below, TS4NLE relies on an external user-oriented knowledge base containing facts that TS4NLE
can reason on for deciding which kind of linguistic strategy to adopt. Let us consider the health-
care domain use case. Here, information contained in the users’ personal health record can be used
for enriching the explanation graph with concepts by linking, for example, the negative effects of
the over-consumption of a specific food category by users with potential nutritional diseases.

Finally, the created explanation graph can be rendered in a natural language form through
a template system for natural language explanations (TS4NLE) [29] that leverages a Natural

Language Generation (NLG) pipeline. Templates are formal grammars whose terminal symbols
are a mixture of terms/data taken from the nodes/arcs of the explanation graph and from a
domain knowledge base. Terms in the explanation graph encode the rationale behind the AI
system decision, whereas the domain knowledge base encodes further terms that help the user’s
comprehension by: (i) enhancing the final rendered explanation with further information about
the output and (ii) using terms or arguments that are tailored to that particular user and increase
the comprehension of the explanation. Generally, this user model is previously given, in the form
of an ontology or knowledge graph.

TS4NLE is structured as a decision tree where the first level contains high-level and generic tem-
plates that are progressively specialized and enriched according to the user’s feature specified in
the user model. Once templates are filled with non-terminal terms, the lexicalization17 and linguis-
tic realization of the pipeline are performed with standard natural language processing engines
such as RosaeNLG.18

7.1 TS4NLE Use Case: Persuasive Message Generation for Healthy Lifestyle Adherence

In this subsection, we provide the description of a complete use case related to the generation of
persuasive natural language explanation within a concrete case within the healthcare domain.

17Lexicalization is the process of choosing the right words (nouns, verbs, adjectives, and adverbs) that are required to
express the information in the generated text; it is extremely important in NLG systems that produce texts in multiple
languages. Thus, the template system chooses the right words for an explanation, making it tailored.
18https://rosaenlg.org/rosaenlg/3.0.0/index.html
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Given as input a user lifestyle (obtained with a diet diary or a physical activity tracker), AI
systems are able to classify the user behavior in classes ranging from very good to very bad. The
explanation graph contains the reason for such a prediction and suggestions for reinforcing or
changing the particular lifestyle. According to the user model (e.g., whether the user has to be
encouraged or not, the users’ barriers or capacities), the template system is explored to reach a
leaf containing the right terms to fill the initial non-terminal symbols of the template. A user
study regarding the Mediterranean diet states that such tailored explanations are more effective at
changing users’ lifestyles with respect to a standard notification of a bad lifestyle. A further guide
of this use case is available online.19

The explanation graph contains entities connected by relations encoding the rationale of the AI
system decision. Figure 15 contains the explanation graph for a 65-year-old user that consumes
too much cold cuts. Such a graph is rendered with TS4NLE as: “This week you consumed too much
(5 portions of a maximum 2) cold cuts. Cold cuts contain animal fats and salt that can cause car-
diovascular diseases. People over 60 years old are particularly at risk. Next time try with some fresh
fish.”

The generation of the natural language explanation shown above is performed by TS4NLE by
following the steps below. After the generation of the explanation graph, the message composi-
tion component of TS4NLE starts the generation of three textual messages for the feedback, the
argument, and the suggestion, respectively. This is inspired by the work in Reference [64] and ex-
panded, taking into consideration additional strategies presented in Reference [38]. These consist
of several persuasion strategies that can be combined together to form a complex message. Each
strategy is rendered through natural language text with a template. A template is formalized as
a grammar whose terminal symbols are filled according to the data in the violation package and
new information queried in the reference ontology. Once templates are filled, a sentence realizer
(i.e., a producer of sentences from syntax or logical forms) generates natural language sentences
that respect the grammatical rules of a desired language

Below, we describe the implemented strategies to automate the message generation, focusing
also on linguistic choices.

Explanation Feedback: is the part of the message that informs the user about the not-
compliant behavior, hereafter called “violation,” with the goal that has been set up. Feedback is
generated considering data included in the explanation graph starting from the violation object:
The food entity of the violation will represent the object of the feedback, whereas the level of
violation (e.g., deviation between food quantity expected and that actually taken by the user) is
used to represent the severity of the incorrect behavior. The intention of the violation represents
the fact that the user has consumed too much or not enough amount of a food entity. Feedback
contains also information about the kind of meal (breakfast, lunch, dinner, or snack) to inform the
user about the time span in which the violation was committed. From a linguistic point of view,
choices in the feedback type are related to the verb and its tense: E.g., beverages imply use of the
verb to drink, while for solid food, we use to eat. To increase the variety of the message, verbs to
consume and to intake are also used. Past simple tense is used when violation is related to a specific
moment (e.g., You drank a lot of fruit juice for lunch), while present continuous is used when the
violation is related to a period of time of more days and the period is not yet ended (e.g., You are
drinking a lot of fruit juice this week).

