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Abstract
    
    Quantitative landslide hazard models provide estimations of the 
number of landslides per area and time that might be expected in 
the near future. These models are essential to calculate landslide 
risk in monetary terms. Although they are very useful tools for 
managing the activity of unstable slopes, their production calls 
for a vast amount of spatial and temporal data. Here, we present a 
case where this was possible producing the quantitative landslide 
hazard map for the municipality of Loja, Ecuador. It is based on a 
model that integrates six causal factors (distance to faults, lithology, 
slope, geomorphology, topographic position index, land use) and 
a comprehensive multi-temporal inventory of landslides. First, a 
susceptibility map was generated with a good prediction capability 
(Area under prediction rate curve, AUPRC: 0.8) combining two 
widely used and tested probabilistic methods: “Matrix” and 
“Likelihood ratio”. Subsequently, this map was transformed into 
a hazard map by including the temporal frequency of landslides. 
The map assesses the annual probability of each pixel to be set in 
motion within one of these landslides. The preliminary temporal 
validation of the hazard map indicates that the pixels mobilized 
during two years after the map production fit reasonably well 
with our spatio-temporal forecast. The findings emphasize that 
classical spatial prediction methods, when augmented by robust 
and extensive data on landslide distribution and activity, can yield 
hazard models with reliable predictive capabilities. This suggests 
that in practical applications, models based on relatively simple 
calculations can provide effective and reliable starting points for 
managing landslide risks.
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worldwide. The destructive potential of landslides, in terms 
of human and monetary losses, increases when there is 
urban development nearby (Aleotti and Chowdhury 1999; 
Guzzetti et al. 1999). Thus, the damage derived from land-
slides is more severe when urban growth sprawls over 
gemorphologically and geologically critical zones having 
high slopes and elevations, unfavourable lithology, discon-
tinuities, and other specific geological features. In some 
cases, critical areas are affected by land use and anthropic 
actions that favour the development of mass movements. 
This fact is well documented in the literature related to 
landslides (e.g., Unesco 1973-79; Arnould and Frey 1977; 
Schuster and Krizek 1978; Aleotti and Chowdhury 1999; 
Guzzetti et al. 1999; Irigaray et al. 2000; Cardinali et al. 
2002; McBean and Henstra 2003; Haque and Burton 2005; 
O’Hare and Rivas 2005; Petley et al. 2005; Larsen 2008; 

Introduction

Landslides are currently one of the natural disasters of 
most frequent reoccurrence. Other phenomena, such as 
earthquakes, take place less frequently and in fewer places 
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Lacasse and Nadim 2009; Petley 2012; Palenzuela et al. 
2016; Soto et al. 2017; Girma et al. 2015; Raghuvanshi et 
al. 2015; Hamza 2017).

Countries are struggling to cover the costs of landslide-
related damage or slope stabilization measures. In the period 
between 2004 and 2010, a total of 2,620 fatal landslides were 
recorded worldwide, causing 32,322 deaths (Petley 2012; 
Palenzuela 2015). In China, 15,403 landslides occurred in 
mountainous and non-mountainous regions during the year 
2013, leading to 669 deaths or people who disapeared, as 
well as 264 injured, and a direct economic loss of 10.2 bil-
lion CNY (Chinese yuans) (Chen et al. 2016a). In the United 
States, urban landslides cause up to 25–50 deaths per year 
and some $ 3.5 billion in damage (Bowman 2015; Pollock 
2020). In the Andean region, landslides are one of the great-
est natural threats (Alcántara-Ayala and Oliver-Smith 2014; 
Petley 2012; Hermanns et al. 2012), entailing losses of mil-
lions of dollars and thousands of deaths.

In the case of Ecuador, of all the natural hazards, land-
slides cause the most widespread impact. Between 1970 and 
2013, 3113 landslides were recorded in this country, mainly 
during the wettest months: January, February, March and 
April (Eras 2014). Other reports indicate that during the 
period 1970–2010, 19% of the 5,523 events associated with 
different natural hazards in Ecuador were landslides, and 
this type of phenomenon caused the highest number of vic-
tims and economic losses (SNGR / ECHO / UNIDR, 2012).

This global situation accentuates the need for a preven-
tion strategy supported by hazard and risk models, early 
warning systems, and land-use planning. These are the most 
appropriate ways to minimize the human and economic 
losses caused by hillside movements (Aleotti and Chow-
dhury 1999; Chacón et al. 2006; Adedeji et al. 2012; dos 
Santos Alvalá et al. 2019). Hazard models involve estimat-
ing the probability of landslides occurring within a given 
area and time period, enabling correct management and 
planning to avoid or mitigate potential damage (Fell et al. 
2008). For this purpose, data must be collected on the loca-
tion and frequency of landslides (temporary inventories) or 
their triggers (mainly rain and seismicity) so as to generate 
hazard maps that would enable disaster prevention and cor-
rect land-use planning.

