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mación y la Comunicación.

Doctorando: Guillermo Gómez Trenado
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Resumen

1. Introducción al problema

La ciencia forense es una ciencia multidisciplinar y constituye un pilar fundamen-
tal de la justicia moderna. Ésta aplica distintos métodos cient́ıficos de cara a resolver
problemas legales mediante el análisis de pruebas f́ısicas procedentes de escenas del
crimen y otros contextos relevantes [HS09]. A lo largo del tiempo, este campo ha
avanzado sustancialmente, integrando distintas tecnoloǵıas para mejorar la precisión
y fiabilidad de las investigaciones. Una de las técnicas cruciales en la ciencia forense
es la imagineŕıa facial (facial imaging en inglés), que es particularmente impor-
tante para la identificación humana [SCGC19]. Esta técnica emplea procesamiento
y análisis de imágenes de rostros humanos para identificar a sospechosos, v́ıctimas y
personas desaparecidas, desempeñando aśı un papel vital en la investigación criminal
y los procedimientos legales. La continua evolución de la ciencia forense, apoyada
por los nuevos avances tecnológicos, resalta su papel indispensable en el sistema de
justicia.

Un subcampo de relevancia dentro de la ciencia forense es la Antropoloǵıa
Forense (AF), que aplica las teoŕıas y métodos de la antropoloǵıa biológica en contex-
tos legales, particularmente aquellos que implican el análisis de restos óseos [Lar23].
Este campo es esencial para la identificación de individuos fallecidos, especialmente
cuando los restos son irreconocibles debido a la descomposición o como resultado de
una catástrofe. Técnicas como la comparación de registros dentales, el análisis de
ADN, la aproximación facial (reconstrucción del rostro a partir de restos óseos), el
fotomontaje molecular (reconstrucción del rostro a partir de restos genéticos) y la
identificación craneofacial se emplean minuciosamente para determinar la identidad
de los fallecidos [WR12]. Estos métodos son cruciales no solo para una muy necesi-
tada respuesta a las familias, sino también para ayudar en las investigaciones legales
determinando la identidad y causas de muerte, aspecto de una relevancia capital en
los procedimientos legales.

El enfoque tradicional de la AF en el análisis de restos óseos incluye proced-
imientos como la estimación del perfil biológico (edad, sexo, afinidad poblacional
y estatura), la aplicación de superposición craneofacial y radiograf́ıa comparativa
con fines de identificación [DCI20, USK18]. Los antropólogos forenses son funda-
mentales en la búsqueda, recuperación y examen de restos, facilitando el proceso
de identificación a través de un análisis meticuloso. Este campo no solo ayuda a
resolver casos proporcionando información crucial sobre la identidad y las circun-
stancias de la muerte, sino que también contribuye a la comprensión de cuestiones
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Resumen 7

médico-legales mediante el estudio de caracteŕısticas individualizantes y el análisis
de traumas.

Tradicionalmente, los métodos de identificación forense se han basado en com-
paraciones manuales, las cuales, aunque valiosas, presentan un margen significativo
de error debido a la subjetividad inherente del proceso, la propia pericia del experto
e incluso a la fatiga mental y f́ısica 1. Sin embargo, en los últimos años se ha ob-
servado un cambio hacia enfoques más avanzados, integrando tecnoloǵıas de Visión
por Computador (VC) e Inteligencia Artificial (IA) para mejorar la precisión y la
fiabilidad de las identificaciones. Estas tecnoloǵıas ofrecen una mayor robustez y
objetividad, reduciendo los errores, acelerando los procesos y optimizando el flujo
de trabajo de expertos forenses que puden dedicar su tiempo a aquellas áreas cŕıticas
donde su labor es más importante [MMI+20].

En los últimos años, el ámbito de aplicación y conocimiento de la AF se ha
expandido para incluir la identificación de individuos vivos, reflejando su adapt-
abilidad a los cambios en los métodos de investigación criminal, las nuevas oportu-
nidades y los nuevos desaf́ıos, como la interpretación de grabaciones de vigilancia,
la estimación de la edad en migrantes o la identificación de personas desaparecidas
[GORT+16, SDR+16]. Técnicas como la modificación de la edad en fotos y la com-
paración facial forense se emplean ahora para emparejar individuos con grabaciones
de vigilancia y otras muestras fotográficas, mejorando las capacidades del campo. La
integración de IA, en contreto métodos basados en Aprendizaje Automático (AA),
en los sistemas de reconocimiento facial ha mejorado aún más la precisión y eficien-
cia de la identificación de personas en videovigilancia tanto en tiempo real como en
grabaciones [RN20, SO21, KKSK20]. Estos avances subrayan el potencial del campo
para adaptarse a nuevas tecnoloǵıas, enfatizando la importancia de la innovación en
la justicia y la seguridad pública.

A pesar de estos avances, los métodos de facial imaging forense, como la identifi-
cación facial y la modificación de la edad en imágenes, siguen limitados por prácticas
manuales y laboriosas [MIM24, Wil15, DV15, WR12]. Estos métodos dependen del
análisis visual realizado por los profesionales, lo que introduce posibles errores y
una alta subjetividad asociada a la habilidad y experiencia individuales. La falta de
fiabilidad, subjetividad, ausencia de metodoloǵıas estandarizadas y el tiempo sig-
nificativo requerido por caso destacan la necesidad de innovación dentro de la AF
[COG+17, USK18]. Abordar estas limitaciones es crucial para mejorar la utilidad y
escalabilidad de estos métodos.

Asegurar la fiabilidad en la ciencia forense es esencial para que las pruebas tengan
valor en los contextos legales. Esto requiere obtener resultados que sean consistentes,
precisos y validados cient́ıficamente [BWW20]. El AA ofrece una v́ıa prometedora
para mejorar las prácticas forenses, incluida la facial imaging, al minimizar el error
humano y la subjetividad. Los algoritmos pueden aprender de grandes conjuntos de
datos, analizar caracteŕısticas faciales con precisión, y automatizar y estandarizar el

1En este ejemplo, la antropóloga forense Josefina Lamas reconoció que se equivocó
inicialmente al dictaminar que los huesos del caso Bretón eran de animales, rectifi-
cando meses después al confirmar que eran humanos tras el informe de otro experto
forense. https://www.europapress.es/epsocial/infancia/noticia-forense-dictamino-

huesos-caso-breton-eran-animales-reconoce-equivoco-20130703153339.html. Accedido
por última vez el 11 de julio de 2024.



8 Resumen

proceso de análisis para apoyar la toma de decisiones objetiva en las investigaciones
forenses [CAIN+14b, MMI+20]. La imperativa global para una identificación precisa,
impulsada por la necesidad de abordar la desaparición de personas, la identificación
de v́ıctimas de desastres y la resolución de cŕımenes, subraya la importancia de
integrar técnicas de IA en la facial imaging forense.

2. Desarrollo realizado

El Deep Learning (DL) es una subrama del AA que utiliza redes neuronales
profundas para modelar y resolver problemas complejos a partir de grandes canti-
dades de datos. La importancia del DL se debe a su éxito impulsando innovaciones
y resolviendo problemas que anteriormente se consideraban irresolubles [GBC16,
Chapter 1]. El trabajo desarrollado a lo largo de esta tesis doctoral se divide en tres
bloques principales que abordan los objetivos planteados en la misma, utilizando
métodos basados en DL:

1. El desarrollo de un modelo para la localización automática de puntos ce-
falométricos basado en técnicas de DL que asista en las tareas de identificación
forense.

2. La creación de un método de envejecimiento facial controlado y preciso me-
diante DL, que permita modificar la edad de las personas en fotograf́ıas cap-
turando la complejidad y variabilidad del fenómeno.

3. La propuesta de un marco versátil de edición automática de imágenes basado
en descripciones textuales utilizando DL, que permitiŕıa a los expertos forenses
manipular imágenes según las necesidades descriptivas de la investigación.

Las siguientes secciones resumen nuestra contribución para cada uno de los blo-
ques. Primero, se define el diseño e implementación de un sistema de DL que au-
tomatiza la localización de puntos cefalométricos, mejorando la eficiencia y precisión
del análisis forense. Luego, se describe un modelo de DL para la edición de la edad
en imágenes faciales preservando sus rasgos de identidad. Finalmente, se introduce
un modelo de edición de imágenes basado en intrucciones textuales, que permite re-
alizar modificaciones en imágenes a partir de sencillas descripciones de texto, tales
como alterar atributos faciales, facilitando potencialmente la identificación y análisis
forense.

Desarrollo de un modelo en cascada de redes convolucionales
para la localización de puntos cefalométricos

La localización de puntos cefalométricos es una parte importante en la antro-
poloǵıa f́ısica y forense [SCGC19, DCIn+11, CAIN+14a, CÁICÁ+15], permitiendo
la caracterización precisa de la morfoloǵıa de la cabeza mediante puntos concretos
en la cara que guardan correspondencia con ubicaciones en el cráneo. Estos puntos
son esenciales para tareas como la extracción de ı́ndices antropométricos [MVIA18],



Resumen 9

la detección de patoloǵıas [Far94] y la identificación humana [HIWK15]. Tradi-
cionalmente, este proceso se ha realizado de forma manual, lo que lo hace propenso
a errores y consume mucho tiempo, especialmente en escenarios de identificación
masiva de v́ıctimas.

El problema de la localización de puntos cefalométricos comparte similitudes con
la localización de puntos faciales estudiada en VC [WJ19], pero presenta desaf́ıos
únicos debido a las necesidades espećıficas de la AF. Los métodos existentes para
puntos faciales no son aplicables directamente debido a la inconsistencia anatómica
y la baja resolución de las anotaciones. Además, la variabilidad en las imágenes
forenses, como la diferencia en la pose de la cabeza y la diversa calidad y origen de
las fotos, añade complejidad al problema.

La automatización de este proceso utilizando técnicas avanzadas de DL, como las
redes neuronales convolucionales, puede mejorar significativamente la precisión y efi-
ciencia. Estos métodos, que incluyen enfoques basados en mapas de calor [WSC+20,
SZJ+19] y modelos de máscara deformable en 3D [ZLL+16, FWS+18, GZY+20],
pueden producir resultados más robustos y repetibles, acelerando el análisis y re-
duciendo la dependencia de la intervención manual. La implementación de estos
métodos en contextos forenses promete una mejora considerable en la identificación
y comparación facial, proporcionando herramientas poderosas para los expertos
forenses.

El trabajo desarrollado se centra en la creación de un modelo en cascada de redes
convolucionales, denominado FSCNet, para la localización automática de puntos
cefalométricos en imágenes faciales. Este modelo está diseñado para mejorar la
precisión y la eficiencia en el proceso de identificación forense. A continuación, se
detallan los aspectos clave del desarrollo y evaluación del modelo.

FSCNet se compone de dos módulos principales. Primero, se utiliza un modelo
de máscara 3D deformable preentrenado, 3DDFA v2 [GZY+20], para sugerir una
localización inicial confiable de los puntos cefalométricos. Luego, se procesa una
imagen recortada alrededor de cada punto sugerido a través de una red convolucional
(ResNet-18) [HZRS16] entrenada para predecir el desplazamiento entre el centro de
la imagen recortada y la localización del punto. Este enfoque permite aumentar
significativamente la resolución del modelo y mejorar la precisión de la localización.

Se utilizan dos conjuntos de datos: un dataset de entrenamiento que incluye tanto
imágenes de casos reales como fotograf́ıas tomadas en condiciones controladas, y un
dataset de validación que contiene únicamente imágenes de casos forenses reales. El
dataset de entrenamiento incluye 165 imágenes de diferentes sujetos, con hasta 30
puntos anotados por imagen. En total, se anotaron 3526 puntos individuales. Las
imágenes vaŕıan en calidad y resolución, presentando desaf́ıos adicionales para la
precisión del modelo.

El proceso de localización se divide en varios pasos. En el primer paso, se uti-
liza el modelo 3DDFA v2 para obtener una máscara facial con aproximadamente
40,000 coordenadas 3D, identificando el mejor punto de malla para cada punto ce-
falométrico correspondiente. En el segundo paso, se optimizan los puntos ubicados
fuera de la máscara a través de la optimización de transformaciones homogéneas
mediante algoritmos de evolución diferencial [SP97]. En el tercer paso, se recortan
imágenes de las regiones de interés alrededor de cada punto y se procesan con una
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red convolucional para refinar la localización.

Se realiza un estudio de ablación para evaluar el impacto incremental de cada
decisión arquitectónica en el rendimiento del modelo. Cada paso muestra un au-
mento significativo en el rendimiento, con la proyección de etiquetas [MK18] como
el enfoque más efectivo para incorporar información de etiquetas en el modelo.
Además, FSCNet se compara con tres métodos del estado del arte disponibles
para localización de puntos faciales: 3FabRec [BW20], HRNET [WSC+20] y LUVLi
[KMM+20]. FSCNet supera significativamente a estos modelos en términos de error,
mostrando una precisión superior en la localización de puntos cefalométricos. Los
métodos basados en mapas de calor, como HRNET y LUVLi, son menos efectivos
debido a sus limitaciones de resolución. Finalmente, se lleva a cabo un estudio con
seis expertos forenses donde comparan las ubicaciones de los puntos cefalométricos
generadas por FSCNet con las anotaciones de otros expertos. En la mitad o más
de los casos, FSCNet obtiene un rendimiento igual o superior al de los expertos
humanos. Esto demuestra la robustez y precisión del modelo en un entorno forense
real.

De forma adicional a la localización, se resolvió la tarea de determinar la visibili-
dad de los puntos cefalométricos. Esta estimación de la visibilidad es un componente
crucial del modelo. A pesar de no haber un criterio consistente en el conjunto de
entrenamiento para la determinación de la visibilidad de un punto, se logró una
precisión promedio del 83%, utilizando un criterio de visibilidad basado en la infor-
mación geométrica de la malla 3D inicial producida por 3DDFA v2.

En resumen, FSCNet ofrece una solución robusta y precisa para la localización
automática de puntos cefalométricos, mejorando significativamente la eficiencia y
exactitud en aplicaciones forenses.

Desarrollo de un modelo para la edición de la edad en imá-
genes faciales

La edición de la edad en imágenes faciales [FGH10, KSSS14, WCY+16] es una
técnica crucial en varias aplicaciones, como la producción cinematográfica y la aprox-
imación facial forense, permitiendo alterar automáticamente la edad en las imágenes
faciales mientras se preserva la identidad. Los enfoques recientes de DL utilizan ar-
quitecturas tipo codificador-decodificador para proyectar las imágenes a un espacio
latente, manipular el contenido y decodificar la imagen alterada [ABD17, HKSC19,
MHP21, OESF+20, WCY+16, WTLG18, YPN+21, ZSQ17]. Sin embargo, estos
métodos muestran problemas al manejar diferencias significativas de edad y cambios
en la forma facial, debido a que las transformaciones de edad para saltos significa-
tivos suelen fallar al no considerar adecuadamente las modificaciones en la estructura
facial.

El trabajo desarrollado propone una solución novedosa que permite realizar cam-
bios estructurales profundos en las transformaciones faciales, logrando una transfor-
mación realista de la imagen con diferencias de edad que implican cambios en la
forma de la cabeza. Este marco permite al usuario ajustar el grado de preservación
de la estructura en el momento de la inferencia, proporcionando diversas transfor-
maciones donde la estructura se preserva en diferentes grados. Para este propósito,
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se introduce el módulo CUSP (CUstom Structure Preservation), que identifica las
regiones relevantes de la imagen de entrada que deben preservarse y aquellas donde
los detalles no son relevantes para la tarea.

El método propuesto emplea una arquitectura codificador-decodificador basada
en estilo [HLBK18, PZW+20, KLA19, KLA+20]. El proceso de transformación se
basa en una arquitectura codificador-decodificador que separa el estilo y el contenido
de la imagen de entrada. El decodificador o generador combina estas representa-
ciones con la edad objetivo, mientras que el módulo CUSP permite ajustar el nivel
de preservación de la estructura mediante máscaras de difuminado aplicadas a las
Skip connection (SC) entre el codificador y el decodificador.

A nivel experimental, se evaluó el rendimiento de CUSP en múltiples tareas de
edición de la edad, empleando métricas de preservación del contenido de la imagen y
de precisión en el envejecimiento y rejuvenecimiento del rostro, sobre tres conjuntos
de datos públicos: FFHQ-RR [KLA19, YPN+21], FFHQ-LS [OESF+20] y CelebA-
HQ [KALL17, LLWT15]. Junto con ello, se realizaron estudios de ablación para
evaluar el impacto de las decisiones arquitectónicas en el rendimiento del modelo.
Los resultados mostraron que la utilización de un codificador independiente para
el estilo y el uso del módulo CUSP mejoraron significativamente la precisión de la
transformación de edad y la preservación de detalles. Además, el modelo se com-
paró con métodos del estado del arte, como HRFAE [YPN+21] y LATS [OESF+20].
CUSP demostró un rendimiento superior en la transformación de edad y la preser-
vación de detalles, permitiendo transformaciones más profundas y realistas que los
métodos existentes. Además, ofrece al usuario la capacidad de controlar el grado
de preservación de la estructura. De forma adicional, se llevó a cabo un estudio
con 80 usuarios que compararon CUSP con HRFAE y LATS. Los usuarios pre-
firieron las transformaciones generadas por CUSP en términos de precisión de edad,
preservación de identidad, realismo y naturalidad del progreso de envejecimiento.

En resumen, CUSP ofrece una solución innovadora y flexible para la edición de
edad facial, mejorando significativamente la precisión y realismo de las transforma-
ciones, y proporcionando una herramienta adaptativa para aplicaciones forenses y
de entretenimiento.

Desarrollo de un modelo de uso general para la edición de
imágenes basado en texto

La edición de imágenes basada en texto es una técnica emergente en VC que
modifica imágenes a partir de descripciones en lenguaje natural a través de re-
des neuronales avanzadas, generalmente modelos de difusión [HJA20, DN21]. Esta
técnica permite a los usuarios realizar cambios en las imágenes simplemente de-
scribiéndolos en texto, como “hacer el cielo más azul” o “pintar el coche de rojo”,
ofreciendo un marco versátil para diversas manipulaciones guiadas por texto. Sin
embargo, desaf́ıos como el gran coste computacional del proceso de inversión en los
modelos de difusión permanecen sin resolver.

El trabajo desarrollado propone una técnica novedosa denominada SAGE (Self-
Attention Guidance for Image Editing), que equilibra la eficiencia computacional con
la reconstrucción de alta fidelidad, permitiendo capacidades de edición versátiles.
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De forma similar a otros métodos, nuestra aproximación utiliza la inversión DDIM
(Denoising Diffusion Implicit Models) [SME21]. Sin embargo, nuestra contribución
radica en la utilización de los mapas de auto-atención y atención-cruzada que el
modelo de difusión computa internamente durante el proceso de inversión DDIM,
permitiendo una reconstrucción precisa con un esfuerzo computacional menor.

SAGE emplea un modelo de difusión preentrenado para generación de imágenes
basado en texto junto a nuestras contribuciones para edición. Este marco permite la
reconstrucción alineada con la imagen de entrada mientras se logran modificaciones
profundas basadas en indicaciones textuales. Introducimos un término novedoso
como función de coste que gúıa la reconstrucción y edición modificando la dirección
del gradiente descendente. Esta función de coste gúıa la salida de las capas de auto-
atención de la red de difusión, asegurando una reconstrucción de alta fidelidad en
las regiones no afectadas por el proceso de edición, sin aumentar significativamente
las demandas computacionales.

La evaluación se basa en el conjunto de datos PieBench [JZB+23], que incluye
700 imágenes divididas equitativamente entre escenas naturales y artificiales, dis-
tribuidas en cuatro categoŕıas: animales, humanos, interiores y exteriores. Estas
imágenes, a su vez, se clasifican en diez tareas distintas: modificación de objetos,
adición de objetos, eliminación de objetos, alteración de contenido, ajuste de pose,
modificación de color, cambio de material, alteración de fondo y cambio de estilo.
Además, utilizamos una colección de imágenes de alta resolución para evaluaciones
cualitativas.

En este estudio, abordamos el desaf́ıo de la edición de imágenes basada en indica-
ciones de texto tal como se introdujo en [HMT+23, MHA+23]. Es decir, el usuario
proporciona una imagen inicial junto con dos cadenas de texto: una descripción
textual de entrada P in de dicha imagen aśı como una indicación objetivo Pout que
describe el resultado deseado después de la edición. El proceso de edición comienza
con la inversión DDIM de la imagen de entrada utilizando su indicación asociada.
Esta inversión genera el ruido latente estimado que sirve como punto de partida para
el proceso de muestreo DDIM responsable de crear la imagen editada. Dentro de
este marco, la U-Net [RFB15] procesa las indicaciones por separado. Para calcular
el término que gúıa la generación, se comparan los mapas de auto-atención de la
inversión DDIM y los mapas de auto-atención producidos en la nueva generación
con Pout.

Se realizaron estudios de ablación con el objetivo de evaluar los mecanismos
utilizados para lograr la reconstrucción en regiones destinadas a ser preservadas du-
rante el proceso de edición. Los resultados mostraron que el uso del gradiente sobre
los mapas de atención supera consistentemente al reemplazo de estos mapas como
mecanismo de guiado de la edición a lo largo de todas las métricas, demostrando la
eficacia de nuestro mecanismo propuesto sobre los mapas de auto-atención. Además,
SAGE se comparó con métodos de última generación como Negative Prompt Inver-
sion [MIST23] y Direct Inversion [JZB+23]. Nuestro método mostró un rendimiento
superior tanto en la preservación de la estructura como en la calidad de la edición,
manteniendo una eficiencia computacional comparable o superior. Finalmente, se
llevó a cabo un estudio con 22 participantes que compararon SAGE con otros
métodos en tres aspectos clave: preservación de la estructura, preservación del fondo
y adherencia a la indicación de texto, aśı como una valoración sobre la preferencia
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general del usuario. Los resultados mostraron una preferencia consistente por nue-
stro método, destacando su ventaja significativa en la preservación del fondo y la
estructura.

En conclusión, SAGE ofrece una solución innovadora y eficiente para la edición de
imágenes guiada por texto, mejorando significativamente la precisión y el realismo de
las transformaciones, y proporcionando una herramienta poderosa para aplicaciones
en VC.

3. Conclusiones y trabajos futuros

Esta tesis ha presentado tres avances significativos en el campo de facial imag-
ing a través del desarrollo y la aplicación de metodoloǵıas basadas en DL. Cada
una de estas contribuciones aborda una solución de interés para el análisis forense,
proporcionando soluciones innovadoras que pueden mejorar la precisión, eficiencia
y fiabilidad en las investigaciones forenses. Primero, desarrollamos una herramienta
robusta para la localización precisa de puntos cefalométricos en imágenes faciales,
superando las limitaciones de un conjunto de datos pequeño mediante el uso de
modelos preentrenados de detección de puntos faciales y refinando esta solución a
través de una red convolucional condicional compartida por todos los puntos ce-
falométricos. Segundo, introdujimos una arquitectura novedosa para la edición de
la edad en imágenes faciales capaz de producir modificaciones estructurales preser-
vando detalles relevantes de la imagen original, validada contra el estado del arte
en tres conjuntos de datos. Finalmente, revisamos la edición de imágenes basada
en indicaciones de texto mediante modelos de difusión, demostrando que el proceso
de inversión DDIM contiene información suficiente para la edición sin necesidad de
reconstruir la imagen original, introduciendo y validando la utilización de mapas de
auto-atención como un mecanismo superior para tareas de edición de imágenes.

El trabajo futuro para esta investigación implica varias áreas clave de desarrollo
y mejora para aumentar el rendimiento y la aplicabilidad de los métodos propuestos,
aśı como su validación en contextos forenses en una colaboración multidisciplinar.
Para el método de localización de puntos cefalométricos, evaluaremos distintas solu-
ciones basadas en AA para estimar la visibilidad de los puntos, para esto es esencial
la creación de un conjunto de datos más amplio y robusto con criterios claros y
consistentes para determinar la visibilidad. En el área de envejecimiento facial, se
planea extender el módulo CUSP para aplicar los beneficios de la preservación es-
tructural a otras tareas de edición de imágenes. Para la edición de imágenes, el
trabajo futuro continuará explorando nuevas técnicas y metodoloǵıas para reducir
la carga computacional del cálculo del gradiente que gúıa la generación sin sacrificar
la calidad de las transformaciones.