Explanation Argument: it is the part of the message informing users about possible conse-
quences of a behavior. For example, in the case of diet recommendations, the Argument consists
of two parts: (i) information about nutrients contained in the food intake that caused the violation

19https://horus-ai.fbk.eu/semex4all/
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and (ii) information about consequences that nutrients have on human body and health. Conse-
quences imply the positive or negative aspects of nutrients. In this case, TS4NLE uses the intention
element contained in the selected violation package to identify the type of argument to generate.
Let us consider the violation of our running example, where the monitoring rule limits the daily
fruit juice drinking to less than 200 ml (a water glass), since it contains too much sugar. In the pres-
ence of an excess in juice consumption (translating to a discouraging intention) the argument is
constituted by a statement with the negative consequences of this behavior on user health. On the
contrary, the violation of a rule requiring the consumption of at least 200 gr of vegetables per day
brings the system to generate an argument explaining the many advantages of getting nutrients
contained in that food (an encouraging intention). In both cases, this information is stored within
the explanation graph. Moreover, TS4NLE analyzes the message history to decide which property
of the explanation graph to use in the Argument to generate a message content that depends on
e.g., content sent in the past few days, ensuring a certain degree of variability. With respect to
linguistic choices, the type of nutrients and their consequences influence the verb usage in the
text. Finally, to emphasize different aspects of the detected violation, templates encode the use of
appropriate parts of speech. For example, for stressing the negative aspects of the violated food
constraint, the verb contain (nutrients) and can cause (for consequences) were used. However, pos-
itive aspects are highlighted by the verb phrase is rich in and verb help are used for nutrients and
consequences, respectively.

Explanation Suggestion: This part represents an alternative behavior that TS4NLE delivers
to the user to motivate him/her to change his/her lifestyle. Exploiting the information available
within the explanation graph, and possibly collected from both public and private knowledge,
TS4NLE generates a post suggestion to inform the user about the healthy behavior that he/she
can adopt as alternative. To do that, the data contained in the explanation graph are not sufficient.
TS4NLE performs additional meta-reasoning to identify the appropriate content that depends on
(i) qualitative properties of the entities involved in the event; (ii) user profile; (iii) other specific vi-
olations; (iv) history of messages sent. Continuing with the running example, first TS4NLE queries
the domain knowledge base through the reasoner to provide a list of alternative foods that are valid
alternatives to the violated behavior (e.g., similar-taste relation, list of nutrients, consequences on
user health). These alternatives are queried according to some constraints: (i) compliance with the
user profile and (ii) compliance with other set-up goals. Regarding the first constraint, the reasoner
will not return alternative foods that are not appropriate for the specific profile. Let us consider
a vegetarian profile: The system does not suggest vegetarian users to consume fish as an alterna-
tive to meat, even if fish is an alternative to meat by considering only the nutrients. The second
constraint is needed to avoid alternatives that could generate a contradiction with other healthy
behavior rules. For example, the system will not propose cheese as alternative to meat if the user
has the persuasion goal of cheese reduction. Finally, a control on message history is executed to
avoid the suggestion of alternatives recently proposed. Regarding the linguistic aspect, the system
uses appropriate verbs, such as try or alternate, to emphasize the alternative behavior. Both tools20

and the colaboratory (Colab notebook) session are online21 for freely creating new use cases using
the TS4NLE approach.

7.2 TS4NLE Suitability Analysis: Pros and Cons

The use of explanation graphs is an intuitive and effective way for transforming meaningless model
outputs into a comprehensive artifact that can be leveraged by targeted users. Explanation graphs

20https://github.com/ivanDonadello/TS4NLE
21https://colab.research.google.com/drive/1iCVSt7TFMruSzeg5DswLOzOR1n7xATbz
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convey formal semantics that: (i) can be enriched with other knowledge sources publicly avail-
able on the web (e.g., Linked Open Data cloud) or privacy-protected (e.g., user profiles); (ii) allow
rendering in different formats (e.g., natural language text or audio); and (iii) allow full control
over the rendered explanations (i.e., the content of the explanations). Natural language rendering
with a template-system allows full control on the explanations at the price of high effort in do-
main and user modeling by domain experts. This aspect can be considered the major bottleneck of
the TS4NLE approach. Such bottleneck can be mitigated by using machine learning with human-
in-the-loop towards interactive interpretable machine learning [43] to increase variability in the
generated natural language explanations.

8 Limitations

In the landscape of XAI, one central limitation stems from the sheer diversity and abundance of
explainability methods available. Our article provides insights into several widely used XAI tech-
niques; however, it is crucial to acknowledge that the field is evolving rapidly, with new methods
constantly emerging. The sheer number and diversity of these methods make it challenging to
be exhaustive in our coverage. New techniques may offer unique advantages or address specific
limitations, and thus, the landscape of XAI is ever-expanding.

Furthermore, the fast-paced evolution of the XAI domain introduces a dynamic aspect to the
limitations. Some methods discussed in our guide may already be succeeded by more advanced
approaches, or they might have given rise to tools and implementations that are simpler and more
efficient. The field’s progress may render certain explanations or techniques obsolete, emphasizing
the need for ongoing exploration and adaptation. As a result, the shelf life of specific XAI meth-
ods may be limited, and developers should stay abreast of the latest advancements to ensure the
relevancy and efficacy of their chosen explainability tools.