Abstract

Forensic science, a multidisciplinary field crucial to modern justice, applies sci-
entific methods to analyze physical evidence from crime scenes and other contexts.
Among its vital techniques is facial imaging, essential for human identification. This
technique aids in recognizing suspects, victims, and missing persons through ad-
vanced image processing and analysis, significantly impacting criminal investiga-
tions and legal procedures. Forensic Anthropology (FA), a subfield of biological
anthropology, focuses on the analysis of skeletal remains to identify deceased in-
dividuals, especially when remains are unrecognizable due to decomposition or as
a consequence of catastrophic events. Techniques like dental record comparison,
DNA analysis, facial approximation, molecular photofitting, and craniofacial iden-
tification are meticulously used to determine the identity of the deceased. These
methods are essential not only for providing closure to families but also for aid-
ing legal investigations by confirming identities and causes of death. Recently, FA
has expanded to include the identification of living individuals, adapting to changes
in criminal investigation methods and new challenges, such as interpreting surveil-
lance footage and identifying missing persons. The integration of Artificial Intel-
ligence (AI) and Machine Learning (ML) in facial recognition systems has further
enhanced the precision and efficiency in identifying individuals, underscoring the
importance of innovation in justice and public safety.

Traditionally, forensic identification methods relied on manual comparisons, which,
despite being valuable, had a significant margin of error due to the subjective nature
of the process, the expert’s skill, and even mental and physical fatigue. However,
recent years have seen a shift towards more advanced approaches, integrating Com-
puter Vision and AI technologies to improve the accuracy and reliability of identi-
fications. These technologies enhance robustness and objectivity, reducing errors,
speeding up processes, and optimizing forensic experts’ workflow, allowing them to
focus on critical areas where their work is most crucial.

Ensuring reliability in forensic science is essential for the evidentiary value of
proofs in legal contexts, which depends on producing consistent, accurate, and sci-
entifically validated results. Traditional forensic facial imaging methods, such as
facial identification and age progression, remain limited by labor-intensive, manual
practices that rely on the visual analysis of professionals, introducing potential hu-
man errors and high subjectivity. The lack of standardized methodologies and the
significant time required per case highlight the need for innovation within FA. Arti-
ficial Intelligence (AI) offers a promising avenue for improving forensic practices by
minimizing human error and subjectivity. Algorithms can learn from vast datasets,
analyze facial features with precision, and automate and standardize the analysis
process, supporting objective decision-making in forensic investigations. The global
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imperative for precise identification, driven by the need to identify missing persons,
disaster victims, and solve crimes, underscores the importance of integrating AI
solutions in forensic facial imaging.

Deep Learning (DL) is a subfield of machine learning that uses deep neural
networks to model and solve complex problems from large datasets. DL’s current
relevance and popularity stem from its success in driving innovations and solving
previously intractable problems.This doctoral dissertation introduces three signifi-
cant contributions based on DL that can be integrated in the field of forensic facial
imaging. The first contribution is the development of FSCNet, a DL model designed
for the automatic localization of cephalometric landmarks (precise locations on the
head highly relevant for many FA tasks) in facial images, which can help enhancing
the efficiency and accuracy of forensic identification processes. FSCNet employs a
cascade of convolutional networks, starting with a pre-trained 3D deformable mask
model to provide initial landmark location. This is followed by a convolutional neural
network that refines these locations by predicting the displacement between the cen-
ter of the cropped image and the landmark. Through rigorous testing and validation,
FSCNet demonstrated superior performance compared to state-of-the-art methods,
achieving higher precision in landmark localization and often outperforming human
experts in real forensic scenarios. This development addresses the challenges posed
by manual and labor-intensive landmark localization, offering a more reliable and
efficient solution for forensic applications.

The second major contribution of this thesis is the introduction of a novel frame-
work for facial age editing, the Custom Structure Preservation (CUSP) module.
This framework leverages a style-based encoder-decoder architecture, inspired by
advancements in image-to-image translation and unconditional image generation,
to allow realistic age transformations in facial images while preserving key identity
features. The CUSP module provides users with the ability to adjust the degree of
structure preservation during the transformation process, enabling more profound
changes in facial morphology such as head shape and hair growth, which are typi-
cally challenging for conventional methods. By the use of the CUSP module, which
is able to differentiate which parts of the image should be edited and which should
remain untouched, this framework achieves a higher level of realism and accuracy in
age progression and regression tasks. Extensive evaluations demonstrated its supe-
rior performance in maintaining the balance between structural changes and identity
preservation, making it a significant advancement in forensic facial approximation.

The third contribution is the development of SAGE (Self-Attention Guidance for
Image Editing), an innovative technique for text-guided image editing that balances
computational efficiency with high-fidelity reconstruction. SAGE utilizes a pre-
trained diffusion model, specifically leveraging the intermediate Self-Attention (SA)
and Cross-Attention (CA) maps computed during the reverse Denoising Diffusion
Implicit Model (DDIM) process. This approach allows for precise image modifica-
tions based on textual descriptions without the need for explicit reconstruction of
the input image. SAGE’s unique SA guidance mechanism ensures faithful image
editing and high-fidelity reconstruction in regions unaffected by the edits, provid-
ing an optimal balance between maintaining original image details and achieving
the desired modifications. Comparative analyses against State-of-the-art (SOTA)
methods showed that SAGE delivers comparable or superior editing quality with
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minimal computational expense, making it a versatile and powerful tool for various
forensic and general image editing applications.

In addition to the technological advancements presented, it is crucial to ensure
that these methods are rigorously validated to guarantee their effectiveness and re-
liability in real-world applications. Each method introduced in this dissertation has
undergone comprehensive user studies. FSCNet for cephalometric point localization
was validated with the involvement of forensic experts, who assessed its accuracy,
usability, and practical implications in a forensic scenario. For the CUSP module
for facial age editing and the SAGE technique for text-guided image editing, diverse
user groups were involved in the validation process to compare the methods’ prefer-
ences and performance against existing techniques. These studies help ensure that
the developed methods not only perform well in controlled environments but also
meet the demands of actual forensic investigations and general image editing tasks.
This user-centric approach underlines the commitment to advancing forensic sci-
ence through methods that are both scientifically robust and practically applicable,
ultimately enhancing the overall credibility and impact of forensic analyses.

In conclusion, this dissertation presents groundbreaking advancements in method-
ologies that can be used in forensic facial imaging through the development of FSC-
Net, the CUSP module for facial age editing, and the SAGE technique for text-
guided image editing. These contributions could significantly enhance the accuracy,
efficiency, and reliability of forensic analyses, addressing critical challenges in the
field.



Chapter I

Introduction

“I first get a title and then I write a script for the
title.” — Aki Kaurismäki

Forensic science, a vital tool in the quest for justice, is the application of a broad
spectrum of sciences to answer questions relevant to a legal system [HS09]. This mul-
tidisciplinary field plays an indispensable role in supporting the legal system through
the meticulous analysis of physical evidence collected not only from crime scenes but
also from various contexts requiring legal scrutiny. Over the years, forensic science
has evolved dramatically, incorporating advanced technologies and methodologies
to increase the accuracy and reliability of its results. Among these, facial imaging
has emerged as a pivotal technique, especially in cases involving human identifica-
tion [SCGC19]. Leveraging sophisticated image processing and analysis methods,
forensic facial imaging assists in identifying suspects, victims, and missing persons,
profoundly impacting criminal investigations and legal proceedings. This integra-
tion of technology not only enhances the capabilities of forensic experts but also
underscores the evolving nature of forensic science in the modern justice system.

Forensic Anthropology (FA) is a subfield of biological anthropology [Lar23] that
applies its theory and methods to the legal context, traditionally those related to
the recovery, analysis and identification of the skeleton [CPB14]. When it comes
to identifying the deceased, especially in cases of unrecognizable remains due to
decomposition or as a consequence of catastrophic events, forensic experts rely on
various techniques. These methods include dental records comparison, DNA analy-
sis, facial approximation, molecular photofitting and Craniofacial Identification (CI)
[WR12]. The process is meticulous, involving the careful gathering and analysis of
evidence to reconstruct the identity of the deceased. This aspect of forensic science
is crucial, not only for bringing closure to families of the missing but also for aiding
legal investigations by confirming identities and causes of death. The accuracy and
reliability of these identification methods have a significant impact on subsequent
legal proceedings, making them an indispensable part of the forensic process.

The application of skeletal analysis aids in the identification of human remains,
particularly in complex scenarios like those involving skeletonized, burned, or de-
graded conditions. Classic procedures within FA include biological profile estimation
(determining age, sex, ancestry, and stature from skeletal remains) as well as the
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application of craniofacial superimposition and comparative radiography for iden-
tification purposes [DCI20, USK18]. Forensic anthropologists play a crucial role in
both the search and recovery of remains and the meticulous examination required
to match ante-mortem and post-mortem materials, facilitating the identification
process. This specialized field not only helps in solving cases by providing crucial
information on the identity and circumstances of death but also contributes to the
broader understanding of medicolegal issues through the study of individualizing
features and trauma analysis.

In recent years, the scope of the field has notably broadened, incorporating the
identification of living individuals alongside traditional practices [GORT+16]. This
evolution responds to changing crime prosecution methods and the introduction
of novel challenges, such as interpreting surveillance footage [SCGC19], estimating
ages in migration contexts [SDR+16] or identifying missing people [USK18]. The
field now employs a diverse array of techniques tailored to the living, including age
progression (a method that applies forensic art and science to predict the current
appearance of an individual who has been missing for a period of time) for locating
long-term missing persons and Forensic Facial Comparison (FFC) to match individ-
uals with surveillance footage and other photographic samples [SCGC19, WR12].
Furthermore, the integration of cutting-edge technologies such as Artificial Intelli-
gence (AI) [RN20] -and more specifically Machine Learning (ML) [Bis06, Mur22]-
into facial recognition systems has significantly enhanced the capability to iden-
tify persons of interest in real-time surveillance and post-event analysis outside the
forensic context [SO21, KKSK20]. These developments reflect the field’s potential
for adaptation to the evolving landscape of new technologies, highlighting the im-
portance of leveraging innovation for the purposes of justice and public safety. This
adaptation into forensic living identification not only exemplifies FA’s versatility but
also its crucial role in addressing contemporary forensic challenges.

Despite the revolutionary changes witnessed in fields like medicine (with AI-
driven diagnostics and treatments) or in forensic sciences (like genetics and crime
scene investigation), forensic facial imaging methods like facial identification and
age progression remain constrained by manual, time-intensive practices [MIM24,
Wil15, DV15, WR12]. These tasks involve a practitioner-dependent visual analysis
of comparative samples, a process full of potential errors and high subjectivity due
to its reliance on individual skill and experience. The inherent limitations —lack
of reliability, subjective nature of analyses, absence of methodological proposals for
facial identification, and significant time requirements per case— severely restrict
the utility and scalability of these methods. Consequently, these methods often serve
only as secondary or negative identifiers, narrowing down possible matches without
providing definitive identification, underscoring a critical area ripe for innovation
and improvement within FA [COG+17, USK18].

Reliability within forensic science is paramount for ensuring the probative value
of evidence presented in legal contexts. This critical aspect hinges on the ability to
produce consistent, accurate, and scientifically validated results that can withstand
legal scrutiny [BWW20]. ML methods offer a compelling avenue for enhancing the
reliability of forensic practices, including facial imaging. By harnessing the power
of algorithms to learn from vast datasets, ML can minimize human error and sub-
jectivity, which traditionally plague manual identification techniques [CAIN+14b].



CHAPTER I. INTRODUCTION 19

In forensic facial imaging, for instance, ML algorithms can analyze facial features
with remarkable precision, identifying unique patterns and correlations that may be
hardly noticeable to the human eye. These technologies can automate and stan-
dardize the analysis process, providing reproducible results that support objective
decision-making in forensic investigations [MMI+20].

The identification of individuals, whether deceased or living, is increasingly be-
coming a global imperative, driven by the need to address issues such as missing
persons, disaster victim identification, and crime solving. The integration of AI
technologies into forensic facial imaging not only bolsters the reliability of identifi-
cations but also significantly contributes to the field’s evolving body of knowledge,
setting a new standard for evidence evaluation in the justice system. This point
is underscored by the challenges faced in instances where facial recognition relies
on subjective human interpretation, particularly in emotionally charged situations.
For example, during the aftermath of the 2004 Tsunami and the Bali bombing on
12 October 2002, there were notable instances of misidentification, where 10% of
the Tsunami victims and 50% of the Bali bombing victims were wrongly identified
by their relatives through facial recognition [LGH03]. These examples highlight the
limitations of relying solely on human recognition, further emphasizing the necessity
for AI-enhanced methodologies that offer a higher degree of reliability and objectiv-
ity in the identification process, reducing the likelihood of such tragic errors [Rob18].
The risk of error and lack of reproducibility in manual identification methods also
applies to the performance of forensic experts. For example, the task of annotating
landmarks in photographs, a fundamental step in various forensic facial imaging
applications [Far94], illustrates another layer of complexity and potential for error.
Performed by forensic experts, this process is inherently susceptible to inter- and
intra-expert variability. Such variability manifests not only in the positioning of
the landmarks but also in determining their visibility [CAIN+14b]. This variability
introduces a significant source of error and inconsistency, which can adversely affect
the accuracy of subsequent analyses and identifications. In this context, bringing
new AI developments into FA, particularly through advancements in identification
methods, is positioned as a promising solution. The integration of innovative fa-
cial imaging technologies and methodologies offers unprecedented opportunities for
accurate and efficient identification [MMI+20]. These ML-boosted technologies can
process and analyze vast amounts of data with greater speed and accuracy than
traditional manual methods, significantly improving the efficiency and effectiveness
of the identification process. This capability is particularly crucial in situations re-
quiring rapid identification, such as natural disasters or mass casualty events, where
timely and accurate identification can aid in the swift resolution of cases and provide
much-needed closure to affected families.

Moreover, the accessibility of these methods in developing countries highlights
their practical value, offering cost-effective alternatives to more expensive techniques
like DNA analysis [MMI+20]. CI and FFC require less financial investment and tech-
nical infrastructure, making them particularly appealing for regions with limited
resources. These methods leverage photographs, which have become a ubiquitous
resource over the last century, further underlining the importance of facial imaging
techniques. The widespread availability of photographic evidence, from personal
identification documents to social media, enhances the applicability of facial imag-
ing methods in various contexts, from criminal investigations to humanitarian ef-
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forts. Consequently, the evolution of FA to include these accessible and cost-efficient
identification methods meets the growing global demand for identification, offering
scalable, reliable solutions that support not only legal investigations but also global
security and humanitarian action, especially in settings where resources are scarce.

Automatic Landmark 

Localization

Face Aging

Text-based editing

for multiple

purposes

Figure 1: Illustration of the three main contributions of this PhD dissertation:
automatic cephalometric landmark localization, face aging, and text-based image
editing. These contributions aim to enhance the accuracy, efficiency, and reliability
of forensic facial imaging through the development and application of advanced DL
technologies.

Deep Learning (DL) is a subfield of machine learning that leverages deep neural
networks to model and solve complex problems using large datasets. The signifi-
cance of DL lies in its ability to drive innovations and tackle problems that were
previously considered unsolvable [GBC16, Chapter 1]. This dissertation contributes
significantly to the field of forensic facial imaging through the development and
application of advanced DL technologies in this area. This contributions are il-
lustrated in Fig. 1 and include the following:

• The first major contribution is the creation of a DL model for the automatic
localization of cephalometric landmarks (points located on the face and
head that enable forensic experts to describe the morphology of the head
[Geo07]). This model represents a crucial advancement in facial imaging, as it
provides an efficient and accurate method for identifying specific anthropomet-
ric points on the face that are vital for various applications, including CI and
FFC [Far94]. By automating this process, the model facilitates quicker and
more reliable analyses, thereby enhancing the overall efficacy of facial imaging
methods used in forensic investigations.

• The second contribution addresses the challenge of aging in facial pho-
tographs. An area of particular interest and complexity within FA. The de-
veloped DL method enables the modification of a person’s age in photographs
with an unprecedented level of control and flexibility. This method allows
users to adjust the degree of structural preservation during the aging pro-
cess, acknowledging the fact that individuals age differently. Such flexibility is
crucial for creating age-progressed images that accurately reflect the possible
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appearance of missing persons or wanted individuals, improving the chances
of identification in real-world scenarios.

• Lastly, the thesis dissertation extends beyond age modification to introduce a
versatile DL approach for editing arbitrary elements of pictures, includ-
ing but not limited to a wide range of facial features. This method capitalizes
on the potential of foundational models, enabling not just the modification of
age but also other attributes in face images, such as facial expressions, hair
color, and even the presence of accessories. The utility of this approach in
forensic contexts is vast. It offers unparalleled advantages in improving the
accuracy and realism of suspects features modification, eyewitness compos-
ites, and facial depiction [SCGC19]. By enabling forensic experts to modify
and fine-tune facial features with a high degree of precision, this technology
significantly strengthen the reliability of identifications. Remarkably, the tech-
nology’s adaptability allows it to edit features in any photograph, not limited
to human subjects, demonstrating a broader application beyond forensic con-
texts.

The progressive increase in the complexity and scope of these methods mirrors
the rapid and extraordinary advancements in DL over the past four years, highlight-
ing the transformative impact of these technologies on forensic facial imaging and
beyond. This development not only showcases the practical applications of DL in
enhancing forensic methodologies but also sets the stage for future innovations that
could further revolutionize the field.

I.1 Justification

This justification section explores three pivotal aspects underlying the need for
advanced forensic facial imaging methods. Firstly, the global demand and mar-
ket potential for human identification and facial recognition technologies underscore
their growing social and economic importance. Secondly, the integration of cutting-
edge technological advancements, particularly in AI and ML, promises to revolu-
tionize forensic facial imaging by automating and enhancing identification processes.
Lastly, the vast availability and accessibility of photographs provide a unique ad-
vantage for identification purposes, facilitating a more efficient and comprehensive
approach to FA and law enforcement.

I.1.1 Global Demand and Market Potential

The global demand for human identification methods, particularly forensic facial
imaging, has experienced a significant rise due to its increasing social and economic
importance (see Fig. 2). The human identification market reached an estimated
size of USD 1.2 billion in 2023 and is projected to grow to USD 3 billion by 2033,
reflecting a compound annual growth rate (CAGR) of 9.6% 1 . This substantial

1Human Identification Market. https://www.futuremarketinsights.com/reports/human-

identification-market, last accesed July 26, 2024
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Figure 2: This figure illustrates the urgent need for human identification worldwide,
driven by factors such as migration to Europe, recent conflicts, historical cases, and
climate change-related natural disasters. Highlighted regions and associated data
emphasize the scale of unidentified human remains, with notable numbers in Europe,
Asia, Latin America, and Africa. Additionally, the figure presents annual human
identification statistics, showcasing the extensive backlog of unidentified cadavers in
the US and the ongoing efforts in the EU. These challenges underscore the critical
role of forensic facial imaging in addressing the growing demand for human identi-
fication.

growth highlights the critical need for effective identification solutions. Moreover,
the facial recognition market, estimated at USD 6.61 billion in 2024, is expected
to reach USD 14 billion by 2029, growing at a CAGR of 16.20% 2 . This rapid
expansion indicates a robust demand for facial imaging technologies, driven by the
proliferation of surveillance cameras, mobile devices, and social media platforms, all
of which contribute to an unprecedented volume of accessible facial photographs.

Furthermore, this heightened demand underscores the necessity for advanced
forensic facial imaging methods to meet various law enforcement and public safety
needs. The potential applications of facial identification extend beyond identifying
deceased individuals; they play a crucial role in apprehending criminals, locating
missing persons, and exposing identity theft. As more governments and agencies
adopt facial recognition systems, the volume of leads generated for manual exami-
nation by experts continues to grow. For instance, the Facial Identification Section
at NYPD received 9,850 requests for comparison in 2019, identifying 2,510 possible

2Facial Recognition Market. https://www.mordorintelligence.com/industry-reports/

facial-recognition-market, last accesed July 26, 2024
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matches 3. Although a facial recognition match alone does not establish probable
cause, it serves as a valuable investigative lead. This increasing reliance on facial
imaging technologies for public safety and justice initiatives demonstrates the essen-
tial role of forensic facial imaging in contemporary society.

I.1.2 Technological Advancements and Artificial Intelligence
Integration

The integration of advanced technological advancements, particularly AI, into
forensic facial imaging represents a significant leap forward in the field. AI has
revolutionized various domains by automating repetitive or complex tasks, often
outperforming human capabilities 4. In recent decades, DL [GBC16, Chapter 1],
a subset of ML, has driven breakthroughs in image recognition, generation, and
processing [BB23, Chapter 1]. This is particularly relevant for FA, which has tra-
ditionally been a manual and technologically limited discipline. By leveraging AI,
forensic facial imaging can transition from labor-intensive methods to automated,
accurate, and scalable processes, enhancing both efficiency and reliability.

Moreover, the application of AI in forensic facial imaging involves multiple ad-
vanced techniques. Convolutional Neural Networks (CNNs) are instrumental in
Computer Vision (CV) tasks such as image classification and object recognition,
making them powerful tools for identifying patterns in digital images [GBC16,
Chapter 9]. In addition, Deep Generative models, including Generative Adver-
sarial Networks (GANs) [GPAM+14] and Diffusion models [HJA20], are pivotal for
image synthesis and processing tasks. While GANs are known for high-fidelity re-
sults [KLA19, KLA+20], diffusion models offer richer photorealistic outputs [DN21].
These technologies enable the processing of vast amounts of data, uncovering hidden
patterns, and enhancing the overall quality of facial recognition systems. Despite
the advancements, FA has yet to fully embrace these technologies, presenting an
opportunity to significantly improve identification methods. By incorporating these
AI-driven techniques, forensic facial imaging can achieve greater accuracy, explain-
ability, and accountability, ultimately enhancing its role in modern law enforcement
and forensic practices.

I.1.3 Advantages and Relevance of Facial Imaging

Facial imaging has become increasingly relevant in today’s forensic science land-
scape due to the growing global demand for efficient and accurate identification
methods. As highlighted earlier, the human identification market is expanding
rapidly, driven by technological advancements and the need for robust forensic tools.
Facial imaging, encompassing techniques such as facial identification and age pro-
gression, addresses this demand by leveraging the vast availability of photographs
and the power of AI-driven analysis. These methods provide a non-invasive, easily

3Facial Recognition - NYPD. https://www.nyc.gov/site/nypd/about/about-

nypd/equipment-tech/facial-recognition.page, last accesed July 26, 2024
4Stanford’s 2024 AI INDEX ANNUAL REPORT. https://aiindex.stanford.edu/report/,

last accesed July 26, 2024
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accessible, and highly reliable means of identifying individuals, which is crucial for
timely and effective forensic investigations.

Moreover, facial imaging techniques could greatly benefit from the integration
of AI and ML, enhancing their accuracy and reliability. Methods such as facial
identification could use similar sophisticated algorithms developed in CV to match
facial features from photographs with those in databases, improving the chances of
correctly identifying individuals [KKSK20]. Additionally, age progression technolo-
gies could benefit from similar advancements [YPN+21, OESF+20], enabling forensic
experts to create accurate representations of how individuals might age over time.
This is particularly valuable in long-term missing person cases, where updated im-
ages can greatly assist in the search and recovery efforts. The integration of these
advanced technologies ensures that facial imaging remains at the forefront of forensic
science innovation.

Furthermore, the practical applications of facial imaging extend beyond tradi-
tional identification purposes, playing a vital role in broader law enforcement and
public safety initiatives. For example, facial identification can aid in tracking and
apprehending suspects [VD15, Chapters 9 and 13], while advanced techniques such
as age progression and the automatic editing of facial attributes provide crucial leads
in various investigative scenarios [Mul12]. These technologies can simulate changes
in a person’s appearance over time, including aging, beard growth, hairstyle alter-
ations, and color modifications. Such capabilities are invaluable in cases involving
missing children or adults who may have altered their appearance to avoid detection
5. The efficiency and scalability of modern facial imaging techniques enable forensic
departments to process large volumes of data swiftly, enhancing their ability to solve
cases and protect communities 6. As technology continues to evolve, the relevance
and importance of facial imaging in forensic science will only grow, solidifying its
role as an essential tool for modern law enforcement and forensic investigations.

I.2 Objectives

The primary objective of this dissertation is to design innovative and disruptive
DL-based solutions that can be effectively utilized in forensic facial imaging. By
leveraging the power of DL, the aim is to enhance the accuracy, efficiency, and re-
liability of forensic facial analyses, thereby significantly improving the capabilities
of forensic investigations. This objective encompasses the research and develop-
ment of three subobjectives: developing and validating advanced methodologies for
automatic cephalometric landmarks localization, face aging, and text-based image

5The National Center for Missing & Exploited Children (NCMEC) released a new age
progression image of Tabitha Tuders, who disappeared in 2003 at age 13. The image, pre-
sented at CrimeCon in Nashville, shows what Tabitha might look like today at 34. The
release included insights from forensic artist Joe Mullins and participation from Tabitha’s
family. https://www.forensicmag.com/613385-New-Age-Progression-Image-of-Tabitha-

Tuders-Missing-Since-2003/. Last accessed on July 26, 2024.
6The FBI is questioned about its 640 million photographs facial recognition database.

https://www.forbes.com/sites/monicamelton/2019/06/04/government-watchdog-

questions-fbi-on-its-640-million-photo-facial-recognition-database/. Last acce-
ses on July 26, 2024.
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Make him overweightAdd a beard Add a long beard

Add a beard Add a cap Add long hairAdd a mustacheMake him 40

Add a cap

Figure 3: Some examples of text-based image editing, including adding facial fea-
tures such as a beard, mustache, and long hair, as well as altering attributes like
age and body weight. The unedited image has been created with Stable Diffu-
sion 3 Medium (https://huggingface.co/stabilityai/stable-diffusion-3-
medium), the edited images are generated with the methodology proposed in Chap-
ter V.

editing. Each methodology developed in this dissertation has to be rigorously vali-
dated through user studies to ensure their practical applicability and effectiveness.

1. The first subobjective is to develop a DL-based system for the automatic lo-
calization of cephalometric landmarks on facial images. Cephalometric land-
marks are critical points on the human face extensively used in FA and other
areas. The goal is to create a robust and precise DL model that can accurately
identify and annotate these landmarks, facilitating quicker and more reliable
forensic analyses. This system aims to automate the traditionally manual pro-
cess, thus reducing human error and increasing the scalability of forensic facial
imaging techniques.

2. The second subobjective focuses on creating a DL model for face aging. This
model aims to generate accurate age-progressed images of individuals, which
is crucial in long-term missing person cases and criminal investigations where
suspects may have aged over time. The method should allow the user to
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determine the desired degree of structural preservation at inference time, ac-
knowledging that individuals age in diverse ways. The model should be able to
generate realistic and plausible age-progressed images that retain the key iden-
tity features of the individuals. By achieving this, the model will improve the
chances of identification and provide valuable leads in forensic investigations.

3. The third subobjective is to design a versatile DL framework for text-based im-
age editing. This approach allows forensic experts to manipulate images based
on textual descriptions, enabling modifications such as adding, removing, or
altering facial features (see Fig. 3). This capability is particularly useful in
scenarios where visual alterations of suspects or victims are required based on
witness descriptions or other investigative needs. The system should maintain
a high level of realism and accuracy, aiding in the effective identification and
analysis of individuals in forensic contexts.

By achieving these subobjectives, this dissertation aims to significantly advance
the field of forensic facial imaging, providing powerful tools that enhance the accu-
racy, efficiency, and reliability of forensic investigations.

I.3 Structure of the dissertation

This dissertation is divided into three main parts besides the introduction: Fun-
damentals, Proposal, and Final Remarks. Each part contains several chapters that
explore DL-based solutions for forensic facial imaging.

Part I, Fundamentals, covers the essential theoretical background. This section
discusses cephalometric landmarks, how they are identified, and their significance.
Furthermore, this part delves into DL, explaining how it uses neural networks to
model complex patterns in data. Key topics include CNNs for image recognition,
regression and classification tasks; GANs for creating realistic images; and diffusion
models and attention mechanisms that enhance the quality of generated images

Part II, Proposal, presents the core research contributions of the dissertation.
The first chapter focuses on developing a DL system to automatically locate cephalo-
metric landmarks on facial images. This advancement aims to make forensic analysis
quicker and more reliable by automating a process traditionally done manually. The
second chapter introduces a DL model for face aging, which generates age-progressed
images that could, among other purposes, help identify long-missing individuals.
This model ensures that key identity features are preserved even as the person ages.
The third chapter describes a DL framework for text-based image editing, allowing
forensic experts to modify facial images based on textual descriptions. This capabil-
ity is particularly useful for updating or creating facial composites based on witness
descriptions.

Part III, Final Remarks, provides conclusions and future directions for the re-
search. It summarizes the key findings and contributions, emphasizing the advance-
ments made in cephalometric landmark localization, face aging, and image editing.
This section also discusses potential future research paths and improvements for
each area, ensuring ongoing development and refinement of these technologies. A
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list of the scientific outcomes obtained from the current dissertation, in terms of
journal and conference papers, is also included. This part finishes with the perti-
nent acknowledgements to the related projects and contracts which have supported
the research developed.

The dissertation concludes with a comprehensive bibliography, listing all the
references and sources cited throughout the research. This structure ensures a thor-
ough and systematic exploration of DL-based solutions for forensic facial imaging,
offering valuable insights and advancements in the field.
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Chapter II

Theoretical framework

“¡Si uno conociera lo que tiene, con tanta
claridad como conoce lo que le falta!” —
Mario Benedetti

II.1 Deep Learning

II.1.1 Introduction

DL is a subfield of ML that focuses on learning complex concepts from simpler
ones through a hierarchical structure, usually using artificial neural networks. This
hierarchy enables a computer to learn intricate ideas by combining basic concepts
in multiple layers, hence the name “deep learning”. This methodologies allow AI
systems to automatically understand data and make decisions based on it in in-
creasingly sophisticated ways [GBC16, Chapter 1]. It has become a cornerstone of
modern AI applications due to its ability to achieve State-of-the-art (SOTA) per-
formance in various tasks such as image recognition, natural language processing,
and game playing. The importance of DL in AI is underscored by its success in
driving innovations and solving problems that were previously intractable [BB23,
Chapter 1].

Neural networks, the fundamental building blocks of DL, consist of intercon-
nected neurons organized into layers. These networks are trained through optimiza-
tion processes that adjust the weights of the connections to minimize error. However,
training deep networks can lead to overfitting, where the model performs well on
training data but poorly on unseen data, especially in small data samples [GBC16,
Chapter 7]. To address this, regularization techniques such as dropout [HSK+12]
and weight decay [KH91] are employed. Additionally, evaluating the performance of
DL models requires robust metrics and validation strategies to ensure that the mod-
els generalize well to new data. These core concepts are crucial for understanding
how DL models are built, trained, and assessed.

29
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Figure 4: Illustration of a CNN and learned features. (a) The architecture of the
network, which includes convolutional layers (C1, C3, C5), subsampling (or pool-
ing) layers (S2, S4), and fully connected layers (F6 and the output layer). The
network starts with a 32x32 input image and progressively reduces its dimensions
through convolution and pooling operations, eventually producing a 1x1x10 output
corresponding to class predictions. (b) Visualization of learned features at different
layers, showing how initial layers capture simple features like edges and textures,
while deeper layers capture more complex patterns. These features illustrate the
hierarchical nature of feature learning in CNNs. Figures taken from [GWK+18].

II.1.2 Convolutional Neural Networks

CNNs are a specialized type of artificial neural network designed for processing
structured grid data, such as images. They have revolutionized the field of CV and
image processing by significantly improving the accuracy and efficiency of tasks like
image classification [KSH12], object detection, and segmentation. The importance
of CNNs in image processing lies in their ability to automatically and adaptively
learn spatial hierarchies of features from input images, making them more effective
than traditional neural networks for these tasks. Unlike traditional feedforward
neural networks, which use fully connected layers where each neuron is connected
to every neuron in the previous layer, CNNs use a series of convolutional layers that
apply convolution operations to the input as a sliding window operation, reducing
greatly the number of parameters to learn. This architecture allows CNNs to focus
on local features and build complexity by stacking multiple layers. The result is
a network that can recognize patterns, shapes, and objects in images with high
accuracy [GBC16, Chapter 9].

An example of a CNN can be seen in Fig. 4. At the heart of CNNs are con-
volutional layers, which apply convolution operations using filters (or kernels) that
slide over the input image to produce feature maps. These layers are followed by
pooling layers that downsample the feature maps, reducing their dimensionality and
computational load while retaining essential information. Fully connected layers are
typically used towards the end of the network to make final predictions. Activa-
tion functions like ReLU (Rectified Linear Unit) [GBB11] introduce non-linearity
into the model, allowing it to learn more complex patterns. These architectural
components and their operations are key to the functionality and success of CNNs
[HZRS16, SZ14].

II.1.3 Regression and classification

Regression and classification are fundamental tasks in supervised learning, where
the goal is to learn a mapping from input data to output labels or values based on
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example input-output pairs. Regression involves predicting a continuous output
variable, such as temperature, price, age, or coordinates from input features. In
contrast, classification entails predicting one or more discrete labels, such as spam
or not spam, based on input data. These tasks are pivotal in supervised learning
because they enable models to make informed predictions and decisions based on
previously seen data, thereby solving a wide range of real-world problems.

CNNs have achieved significant milestones in both regression and classification
tasks, particularly in the field of image processing. For regression tasks, CNNs have
been employed to predict continuous variables such as age estimation from facial
images [RTVG15] or depth estimation from 2D images [RLH+20]. In classification,
CNNs have demonstrated outstanding performance in categorizing images into vari-
ous classes [HZRS16], revolutionizing fields like medical imaging [RFB15], and facial
recognition [RPC17]. Key milestones include the development of architectures like
AlexNet [SZ14], which significantly improved image classification accuracy, and the
application of CNNs to regression tasks, showing their versatility and robustness in
handling different types of prediction problems.

II.1.4 Generative Adversarial Networks

GANs are a class of ML frameworks designed for generative modeling, where the
goal is to generate new data samples that resemble a given dataset or data distribu-
tion. Introduced by Ian Goodfellow and his colleagues in 2014 [GPAM+14], GANs
consist of two main components: the generator and the discriminator. These two
networks are trained simultaneously in a game-theoretic framework where the gen-
erator tries to produce realistic data, and the discriminator attempts to distinguish
between real and generated data. This adversarial process results in the genera-
tor learning to produce highly realistic data, making GANs extremely powerful for
various generative tasks [KLA19, KLA+20].

As depicted in Fig. 5, the generator in a GAN aims to create data that is indistin-
guishable from real data, while the discriminator evaluates the data and determines
whether it is real or generated. The importance of GANs in generative modeling
lies in their ability to create high-quality, realistic data, which is invaluable in appli-
cations such as image synthesis, video generation, and data augmentation [SK19].
The architecture of GANs generator typically maps a latent space representation to
the data space [GPAM+14, KLA19]. The latent space acts as a compressed repre-
sentation of the data, usually following a known random distribution, enabling the
generator to explore diverse data samples efficiently.

The generator network in GANs is responsible for generating new data samples
from random noise or a latent space, while the discriminator network evaluates these
samples to determine their authenticity. The core component of training GANs is
the adversarial loss [GPAM+14], which drives the generator to produce data that
can fool the discriminator. This adversarial training process involves alternating
between optimizing the generator and the discriminator, with each network trying
to outsmart the other. This delicate balance can lead to instability, resulting in issues
such as mode collapse [GPAM+14], where the generator produces limited varieties of
samples, and training oscillations. Ensuring stable training requires careful design
of loss functions and training protocols, with adversarial loss playing a pivotal role
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Figure 5: Overview of the GAN architecture. The generator (G) creates data sam-
ples from a latent space, typically consisting of random noise. These generated
samples are then evaluated by the discriminator (D), which attempts to distinguish
between real samples and those generated by the generator. The adversarial train-
ing process involves the generator learning to produce increasingly realistic data to
fool the discriminator, while the discriminator simultaneously improves its ability
to detect fake samples. This iterative process is guided by the adversarial loss, fine-
tuning both networks to achieve high-quality data generation. Figure taken from
[GZ19].

in guiding the generator towards producing realistic outputs. Solutions to these
stability issues include techniques like Wasserstein GAN (WGAN) [ACB17], which
introduces a different loss function to improve training stability and sample diversity.
Variations and improvements in GANs have also explored different architectural
adjustments and training strategies to enhance performance and stability [HRU+17,
KALL17].

Several variations of GANs have been developed to address specific challenges
and enhance the capabilities of the basic framework. Conditional GANs incorporate
additional information, such as class labels or text descriptions, into the genera-
tor and discriminator [CUYH20], enabling controlled data generation. Style-based
GAN architectures, exemplified by StyleGAN [KLA19] and StyleGAN2 [KLA+20],
represent a significant advancement in the field of generative adversarial networks,
specifically designed for high-quality image synthesis. Unlike traditional GANs,
which directly map a latent space to the data space, style-based GANs introduce
an intermediate latent space and manipulate features at different layers of the gen-
erator. This architecture utilizes adaptive instance normalization (AdaIN) [HB17]
to control the style of generated images, allowing for fine-grained adjustments in
features such as texture, color, and overall structure. AdaIN works by normalizing
the mean and variance of the features at each layer and then modulating them with
learned affine transformations derived from the style vector. This process effectively
separates content from style, enabling the generator to apply complex, high-level
attributes independently from the basic structure of the generated images. This
design results in improved control over image attributes, leading to more realistic
and diverse image generation. StyleGAN2 further refines this approach by address-
ing artifacts in the generated images and introducing weight demodulation, a more
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stable solution, as a substitute for AdaIN.

II.1.5 Encoder-Decoder architectures

Encoder-decoder architectures form a fundamental building block in many ad-
vanced generative models, particularly within the realm of Image-to-Image (I2I)
translation and other tasks requiring transformation of input data into a different
form. The encoder-decoder framework consists of two primary components: the
encoder, which compresses the input data into a compact latent representation,
and the decoder, which reconstructs the output data from this latent space. This
architecture is especially beneficial for tasks such as image synthesis [YPN+21],
super-resolution [HNW+19], and semantic segmentation [guo].

The encoder typically employs a series of convolutional layers to progressively re-
duce the spatial dimensions of the input while increasing the depth of feature maps,
capturing essential information and abstract features. The latent representation
produced by the encoder serves as a compressed summary of the input data. The
decoder, conversely, uses transposed convolutions or upsampling techniques to ex-
pand this representation back to the original data dimensions, synthesizing the final
output. A notable variant of the encoder-decoder architecture is the U-Net [RFB15],
which includes Skip connection (SC) between corresponding layers in the encoder
and decoder. These connections help retain spatial information lost during down-
sampling [CCK+18, BW20], significantly improving the quality of the reconstructed
output, especially in tasks requiring precise localization, such as medical image seg-
mentation. Encoder-decoder architectures are also integral to conditional GANs.
This approach is used in models like Pix2Pix [IZZE17] and CycleGAN [ZPIE17],
where the goal is to learn mappings between two visual domains.

The versatility and effectiveness of encoder-decoder architectures make them a
cornerstone in modern generative modeling, driving advances in various applications
like artistic style transfer [ZPIE17] or realistic data augmentation [SK19].

II.1.6 Diffusion models

Figure 6: Illustration of the Denoising Diffusion Probabilistic Model (DDPM). The
process starts with a noisy image  \mathbf {x}_T  and gradually denoises it through a series of
steps until the final image  \mathbf {x}_0  is obtained. At each step  t , the model predicts the
previous step  \mathbf {x}_{t-1}  using the conditional probability  p_\theta (\mathbf {x}_{t-1}|\mathbf {x}_t) . The reverse process
(dashed arrow) approximates the forward process  q(\mathbf {x}_t|\mathbf {x}_{t-1}) . The images at each
step illustrate the gradual denoising process, transitioning from a noisy image to a
clear facial image. Figure taken from [HJA20].
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Diffusion models are a class of generative models that define a data generation
process through a series of steps involving the addition and subsequent removal of
noise [HJA20]. Their primary purpose is to generate high-quality data samples by
reversing a forward diffusion process that corrupts the data with noise. The basic
principles of diffusion in the context of ML involve progressively adding noise to the
data in small steps until it becomes unrecognizable, and then learning to reverse this
process to recover the original data. The architecture and mechanism of diffusion
models are designed to handle this forward and reverse process efficiently, making
them powerful tools for various generative tasks [DN21].

To understand the mechanics of diffusion models, it is essential to grasp the
forward and reverse diffusion processes. In the forward process, noise is gradually
added to the data at each step, effectively transforming it into pure noise over many
iterations (generally a random normal distribution) [DN21]. The reverse process,
which the model learns, involves removing the noise step-by-step to reconstruct the
original data. Key equations and algorithms, such as Diffusion Probabilistic Models
[HJA20] (see Fig. 6) and Denoising Diffusion Implicit Model (DDIM) [SME21], gov-
ern these processes. These algorithms provide the mathematical framework for noise
addition and removal, ensuring the model can generate high-fidelity samples for any
intractable data distribution starting from a known random distribution. Diffusion
models find applications in various generative tasks, including image generation and
other areas where data synthesis is required.

Figure 7: Illustration of Classifier-Free Guidance (CFG) in diffusion models. Start-
ing from a noisy image  \mathbf {x}_t , the model produces two intermediate outputs:  \epsilon _\theta (\mathbf {x}_t, \varnothing ) 
which is the unconditional prediction, and  \epsilon _\theta (\mathbf {x}_t, \text {``a cat in a basket''})       which is the
conditional prediction guided by the prompt “a cat in a basket”. The final output
is then computed by combining these predictions with a guidance scale  \lambda , resulting
in  \epsilon _\theta (\mathbf {x}_t, \varnothing ) + \lambda (\epsilon _\theta (\mathbf {x}_t, \text {``a cat in a basket''}) - \epsilon _\theta (\mathbf {x}_t, \varnothing ))          .

Moreover, conditional diffusion models extend the basic diffusion framework by
incorporating additional information into the generation process, usually with the
use of CA modules [RBL+22]. Techniques such as classifier guidance [DN21] and
Classifier-Free Guidance (CFG) [HS21] are employed to condition the data genera-
tion on specific attributes or labels. Classifier guidance involves using a pre-trained
classifier to influence the diffusion process, guiding the model towards generating
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data that conforms to the specified conditions. In contrast, CFG simplifies this
process by integrating the guidance directly into the diffusion model, eliminating
the need for a separate classifier. CFG achieves this by using null-text prompts
and regular prompts during training. The null-text prompt represents an empty
or baseline condition, while the regular prompt contains the specific attributes or
conditions desired in the output. By magnifying the difference between the out-
puts generated from these two prompts, CFG effectively guides the model towards
the desired conditioned outputs (see Fig. 7). This approach enhances the model’s
ability to produce specific and controlled data, making conditional diffusion models
highly effective for tasks that require precise and targeted data generation. These
advancements significantly enhance the applicability of diffusion models in various
targeted domains, enabling more accurate and contextually relevant data synthesis.

Fast 
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Figure 8: Trade-offs in generative models: GANs provide high-quality samples but
struggle with mode coverage and diversity. Likelihood-based models such as VAEs
and Normalizing Flows offer good mode coverage but may compromise on sample
quality and speed. Denoising Diffusion Models achieve mode coverage and diversity
with high-quality samples, but they often require thousands of network evaluations,
making them slower in sampling.

As depicted in Fig. 8, there is a trade-off between different generative modeling
approaches, each excelling in certain areas while compromising in others. GANs
are renowned for producing high-quality samples but often face challenges in mode
coverage, resulting in less diversity in the generated outputs. In contrast, likelihood-
based models, such as Variational Autoencoders (VAEs) [KW13] and Normalizing
Flows [PNR+21], prioritize achieving comprehensive mode coverage and diversity,
ensuring a wide range of possible outputs at the potential cost of sample quality and
speed [XKV21]. Denoising Diffusion Models offer a balanced approach by providing
robust mode coverage and diversity alongside high-quality samples. However, they
require substantial computational resources due to the need for numerous network
evaluations during the generation process unlike both GANs and likelihood-based
models. These trade-offs highlight the necessity of selecting the appropriate gen-
erative model based on the specific requirements of the task, balancing factors like
sample quality, diversity, and computational efficiency.
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II.1.7 Attention in the context of diffusion models

The attention mechanism [VSP+17], described by the equation

  \text {Attention}(Q, K, V) = \text {softmax}\left (\frac {QK^T}{\sqrt {d_k}}\right )V \label {eq:attn}    








 (II.1)

  Q & = W_Q X_Q \quad \text {(Query matrix)} \\ K & = W_K X_K \quad \text {(Key matrix)} \\ V & = W_V X_V \quad \text {(Value matrix)} \\ d_k & = \text {dimension of the key vectors}   

   

   

     

is a fundamental component in modern deep learning architectures, particularly in
transformer models. In this equation, Q, K, and V stand for the query, key, and
value matrices, respectively, which are derived from the input data through learned
weight matrices WQ, WK , and WV . The term

√
dk represents the scaling factor,

where dk is the dimension of the key vectors, ensuring numerical stability during the
softmax operation. Attention mechanisms allow models to focus on different parts
of the input data dynamically as well as to mix different kinds of inputs like images
and text. In the context of diffusion models, attention mechanisms can replace
traditional convolutional layers, offering more flexibility in capturing dependencies
across different parts of the data. This replacement enables the model to better
understand and manipulate complex structures within the data, leading to improved
performance in generative tasks.

Self-Attention (SA), is the mechanism where the queries, keys, and values all
come from the same source. This means that, as an example, each word in a
sentence is compared with every other word in the same sentence to understand their
relationships and dependencies. In the context of the equation, the input matrix
XQKV for Q, K, and V is the same. This allows the model to weigh the importance
of each word in relation to every other word, capturing context effectively within
a single sequence. Self-attention is particularly powerful in capturing long-range
dependencies, making it crucial for tasks such as natural language processing and
machine translation.

Cross-Attention (CA), on the other hand, involves the queries coming from one
source while the keys and values come from another. This mechanism is used to align
and integrate information from different sources. For instance, in a sequence-to-
sequence model for machine translation, the query Q might come from the decoder’s
current state while the keys K and values V come from the encoder’s outputs.
Cross-attention is essential in tasks where there is a need to combine information
from multiple sources, such as in image generation or image captioning where the
model needs to align textual descriptions with visual features (see Fig 9).

In Hertz et al. [HMT+23], they propose a method that leverages CA manipula-
tion to facilitate precise and intuitive image editing using text prompts. Their work
focuses on the key role of CA layers in linking the textual tokens of the prompt with
the spatial layout of the generated image. The core idea behind this method is that
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Figure 9: Cross-attention maps of a text-conditioned diffusion image generation.
The top row displays the average attention masks for each word in the prompt that
synthesized the image on the left. The bottom rows display the attention maps from
different diffusion steps with respect to the words “bear” and “bird”. Figure taken
from [HMT+23].

the CA maps, which are high-dimensional tensors produced during the noise pre-
diction process in text-conditioned diffusion models, contain rich semantic relations
that significantly influence the generated image. By manipulating these CA maps,
the model can control which pixels in the image correspond to specific words in the
prompt at various diffusion steps, enabling detailed and controlled edits without
needing additional input like spatial masks.

The method involves injecting CA maps from the original image generation pro-
cess into a new generation process with a modified prompt. This ensures that the
structural and compositional details of the original image are preserved while adapt-
ing to the new textual instructions. As seen in Fig. 10, this technique can be used
for multiple tasks:

• Word Swap: For localized edits, where specific words in the prompt are re-
placed (e.g ., changing “dog” to “cat”), the CA maps from the original image
are injected to maintain the overall composition while adapting the new word’s
content.

• Adding New Phrases: For global edits, new phrases are added to the prompt
(e.g ., changing the style or adding new attributes), and the attention maps for
the unchanged part of the prompt are retained to preserve the original image
structure while allowing new features to be integrated.

• Attention Re-weighting: To fine-tune the influence of certain words, the at-
tention maps are scaled, thereby amplifying or attenuating the visual effect of
specific tokens.