In essence, the limitations inherent in our guide stem not only from the impossibility of being
exhaustive in the face of the myriad XAI methods but also from the dynamic nature of the field,
where advancements can quickly outpace existing methodologies. Navigating this evolving land-
scape requires a commitment to staying informed about emerging techniques and understanding
that the most effective XAI strategies may shift over time.

Another noteworthy limitation of the tutorials presented in our guide lies in the nature
of the datasets used for demonstration purposes. While the provided tutorials offer a foun-
dational understanding of XAI techniques, it is essential to recognize that they are primarily
illustrated on simple datasets. Real-world applications often involve more complex and dynamic
datasets, introducing additional challenges and intricacies not fully captured in these tutorial
scenarios.

In particular, some real-world contexts demand the incorporation of real-time data, where the
need for instantaneous decision-making is paramount. The tutorials, focused on elucidating XAI
methods, may not fully encapsulate the complexities introduced by the dynamic and evolving
nature of data streams in real-time applications. In scenarios such as these, where the temporal
dimension is critical, the applicability and effectiveness of certain XAI techniques may require
further exploration and adaptation.

Thus, while the tutorials serve as a valuable starting point, developers and practitioners should
be cognizant of the potential disparities between the controlled environments of tutorial datasets
and the nuanced challenges posed by real-world applications. Addressing the intricacies of com-
plex, real-time data scenarios will necessitate additional considerations and potentially the explo-
ration of more advanced XAI methods tailored to such dynamic contexts. This acknowledgement
underscores the importance of further research and experimentation when applying XAI tech-
niques in practical, real-world settings with more intricate data dynamics.
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9 Conclusion

In conclusion, our exploration of Explainable AI (XAI) techniques has equipped developers, do-
main experts, and decision-makers with valuable tools to unravel the intricacies of neural-symbolic
and machine learning models using tabular data, images, language, and graphs. By delving into
the implementation details, we aimed to demystify the black-box nature of these models, fostering
a didactic environment for users seeking clarity.

The explanations provided cater to a diverse audience, emphasizing accessibility and open
sharing via the availability of the explanations and accompanying resources on our GitHub
repository,22 inviting continuous learning and collaboration.

Looking ahead, future endeavors should focus on expanding the repertoire of XAI methods, es-
pecially in handling challenges posed by incomplete and multi-modal data[41]. As the field evolves
quickly [60], addressing these complexities becomes paramount for ensuring the applicability of
XAI techniques across various domains. By staying at the forefront of innovation, we can collec-
tively contribute to the responsible and effective governance of AI systems [6].

In essence, this guide serves as a resource, empowering users to navigate the nuanced landscape
of XAI. As we strive for greater understanding and transparency in artificial intelligence, this work
lays the groundwork for ongoing discussions, developments, and improvements in the realm of
explainability.

Beyond the specific case studies outlined in our guide, XAI finds relevance in a diverse array of
real-world applications, offering transparency and interpretability in decision-making processes.
One notable sector is healthcare and medical AI [40], where the need for accurate and interpretable
models is paramount. XAI can aid in understanding and justifying predictions made by complex
medical models, ensuring healthcare professionals can trust and comprehend the reasoning behind
critical diagnoses or treatment recommendations. For instance, XAI could be applied to interpret se-
mantic features or object parts [12, 27], contributing to a medical image classification, providing in-
sights for better-informed and less biased clinical decisions [25]. Other application of XAI is using
linguistic summaries to aid translating the model explanation to domain experts in psychiatry [44].
Another domain where XAI can have a relevant impact is in climate change and earth sciences [55].

In the financial domain, XAI proves invaluable in risk assessment and fraud detection. Inter-
pretable models can shed light on the factors influencing credit scoring [33], enabling financial
institutions to explain lending decisions to customers and regulatory bodies. Moreover, in the
context of fraud detection, XAI can elucidate the rationale behind flagged transactions, enhancing
the transparency of automated fraud prevention systems.

In the field of autonomous vehicles, where safety is paramount, XAI can play a crucial role.
Providing explanations for decisions made by self-driving cars ensures not only regulatory
compliance [35] but also fosters public trust. For instance, an XAI system could explain why a
vehicle made a specific maneuver or identification during an unforeseen event, contributing to
safer and more accountable autonomous transportation systems.

In the realm of customer service and chatbots, XAI facilitates a more transparent and under-
standable interaction. Users can receive clear explanations for recommendations or decisions
made by virtual assistants, enhancing the user experience and trust in automated systems. This
is particularly relevant in industries such as e-commerce or online services where personalized
recommendations play a significant role. One example can be insurance advisors [69] or any
recommender system, inclusive and accessible applications [28, 70].

These examples highlight the wide-ranging applications of XAI beyond the presented case stud-
ies, emphasizing its importance in domains where transparency, accountability, and user trust are

22https://github.com/NataliaDiaz/XAI-tutorial
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critical components of decision-making processes. As technology continues to advance, the need
for interpretable AI will likely expand into even more diverse and complex real-world scenarios.
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