In [MHA+23], they present a solution to allow this method to be also applied
to real images through a computationally intensive inversion process, where a real
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Figure 10: [HMT+23] overview. Top: visual and textual embedding are fused using
cross-attention layers that produce spatial attention maps for each textual token.
Bottom: they control the spatial layout and geometry of the generated image using
the attention maps of a source image. This enables various editing tasks through
editing the textual prompt only. When swapping a word in the prompt, they inject
the source image maps Mt, overriding the target image maps M∗

t , to preserve the
spatial layout. Where in the case of adding a new phrase, they inject only the maps
that correspond to the unchanged part of the prompt. Amplify or attenuate the
semantic effect of a word achieved by re-weighting the corresponding attention map.
Figure taken from [HMT+23].

image is transformed into a latent noise vector and then edited using the same
prompt-to-prompt techniques. The process consists of two key components: pivotal
inversion and null-text optimization. Pivotal inversion starts with DDIM inversion
to obtain a noise vector sequence, which serves as a pivot for optimization, improv-
ing reconstruction fidelity. Null-text optimization refines the unconditional textual
embedding used in CFG, allowing for high-fidelity reconstruction while maintaining
the model’s weights and conditional embedding intact. This method enables intu-
itive, high-quality edits on real images using text prompts, without the need for
cumbersome fine-tuning of the model’s parameters.

II.2 Cephalometric landmark localization

II.2.1 Cephalometric landmarks

Cephalometric landmarks are points located on the face and head that allow
forensic experts to characterize the morphology of the head [Geo07]. Each of them
has a corresponding craniometric landmark, i.e., a corresponding point on the sur-
face of the skull, as seen in Figure 11 1. Within physical and FA, cephalometric

1The distinction between cephalometric and craniometric landmarks is based on the criteria
presented in [Geo07]. Other areas, such as orthodontics, refer to landmarks annotated on X-ray
skull images as cephalometric landmarks [PHM+19, RSC98]. The latter taxonomy is different from
ours.
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Figure 11: Comparison between some corresponding craniometric landmarks (in
black) and cephalometric landmarks (in red) on a lateral head view. The alignment,
depicted with blue lines, depends heavily on the characteristics of the soft tissue and
varies among different head regions.

landmarks are highly relevant in tasks such as anthropometric proportion index ex-
traction, pathology detection and classification [Far94], forensic facial comparison
[SCGC19], and forensic human identification [HIWK15]. Specifically, concerning
the latter, there are automatic craniofacial superimposition techniques that seek to
optimally align cephalometric and craniometric landmarks taking into consideration
the existence of soft tissues [DCIn+11, CAIN+14a, CÁICÁ+15]. Regarding forensic
facial comparison, cephalometric landmarks are relevant, for instance, in photo-
anthropometry and in estimating 3D proportionality indices from 2D measurements
(i.e., given a photograph of an unidentified subject, calculating the range of 3D di-
mensions and proportionality indices of that person in the photograph) [MVIA18].
The 30 cephalometric landmarks that will be studied in this dissertation are listed
in Tab. 1 and shown in Fig. 12.

Despite the significant need and potential benefits of an accurate, robust, and
efficient method for cephalometric landmark annotation on facial images, this task
has largely remained manual. Developing a method capable of reliably and automat-
ically locating landmarks in the types of images commonly used in FA would yield
more robust, faster, and repeatable results. This would enable the processing of a
large number of photographs in a reduced timeframe. Additionally, such a tool could
be used as a final solution or as an initial landmark placement that forensic experts
could later refine if necessary. Consequently, this automation would save substantial
time that could be allocated to other forensic tasks. Moreover, these resources are
critically important in mass disaster victim identification scenarios, where the high
volume of identifications required makes manual landmarking impractical.

In forensic settings, frontal high-quality consistent photographs cannot always
be expected to be available. Instead, different poses and data sources are considered.
Besides the difficulties derived from the presence of occlusions and the diverse image
acquisition processes, an additional obstacle is the absence of large and reliable
datasets. Figure 13 displays some examples that reflect the complexity of the data.

Current methods for identifying cephalometric landmarks in forensic analysis are
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Figure 12: Facial image (frontal and lateral views) annotated with the cephalometric
landmarks employed in this dissertation. Abbreviations can be found in Table 1.

Figure 13: Some examples of the kind of images they work with in forensic settings.
As can be easily noticed, it presents a high variability in terms of image resolution,
pose, illumination, background, occlusions, and facial expression. Unfortunately,
most images cannot be published due to privacy issues.

primarily manual, which can lead to a number of issues, including subjectivity, a lack
of speed, and a dependence on the expertise, knowledge, and experience of the foren-
sic expert. Additionally, the repetitive nature of manual landmark identification can
contribute to errors resulting from the expert’s fatigue. These factors collectively
demonstrate the necessity for automating the process of landmark identification.

The process of annotating landmarks in photographs is subject to inter- and
intra-expert variability, both in terms of the position of the landmarks and in deter-
mining their visibility [CAIN+14b]. Automating this process must consider the high
degree of variability present in images, including differences in physical appearance
and head pose, as well as variations in image origin (such as images from digital
cameras, identity card scans, and older grayscale photos) and resolution. Addition-
ally, it must account for the possibility that faces may not be prominently featured
in the foreground or that photographs may be out of focus or noisy. We should also
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Table 1: Cephalometric landmarks considered in this PhD dissertation.

Landmarks Abbreviation
1 Menton Me
2 Gnathion Gn
3 Pogonion Pg
4 Prosthion Pr
5 Labiale Superius Ls
6 Subnasale Sn
7 Nasion N
8 Glabella G’
9 Vertex v

10/11 Left/Right Gonion GoL/GoR
12/13 Left/Right Zygion zyL/zyR
14/15 Left/Right Alare alL/alR
16/17 Left/Right Endocanthion EnL/EnR
18/19 Left/Right Exocanthion ExL/ExR
20/21 Left/Right Tragion T’L/T’R

22 Infradentale Id
23 Trichion Tr
24 Supramentale sm

25/26 Left/Right Frontotemporale FtL/FtR
27/28 Left/Right Frontozygomaticus fzL/fzR
29/30 Left/Right Midsupraorbital msoL/msoR

take into account two factors to establish a landmark as visible: the confidence of
the expert to annotate it accurately and the absence of occlusions of any kind (such
as glasses, hair, and hands covering parts of the face). In short, the ability to locate
visible landmarks in all types of photographs is crucial to ensure that this method
is helpful for forensic experts in their professional practice.

To the best of our knowledge, only three existing studies address this task di-
rectly. However, they do not consider the in-the-wild nature of the images and
instead focus on a simplified problem involving photographs taken under controlled
and stable conditions. The approach presented in [AIA+14] only addresses two
specific landmarks, the endocanthion and the exocanthion, using Haar-like features
[VJ01], with both landmarks located in highly contrasted areas. Meanwhile, [RSIM19]
employs a DL model to detect the face and then utilizes active shape models [CT04]
to locate the position of the landmarks. Similarly, [PLF+19] uses Haar-like features
to locate the face and morphable face models [HFC+15] trained on a dataset of 1000
frontal images with 28 labeled landmarks to predict the location of the landmarks.
These methods are not able to make predictions for different face rotations or to
deal with diverse and uncontrolled image conditions.
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II.2.2 Facial landmarks and its relation to cephalometric
landmarks

There is abundant literature in the field of facial landmark detection [WJ19], a
problem in appearance similar to ours. However, unlike for cephalometric landmarks,
existing methods and data present some limitations for our specific application do-
main:

1. The facial landmarks studied in such works have no interest from the FA point
of view. They are inconsistent and not anatomically oriented (e.g ., in usual
benchmarks [STZP13, WQY+18], the same landmarks are used for describing
the outline of the face and the outline of the jaw depending on the head
rotation).

2. Low-resolution annotations pose a limit to potential model performance as
shown in [CBGB20].

3. Available methods have not been validated in a forensic environment.

4. Facial landmarks have not been evaluated in forensic tasks.

For these reasons, there is a strong need for developing tools in this research
area and reliably assisting forensic anthropologists in their daily work in an auto-
matic or semi-automatic fashion. Furthermore, these kinds of solutions can have a
high impact at a human, legal and economic level, including the fulfillment of the
admissibility criteria for expert evidence [CC09, Fra10, MG15].

The literature on facial landmark localization primarily employs three different
families of methods, all based on DL approaches due to the availability of large
datasets and the ability of CNNs to learn from data: 1) Initial methods based on
coordinates regression like Hyperface [RPC17] have been surpassed in the literature
by 2) heatmap-based and 3) deformable 3D mask methods, which require more
parameters and greater computational resources.

On the one hand, regarding heatmap-based methods, HRNET [WSC+20, SZJ+19]
trains a U-shaped convolutional network [RFB15] to generate a heatmap for each
landmark. A similar approach with sub-pixel accuracy is used in [WLL+20]. 3Fab-
Rec [BW20] addresses the problem in a few-shot scenario with a large dataset of
unlabeled images and a small number of images with annotated landmarks. First,
an unsupervised autoencoder is trained, and then the intermediate convolutional
blocks are frozen to learn the prediction heatmaps. LUVLi [KMM+20] learns a con-
volutional network that predicts the position of the landmark using heatmaps with
sub-pixel accuracy while also outputting an uncertainty and visibility estimation.
ADNet [HYL+21] analyses the error bias on both human and predicted annotations
and suggests that the error does not follow an isotropic distribution. A new loss
function and a model tailored for anisotropic error bias are proposed to improve
landmark prediction performance. The proposals in [CBGB20] and [WBH+21] use
high-resolution, accurately-annotated additional data to improve their performance.
In addition, the method proposed in [WBH+21] uses augmented computer-generated
high-quality diverse images with a low domain-distribution gap, whereas that from
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[CBGB20] uses a cascade two-stage approach for high-resolution prediction trained
on labeled private images of up to 4k pixels in size.

On the other hand, for deformable mask methods, 3DDFA [ZLL+16] solves the
landmark localization problem in a 3D space through deformable 3D masks trained
on an augmented dataset. A similar solution with improved efficiency is presented in
[FWS+18]. Furthermore, 3DDFA v2 [GZY+20] employs a meta-joint optimization
strategy to regress a smaller set of parameters for the deformable 3D mask, which
improves both speed and accuracy.

The most frequent metric to evaluate facial landmark localization methods is the
Normalized Mean Error (NME). It is a measure of the Euclidean distance between
the predicted position yij and the ground truth position y′

ij for the landmark j
normalized by the largest side of the bounding box ci for the ith image. The NME
is computed as follows

  \label {eq:nme} \mathit {NME}_j = \frac {1}{N}\sum ^{N}_{i=1} \frac {||\mathbf {y}_{ij} - \mathbf {y'}_{ij}||_2}{c_i}  








 



(II.2)

and is usually presented as NME (%) = NME ∗ 100.

A popular benchmark for facial landmark localization is the Annotated Facial
Landmarks in the Wild (AFLW) dataset [KWRB11]. This large-scale dataset con-
tains 25,000 in-the-wild face images, with up to 21 landmarks per image, accounting
for self-occluded and not-visible landmarks, and with no restrictions regarding head
pose. The performance of these methods on the subset of the AFLW dataset con-
taining only frontal images is referred to as NMEfrontal. In contrast, the measure of
the error on all AFLW images is referred to as NMEfull. The latter metric better
capture the kind of difficulties we find in our problem (i.e., cephalometric landmarks
localization), and will be used for comparing the available methods.

Table 2: Comparison of NMEfull (%) reported performance on the AFLW dataset for
several SOTA methods belonging to the three families described in Sec. II.2.2. We
include the number of training samples (N ) and predicted landmarks (#Landmarks).
(*) It should be noticed that 3DDFA v2 uses the 300W-LP dataset for training
(a custom 3D augmented dataset extending several datasets that adopted the 68
landmarks annotation convention from 300W [STZP13]). Many newer methods like
[CBGB20, HYL+21, WBH+21] do not report results for AFLW, they only report
results on datasets where all landmarks are always visible and are therefore not
included in this table. Every heatmap-based method only reports results on the 19
central landmarks, leaving out of the evaluation the 2 most complex ones located
near the ears. This might account for a portion of the NMEfull (%) improvement.

Method Method family N #Landmarks NMEfull (%)
Hyperface [RPC17] Coordinate regression 24,993 21 2.93
HRNET [WSC+20] Heatmap-based 20,000 19 1.57
3FabRec [BW20] all data Heatmap-based 20,000 19 1.87
3FabRec [BW20] 1% of data Heatmap-based 200 19 2.38
LUVLi [KMM+20] Heatmap-based 20,000 19 2.28
3DDFA v2 [GZY+20] Deformable 3D mask 61,225* 21 4.43

Table 2 shows that a top-performing coordinate regression method (i.e., Hyper-
face with Resnet-101 as the backbone network [RPC17]) was eventually surpassed
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by many heatmap-based methods. Even 3FabRec trained on only 1% of the data,
performs better. This may be due to the fact that the inductive bias of U-shaped
networks used for generating heatmaps aligns better with the landmark localiza-
tion problem than convolutional coordinate regression methods. On the other hand,
deformable 3D mask methods, like 3DDFA v2 [GZY+20], have worse NMEfull (%)
values, but they offer advantages such as the ability to infer self-occlusions and
perform 3D operations on the predicted mask.

II.3 Face aging

Figure 14: Age progression of a person’s face, generated using the OpenAI ChatGPT
image generation model (https://openai.com/index/dall-e-3/). This illustra-
tion highlights significant changes across different ages that should be addressed in
a face aging tool that can serve in forensic anthropology for the identification and
aging of individuals.

Face age editing [FGH10, KSSS14, WCY+16], or aging, consists in automati-
cally modifying an input face image to alter the age of the depicted person while
preserving identity (see Fig. 14). Over the last few years, this problem has at-
tracted a growing interest because of its numerous applications. In particular, it
is used in the movie production industry to edit actors’ faces or in forensic facial
approximation to reconstruct the faces of missing people [DCD+23]. The advances
in DL methods unlock the development of fully automatic edition algorithms that
avoid hours of makeup and post-production retouching.

Recent DL approaches adopt an encoder-decoder architecture [ABD17, HKSC19,
MHP21, OESF+20, WCY+16, WTLG18, YPN+21, ZSQ17]. The image is encoded
in a latent space that can be modified depending on the target age and fed to a
decoder that generates the output image. The overall network is usually trained us-
ing a combination of losses that assess image quality, identity preservation, and age
matching. However, despite the success of all these approaches, face editing remains
challenging, and current methods usually fail when faced with sizeable differences
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between the age of the person displayed in the input image and the target age. In-
deed, most approaches [ABD17, HKSC19, WCY+16, WTLG18, YPN+21, ZSQ17]
only superficially modify the skin’s texture while the face’s shape is kept unchanged.
These approaches fail with significant age gaps since face shape can change signif-
icantly during a lifetime. Few methods try to go beyond some limited age gaps,
but they either consider only a tightly cropped face region [KSSS14, WCY+16] or
require specific pre-processing involving an image segmentation step [OESF+20].
Furthermore, some methods [WTLG18, APCO21] add an identity term to the total
loss to better ensure the preservation of the identity during the translation pro-
cess. All these methods principally differ in the choice of the network architecture
and the manner the latent representation is manipulated. For instance, Wang et
al . [WCY+16] introduce a recurrent neural network to iteratively alter the image,
while in [YPN+21], the latent image representation is modified using a simple affine
transformation. Re-AgingGAN [MHP21] employs an age modulator that outputs
transformations that are applied then to the decoder, and Or-El et al .[OESF+20]
adopt a multi-domain translation formulation, showing that segmentation informa-
tion can be leveraged to improve aging.

A close research area is I2I translation. This consists in learning a mapping be-
tween two visual domains. In the pioneering work of Isola et al .[IZZE17], an encoder-
decoder network is trained using a dataset composed of image pairs from the two
domains. Later, many works addressed I2I translation in an unpaired setting, as-
suming two independent sets of images of each domain [FGW+19, LBK17, ZPIE17].
These works, of which cycleGAN [ZPIE17] is a paradigmatic example, mainly focus
on introducing regularization mechanisms when training the I2I translation models.
Another research direction is designing more advanced architectures to improve im-
age quality or obtain several possible outputs for a given input [HLBK18, LTH+18,
ZZP+17]. Disentangling style and content information has led to both higher image
quality and diversity [HLBK18, PZW+20].

Style-based architectures recently attracted much attention for the problem of
unconditional image generation. In particular, StyleGAN2 [KLA+20] is now used
in many face manipulation tasks [RAP+21, YNGH21]. In the case of face aging,
[APCO21] uses a pretrained StyleGAN2 model equipped with a pSp encoder [RAP+21],
and an age classifier [RTG18] to tailor an age editing model with unlabeled data.
In StyleGAN2, a network maps a Gaussian latent space onto style vectors. These
vectors are later combined via a convolutional network to produce the output im-
age. Finally, the synthesis network aggregates the style vectors through modulation
operations.

A prominent new research path in the general image editing problem consists
of employing masking mechanisms or attention maps to preserve relevant parts in
the input image [ALTK19, KKC21, PAM+18, TXSY19]. For instance, mask consis-
tency is employed in [KKC21] to improve multi-domain translations where masks
are estimated using the Guided Backpropagation (GB) algorithm [SDBR15]. In the
case of facial images, a mask is employed in GANimation [PAM+18] to different
regions that should be preserved and those that should be modified to change the
facial expression. In GANimation, masks are predicted by the main network, while
an auxiliary network and GB are used to obtain the mask.
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II.4 Text-guided image editing

→

“a man woman smiling”

→

“a plush toy cat yawning ”

Figure 15: Prompt-based image editing: the user can add, omit, change, or enhance
elements in an image by providing a descriptive prompt of the original image and
indicating the words that must be removed (in red) or added (in blue).

Text-guided image editing is an emerging technique in CV that allows for the
modification of images based on natural language descriptions. This method lever-
ages advanced neural networks, such as GANs or Diffusion Models, to interpret tex-
tual instructions and apply corresponding visual changes to images. This paradigm
enables users to input textual instructions, such as “make the sky bluer” or “turn
the car red”, which are then processed by advanced neural networks to produce
the desired modifications in the image [MHA+23]. This capability extends beyond
traditional DL applications, such as face aging, where a model is trained to predict
and render age-progressed facial images [OESF+20]. While DL face aging focuses
on a specific transformation related to the passage of time and its effects on facial
features, text-guided image editing encompasses a broader range of modifications
dictated by diverse textual inputs. Therefore, text-guided image editing can be
viewed as supertool that encompasses face aging among many other tasks, provid-
ing a flexible framework for various image manipulations based on descriptive text,
rather than being limited to age-related changes.

II.4.1 Text-guided image synthesis

Prior to discussing text-guided image editing, we should talk about the advance-
ments in text-guided image synthesis through diffusion models, which have gathered
considerable attention due to their ability to achieve remarkable realism and diver-
sity [SCS+22, RBL+22]. These large-scale models enable image generation from text
prompts and have unlocked a new level of creativity. As a result, research is inten-
sifying around the use of these models to manipulate images for editing purposes.
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One of the most striking innovations is the possibility of editing images through in-
tuitive text prompts, offering users the power to modify images without professional
editing skills. We focus on the prompt-based image editing task as formulated in
[MHA+23]: a user provides an image alongside its textual description. Then, by
simply indicating changes in the sentence, the user can instruct the model to add,
omit, change, or enhance elements (see Fig 15 for example). The models implic-
itly determine which areas of the input image are irrelevant to the target task and
should be reconstructed, and which areas require being altered while preserving the
relevant identity and geometry.

The SOTA methods for the prompt-guided editing task need the inversion of
the target image (later showcased on Fig. 32). Although inversion processes have
greatly improved within GANs, they remain a significant hurdle in diffusion mod-
els due to their iterative sampling process. Current techniques [MHA+23] require
repetitive optimization steps, resulting in excessive computational demands with
even moderately-sized images (512 \times 512  ), taking upwards of a minute to process
per image. Alternatives that reduce computational workload [MHA+23, MIST23,
PKSZ+23] often compromise on reconstruction quality, which results in unsatisfac-
tory alterations of the input image.

With the impressive advancements in text-to-image diffusion models [RBL+22],
there has been a growing interest in exploring image editing using pre-trained
diffusion models. These studies have presented several editing solutions where
the user can guide the generated image through various inputs. For instance,
SDEdit [MHS+22] allows users to apply brush strokes to areas they wish to edit.
The model then injects random noise into these targeted areas and uses the diffu-
sion process for denoising. To create new images from examples, techniques like
Textual Inversion [GAA+23] and Dream-Booth [RLJ+23] employ gradient-descent-
based optimization to learn personalized concepts. Text-based editing, in particular,
has garnered considerable interest due to its intuitive and user-friendly interaction
style. In this domain, DiffusionCLIP [KKY22] uses DDIM inversion [SME21] to
reverse the diffusion process and applies fine-tuning. This approach guides the gen-
eration with a CLIP-based loss to align the generated image more closely with the
intended edit. Another method, as demonstrated in ControlNet [ZRA23], involves
conditioning the generation process on the edges or pose information extracted from
the input image. This technique aims to generate an image retaining the original
spatial structure but styled (in a broad sense) according to the given prompt.

In the prompt-based editing task [MHA+23] (see Fig. 15), a user provides an
image along with a textual prompt P in which describes the input image. The user
can then instruct the model to add, remove, change, or enhance elements in the
image by providing a target prompt Pout corresponding to the desired image (also
called positive prompt). This problem formulation has inspired several subsequent
studies [MHA+23, PKSZ+23, TGBD23, JZB+23].
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Chapter III

Cascade of convolutional models
for cephalometric landmarks
localization

“We all give ourselves a lot of leeway, but we want con-
sistency from other people.” — Richard Linklater

III.1 Introduction

In this section, we present a tool for the automatic location of cephalometric
landmarks on in-the-wild images as described in II.2.1, which can be later integrated
into a forensic human identification procedure. This work focuses on 30 landmarks
in the head’s frontal and lateral views. The complete list is reported in Table 1 and is
also displayed in Figure 12. We automate the annotation/location of cephalometric
landmarks on photographs, determining their position as well as a primitive visibility
estimation. We employ ML techniques [Bis06] and, in particular, DL approaches
[GBC16, Chapter 1] to acquire robust knowledge about the complex nature of the
landmarks to be located.

III.2 Materials

Given the challenges discussed in Sec. II.2.1, we focus on the well-established
problem of facial landmark localization in CV. To this end, we take the AFLW
dataset [KWRB11] as a related problem to our research. Given the similarities
between this problem and our research goal, methods developed to solve this problem
may be either a potential solution or a starting point for ours.

III.2.1 Available datasets

For this work, we have access to two different datasets available: a training
dataset, which comprises both real-cases images and pictures taken under controlled
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conditions, as well as a user-study dataset, which only includes images from actual
forensic cases. The training dataset has been compiled over time for various foren-
sic tasks and by multiple forensic experts, while the user-study dataset was built
following a uniform protocol. Both datasets were annotated by forensic experts
from the Physical Anthropology Lab at the University of Granada and the Panacea
Cooperative Research company in a joint effort.

Training dataset

• 165 images from different subjects, ranging from 1 to 7 photographs per sub-
ject. The images correspond to 104 males (of European ancestry) and 61
females (primarily European).

• Resolutions range from 156 to 4350 pixels on the wider side.

• Up to 30 annotated landmarks per image, with a total of 3526 individual
landmarks annotations. See Figure 16 for landmark frequency distribution.

• The images broadly differ in quality: we can find good quality frontal and
lateral portraits, in-the-wild images, and scanned historical pictures.

• As this dataset was heterogeneously built over time for different forensic tasks
and by different forensic experts, the absence of a landmark annotation in the
dataset does not necessarily mean the landmark is not visible in the corre-
sponding image (this will be further discussed in Section III.3.1).

Figure 16: Proportion of landmark presence by image depending on the dataset.
The background of the bars is color-coded: in green, those landmarks in the sagittal
plane; in red, the left side of the face; in blue, the right side of the face.

A model successfully trained on such a diverse dataset should be robust enough to
face most of the challenges of day-to-day work in a forensic environment. However,
the small size of this dataset could also create problems with uncommon poses or
underrepresented landmarks. For example, some landmarks, such as the Prosthion
or the Tragion, have only 25 and 40 examples, respectively. The most frequent
landmarks are those located on the sagittal plane, but the landmarks located on
both sides of the face are also necessary to estimate a more robust model of the
head that can be required in some tasks, such as craniofacial superimposition.
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User-study dataset

We conducted a user study on a different set of 46 images. All of them come from
real forensic cases, and each one is annotated by up to seven different forensic experts
(5408 individual landmark annotations in total). The distribution of landmarks is
uneven (see Figure 16). Some landmarks are similarly represented as in the training
dataset, whereas others appear at a lower frequency (e.g ., Frontotemporale and
Frontozygomaticus). The Trichion is not annotated, resulting in 29 landmarks in
total. The dataset is similarly distributed regarding gender, but the population is
older than in the training dataset, and the pose is more frequently frontal (see Table
3).

Table 3: Dataset statistics extracted from the automatic analysis performed with
Face++ Face Detection API 1.

Gender Age Head Yaw
N Male Female Min P25 Median P25 Max |r| > 30◦

Training dataset 165 106 62 14 35 44 61 89 22%
User-study dataset 46 26 20 33 58 66 71 86 7%

III.3 Methods

III.3.1 Design considerations

The design choices for our solution are informed by two main factors: the avail-
able training data and the characteristics of the task at hand.

Firstly, we have a relatively small dataset (165 images) compared to AFLW
(25,000 images) with no restrictions regarding pose, lighting, or other aspects of
the scene or photographic medium. For these reasons, it is unlikely to train an
entire high-resolution, ad-hoc convolutional network due to the large amount of
data required by these methods. Additionally, the heterogeneous data collection
process with no consistent criteria determining the visibility of a landmark makes
it challenging to automatically learn a visibility-prediction model as in [KMM+20].
For example, a non-annotated landmark could be differently motivated [CAIN+14b]:
1) The landmark is occluded by an object or not visible because of the pose; 2) The
forensic expert would not be able to annotate it confidently because of the low
quality of the image or the presence of a significant amount of soft tissue (i.e., skin
or fat); or 3) The landmark was not required for the intended task, and the forensic
expert did not annotate it. As a result, we cannot rely on the available data to train
a classifier on landmark visibility.

Secondly, the proposed solution should provide a robust and accurate landmark
localization system that can detect and localize high-resolution landmarks and con-
sider a heterogeneous source of images (see Fig. 13). A solution that relies solely on
low-resolution heatmaps may not be sufficient to meet this requirement. Addition-
ally, the inter- and intra-subject dispersion observed in the landmark annotation
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[CAIN+14b] varies among landmarks, which should be considered during the de-
sign, training, and validation of the method. Finally, the proposed solution should
be evaluated against other methods and human experts to assess its performance.

III.3.2 Method description

Input Step 1 Step 2

Step 3 Step 4 Output

Figure 17: Full process step by step as described in Section III.3.2 (zoom in for
details). Notice the different crop sizes depending on the landmark as well as the
significant improvement in accuracy.

Our proposed method FSCNet (Few-Shot Cephalometric landmarks localization
NETwork) involves a cascade of several steps (see Fig. 17 for a detailed graphical
description of the whole procedure) involving two modules. Firstly, a pre-trained
deformable 3D mask model [GZY+20] is used to suggest a reliable initial landmark
location. Secondly, a cropped image around each suggested landmark is run through
a residual network [HZRS16] (i.e., ResNet-18) trained to predict the displacement
between the center of the input cropped image and the landmark localization. In this
way, we highly increase the resolution of the model. As with many other few-shot
approaches, we use a model trained on a similar task and apply transfer learning
to reduce the size of the hypothesis space and augment the supervised experience
[WYKN20]. Every step is optimized or trained on the same training dataset.

A description of the 4 steps of the method is provided as follows:

Step 1 Deformable 3D mask. A pre-trained 3DDFA v2 model [GZY+20] out-
puts a face mask consisting of a mesh with approximately 40,000 3D coordinates.
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During the training process, we can identify the best-fitting mesh point for each
corresponding landmark and use it as the initial landmark location. There are two
main advantages to this approach:

(a) We can use a robust network that has been pre-trained on the 300W-LP dataset
[ZLL+16], which consists of 122,450 augmented images captured in real-world
conditions with a wide range of poses.

(b) We can use the mesh point’s normal vector to estimate the landmark’s visibility
based on whether it is pointing toward or away from the camera. However,
we assume that this visibility estimation may be imprecise in both external
occlusions (e.g ., an object blocking the view of the landmark) and facial self-
occlusions (e.g ., a point on the cheek being occluded by the nose, even though
its normal vector is pointing towards the camera).

Step 2 Landmarks outside the mask. Some facial landmarks, such as the Vertex,
Trichion, and Tragion, are located outside the region captured by the 3DDFA v2
model, such as on the top of the head or ears (as shown in Figures 17 and 18).
To improve the accuracy in the location of these landmarks, we first determine the
closest mesh point as described in Step 1 . Then, we apply a two-step process that
involves the composition of two 12-parameter affine matrices, Ni and Tj, for each
image i and each landmark j.

The matrix Ni is obtained by solving a system of equations that normalizes
3DDFA’s output mask to common rotation, scale, and position. The affine trans-
formations Tj are obtained through differential evolution optimization [SP97] to
minimize the mean distance between the transformed prediction and the ground
truth for the corresponding landmark j. We use the differential evolution algorithm
for each of the 30 landmarks to optimize and evaluate a unique matrix Tj. This al-
gorithm is trained and validated only on the training subset for each cross-validation
fold. We keep only those Tj matrices that successfully reduce the mean distance. In
practice, we only modify the Vertex and Trichion landmarks using this process, as
shown in Figure 17. This process is illustrated in Fig. 18.

Figure 18: Out-of-the-mesh landmark optimization steps. Every landmark coor-
dinate vector yij (for the ith image and the jth landmark) is transformed by the
described affine transformations (zoom in for details). In this example, each image
mesh is represented in a different color (i.e., green, blue, and red), normalized by
Ni, individual landmarks are transformed by Tj, and lastly denormalized back by
N−1

i to obtain the final landmark coordinates.
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Step 3 Region-of-interest (ROI) cropping. We use the landmarks obtained in
the former step for image cropping. A square crop will be made for every landmark
position (see Step 3 in Figure 17 where a different crop is made around every single
landmark), and the side of this crop will be determined by the landmark error
distribution obtained after Step 2 . More specifically, the crop depends on two values:
the scaling factor sj for the landmark j (see Eq. III.1) and the widest side of the
bounding-box ci that encloses face i. The resulting formula is sideij = λsjci, where
λ = 2.5 is a constant obtained in preliminary experiments to optimize both the
context (wider crop) and resolution (tighter crop) needed for the prediction, whereas
P90 is the 90th percentile of the error distribution.

  \label {eq:sca_factor} s_j = P_{90}\{||\mathbf {y}_{ij} - \mathbf {y'}_{ij}||_{\infty }, \textrm { for every image } i \}    
     (III.1)

Step 4 Residual network and label projection. Finally, every landmark crop
is run through a reduced version of ResNet-18 [HZRS16] pre-trained on ImageNet
[RDS+15] with three residual blocks instead of four to take as input 32 × 32 pixels
images instead of 224 × 224 as it was originally trained for ImageNet classification.
In addition, the final classifier fully-connected layer has been replaced with a 2-
neuron fully connected layer that predicts the distance from the crop center to the
landmark.

We evaluated three different alternatives for incorporating label information,
represented by the landmark l ∈ {1 . . . 30} and the image tensor x ∈ R

W×H×3, into
a model:

(a) In the first alternative, depicted in Fig. 19a and similar to [MO14], the label l
is encoded as a W ×H×L tensor, where L is the number of landmarks. Every
channel in the L-dimensional label tensor is set to 0 except for the channel
corresponding to the label l, which is set to 1. It is then concatenated with the
image tensor x to form a W ×H × (L + 3) tensor, i.e., L in addition to the 3
RGB channels.

(b) In the second alternative, depicted in Fig. 19b and similar to the conditional
discriminator of [MK18, KAH+20], the label is projected to a 256-D embedding
(the number of output channels of the convolutional network), and an element-
wise product is performed with the convolutional 256×1×1 output before the
fully connected layer.

(c) In the third alternative, depicted in Figure 19c, a different fully-connected layer
is trained for each label l after a common residual convolutional network.

A single convolutional ResNet-based regressor is trained for all landmarks in-
stead of different networks for each one. By training a single network on multiple
landmarks we increase non-artificially the number of data samples the model is
trained on (besides the artificial data augmentation described in Section III.3.3.2).
When training on full faces or training a model for each landmark, only one training
sample is available per labeled face image. However, cropping a different training
sample around each landmark and sharing the same conditional network, results in
up to 30 training samples per labeled face image, reducing the negative impact that
small datasets have in DL solutions.
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Figure 19: Different label conditioning alternatives for the landmark l and the image
tensor x ∈ R

W×H×3.

III.3.3 Evaluation protocol

III.3.3.1 Validation

Two kinds of validations are developed:

1. A 5-fold cross-validation is performed on the training dataset. In each of
the five experiments, the model is trained on four of the five equally-sized
splits of the dataset and tested on the remaining one. The results of the five
experiments are aggregated to obtain an unbiased prediction for every sample.
This validation is used for the ablation study and benchmarking against SOTA
methods.

2. A user study is performed on a different dataset, where forensic experts are re-
peatedly presented with two annotations for the same landmark (one from the
human annotators and one from our automatic model trained on the training
dataset) and asked to select the most accurate one.

III.3.3.2 Metrics

Four metrics are used for the evaluation of our method’s performance:

1. Normalized Mean Error (NME) as described in Eq. II.2. To avoid potential
biases, the bounding box used during training (the same as in [GZY+20]) and
the one used for the metrics calculation (obtained through the Face++ Face
Detection API 1 ) are different.

2. Mean relative performance order (ROrder). Not every landmark error should
be compared against each other because the inter/intra-subject variation de-
pends on each landmark [CAIN+14b]. For example, in the user-study dataset,

1Face++ Face Detection API documentation: https://www.faceplusplus.com/face-

detection/ Last accessed on July 26, 2024.
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the inter-subject variation is up to 9 times higher depending on the specific
landmark. This metric is used as one of the global key performance indicators
for ablation and SOTA comparison. It is defined as the mean relative position
o rank of the NME j for each landmark j among every compared method.

For example, if we compare three methods for landmark detection on three
different landmarks, and their NME values are as follows:

• Method A: 0.05, 0.10, 0.08

• Method B: 0.04, 0.11, 0.09

• Method C: 0.06, 0.09, 0.07

The ROrder for each method is calculated by ranking the NME values for each
landmark and then averaging these ranks. Method A might have ranks [1, 1,
2], Method B [2, 3, 3], and Method C [3, 2, 1]. The mean rank gives us the
ROrder, showing the overall performance across landmarks. Therefore, the
ROrder would be 1.3, 2.7, and 2 respectively.

3. Mean relative NME (RNME). Equal weighting of landmark prediction losses is
a common assumption, but research suggests that annotator dispersion varies
by landmark [CAIN+14b, HYL+21]. To aggregate the NME values for each
landmark and to prevent the error to become mostly determined by the land-
mark with the most significant variation, every NME j value is divided by the
minimum NME j value for landmark j among comparing methods before the
mean is calculated.

4. Wilcoxon signed-rank test. It is a non-parametric statistical hypothesis test
that compares the location or shift of the distribution of two matched pop-
ulations [Wil45]. Its role in the validation is to assess statistical differences
between competing methods [DGMH11].

The motivation behind these metrics is to capture the complexity of cephalomet-
ric landmark validation, which is generally overlooked in facial landmark compar-
isons. NME accounts for the Euclidean distance between predicted and ground truth
positions, normalized by the bounding box size to avoid biases. ROrder ranks each
method based on their NME for different landmarks, reflecting overall performance
despite inter/intra-subject variations. RNME adjusts NME values by their mini-
mum to prevent dominance by landmarks with significant variation. The Wilcoxon
signed-rank test statistically assesses differences between methods, providing a ro-
bust validation framework.

Every experiment is run on a single NVIDIA GeForce RTX 3090 GPU for 850
epochs with a batch size of 60, a learning rate of 4e−4, and the following data
augmentation scheme: random image rotation between -5 and 5 degrees and random
horizontal and vertical shifts of up to 4 pixels. For Step 4 the whole ResNet model
is fine-tuned as we do not freeze any layer.
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III.4 Experiments

III.4.1 Ablation study

Table 4: Ablation study of each incremental contribution. Step 3 is presented after
the rest because it is based on the best-performing method for Step 4 , the projection
approach. The Wilcoxon test result is omitted as every p-value is lower than 1e−40.

Configuration NME (%) ROrder RNME

Step 1 Best 3DDFA v2 [GZY+20] landmark 3.49 6.06 3.05
Step 2 Out-of-the-mask optimization 2.87 6.78 2.74
Step 4 Convolutional refinement (Fig. 19)

Multi-head 2.56 5.16 2.30
Concatenation 1.34 3.53 1.22
Projection 1.10 1.22 1.02

Step 3 Best w/o landmark-error crop adjustment 1.24 2.69 1.19
∗ Best w/o augmentation 1.26 2.56 1.16

Table 4 demonstrates the incremental impact of each architectural decision on
the model performance. Each step results in a significant increase in performance.
The only minor change seems to be from Step 1 to Step 2 , but this is because it
affects only two of the thirty landmarks: the Vertex and Trichion. For these two
landmarks, the NME (%) decreases from 21.25 to 2.50 and 7.78 to 1.99, respectively.

Every convolutional refinement network (illustrated in Fig. 19) improves the
performance of Step 2 . However, the label projection approach [MK18] (Fig. 19b)
outperforms the other two by a significant margin. Furthermore, we also found that
using data augmentation improved the quality of the results significantly, as the best
configuration without data augmentation resulted in a 14% decrease in performance
as measured by the RNME metric. Additionally, using a single global scale factor
instead of a by-landmark error-based scale factor sj in step Step 3 resulted in a 17%
decrease in performance.

III.4.2 Comparison with State-of-the-Art Methods

In Table 5, our method FSCNet is compared with the three SOTA methods with
code and pre-trained networks available: 3FabRec2 [BW20], HRNET3 [WSC+20],
and LUVLi4 [KMM+20]. In every case, we start from the pre-trained weights pro-
vided by the authors, replace the last layer to predict 30 landmarks instead of 19,
and fine-tune the model on our cephalometric dataset. The used hyperparameters
are taken from each original work and every model is trained until convergence.

2Code and weights are available at: https://github.com/browatbn2/3FabRec. Last accessed

on July 26, 2024.
3Code and weights are available at: https://github.com/leoxiaobin/deep-high-

resolution-net.pytorch. Last accessed on July 26, 2024.
4Code and weights are available upon request at: https://www.merl.com/research/

license/LUVLi. Last accessed on July 26, 2024.
53DDFA v2 is not fine-tuned on our data, its result correspond to the Step 1 in Table 4.
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Table 5: Comparison of the performance with the SOTA in facial landmark detec-
tion, the Wilcoxon test result is omitted as every p-value is lower than 1e−300.

Model NME (%) ROrder RNME

3FabRec 3.71 4.88 3.35
3DDFA v2 5 3.49 4.12 2.97
HRNET 2.21 2.59 2.04
LUVLi 2.37 2.41 2.03
FSCNet (Ours) 1.10 1.00 1.00

HRNET and LUVLi are high-performing methods for annotating facial land-
marks, but their results in our problem are significantly worse. Their RNME is
two times worse than ours. Moreover, none of them is designed to perform on a
few-shot scenario as our problem requires because of the few training data (165 im-
ages compared to AFLW’s 25,000 examples). On the other hand, 3FabRec, a SOTA
few-shot method, is surprisingly the worst performer. Even though several fine-
tuning approaches were evaluated for 3FabRec (fine-tuning both the unsupervised
and supervised training stage or only the supervised one as in the original paper), it
performs 3.2 times worse than our method and approximately 1.6 times worse than
LUVLi or HRNET.

We believe that the poor performance of analyzed SOTA models in our prob-
lem is because they are not designed for high-resolution localization. All of the
heatmap-based methods that were compared are limited by the resolution of both
the heatmap output and the input image fed to the convolutional network, as they
are essentially U-shaped networks (e.g ., HRNET and LUVLi use 64×64 heatmaps).
It can be observed in Table 5 that HRNET and LUVLi NME (%) performance (2.21
and 2.37 respectively) is close to their NME (%) values on AFLW (1.57 and 2.28 re-
spectively). Nevertheless, cascade high-resolution approaches might have not been
widely adopted in facial landmark literature as available datasets lack sufficient
image resolution and landmark precision [CBGB20]. Our analysis supports the con-
clusions of [CBGB20], where they were able to perform better than SOTA on their
high-resolution dataset by using attention-driven cropping, but their performance
on the low-resolution 300W dataset was comparable to SOTA results.

Another difference in our data is the stability of the positions. Recent works,
such as [CBGB20, HYL+21, WBH+21], are only validated on datasets [STZP13,
WQY+18] that feature diverse poses but assume that all landmarks are always
visible. For example, [WBH+21] even refines its initial anatomically correct output
to account for this anatomical ambiguity. Furthermore, the usual benchmark metric
assumes that all landmark prediction losses should be given equal weight. However,
research such as [CAIN+14b] has shown that annotators’ dispersion varies depending
on the specific cephalometric landmark, and [HYL+21] has also shown this to be
true for facial landmarks.

III.4.3 User study

For this study, six forensic experts were presented with two landmark annotation
locations for comparison in a blind, two-way evaluation. Each expert was shown a
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single image twice, displayed side-by-side, with one version depicting the predicted
landmark location and the other showing the annotation of another expert. The
experts could zoom in on both high-resolution images simultaneously to examine
the annotation locations in greater detail. The experts were asked to select from
one of three options: “Left better”, “Right better”, or “Both equally good”. The
left and right positions were randomly assigned for each image to prevent bias. A
total of 2600 comparisons were conducted among all six experts, and the results are
displayed in Table 6.

Table 6: User study results comparing the performance of human experts against
our model.

G’ Gn Id Ls alL/R EnL/R ExL/R FtL/R fzL/R GoL/R
Human better 73 63 77 60 118 107 112 43 28 98

FSCNet equal or better 77 63 63 53 144 142 144 10 35 111

msoL/R T’L/R zyL/R Me N Pg Pr Sn sm v
Human better 38 7 141 22 72 72 19 69 22 32

FSCNet equal or better 37 4 120 15 103 73 3 87 21 22

Even though we do not achieve expert-like performance, our model seems to
perform as well as a human expert in half or more cases. Our results for equal
or better are higher than human better in ten out of the twenty landmarks (or
14 out of 29 if we distinguish left from right). In some landmarks, this difference
was more significant (e.g ., Alare, Endocanthion, or Exocanthion), whereas in others
there is no appreciable difference (e.g ., Gnathion, Midsupraorbital, or Pogonion).
The most challenging landmarks seem to be the Prosthion, probably because of the
low number of examples, and the Frontotemporale, because of the difficulty of its
accurate annotation. These are the only two landmarks where human annotations
are distinctly preferred.

III.4.4 Visibility estimation

Figure 20: Visibility estimation results on the user study dataset. A landmark is
defined as visible if at least one of the annotators marked it as visible.

The visibility prediction analysis is complex due to the need for consistent criteria
for identifying visible landmarks. For example, when examining agreement in the
user study dataset, we found a mean Cohen Kappa score [McH12] of 0.26, with 15
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out of 29 landmarks receiving scores lower than 0.1, indicating a lack of agreement.
Therefore, we have established that a landmark is visible in the user study dataset
if at least one annotator marked it as visible. Using this criterion, we have achieved
an average accuracy of 83%. However, most landmarks were predicted as visible as
seen in the confusion matrix (see Fig. 20). This result could be due to two factors:
1) The majority of faces in the dataset are frontal (as shown in Table 3), and 2)
The use of the normal vector to determine visibility results in high sensitivity but
low specificity.



Chapter IV

Custom Structure Preservation in
Face Aging

“I’m always pushing back against the last thing I did in
some way, and some of that is restlessness and a sense
of limited time.” — Alex Garland

IV.1 Introduction

As discussed in Sec. II.3, face aging focuses on modifying facial images to alter
age and other attributes like beard, hair, and color while preserving identity. Re-
cent DL approaches use encoder-decoder architectures to encode images into a latent
space, manipulate the content, and decode the altered image. These methods often
employ a combination of loss functions to ensure image quality, identity preserva-
tion, and accurate age transformation. However, challenges remain, particularly in
handling significant age gaps and changes in facial shape. To enhance these trans-
formations, some methods incorporate segmentation information [OESF+20]. Ad-
ditionally, style-based architectures like StyleGAN2 [KLA+20] and attention-based
techniques further improve the precision and realism of facial editing.

This chapter proposes a novel framework that allows profound structural changes
in facial transformations. Our work achieves realistic image transformations with
age gaps that imply changes in head shape or hair. In addition, we argue that
the face editing task is an ill-posed problem because every person gets older in a
different and non-deterministic way: some people drastically change, while others
are easily recognizable in old photographs. In this sense, we propose a methodology
that allows the user to adjust, at inference time, the degree of structure preservation.
Thus, the user can provide an image and obtain different transformations where the
structure (i.e., face shape or hair growth) is preserved at different levels. Fig. 21
shows some qualitative results obtained with our method. Furthermore, the user
can choose different degrees of structure preservation: with high preservation, the
model only changes the texture, while with lower preservation, the shape of the face
is also modified.

61
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Figure 21: The user can choose the degree of structure preservation at inference
time. Facial morphology transformations are more profound as we move to the
right (lower structure preservation).

We adopt an encoder-decoder framework similar to [HKSC19, YPN+21]. How-
ever, our approach goes beyond existing methods that generate a single image for a
given image-target age pair. Indeed, we offer the user the possibility to adjust the
degree of structure preservation during translation, and, in this way, we can output
a set of plausible resulting facial images. Our method also leverages recent advances
from the I2I translation research area. We take inspiration from the StyleGAN2
generator to design a novel decoder that combines the input style and the tar-
get age with the content representation via weight demodulation [KLA+20]. We
disentangle style and content as in [HLBK18, PZW+20] in order to allow custom
structure preservation. Thanks to this strategy, our CUstom Structure Preserva-
tion (CUSP) module can act on the spatial information passing through the con-
tent branch while preserving style information. Regarding the more general image
editing problem, our method shares similarities with several approaches employing
masking mechanisms or attention maps to preserve relevant parts in the input image
[ALTK19, KKC21, PAM+18, TXSY19]. As in [KKC21] our masks are estimated
using the GB algorithm [SDBR15].

The contribution of this research can be summarized as follows:

• We propose a novel architecture for face age editing that can produce structural
modifications in the input image while maintaining relevant details present in
the original image. We take advantage of recent advances in I2I translation
[HLBK18, LTH+18] and unconditional image generation [KLA+20] to design
our architecture. We disentangle the style and content of the input image,
and we propose a new decoder network that adopts a style-based strategy
to combine the style and content representations of the input image while
conditioning the output on the target age.

• We go beyond existing aging methods allowing the user to adjust the degree
of structure preservation in the input image at inference time. To this aim,
we introduce a masking mechanism, through a so-called CUSP module, that
identifies the relevant regions in the input image that should be preserved and
those where details are irrelevant to the task. Importantly, our mechanism for
adjustable structural preservation does not require additional training super-
vision.

• Experimentally, we show that our method outperforms existing approaches
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Skip
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Figure 22: Illustration of the proposed approach. A style encoder Es extracts a
style representation of the input image Xi. A content encoder Ec encodes spatial
information. Target age at is embedded using a multi-layer perceptron Ea. Our
generator G outputs the image X̂i by combining the input style and content rep-
resentations conditioned on the target age. Our CUSP module predicts a blurring
mask M applied to the SCs to allow the user to choose a CUstom level of Structure
Preservation.

in three publicly available high-resolution datasets and demonstrate the effec-
tiveness of our mechanism for adjusting structure preservation.1

IV.2 Methods

In this work, we address the face age editing problem. Therefore, our goal is to
train a network able to transform an input image X, such that the person depicted
looks like being of the target age at. At training time, we assume that we have at
our disposal a dataset composed of I face images of resolution H × W , such that
Xi ∈R

H×W×3, i = 1, ..., I with their corresponding age label ai ∈ {1, ..N} (i.e., an
age annotation for each image). Note that the age labels are automatically obtained
using a pre-trained age classifier. Similar to previous approaches [YPN+21, ZSQ17],
we employ the DEX classifier [RTVG15].

One of the main difficulties lies in modifying the relevant details in the input
image while preserving non-age-related regions. To this aim, we introduce a style-
based architecture detailed in Sec. IV.2.1. In contrast to previous works, the CUSP
module allows the user to indicate the desired level of structure preservation through
two parameters: σm > 0 and σg > 0. These parameters act locally and globally,
respectively, as later detailed in Eq. IV.2.

IV.2.1 Style-based Encoder-decoder

As illustrated in Fig. 22, our architecture employs five different networks: (1) A
style encoder Es extracts a style representation si of the input image Xi. Es discards
any spatial information via global-average-pooling at the last layer. The use of a

1Code and pretrained models are available at https://github.com/guillermogotre/CUSP.
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style encoder allows global information to be used at any location in the decoder. (2)
A content encoder Ec outputs a tensor c describing the content of the input image.
Contrary to Es, the content encoder preserves spatial and local information. Both
Es and Ec share almost the same architecture but for the last layer. In our case, the
use of separated style and content encoders is justified by the fact that our CUSP
module should not affect the image style si but only the structure of the image. (3)
An 8-layers fully connected network, Ea, embeds the target age at: ãt = Ea(at). (4)
An image generator G estimates the output image X̂i by combining the style and
content representations with the target age embedding ãt. (5) Finally, our CUSP
module allows the user to choose the level of structure preservation. This module
predicts a mask M used to act on the SCs between the content encoder and the
decoder. More precisely, we blur the regions indicated by the mask M to propagate
only the non-age-related structural information to the decoder through the SCs.
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Figure 23: Illustration of the decoder blocks used in G . B denotes the addition of

random noise, and FC denotes a fully-connected layer. w1 and w2 are two learned
scaling parameters, while b1 and b2 are learned biases.

Our image generator G is designed to combine the outputs of the style and
content encoders with the target age embedding. Its architecture is inspired by
StyleGAN2 [KLA+20], which achieves SOTA performance in unconditional image
generation. However, we provide several modifications to tailor the architecture to
the aging task. G comprises a sequence of elementary blocks (see Fig. 23). Unlike
[KLA+20], our decoder block takes three inputs: the former block output, the style
embedding, and the age embedding. Each decoder block outputs an image twice
the size of its input and is composed of two consecutive sub-blocks: the style sub-
block and the age block. In the style sub-block, the input is upscaled through bilinear
interpolation. Then the upscaled input is transformed through weight demodulation
(w1) based on a linear projection of the style embedding (si). In the second sub-
block, the age embedding ãt and w2 are used for transforming the former sub-block
output. Both si and ãt are shared by every block. After each step, 0-centered
random noise B is added to the output.

Note that all blocks are combined following the input skips architecture of Style-
GAN2, where a layer named tRGB is introduced. Such layer predicts intermediate
images at every resolution scaled and added to generate the final image. tRGB is
also conditioned on the age embedding. Contrarily to U-Net [RFB15] that includes
SCs in every layer, in our work we perform only a small set of SCs.
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IV.2.2 CUSP Module

SC [RFB15] are efficient tools to provide high-frequency information from the in-
put to the decoder allowing accurate reconstruction [IZZE17]. High frequencies carry
accurate spatial information that favors pixel-to-pixel alignment between inputs and
outputs, as, for instance, needed in segmentation. However, previous works [SSLS18]
show they are not suited for tasks where the input and output images are not pixel-
to-pixel aligned. For example, input and output images are aligned when the age
gap is small in the aging task. However, this assumption does not hold in every
image region with significant gaps. This misalignment is particularly predominant
in areas other than the background since facial morphology or hairstyle may change.

Therefore, we propose to control the amount of structural information that flows
through the SC. This control is obtained by blurring the feature maps going through
them. Nevertheless, every region should not be treated in the same way. For in-
stance, depending on the task, the user may prefer to preserve the background
while blurring the foreground to loosen conditioning on the input image in this re-
gion. Therefore, we propose a specific mechanism to identify relevant image regions
for the translation.

Mask Estimation. We employ an additional classification network C, pretrained
to recognize the age of the person depicted on an image. We use the DEX clas-
sifier [RTVG15] again. Since DEX is pretrained on 224×224, the input image is
rescaled to this resolution. Then, we apply the GB algorithm [SDBR15] to obtain
a tensor B ∈ R

224×224×3, where locations with higher norm correspond to regions
predominantly used by DEX for classification. In other words, B pinpoints relevant
regions for the age classification task. GB points out the key areas to recognize
the age and should, therefore, be modified by the aging network. Importantly,
GB is usually used to visualize the regions that influence one specific network out-
put (i.e., one specific class) [SDBR15]. In our case, we apply GB to the sum of
the classification layer before softmax normalization to obtain class-independent
masks (this decision is later ablated in Sec. IV.3.1.2). We select GB over other
approaches [SCD+17, MY20, SF19] since it is a fast, simple, and strongly supported
method for visualization.

We need to transform B to obtain a mask M ∈ [0, 1]224×224. We proceed in
several steps. First, we average B over the RGB channels, take the absolute value,
and apply Gaussian blur to get smoother maps. In this way, we obtain a tensor
B̃ ∈ R≥0

224×224 that indicates relevant regions. To obtain values in [0, 1], we need to
normalize B̃. Our preliminary experiments showed that after normalizing by twice
the variance σ of B̃ (over the locations), relevant areas for the aging task are close
to 1 or above. We apply clipping to bring down all those important regions to 1
(See Fig. 24). Formally the mask values are computed as follows:

  \Mmat = \min \left ( \frac {\tilde {\Bmat }}{2 \times \sigma },1 \right ) \label {eq_cusp_mask} 




 



(IV.1)

where min denotes the element-wise minimum. Next, we detail how this mask is
employed in our encoder-decoder architecture.

Skip connection blurring. Assuming a feature map Fc ∈ R
H′×W ′×C provided

by the content encoder Ec, we resize M to the dimension of Fc obtaining a mask
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Figure 24: Example outputs of the CUSP module. From left to right: 1) Input
image; 2) Matrix |B|, the absolute value of the guided backpropagation output
averaged over the RGB dimension; and 3) Mask M predicted by the CUSP module.
We see that B is very sparse. Therefore, we apply blur before normalization and
clipping to enlarge the activated regions. In this way, we obtain the mask in the last
column. We see that the high values of the masks are primarily located in the eye
and mouth regions, while the background is associated with very low values. This
visualization shows that our CUSP module can act only on the relevant regions in
the foreground.

M̃∈ [0, 1]H
′×W ′

. We then blur Fc using two different Gaussian kernels with variance
σm > 0 and σg > 0. The variance σm is applied in the region indicated by M, while
σg is used over the whole feature map. The motivation for this choice is that the
user can choose to alter structure preservation locally, globally, or both. At training
time, σm and σg are sampled randomly to force the generator G to perform well
for any blur parameter. At test time, both values might be provided by the user.
Formally, the blurred feature map is computed as follows:

  \tilde {\Fmat }_c = \; \tilde {\Mmat } \circ (\Fmat _c * \kmat _m) \; + (1- \tilde {\Mmat }) \circ (\Fmat _c * \kmat _g) \label {eq_cusp}                (IV.2)

where ∗ denotes the convolution operation, ◦ is the Hadamard product, and km and
kg are the Gaussian kernels of variances σm and σg.

IV.2.3 Overall Training Procedure

Training facial age editing models is particularly challenging since a big enough
dataset of paired images is generally unavailable. Therefore, similarly to [MHP21,
OESF+20, YPN+21], our training strategy is either focused on reconstruction (when
the target age matches the input age) or I2I translation (when the target age is
different). Also, similar to [MHP21, OESF+20, YPN+21], training is performed
using a set of complementary losses described below.

Reconstruction loss (Lr). When the target age at is equal to the image age ai, we
expect to reconstruct the input image. We, therefore, adopt an L1 reconstruction
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loss:
  \Loss _r = \|T(\Xmat _i,a_i) -\Xmat _i \|_1       (IV.3)

where T denotes the whole aging network, which output is the scaled addition of
every tRGB block.

Age fidelity losses (LD,LC). Following [CCK+18], we use a conditional discrim-
inator D to asses that generated images correspond to the target age at. More
precisely, we employ the discriminator architecture of StyleGAN2 equipped with a
multiclass prediction head, together with the training loss LD defined in [MK18].

We employ a loss LC that assesses age matching using the same pretrained clas-
sifier C used in the CUSP module to complement the adversarial loss. Furthermore,
LC is implemented using the Mean-Variance loss [PHSC18], a classification loss
tailored for age estimation.

Cycle-Consistency loss (Lcy). Following [ZPIE17], we adopt a cycle consistency
Lcy to force the network to preserve details that are not specific to the age (e.g .,
background or face identity). Lcy is given by:

  \Loss _{cy} = \| \Xmat _i - T(T(\Xmat _i,a_t),a_i) \|_1          (IV.4)

Full objective. Finally, the total cost function can be written

  \min _M \max _D \lambda _r\Loss _r + \lambda _C\Loss _C + \lambda _D\Loss _D + \lambda _{cy}\Loss _{cy} \label {eq:final} 





        (IV.5)

where λr, λC , λD, and λcy are constant weights.

IV.2.4 Evaluation protocol

Every paper employs different metrics, datasets, and tasks in the aging literature.
Therefore, we include a large set of metrics, datasets, and tasks in our experiments
to allow comparison with most existing methods.

IV.2.4.1 Datasets

In this chapter, we employ three widely-used, publicly available high-resolution
datasets for face aging and analysis:

• FFHQ-RR: Initially proposed in [YPN+21], this aging dataset based on FFHQ
[KLA19] comprises of 48K images depicting people from 20 to 69 years old.
Because of this Restricted age Range, we refer to this dataset as FFHQ-RR.
Images are downsampled to 224×224.

• FFHQ-LS : This aging dataset, introduced in [OESF+20], is composed of the
70K images from FFHQ [KLA19], manually labeled in 10 age clusters that
try to capture both geometric and appearance changes throughout a person’s
life: 0-2, 3-6, 7-9, 10-14, 15-19, 20-29, 30-39, 40-49, 50-69 and 70+ years old.
Consequently, this dataset is referred to as FFHQ-LS because of its LifeSpan
age range. The resolution of these images is 256×256 pixels.
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• CelebA-HQ [KALL17, LLWT15]: It consists of 30K images at 1024×1024
resolution, which we downsample to 224×224 pixels. The only age-related
label in the dataset is young, which can be either true or false.

The use of FFHQ-RR and FFHQ-LS may seem redundant since they are both
based on the FFHQ dataset, but we perform distinct experiments on both datasets
to allow comparison with existing SOTA methods (which report results on at least
one of them).

IV.2.4.2 Tasks

We employ two tasks to evaluate the performance:

• Young → Old : as in [YPN+21], we sample 1000 images belonging to the
“young” category and translate them to a target age of 60. This task is only
performed on CelebA-HQ.

• Age group comparison: similarly to [MHP21], we consider different age groups:
(20-29), (30-39), (40-49), and (50-69) on FFHQ-RR and additionally (0-2), (3-
6), (7,9), (15,19) on FFHQ-LS. We again sample the first 1000 test images and
translate every one of them into the central age of each of the four different
age groups (25, 35, 45, and 55, respectively).

IV.2.4.3 Metrics

We choose metrics to evaluate the two main aspects of the aging task. Firstly,
the translated/generated images must preserve the content of the input image in
terms of identity, facial expression, and background. Secondly, the age translation
might be accurate. In particular, we adopt the following metrics:

• LPIPS [ZIE+18] measures the perceptual similarity when the target age coin-
cides with the input image age.

This metric is designed to evaluate perceptual similarity between image patches
by leveraging deep network features. It outperforms traditional metrics like
PSNR [HZ10] and SSIM [WBSS04] by using learned deep features that better
align with human perception. In our experimental setting, it utilizes deep fea-
tures extracted from a pre-trained VGG network [SZ14]. The feature stacks
from L layers are denoted as ŷl, ŷ′l ∈ R

Hl×Wl×Cl for the reference and edited
patches, respectively.

The LPIPS distance between a reference patch x and a distorted patch x′ is
calculated as follows:

  d(x, x') = \sum _{l} \frac {1}{H_l W_l} \sum _{h, w} \left \| w_l \odot \left ( \hat {y}^l_{hw} - \hat {y}'^l_{hw} \right ) \right \|_2^2  














 




(IV.6)

Where:
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– Hl and Wl are the height and width of the feature map at layer l.

– wl ∈ R
Cl is a vector of learned weights for each channel. This involves

learning a small number of parameters on top of the fixed network fea-
tures, which essentially calibrates the perceptual space of the pre-trained
network on a perceptual judgment dataset.

– And ⊙ denotes element-wise multiplication.

Lower LPIPS values indicate higher perceptual similarity between the two
images, as perceived by human observers

• Age Mean Absolute Error (MAE). We employ a pretrained and independent
age estimation network to compare the predicted age with the target age given
an input image. As we already use the DEX pretrained classifier [RTVG15] at
training time, we utilize Face++ API for this metric 2. Experiments show that
DEX is more biased towards younger age predictions than Face++. Therefore,
reporting the MAE to the input target age at would be biased. To compensate
for this DEX-Face++ misalignment, we estimate the age of the original images
with Face++ and compute the mean for each group. We then report the
distance between the mean group predicted age and the transformed image
predicted age. The DEX-Face++ discrepancy may bias evaluation since an
aging method that fails in generating images corresponding to the target age
could be favored if the method is biased in the same direction as the Face++
classifier.

Figure 25: DEX classifier and Face++ distribution discrepancy by age group on
FFHQ-RR test set. Color intensity denotes distribution density. The red horizontal
lines represent the mean age of each age group according to DEX.

To visualize this discrepancy, we plot in Fig 25 the distribution of the DEX-
Face++ predictions on the FFHQ-RR dataset. In the case of perfect agree-
ment, all the blue points would be located on the orange identity line. We
also report the mean age of each age group according to DEX (red horizontal
lines). A vertical dotted line represents the amplitude of the discrepancy. In
this case, the discrepancy is especially noticeable in older groups.

2Face++ Face detection API: https://www.faceplusplus.com/ (last visited on July 26,
2024).
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Therefore, in our evaluation protocol, we estimate the age of the original im-
ages with Face++ and compute the mean for each group. Age MAE is then
computed as the distance between the mean group predicted age and the
transformed image predicted age.

• Kernel-Inception Distance (KID) [BSAG18] assesses that the generated im-
ages are similar to real ones for similar ages. While FID [HRU+17] is adopted
in [MHP21], we adopted KID as it is better suited for smaller datasets. We
report the KID between original and generated images within the same age
groups.

KID is a metric designed to evaluate the quality of images generated by gener-
ative models, such as GANs. It measures the similarity between the distribu-
tions of features extracted from real and generated images using a pre-trained
Inception network [SLJ+15]. KID is based on the Maximum Mean Discrepancy
(MMD), which is a distance between two distributions defined in a reproducing
kernel Hilbert space (RKHS) [GBR+12].

KID values are non-negative and lower values indicate that the generated
images are more similar to the real images, implying better generative perfor-
mance.

• Gender, Smile, and Face expression preservation and Blurriness : Face++
provides these metrics to evaluate input image preservation and quality. Gen-
der, Smile, and Face expression preservation are reported in percentages as in
[YPN+21].

IV.2.4.4 Implementation details

We use the same training settings as StyleGAN2-ADA [KAH+20] with λr = 10,
λC = 0.06, λD = 1, λcy = 10. The optimizer used is Adam with lr = 0.0025 and
β1 = 0, β2 = 0.99.

FFHQ-RR and CelebA-HQ models are trained for 65 epochs with a batch size
of 18. FFHQ-LS is trained for 140 epochs with a batch size of 16. All experiments
are run on a single Nvidia A100 GPU.

IV.3 Experiments

IV.3.1 Ablation study

IV.3.1.1 Architecture ablation

We consider four variants of our approach where we ablate the SCs and the style
encoder. In (i) variant, the style encoder is not used; an Average Pooling layer
replaces Es on top of the output from Ec. Variant (ii) employs a style encoder but
no SCs, while variant (iii) employs SCs in every layer. Finally, variant (iv) follows
the proposed architecture employing SCs in the second-to-last layer only. In order
to make an unbiased evaluation of the architecture and not the masking operation
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performed by CUSP, we report the performance of CUSP with high preservation
(σm, σg) = (0.0, 0.0), as variant (ii) applies no masking.

Table 7: Ablation study: impact of the SCs and the style encoder.

LPIPS Age MAE Mean KID

(i) No style encoder 0.84 6.21 0.0163
(ii) No SC 1.70 6.17 0.0109
(iii) SCs at every layer 1.85 6.34 0.0175
(iv) Full 0.78 6.29 0.0089

Results shown in Table 7 suggest that a separate style encoder, as in our Full
model (variant (iv)), yields better reconstruction (lower LPIPS) and similar aging
performance (Age MAE and Mean KID) than using a single encoder for both content
and style as in variant (i). Regarding SCs, not using them leads to an important re-
construction error (see high LPIPS) since the network cannot reconstruct the image
details. However, SCs in every layer also results in low reconstruction performance.
We hypothesize that the model faces optimization issues. More specifically, adding
SCs on every layer dramatically increases the decoder’s complexity (approximately
doubling its number of parameters), making the network slower and harder to train.

IV.3.1.2 CUSP module analysis

In Fig. 26 we qualitatively evaluate the impact of the kernel values used in CUSP.
We compare images obtained with High, Custom, and Low structure preservation
(referred to as HP, CP, and LP), where we use kernel values ranging from σ = 0 to
σ = 9. We also display the mask M estimated by the CUSP module. We observe
that when the user provides low kernel values (i.e., higher preservation), the shape
of the face is kept, while with higher kernel values, the network has the freedom to
change its shape. The impact is clearly visible on the neck and chin of the women
in the second and last row.

The visualization of the mask shows that our approach identifies those regions
that change with age (chin, mouth, and forehead). We also quantitatively measure
the impact of each kernel parameter. In Fig. 27, we report the Age MAE and
LPIPS while changing the local and global blur parameters. By increasing the local
blur, we can see that CUSP achieves a significantly lower age error while keeping a
small reconstruction error. On the contrary, using global blur to improve the age
performance (i.e., reduce the age MAE) implies a substantial increase in the LPIPS
metric, reflecting some loss of details. Overall, these experiments demonstrate the
conflicting nature of aging and reconstruction performances. These observations
further justify our motivation to offer the user the possibility of controlling this trade-
off, thereby demonstrating the value of CUSP and its masking strategy. The ability
to modify both σm and σg with different values allows us to achieve the same age-
accurate transformation results while minimizing the reconstruction performance
drop.

We complete this analysis with an ablation study regarding the GB-based com-
putation of the CUSP masks. More precisely, two strategies are compared: in Top-1
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Figure 26: Impact of the kernel value: images obtained with High, Custom, and Low
structure preservation (HP, CP, and LP). HP:(σm, σg) = (0, 0); CP:(σm, σg) = (9, 0);
LP:(σm, σg) = (9, 9). The second column shows the mask estimated by CUSP.

class, we apply GB on the most-activated class, while in class-independent, we adopt
the proposed strategy of taking the sum of the classification layer before softmax.
Results reported in Tab. 8 demonstrate that the class-independent strategy per-
forms best. Indeed, using every class output from the age classifier might benefit
the masking, as every age-related feature is relevant for the translation, not only
those involving its current age.

IV.3.2 Comparison with State-of-the-Art

From our literature review (Sec. II.3), we identify HRFAE [YPN+21] and LATS
[OESF+20] as the two main competing methods. Indeed, Re-aging GAN [MHP21]
cannot be included in the comparison since neither the code nor the age classi-
fier used for evaluation are publicly available. Since HRFAE and LATS report
experiments on different datasets and follow different protocols, we perform exper-
iments using the two tasks previously described. First, we follow HRFAE, which
employs the Young → Old task on CelebA-HQ. In this case, the performance of
FaderNet [LZU+17], PAG-GAN [YHWJ18], IPC-GAN [WTLG18], and HRFAE (on
1024×1024 resolution images) is reported in [YPN+21] and is included in our experi-
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Figure 27: CUSP parameters and impact on Age MAE (left) and LPIPS×10 (right).

Table 8: Ablation study: impact of the masking strategy used in CUSP.

LPIPS Age MAE Mean KID

Top-class GB 1.25 6.19 0.0145
Class-indep. (Ours) 0.78 6.29 0.0089

mental comparison. Second, we employ the age group comparison task to allow bet-
ter comparison with LATS on the most challenging FFHQ-LS dataset. Indeed, since
no automatic quantitative evaluation is reported on the FFHQ-LS in [OESF+20],
we chose the age group comparison task that provides richer analysis than the Young
→ Old task.

IV.3.2.1 Qualitative comparison

In Fig. 28, we show a qualitative comparison with the state-of-the-art evaluated
on the celebA-HQ dataset, where we transform the input image to the age of 60 years
old. First, we observe that Fader, PAGGAN, and IPCGAN generate images with
important artifacts. On the contrary, HRFAE, LATS, and our approach generate
consistent images with only minor artifacts. However, only CUSP produces images
that correspond to the correct target age. Other methods generate images where
people look younger than expected since they are unable to make suitable structural
changes. Furthermore, LATS operates only in the foreground, requiring a previous
masking procedure. For this reason, in Fig. 28, the outputs related to LATS display
a constant gray background. In addition, CUSP can preserve identity and non-age-
related details.

We also perform a qualitative comparison with the two main competitors: HRFAE
on FFHQ-RR in Fig. 29 and with LATS on FFHQ-LS in Fig. 30. We show that
CUSP achieves more profound facial structure modifications (e.g ., thin face shapes
that grow wider and wrinkled skin) and hair color transformation. The age pro-
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Figure 28: Comparison with SOTA methods on CelebA-HQ for the Young → Old
task employing a target age of 60 years old.

Figure 29: Qualitative comparison with HRFAE. The images corresponding to the
input ages are highlighted with red frames.
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Figure 30: LATS comparison for different age targets. The images corresponding to
the input ages are highlighted with red frames.

gression is smooth. Close ages produce almost identical pictures, but global age
progression seems realistic and natural. Regarding LATS (Fig. 30), we see that
we obtain similar performance while our method has four major advantages: (1) it
operates directly on the entire image and deals with backgrounds and clothing; (2)
it does not require an externally trained image segmentation network; (3) CUSP
employs a single network while LATS needs to use a separately trained network
for each gender; and (4) it offers user control as shown in our ablation study (see
Sec. IV.3.1).

Table 9: Quantitative comparison on CelebA-HQ for the Young → Old task em-
ploying a target age of 60. CUSP HP (High preservation) is run with σm = σg = 1.8.

Method Predicted Age Blur Gender Smiling Neutral Happy

Real images 68.23 ± 6.54 2.40 - - - -

FaderNet 44.34 ± 11.40 9.15 97.60 95.20 90.60 92.40
PAGGAN 49.07 ± 11.22 3.68 95.10 93.10 90.20 91.70
IPCGAN 49.72 ± 10.95 9.73 96.70 93.60 89.50 91.10
HRFAE 54.77 ± 8.40 2.15 97.10 96.30 91.30 92.70
HRFAE-224 51.87 ± 9.59 5.49 97.30 95.50 88.30 92.50
LATS 55.33 ± 9.33 4.77 96.55 92.70 83.77 88.64
CUSP HP 67.76 ± 5.38 2.53 93.20 88.70 79.80 84.60

IV.3.2.2 Quantitative comparison

In Table 9, we report a quantitative comparison evaluated on the CelebA-HQ
dataset employing the Young → Old task. Every model has been trained on FFHQ-
RR. Regarding HRFAE, we report the performance obtained with models trained



76 CHAPTER IV. CUSTOM STRUCTURE PRESERVATION IN FACE AGING

and tested at 224×224 and 1024×1024 resolutions (referred to as HRFAE-224 and
HRFAE, respectively). We used the available code for LATS to train a model on this
dataset. We also report (first row) the mean age predicted by the Face++ classifier
when feeding the images of the age class 60 according to the DEX classifier used
at training time. We observe an 8.23-year discrepancy. In other words, to generate
images that look similar to those labeled as 60 at training time, we need to predict
images that the Face++ classifier will perceive on average as 68.23 years old. These
experiments confirm that CUSP outperforms other methods, being the only method
that substantially modifies the image to adjust the person’s target age.

In addition, CUSP ranks second in terms of Blur, quantifying the good quality
of our images. For instance, the performance of HRFAE-224 worsens the predicted
age with respect to its 1024×1024 counterpart and deteriorates noticeably in the
Blur metric, suggesting a severe drop in the generated image quality. Interestingly,
the more profound and realistic transformations yielded by CUSP and LATS imply
slightly worse scores according to the preservation metrics. Indeed, preservation
metrics suffer from the increased ability to make structural changes to pictures.
However, this drop in quantitative fidelity is not manifested in the user study or
qualitative results (Figs. 29 and 30). Two hypotheses can explain this discrepancy
between qualitative and quantitative results. First, several biases can impact the
results (e.g ., sports clothing is replaced for formal clothes at higher ages, and glasses
appear in older targets as well). In addition, there may also be some expression-
related biases in different age groups. Second, the CUSP module more frequently
targets the image’s mouth and eye areas. Those areas are the most related to facial
expression detection, and their blurring might negatively affect facial expression
preservation.

Table 10: Quantitative comparison with LATS on the FFHQ-LS dataset for the age
group comparison task. CUSP CP (Custom preservation) and LP (Low preserva-
tion) are run with (σm, σg) = (8, 4.5) and (σm, σg) = (8, 8) respectively.

Age MAE Gender Preservation (%)

0-2 3-6 7-9 15-19 30-39 50-69 Mean 0-2 3-6 7-9 15-19 30-39 50-69 Mean

LATS 7.68 8.91 6.59 5.19 8.23 5.73 7.05 72.2 70.6 74.2 93.7 93.9 93.9 83.1
CUSP CP 6.89 8.26 7.67 6.70 10.67 10.86 8.51 74.5 69.3 78.1 88.3 92.1 85.9 81.4
CUSP LP 6.49 9.29 5.59 4.99 8.36 5.74 6.74 69.0 76.0 78.1 87.4 86.1 80.1 79.4

We report in Table 10 a comparison with LATS, both trained and evaluated
on the FFHQ-LS dataset. The results support the qualitative analysis performed
regarding Figs. 29 and 30. Our proposed method is on par with LATS performance
concerning the aging task and achieves those results while preserving numerous
image details. CUSP with low preservation even outperforms LATS in terms of
Mean Age-MAE. Surprisingly, we also notice that our approach obtains similar
performance in terms of gender preservation while not using gender annotations
and employing a single model, while LATS uses two diffrent models for each gender.

IV.3.3 User Study

Additionally, to validate our results and provide a more comprehensive evalua-
tion, we conducted a study on 80 different users comparing CUSP with HRFAE and
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Table 11: User study on four different aspects of image aging comparing CUSP.

Age accuracy Identity preservation Overall quality Natural progression

20-29 50-69 Added 20-29 50-69 Added 20-29 50-69 Added -

CUSP 60.2 72.9 66.6 50.8 63.7 57.3 55.8 67.7 61.8 60.6
HRFAE 17.5 15.6 16.6 24.4 24.0 24.2 21.7 20.6 21.1 24.9
LATS 22.3 11.5 16.9 24.8 12.3 18.5 22.5 11.7 17.1 14.5

LATS on the young-to-old and old-to-young tasks on FFHQ-RR. Each test consisted
of 48 random questions on four different topics. Similarly to [OESF+20], we asked
about user preferences regarding identity preservation, target age accuracy, realism,
the naturalness of the age transition, and overall preference (See Fig 31).

In this study, you will be presented with several sets of images to choose from. We will
compare several AI solutions to transform a person’s age in an image, similar to widely
known apps like FaceApp. There are four kinds of questions, you’ll have to click on
your chosen image, there are no correct answers:

1. Age accuracy: From the images displayed, which one better depicts a person
from the target age group? An actual person’s picture (not shown) has been
transformed to a target age with different mechanisms. We want to know which
one you think is more accurate.

2. Identity preservation: From the images displayed, which one better transforms
the shown original picture to the target age group while reasonably maintaining

the person’s identity? You’ll have to judge which result seems more reasonable,
attending to age transformation and identity preservation.

3. Overall better: From the images displayed, which one is overall better trans-
forming the age of the person depicted in the picture? Which one do you prefer?
Which image seems more pleasing?

4. Whole age progression: From the different shown age progressions, which
seems more natural and reasonable?

In case of doubt, choose the image you subjectively prefer.

Figure 31: Description of the user study displayed to the experimental subjects.

From FFHQ-RR, 50 images were selected for each group (20-29, 30-39,40-49,50-
69) and transformed to target ages 25, 35, 45, 60 with each comparing method
(HRFAE, LATS, and ours), resulting in 200 original images and 2400 transformed
images. Age translations were done from 20-29 and 30-39 to 50-69 (young to old)
and from 40-49 and 50-69 to 20-29 (old to young).

In Question-Kind 1 (QK 1) and QK 3 (See Fig 31), three randomly ordered
transformed images were presented next to a target age group. In QK 2, the original
image is included. Finally, in QK 4, besides the original image, four images showing
age progression (25, 35, 45, and 60) are presented for each method.

As seen in Table 11, CUSP outperforms HRFAE and LATS in every single cat-
egory by a large margin (CUSP was selected globally in 62% of cases, compared to
22% and 17%, respectively). Furthermore, CUSP’s results depict people of the tar-



78 CHAPTER IV. CUSTOM STRUCTURE PRESERVATION IN FACE AGING

get age with greater accuracy while maintaining the source image identity. On top
of that, it outputs higher quality images, and the progression seems more natural
and realistic.



Chapter V

Self-Attention Guidance for Image
Editing

“Everybody is always in the middle of their
own opera.” — Greta Gerwig

V.1 Introduction

As discussed in Sec. II.4, text-guided image editing is an emerging CV technique
that modifies images based on natural language descriptions through advanced neu-
ral networks like GANs or Diffusion Models. This approach enables users to make
changes to images by simply describing them in text, such as “make the sky bluer”
or “turn the car red.” It goes beyond traditional DL applications, offering a versatile
framework for various image manipulations guided by textual inputs. Despite its
potential, challenges such as the computational intensity of the inversion process in
diffusion models remain.

Figure 32: Comparative Analysis of Diffusion-Based Image Editing Techniques. Our
review contrasts existing methodologies, which utilize CFG [HS21] with various
combinations, including the pretrained null-prompt ∅, an optimized latent repre-
sentation ∅

∗, the descriptive prompt of the input image P in, and the target editing
prompt Pout.

In Fig. 32 we showcase a comparative analysis of existing diffusion-based image
editing techniques. The four approaches to prompt-based image editing —∅-Text

79
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Inversion (NT), P2P-Zero (P2P-Zero), Negative Prompt Inversion (NPI), and Direct
Inversion (DI)— each employ distinct methodologies to achieve image modifications,
leveraging different aspects of attention mechanisms and optimization strategies.

In the ∅-Text Inversion (NT) method (illustrated in Fig 32a), Mokady et al .
[MHA+23] optimize the null prompt embedding for reconstructing the original im-
age. Editing is then performed using a CA map mechanism as previously described
in [HMT+23]. In P2P-Zero [PKSZ+23] (Fig 32b), the approach avoids the com-
putationally demanding inversion process by incorporating a guidance term at each
diffusion step, guiding the model towards precise reconstruction. On the other hand,
Negative Prompt Inversion (NPI) [MIST23] (Fig 32c) replaces the traditional null
prompt in CFG with a negative prompt, utilizing CA manipulation for editing, sim-
ilar to [HMT+23, MHA+23]. Direct Inversion (DI) [JZB+23] (also shown in Fig 32c)
introduces a direct inversion technique that guides the reconstruction process as well
as establishes an editing benchmark. All these methods require additional steps to
explicitly reconstruct the input image, which is computationally intensive. These
methods differ in their inversion techniques and CFG use.

To tackle this limitation, we present Self-Attention Guidance for Editing (SAGE),
a novel technique that balances computational efficiency with high-fidelity recon-
struction, while also enabling versatile image editing capabilities. Similar to other
methods [MHA+23, MIST23, PKSZ+23], our approach uses DDIM [SME21] inver-
sion. Nevertheless, our unique contribution lies in the utilization of the intermediate
SA and CA maps that the diffusion model internally computes during the reverse
DDIM process, which allows for precise details reconstruction with minimal compu-
tational effort. During the sampling phase we implement a combined use of CFG
(refer to Sec. V.2.2) and a novel SA reconstruction guidance mechanism. This
mechanism stores and exploits the SA maps within the diffusion U-Net [RFB15],
providing an optimal balance between editing and maintaining the original image
details.

Our research (illustrated in Fig 32d) differs from the compared methods in two
significant ways: (i) We enable effective editing without the need for explicit re-
construction of the input image. (ii) We use intermediate latent vectors calculated
during the inverse DDIM stage, which allows for editing while preserving content in
regions not affected by the edits. This approach leads to a method that is simpler
and more computationally efficient.

In summary, our contributions are threefold:

• We propose an innovative editing framework that employs a pre-trained diffu-
sion model, utilizing intermediate noise vectors from the inverse DDIM process.
This framework allows for image editing that aligns to the input image while
achieving modifications based on textual prompts.

• We introduce a novel reconstruction guidance loss term that functions within
the SA layers of the diffusion network. This ensures high-fidelity reconstruction
in regions not impacted by the editing process, without significantly increasing
computational demands.

• Through rigorous experimental validation, we compare our method with recent
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approaches in the field, showing that SAGE delivers comparable or superior
editing quality with minimal computational expense.

→

“a man woman smiling”

→

“a plush toy cat yawning ”

Figure 15: Prompt-based image editing: the user can add, omit, change, or enhance
elements in an image by providing a descriptive prompt of the original image and
indicating the words that must be removed (in red) or added (in blue). Repeated
from page 46.

V.2 Methods

V.2.1 Problem Formulation and Preliminaries

In this study, we tackle the challenge of prompt-based image editing as introduced
in [HMT+23, MHA+23] (as illustrated next in Fig. 15): the user supplies an initial
image i along with an input textual description P in of that image. Additionally,
the user provides a target prompt Pout that describes the desired outcome after
editing. To accomplish this task, we introduce SAGE, a Self-Attention Guidance-
based method for image Editing, illustrated in Fig. 33.

Our method assumes the use of a pre-trained text-to-image diffusion model
[HJA20], specifically a latent diffusion model operating within the latent space of a
pre-trained autoencoder [RBL+22]. Diffusion models are generative techniques that
use a neural network to predict noise, εtθ(zt,P), which aims to denoise data points
incrementally at different time steps t ∈ [0, T ]. In this context, zt denotes the noise-
perturbed version of the original sample z0, formulated as zt =

√
αtz0 +

√
1 − αtε,

where ε represents Gaussian noise. The variable αt controls the noise level, ranging
from near 1 (minimal noise) to almost 0 (complete Gaussian noise) over time from 1
to T . The variable P is an optional conditioning parameter, in this case, a textual
prompt. The neural network εtθ(zt,P) is implemented using a U-Net architecture
that incorporates both SA and CA layers [VSP+17] to process the conditioning data.



82 CHAPTER V. SELF-ATTENTION GUIDANCE FOR IMAGE EDITING

C
ro

ss
-A

tt
n

S
el

f-
A

tt
n

C
ro

ss
-A

tt
n

S
el

f-
A

tt
n

Self-Attn

×T

DDIM
Inversion

CFG

×T
Diffusion

Loop

Local
BlendingReplacement

Cross-Attn

+

DDIM Sampling

           : "A white marble 

sculpture of a woman"

: "A  woman"

Figure 33: Pipeline of SAGE: Initially, DDIM inversion is performed on the input
image using its associated prompt P in. This inversion yields the estimated noise
zT , which serves as the starting point for the DDIM sampling process responsible
for creating the edited image. Within this framework, the U-Net processes the
editing and initial prompts (Pout and P in, respectively) separately, utilizing CFG.
To compute a guidance term, a comparison is made between the SA from the DDIM
inversion and the SA derived in the U-Net when it receives the target prompt Pout.
The latent representation obtained from the DDIM inversion is then integrated with
the latent representation produced after applying the guidance through a process
called local blending. For the sake of simplicity, the mask computation step is not
illustrated here.

Following prior studies [PCWS22, MHA+23, MIST23], we employ DDIM for
faster sampling [SME21]. We utilize a pre-trained encoder Enc(·) to map the input
image i into the latent space, resulting in z

in
0 = Enc(i). Deterministic DDIM

inversion [SME21] is then applied to reverse the diffusion process. With the input
prompt P in, the DDIM inversion yields a sequence of noisy latent variables zin

t , with
t increasing from 0 to T :

  \label {eq:ddim_inversion} \zddim _{t+1}=&\frac {\sqrt {{\alpha }_{t+1}}}{\sqrt {{\alpha }_{t}}} (\zddim _{t}-\sqrt {1-{\alpha }_{t}}\varepsilon _{\theta }^{t}(\zddim _{t},\mathcal {P}))\notag \\ &+\sqrt {1-{\alpha }_{t+1}}\varepsilon _{\theta }^{t}(\zddim _{t},\pin )











 










 




   (V.1)

V.2.2 Reconstruction with Guidance

The estimated z
in
T serves as the starting point for generating the edited image

using the DDIM sampling procedure. To address the dual objectives of image editing
—modifying the input image according to the prompt Pout (the editing goal) and
preserving unchanged regions (the reconstruction goal)— we introduce two distinct
guidance mechanisms.

V.2.2.1 Classifier-Free guidance and Negative-prompt

In its original form, CFG [HS21] facilitates conditional generation by combining
unconditional and conditional noise estimates through a linear interpolation. In this
work, we utilize the CFG variant proposed in [MIST23], which incorporates negative
prompts for improved image editing performance:



  \label {eq:cfg} \begin {split} \tilde {\varepsilon }_{\theta }^{t}(\vz _{t},&\pin ,\pout )= \varepsilon _{\theta }^{t}(\vz _{t},\pin )\\ &+ w \cdot \left ( \varepsilon _{\theta }^{t}(\vz _{t},\pout ) - \varepsilon _{\theta }^{t}(\vz _{t},\pin ) \right ) \end {split}      

   

 

  

 (V.2)

where w > 0 adjusts the strength of the conditional denoising process. The noise
estimated by CFG is then integrated into the DDIM sampling equation to estimate
zt−1:

  \vz _{t-1}=&\frac {\sqrt {{\alpha }_{t-1}}}{\sqrt {{\alpha }_{t}}} \left (\vz _{t}-\sqrt {1-{\alpha }_{t}}\tilde {\varepsilon }_{\theta }^{t}(\vz _{t},\pin ,\pout )\right ) \notag \\ &+\sqrt {1-{\alpha }_{t-1}}\tilde \varepsilon _{\theta }^{t}(\vz _{t},\pin ,\pout )









 









    (V.3)

In our method, the parameter w in Eq. (V.2) is crucial. It guides the transfor-
mation from the input prompt P in to the target prompt Pout, thus controlling the
editing strength during generation. When using CFG starting from z

in
T , there is a

delicate balance between achieving accurate reconstruction and fulfilling the editing
goals. A higher value of w enhances adherence to Pout, but at the cost of reducing
reconstruction quality, as it increasingly emphasizes the editing prompt over the
original image structure.

Figure 34: Estimation of ẑ0 for positive and negative prompt over different
timesteps. In this figure, we display the estimated ẑ0 for positive prompt Pout, neg-
ative prompt P in, and CFG (incorporating both Pout and P in) during the DDIM
sampling process with CFG.

The trade-off between editing and reconstruction depending on w is illustrated
in Fig. 34. Initially, the noise predictions for both P in and Pout guide ẑt towards
the original image. However, as shown by the steps within the red square in Fig
34, a divergence occurs for middle inference steps ts; εtθ(zt,P in) leans towards re-
construction due to inherent ambiguity, while εtθ(zt,Pout) leans towards editing. As
ẑt advances closer to t = 1, moving towards the final edited image, both noise es-
timations begin to align (final columns of Fig 34). Setting w too low results in a
generation biased towards reconstructing the original image, while setting it too high
causes the generation to disregard the input image, resulting in an output heavily
influenced by Pout.
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V.2.2.2 Reconstruction Guidance with Self-Attention

Starting the DDIM sampling process with z
in
T and P in generates outputs that are

similar to the input image. However, relying solely on z
in
T does not suffice for accu-

rate editing or even precise reconstruction [HMT+23, MIST23]. While other meth-
ods often employ specialized techniques such as optimization [MHA+23, MIST23] or
guidance [PKSZ+23] to reconstruct the input image explicitly, our approach enables
editing without requiring the reconstruction of the input image.

To ensure that the unaffected parts of the edited image are reconstructed accu-
rately, we constrain the latent zt during the editing process to closely match the z

in
t

from the DDIM inversion. Instead of directly comparing z
in
t with zt (i.e., the noisy

latent image projection), which can lead to diffusion instability (see Sec V.3.1), we
propose using SA maps within the U-Net architecture εtθ to assess the similarity
between z

in
t and zt. While CA maps have been utilized previously for guidance in

reconstruction [HMT+23, HWC+24] as they are easier to deal with and manipu-
late, we favor SA due to its richer encoding of semantics in the image. In SA, each
image token (or image latent coordinate) is evaluated in the context of all other
tokens, which offers a more thorough comprehension compared to CA, which only
connects word and image tokens. This capability of SA allows for the reconstruction
of image details not specified in the caption, whereas CA primarily focuses on the
regions mentioned in P in. Our experimental results further support this preference
(see Sec V.3.1), demonstrating that SA maps provide superior performance in both
reconstruction and editing.

Specifically, during the inverse DDIM process, we capture SA maps Sin
i,t at each

time step t for each transformer block i, at a resolution tailored to the input image.
For example, with an input image resolution of 512 × 512, we use 32 × 32 maps.
Simultaneously, during the image synthesis phase, we gather SA maps Sout

i,t , which
are generated during the estimation of εtθ(zt,Pout). We then compute a loss Lself

t

at each time step t to guide the editing process, defined as follows for all the N
transformer blocks in the U-Net used for guidance:

  \label {eq:self_attention_guidance} \mathcal {L}^\text {self}_t = \sum ^N_i \left \|S_{t,i}^{in} - S_{t,i}^{out} \right \|_1 







 






(V.4)

As in the classifier guidance approach [DN21], Lself
t loss is subsequently employed

to guide both the editing and reconstruction by adjusting the noise estimate. Specif-
ically, we incorporate the gradient of Lself

t with respect to zt, scaled by λ, as an extra
term. The goal is to steer the diffusion process toward effective denoising while also
minimizing the loss. Adding this gradient component to the CFG noise estimate
from Eq (V.2) results in our final noise estimate:

  \hat {\vz }_{t-1}=\vz _{t-1} - \lambda \nabla _{\vz _t}\mathcal {L}^\text {self}_t    


 (V.5)

Inspired by the approach in [CCC+23], we gradually reduce λ at each time step
t. This way, we acknowledge the different purposes of the diffusion steps: the initial
steps mainly focus on guiding the editing according to Pout, whereas the later steps
concentrate on refining the image through denoising, so the guidance is less relevant.
This progressive difference in roles is illustrated in Fig. 34.
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V.2.3 Cross-Attention Manipulation

The CA maps within the U-Net connect the image tokens or latent space coordi-
nates with prompt tokens. These maps have proven valuable for structurally guiding
the editing process in image editing tasks like ours [HMT+23, MHA+23, PKSZ+23,
HWC+24, JZB+23, MIST23] due to their ability to link image locations with each
word in the input prompt. This capability is demonstrated in Fig. 35. To further
enhance our image editing framework, we incorporate three mechanisms inspired by
the contribution of [HMT+23] that was described in Sec. II.1.7 , leveraging the CA
layers in the diffusion U-Net.

Input “cat” “goat”

Figure 35: 16 × 16 averaged CA maps for “cat” and “goat” given the input phrase
“A cat and a goat”.

V.2.3.1 Local Blending

While the SA reconstruction guidance succesfully reconstructs the general struc-
ture of the original image, it often falls short in accurately preserving colors and
fine details. This shortfall is likely due to the low resolution of the SA maps and
the loss of texture information across the multiple layers of the U-Net. We denote
C in

t,i and Cout
t,i for each CA layer i in εtθ(z

in
t ,P in) and εtθ(z

in
t ,Pout) at each resolution.

The CA map resolution used for local blending is experimentally chosen based on
the input image resolution (e.g .16×16 for a 512×512 image). By averaging the CA
maps C in

t,i and Cout
t,i , which correspond only to a subset of tokens from P in and Pout

defined by the user, over t and i into a single mask, normalizing, thresholding, and
upscaling to the image size, we create a binary mask M as described in [HMT+23]
used to blend the edited latent zt with the original zin

t at each step t:

  \label {eq:local_blend} \hat {\vz }_{t-1} = M \odot \vz _{t-1} + (1-M) \odot \zddim _{t-1}         

 (V.6)

Our findings show that this approach is more computationally efficient than the
method in [HMT+23], as it takes advantage of both P in and Pout branches of a
single CFG noise estimation, instead of requiring two separate noise estimations
and a explicit input recontruction.

V.2.3.2 Cross-Attention Replacement

When the edit prompt Pout involves replacing a word in P in, it is often desirable
to preserve the shape of the modified object (see Fig 36). Following the methodol-
ogy of [HMT+23], we achieve this by swapping the CA maps Cout

t,i [k] corresponding
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to the new word token k with the original maps C in
t,i [k]. This substitution is per-

formed exclusively during the initial diffusion steps as in [HMT+23] (specifically, the
first 20%). Although extending this substitution to more steps could improve the
retention of the edited object’s shape, it risks degrading the overall image quality.

V.2.3.3 Cross-Attention reweighting

Adopting the technique of [HMT+23], users have the option to adjust the impor-
tance of a word in P in by modifying the weights of the associated CA maps Cout

t,i [k],
where k is the index of the target word. This allows users to fine-tune the impact
of specific tokens on the final image, either increasing or decreasing their influence
as desired.

V.2.4 Evaluation

V.2.4.1 Data

The evaluation is based on PieBench [JZB+23], a dataset comprising 700 images
equally divided between natural and artificial scenes across four categories: animal,
human, indoor, and outdoor. These images are sorted into ten distinct tasks: object
modification, object addition, object deletion, content alteration, pose adjustment,
color modification, material change, background alteration, style change, and a ran-
dom task chosen from the aforementioned categories. Each image includes a source
prompt, a target prompt, the subjects for editing, and a manually annotated mask
to assess background preservation (only for certain tasks). Additionally, we use a
collection of high-resolution images from Pexels1 to conduct qualitative evaluations.

V.2.4.2 Metrics

Adopting the comprehensive evaluation strategy outlined in [JZB+23], we assess
and compare the performance of SAGE. This analysis is divided into three main
benchmark categories:

1. Structure distance. As described in [TBTBD22], the structure distance be-
tween two images is based on their deep feature representations extracted
from a pre-trained Vision Transformer model [DBK+21], specifically DINO-
ViT [CTM+21].

An image  I is processed by the Vision Transformer, which divides it into
patches, linearly embeds each patch into a d-dimensional vector. The set of
patches are passed through multiple Transformer layers, each consisting of
normalization, multi-head self-attention (MSA) modules, and MLP blocks.

In each MSA block, tokens are linearly projected into queries  Q , keys  K , and
values  V :

  Q^l = T^{l-1} W^l_Q, \quad K^l = T^{l-1} W^l_K, \quad V^l = T^{l-1} W^l_V    
     

      
 (V.7)

1Images from https://www.pexels.com/ are free for commercial use.
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The self-similarity matrix  S_L(I)  at the deepest layer  L is defined using the
cosine similarity between the keys:

  S_L(I)_{ij} = \text {cos-sim}(K^L_i(I), K^L_j(I))  
 

  (V.8)

The Structure Distance  L_{structure}  between two images  I_s  and an output image
 I_o  is given by the Frobenius norm of the difference between their self-similarity
matrices:

  L_{structure} = \left \| S_L(I_s) - S_L(I_o) \right \|_F      (V.9)

This distance quantifies the difference in spatial structure between two images
by comparing the self-similarity of their deep features extracted from a pre-
trained Vision Transformer. This spatial structure should be independent to
image changes if the edited attributes are spatially distributed in the same way
as the original attributes. Lower values indicate higher similarity, meaning the
structures of the images are more alike

2. Background preservation: We evaluate the masked area using two metrics:
LPIPS [ZIE+18] (previously described in Sec. IV.2.4.3) and SSIM [WBSS04].

The Structural Similarity Index (SSIM) is a method for measuring the similar-
ity between two images. Unlike the former two, it doesn’t use the latent space
of a pre-trained network, instead it considers changes in structural information,
luminance, and contrast. The SSIM index is defined as follows:

  \text {SSIM}(I_s, I_o) = \frac {(2\mu _{I_s}\mu _{I_o} + C_1)(2\sigma _{I_s I_o} + C_2)}{(\mu _{I_s}^2 + \mu _{I_o}^2 + C_1)(\sigma _{I_s}^2 + \sigma _{I_o}^2 + C_2)},  
   














 (V.10)

where:

• Is and Io are the source and output images being compared.

• µIs and µIo are the mean intensities of Is and Io, respectively.

• σ2
Is

and σ2
Io

are the variances of Is and Io, respectively.

• σIsIo is the covariance of Is and Io.

• C1 = (K1L)2 and C2 = (K2L)2 are constants to stabilize the division
with weak denominator, where L is the dynamic range of the pixel values
(typically 255 for 8-bit grayscale images), K1 = 0.01, and K2 = 0.03.

The SSIM index can be separated into three components: luminance, contrast,
and structure comparison.

• The luminance comparison function is defined as:

  l(I_s, I_o) = \frac {2\mu _{I_s}\mu _{I_o} + C_1}{\mu _{I_s}^2 + \mu _{I_o}^2 + C_1}  
 









(V.11)

• The contrast comparison function is defined as:

  c(I_s, I_o) = \frac {2\sigma _{I_s}\sigma _{I_o} + C_2}{\sigma _{I_s}^2 + \sigma _{I_o}^2 + C_2}  
 









(V.12)
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• The structure comparison function is defined as:

  s(I_s, I_o) = \frac {\sigma _{I_s I_o} + C_2/2}{\sigma _{I_s} \sigma _{I_o} + C_2/2}  
 

 
(V.13)

Combining these components, we get the overall SSIM index:

  \text {SSIM}(I_s, I_o) = l(I_s, I_o) \cdot c(I_s, I_o) \cdot s(I_s, I_o)            (V.14)

Higher SSIM values indicate higher similarity, with a maximum value of 1
indicating perfect similarity

3. Target-prompt fidelity : We measure using CLIP Similarity (SIM) [WHZ+21],
applied both to the entire image and specifically to the edited sections. Given
an image  I and a textual description  T , SIM is computed using the CLIP
model’s image and text embeddings [RKH+21]. The similarity score is defined
as:

  \text {SIM}(I, T) = \frac {\mathbf {f}_\text {img}(I) \cdot \mathbf {f}_\text {text}(T)}{\|\mathbf {f}_\text {img}(I)\| \|\mathbf {f}_\text {text}(T)\|}   
  

  (V.15)

where:

•  \mathbf {f}_\text {img}(I)  is the image embedding vector of the image  I .

•  \mathbf {f}_\text {text}(T)   is the text embedding vector of the textual description  T .

•  \cdot denotes the dot product between the image and text embeddings.

•  \|\cdot \|   represents the Euclidean norm (or L2 norm).

The result is a similarity score between -1 and 1, where a higher score indicates
greater similarity between the image and the textual description.

V.3 Experiments

Each experiment with SAGE was conducted on a single NVIDIA A100-40GB
from a DGX A100 server. The images for the other methods used in the quantita-
tive comparison (Sec V.3.2) and the user study (Sec V.3.3) were obtained from the
PieBench experimental results [JZB+23]. The images for the qualitative compari-
son (Table 38 and Sec V.3.2) corresponding to NT, NPI, and ProxNPI were taken
from [HWC+24], while the others were generated using the code available [JZB+23],
adjusting the hyperparameters to achieve the best result.

As highlighted by [MHA+23, HWC+24], both the diffusion models and the meth-
ods under comparison [HS21] exhibit sensitivity to hyperparameter settings. To
ensure a fair comparison, the SAGE results reported in Tables 12, 13, and 15 were
generated using fixed hyperparameters: 50 DDIM steps, a CFG scale of 7.5, local
blending during the initial 40 steps, CA replacement within the first 5 steps, a SA
guidance scale of 200, and without CA reweighting.
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Each method employs 512×512 images and uses Stable Diffusion 1.4 as diffusion
model, except for Plug-n-Play, which utilizes Stable Diffusion 1.5. For the images
presented in Fig 15, 768 × 768 images were generated using Stable Diffusion 2.1
as the core of SAGE, no further comparison with SOTA using Stable Diffusion 2.1
was performed as none of the discussed methods report results on this diffusion
architecture 2.

Our initial analysis indicated that the optimal results for 512× 512 images were
obtained using 32 × 32 SA maps and 16 × 16 CA maps from the second and third
encoder blocks of the U-Net respectively, as well as the corresponding upsampling
block, in a manner similar to [HMT+23]. For 768 × 768 images, the optimal results
were achieved using 24×24 SA and CA maps from the third block. Additionally, our
implementation supports FP16 computation, including gradient calculations, which
substantially reduces both time and memory requirements. To avoid zero gradients
in half-precision floating-point computations, the loss term is scaled by 500 before
calculating the gradients and the value λ is applied afterward (see Sec. V.2.2).

Input
(i) (ii) (iii) (iv) (v) (vi)

CA guidance zt guidance SA replace. SA guidance (iv)+CA replace. (v) + LB

“a girl with blonde hair and a fluffy rainbow hat smiling”

“a baby with a stuffed monkey zebra in a car”

Figure 36: Table 12 ablation study.

V.3.1 Ablation Study

V.3.1.1 Reconstruction Mechanism

In this ablation study, we begin by evaluating the mechanisms used to achieve
reconstruction in regions that are meant to be preserved through the editing pro-
cess. We consider four baseline approaches, utilizing either guidance or replacement,
applied to CA or SA layers. These baselines include: (i) employing CA map recon-
struction guidance as outlined in [PKSZ+23], and (ii) computing the guidance term
within the noisy latent space of the diffusion model, denoted as zt guidance. For
the SA layers, we investigate: (iii) SA replacement as done in [HMT+23, MHA+23]
for CA maps, and (iv) SA guidance. Our proposed method enhances (iv) by se-
quentially incorporating: (v) CA replacement, and (vi) Local blending, elaborated
in Sec. V.2.3.

2The different Stable Diffusion models can be found in https://stability.ai/stable-image

and https://huggingface.co/models?other=stable-diffusion. Last accesed July 26, 2024.
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Reconstruction
CA

LB Struct.↓ LPIPS ↓ CLIP ↑replace.

(i) CA guidance - - 15.7 58 21.9
(ii) zt guidance - - 40.0 111.3 21.5
(iii) SA replace - - 178.4 376.0 18.8
(iv) SA guidance - - 15.7 42.0 22.0

(v) SA guidance ✓ - 14.7 49.5 21.9
(vi) SA guidance ✓ ✓ 11.0 39.6 22.0

Table 12: Quantitative analysis was carried out using PieBench. Our evaluation
includes four different strategies (i-iv) for directing reconstruction, utilizing either
guidance or replacement, applied to both CA and SA layers. Additionally, we assess
(v) the replacement of CA and (vi) Local Blending (denoted as LB) alongside the
most effective reconstruction method.

The quantitative results are presented in Table 12, where we measure Structure
distance, LPIPS, and CLIP Similarity. The latter is computed only according to
the provided segmentation maps, corresponding to the areas that should be edited.
In addition to these quantitative metrics, we provide qualitative examples in Fig 36,
illustrating the results achieved with the same baselines compared in Table 12.

Among the different reconstruction techniques evaluated, guidance-based meth-
ods (i, ii, and iv) consistently outperform the replacement approach (iii) across all
metrics. This is also visually evident in Fig. 36, where the images produced using
SA replacement appear notably unrealistic and differ significantly from the origi-
nals. Although CA guidance (i) produces satisfactory results, it is outperformed by
our proposed SA guidance method by a margin of 16 points in the LPIPS metric.
This qualitative discrepancy is clearly visible in the first row of Fig 36. Moreover, zt

guidance (ii) is inferior both quantitatively and qualitatively compared to the other
guidance methods.

Regarding CA replacement (v), our findings indicate a slight increase in LPIPS,
which is offset by better structure preservation metrics. This qualitative improve-
ment is particularly apparent in the first row of Fig. 36, where the background is
better preserved. In the case of (vi), Local Blending (LB) enhances both the struc-
ture metric and LPIPS, without sacrificing the CLIP metric. This demonstrates
the effectiveness of our LB mechanism in maintaining editability while preserving
structural integrity, as it only impacts areas unrelated to the editing.

V.3.1.2 Classifier-Free Guidance and Self-attention Guidance

In Fig. 37, we evaluate how CFG (w) and SA guidance (λ) influence the gen-
eration process. It is evident that increasing λ enhances attention to the input
structure, while higher w values improve the attention to Pout on the generated
image but lead to more saturated colors, as previously noted in [HS21]. Greater
SA guidance (λ) not only maintains better structure preservation but also improves
color preservation, counteracting the adverse effects of high CFG on natural-looking
colors. Striking an optimal balance is crucial to produce images that retain the input
structure while performing profound, natural transformations reflective of Pout.
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Figure 37: This matrix demonstrates the interaction between the SA guidance scale
λ and CFG w, underlining their impact on image creation. It reveals how different
values of λ and w influence the image to lean towards reconstruction (when λ is high
and w is low) or editing (when λ is low and w is high). The images are generated
using the prompt “’a cat tiger sitting next to a mirror”.

V.3.2 Comparison with State-of-the-Art

V.3.2.1 Quantitative Comparison

Table 13 presents our quantitative comparison against existing methods. Ini-
tially, it is clear that P2P-Zero consistently underperforms compared to other meth-
ods, showing the lowest results across all metrics. Among the remaining methods,
those achieving the highest CLIP similarity, such as Plug-n-Play, tend to perform
poorly in terms of structure and background preservation. This trade-off is due to
the inherent challenge of effectively editing images for a specific task while main-
taining the original content and structure not related to the task as argued in Sec.
IV.3.1.2 of the previous chapter. Conversely, methods like Proximal NPI display
the opposite trend. It remains uncertain whether the superior Edited CLIP perfor-
mance of Plug-n-Play [TGBD23] is due to its use of StableDiffusion 1.5 or the less
restricted editing, which compromise structure preservation. Our approach excels in
background preservation and achieves the second-best structure distance while still
maintaining competitive CLIP similarity (ranking first in Whole CLIP similarity
and third in the masked measure). Overall, these results highlight the effectiveness
of SAGE, showing that SOTA performance is attainable without explicit inversion
of the input image.
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Struct. BG CLIP Similariy

Method Dist. ↓ LPIPS ↓ SSIM ↑ Whole ↑ Edited ↑
∅-Text Inversion [MHA+23] 13.4 60.7 84.1 24.8 21.9
Negative prompt [MIST23] 16.2 69.0 83.4 24.6 21.9
Proximal NPI [MIST23] 7.4 42.0 86.0 24.3 21.4
Plug-n-Play [TGBD23] 28.2 113.5 79.0 25.4 22.6

Direct Inversion [JZB+23] 11.7 54.6 84.8 25.0 22.1
P2P-Zero [PKSZ+23] 61.7 172.2 74.7 22.8 20.5

SAGE (ours) 11.0 39.6 86.0 25.5 22.0

Table 13: A quantitative analysis utilizing PieBench has been conducted. The data
for all entries except for our own originates from [JZB+23]. BG denotes Background.

V.3.2.2 Qualitative Comparison

Input NT NPI ProxNPI PnP DI P2P-Zero SAGE

“A lego cat toy sitting next to a mirror”

“Orange van with surfboards flowers on top”

“Meat balls shushi on white plate”

“A woman storm-trooper with blue hair”

“A cat dog sitting on a wooden chair”

Figure 38: Qualitative analysis using SAGE. Here, we demonstrate examples of
edits, including inserting words and swapping words.

Fig. 38 illustrates that our qualitative analysis aligns with the quantitative eval-
uation. Our method successfully retains the original image structure and content
while providing robust editing performance. For instance, only SAGE and ProxNPI
preserve the tree’s appearance in the second row. Similarly, SAGE uniquely main-
tains the t-shirt sleeve, hair, and background trees’ details and colors in the fourth
row.

Additionally, our method generates more natural-looking images, especially ev-



CHAPTER V. SELF-ATTENTION GUIDANCE FOR IMAGE EDITING 93

ident in the dog and sushi examples. In the dog example, not only are the dog
and chair preserved, but the dog’s face and lighting appear more natural. In the
sushi example, our method is the only one that maintains all image details and
colors while producing a deeper red meat color and natural-looking nori algae. In
contrast, other methods generate shapeless and unnatural sushi pieces. This advan-
tage is attributed to our method’s ability to reduce the guidance term over time, as
discussed in Sec. V.2.2.

In Figure 39, we present additional qualitative examples illustrating the outcomes
produced by SAGE. These examples were used to calculate the metrics shown in
Tables 12, 13, and 15. We argue that because SA maps primarily encode low-
resolution semantic features rather than precise shapes, SAGE excels at generating
images that can edit the style and content of input images while keeping its structure.
For instance, in the second row of Fig 39, SAGE modifies the shape of a fox, and in
the third row, it adjusts the tulips’ forms. Additionally, SAGE can remove elements
from the original image and seamlessly fill the void with plausible content, as seen
with the camera in the last row of Fig. 39. Notably, SAGE is the only method
that applies the pixel-art style, demonstrated by the clown in Fig 39. This supports
our hypothesis that SA maps capture low-resolution semantic features, evidenced
by SAGE’s ability to not only change the style but also significantly alter the type
of chair (from modern to classic) to better match the new prompt in the last row of
Fig 39.

V.3.2.3 Inference time and memory comparison

Method Time (s) ↓ Memory (GB) ↓
∅-Text Inversion [MHA+23] 115.3 21.1
Negative prompt [MIST23] 26.6 38.9
Proximal NPI [MIST23] 23.9 38.9
Plug-n-Play [TGBD23] 12.5* 38.9

Direct Inversion [JZB+23] 33.4 12.4*
Direct Inversion FP16 [JZB+23] 12.5 7.4

P2P-Zero[PKSZ+23] 52.7 25.0
SAGE (ours) 12.6 7.4

SAGE FP32 (ours) 27.6 29.3

Table 14: Performance evaluation for both temporal and memory usage was con-
ducted on a NVIDIA A100-40GB. The Time column illustrates the duration needed
to create two 512 × 512 pixel images, subtracting the duration taken to generate a
single image. This method effectively isolates the image generation time, exclud-
ing the model and data loading overhead. The Memory column indicates the peak
memory allocation for a single image generation as reported by nvidia-smi.
The best results for FP32 precision methods are highlighted with an asterisk (*).

In Table 14, we display the memory usage and speed performance of the FP16
version of SAGE, which has the smallest memory footprint among the compared
methods and is the second fastest by just a tenth of a second. The FP32 version
remains competitive with the other top methods. The results for NT, PnP, P2P-
Zero, and DI were obtained using DI’s source code [JZB+23]3, while the results for

3https://github.com/cure-lab/DirectInversion, last accesed July 26, 2024
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Input P2P-Zero NT DI ProxNPI SAGE

“a cat fox is shown in a low polygonal style”

“poppies tulips”

“a little bunny pig with big eyes”

“a cake icecream with a pink and blue icing”

“a woman in a coat holding a camera phone on white plate”

“a black and white colorful and detailed drawing of a woman”

“a clown in pixel art style with colorful hair”

“chinese painting of a white desk with a laptop and chair”

Figure 39: Samples from the PieBench dataset, as mentioned in Tables 12, 13, and
15. These images exemplify the variety of scenarios utilized in our evaluations and
analyses.

NPI and ProxNPI were derived from the source code provided by [HWC+24]4. All
methods were executed in the same conda environment.

4https://github.com/phymhan/prompt-to-prompt, last accesed July 26, 2024
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The efficiency of SAGE in both processing speed and memory usage, despite
the intensive gradient-based guidance operation, can be attributed to two main
factors. First, the computation of guidance is restricted to a subset of SA maps,
which significantly decreases the overall computational burden. Second, and most
importantly, SAGE omits the input image reconstruction step entirely, which not
only simplifies the process but also reduces memory consumption. These factors
collectively highlight SAGE’s capability to deliver high performance while managing
resource constraints effectively.

V.3.3 User Study

To reinforce the comparison with existing approaches detailed in Sec V.3.2, we
conducted a user study. This study evaluates our method against others based on
three key aspects: structure preservation, background preservation, and adherence
to the prompt, along with overall user preference. We engaged 22 participants in
one versus one comparisons using images from the PieBench random editing task.
The methods compared were Negative Prompt Inversion [MIST23], Direct Inver-
sion [MIST23], Proximal NPI [HWC+24], P2P-Zero [PKSZ+23], and our method.

Participants were shown different sets of images depending on the evaluation
criteria. For structure preservation, the original image and two edited versions were
presented. For background preservation, the input image was masked to highlight
relevant areas. For prompt fidelity and overall user preference, only the target
prompt and the edited versions were displayed. Images were presented in a ran-
domized order to ensure unbiased judgments, as participants were unaware of which
methods were used.

SAGE vs Structure Background Prompt Global

P2P-Zero [PKSZ+23] 93.8% 92.0% 83.0% 75.9%
∅-Text Inversion [MHA+23] 70.5% 69.6% 52.7% 54.5%
Direct Inversion [JZB+23] 55.4% 62.5% 52.7% 52.7%
Proximal NPI [HWC+24] 58.9% 58.0% 62.5% 59.8%

Average 69.6% 70.5% 62.7% 60.7%

Table 15: Outcomes of the user study, showing how often our method, SAGE, was
preferred over other methods. A total of 1792 questions were answered by the
participants.

The findings from this study, summarized in Table 15, align with our quantitative
evaluations, showing a consistent preference for our method across all evaluation
criteria. While the preference for our method is slightly narrow compared to Direct
Inversion in terms of prompt fidelity and overall preference, a notable difference is
observed in background preservation. This significant advantage in preserving the
background underscores the effectiveness of our approach. Overall, the user study
substantiates the strong performance of our method, affirming its strengths in both
quantitative metrics and subjective user assessments.
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Chapter VI

Final remarks

“No matter how many times you do it, you don’t get
used to the sadness –for me at least– of coming to the
end of a film.” — Paul Thomas Anderson

VI.1 Conclusions

This PhD dissertation has presented three significant advancements in the field
of forensic facial imaging through the development and application of DL-based
methodologies. Each of these contributions addresses a critical aspect of forensic
analysis, providing innovative solutions that could enhance accuracy, efficiency, and
reliability in forensic investigations.

Firstly, we developed a robust tool for accurately locating cephalometric land-
marks on facial images. This tool overcomes the limitations of a small dataset by
utilizing pre-trained facial landmark detection models and optimizing data usage
through a shared conditional residual network across different landmarks. By in-
corporating a pre-trained 3D facial landmark detection model, we achieved reliable
visibility estimation even with limited training data. Our systematic evaluation of
each model component demonstrated that our method is three times more accu-
rate than approaches based solely on pre-trained deformable 3D masks. Moreover,
our method outperformed SOTA techniques in facial landmark localization on our
cephalometric landmark dataset, showing a performance improvement of two times
over the closest competitor. A user study with forensic anthropologists further val-
idated our method, achieving human-comparable accuracy in 50% of cases. These
strong performance results have led to the integration of our method’s predictions as
initial estimations in Skeleton-ID1, a commercial AI-assisted forensic identification
solution used when DNA or fingerprint analysis is not feasible.

Secondly, we introduced a novel architecture for face age editing capable of pro-
ducing structural modifications while preserving relevant details of the original im-
age. Our approach has two key contributions: a style-based strategy that combines
style and content representations of the input image, conditioned on the target age,
and a CUSP module that allows users to adjust the degree of structure preservation

1Skeleton-ID: https://skeleton-id.com/. Last accessed on July 26, 2024.
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at inference time. Validation against six SOTA solutions on three different datasets
showed that our method generates more natural-looking, age-accurate transformed
images. It allows for more profound facial changes while preserving identity and
modifying only age-related aspects. An extensive user study confirmed these find-
ings, underscoring the effectiveness and usability of our approach.

Lastly, we revisited prompt-based image editing within diffusion models, chal-
lenging the conventional need for explicit input image reconstruction. Our investi-
gation revealed that the DDIM inversion process alone contains sufficient informa-
tion for effective editing, reconstruction of the original image is not necesary, thus
simplifying the process by applying guidance exclusively to the P in branch. This
streamlined approach not only simplifies the editing process but also yields superior
results, as demonstrated by our extensive comparative analyses. Our most signifi-
cant contribution in this area is the introduction and validation of SA guidance as
a superior mechanism for image editing tasks. Through quantitative analyses, abla-
tion studies, and user feedback, we established that SA guidance, which captures a
broader contextual understanding within images, facilitates better edits compared
to traditional CA techniques. This method maintains closer fidelity to the original
image content while accurately implementing the desired edits. The superiority of
SA guidance was further supported by an extensive user study, where our method,
SAGE, was preferred by 60.7% of participants over competing approaches, high-
lighting its potential to redefine standard practices in image editing within diffusion
models.

Overall, these three works collectively advance the field of forensic facial imag-
ing, providing powerful tools that enhance the accuracy, efficiency, and reliability
of forensic investigations. Besides, each method developed in this dissertation has
been rigorously validated through comprehensive user studies to ensure their practi-
cal applicability and effectiveness. This thorough validation process underscores the
relevance and robustness of the proposed methods, ensuring they meet the strin-
gent demands of forensic investigations and general image editing tasks, thereby
enhancing the credibility and impact of its potential use in forensic analyses.

VI.2 Future Work

The future work for this research involves several key areas of development and
improvement to enhance the performance and applicability of the proposed methods.

For the cephalometric landmark localization method, further evaluation of land-
mark visibility is essential. A more robust dataset is needed, including clear and
consistent guidelines for determining visibility. This dataset should differentiate
between landmarks occluded by posture or external objects and those where the po-
sition cannot be accurately determined, similar to previous studies [KMM+20]. To
compare the effectiveness of our vertex normal-based visibility estimation with other
methods, we propose training an ad-hoc classification layer at the end of a convo-
lutional neural network on reliable data, as previously done in studies [RPC17] and
[KMM+20]. Additionally, increasing the number of samples in the dataset could
significantly improve model quality, narrowing the performance gap between hu-
man and machine, similar to other biomedical applications [BDGB+19, EKN+17,
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LZL+17, GPC+16]. Acquiring and utilizing a bigger better-quality dataset will be a
priority for future work. Furthermore, to enhance the few-shot performance of our
model, incorporating different sources of knowledge, such as intermediate activation
maps from pre-trained models along with raw RGB values, will be explored.

In the domain of face aging, we aim to extend the CUSP module to encompass
a broader range of image editing tasks. This extension will leverage the advantages
of structural preservation more comprehensively, thereby enhancing the versatility
and efficacy of the face aging methodology. Another prospective research direction
involves incorporating expert knowledge in face aging [BAPJ10] into the workflow,
along with integrating identity preservation constraints into the model [WTLG18,
APCO21]. These enhancements will improve the utility of age-edited images in
forensic analyses by ensuring the key identity features of individuals are accurately
maintained.

For image editing, future research will focus on refining and advancing the SA
guidance mechanism. One potential improvement area is the development of an al-
ternative guidance term that does not rely on gradient calculation, which could sig-
nificantly accelerate the image generation process. Although the PieBench dataset
serves as an excellent benchmark for various SOTA methods in this domain, it re-
mains necessary to evaluate our method’s performance in tasks specific to facial
imaging, such as face aging (analyzing potential age biases), facial expression edit-
ing, and feature manipulation.

In both face aging and image editing, the development of more sophisticated
user interfaces will be pursued. These interfaces will enable users to interact more
effectively with the models, providing enhanced control over the editing process and
improving the overall user experience. Additionally, the validation and integration of
the proposed methodologies into commercial forensic imaging tools will be a pivotal
area of future work, in collaboration with the Panacea Cooperative Research team.
This integration will ensure that the developed solutions are accessible to forensic
experts and can be effectively employed in real-world forensic investigations.
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