Currently, Geographic Information Systems (GIS) facili-
tate landslide analysis. By using a series of variables and 
large amounts of data to generate landslide predictive maps 
over large geographic areas, in a quick and efficient manner, 
these maps have been produced in diverse geological, cli-
matic and socio-economical settings (e.g., Palamakumbure 
et al. 2015; Manchar et al. 2018; Nsengiyumva et al. 2019; 
Phong et al. 2021; Gantimurova et al. 2021). However, the 
extraordinarily wide range of landslide typologies, causal 
factors and methods makes it difficult to define a single 
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methodology for the analysis and assessment of landslide 
hazard (Guzzetti 2002). There are several standard proce-
dures for generating hazard maps on a detailed scale and 
different approaches may be adopted in view of the needs, 
data availability or objectives of each assessment (e.g. Fab-
bri et al. 2003; Corominas et al. 2003; Remondo et al. 2005; 
Fell et al. 2005; Bonachea 2006; Corominas and Moya, 
2008; Corominas et al. 2014). The reliability of hazard maps 
depends significantly on the scale of the work, the quantity 
and quality of the data acquired, and the selection of the 
appropriate modelling methodology (Baeza and Corominas 
2001; Pourghasemi et al. 2012; Chen et al. 2016b).

Among the many techniques already developed at the 
regional scale for modelling the landslide occurrence, there 
are statistical/probabilistical methods and Machine/Deep 
Learning algorithms. However, these techniques are gen-
erally applied for the assessment of landslide susceptibil-
ity, which only indicates the areas most prone to landslide, 
without specifying exactly when the landslides will occur 
in the future (van Westen et al. 2008; Fell et al. 2008). 
Even the most advanced methods, despite their complexity 
and robustness, do not necessarily enhance the forecasting 
capacity for future landslide prediction, as this capacity also 
depends on the quality of data inputs and the understand-
ing of the applied method. From the review of Reichenbach 
et al. (2018) it can be concluded that nowadays it is more 
important to know how methods operate than to use a priori 
more powerful techniques without experience. Additionally, 
the quality of the input data for data-driven methods can 
prove more important than the technique used to produce 
a model.

Recently, some scholars are trying to include dynamic 
variables (such as triggering rainfall) as input for Machine 
Learning algorithms in order to create spatiotemporal fore-
casting models for landslides (Stanley et al. 2021; Li et al. 
2022; Mondini et al. 2023; Fang et al. 2024; Moreno et al. 
2024; Nocentini et al. 2024; Dahal et al. 2024).

In this paper, we describe the comprehensive produc-
tion of multi-temporal landslide inventories as the basis for 
a complete landslide hazard assessment. In our case study, 
a landslide hazard model of the city of Loja (Ecuador) is 
produced using all the information compiled in the city over 
the past ten years. Two classical approaches are used to ini-
tially estimate landslide susceptibility. We needed to adapt 
these approaches to accommodate our object of study: large 
slow-moving earth flows—a type of landslide that does 
not align well with analyses designed for predicting new 
slope instabilities, such as rainfall-induced shallow land-
slides. For shallow landslides, each pixel or small group 
of pixels or spatial units typically corresponds to a single 
occurrence and an area where variables do not change sig-
nificantly, while large landslides often span numerous pixels 
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involving diverse conditions in the variables. Additionally, 
unlike shallow landslides, which are short-lived and quickly 
eroded after a single event, earth flows persist in the land-
scape and can be reactivated by future heavy rains. This 
aspect also complicates the analysis that commonly relies 
on a simple absence/presence (0/1) binary system. Predic-
tive models are generally designed to forecast where new 
landslides might occur—essentially where the absence of a 
process turns into its presence, as with shallow landslides. 
However, when input data include large portions of terrain 
that has already slid and may do so repeatedly, the methods 
used to generate susceptibility and hazard models struggle 
to model these cases. The straightforward binary approach 
becomes more complex and loses its pure boolean nature, 
transforming into a slightly more complicated scenario. 
Thus, our objective is to develop a thorough landslide haz-
ard study of large slow-moving earth flows overcoming the 
problems explained above, to serve as an example for simi-
lar studies. Our first innovation is a change in the purpose of 
the models: not just to indicate currently stable terrain that 
will slide in the future (as in typical rainfall-induced shallow 
slide susceptibility models), but also to indicate landslide 
terrain that is prone to reactivate its movement in the next 
rainy season (see, e.g., Soto et al. 2017). Our second inno-
vation is an evaluation of the forecasting capability of the 
hazard model. Although preliminary, it is the first of its kind 
within the specialized literature.

Study area

The study area is located in southern Ecuador and covers 
the city of Loja (Fig.  1). Geologically speaking, this city 
was built over an intra-montane sedimentary basin of the 
same name. The Loja Basin is one of several Neogene intra-
montane basins described in southern Ecuador (Fig. 1a). Its 
lacustrine origin is traced to Miocene-Pliocene times (Hun-
gerbühler et al. 2002). The sequence, from bottom to top, 
comprises: (1) coarse-grained sandstones with thin layers of 
conglomerate, sand and mudstones of the Trigal Formation; 
(2) limestones, thin layers of carbonate mudstones, layers of 
chert (silica), and yellow sandstones of the La Banda For-
mation; (3) layers of sandstones intercalated with conglom-
erates of the Belen Formation; (4) sandstones, carbonaceous 
and siliceous mudstones, diatomites, lignites, and conglom-
erate intercalations of the San Cayetano Formation; (5) con-
glomerates of the Quillollaco Formation; and (6) heavily 
weathered lithic tuffs of the Salapa Formation of pyroclastic 
origin (volcanic). The above sedimentary sequence fills a 
Paleozoic metamorphic basement made up of impure fine to 
medium grain quartzites, black phyllites, slates and schists 
(Hungerbühler et al. 2002) (Fig. 1b). According to Tamay 
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et al. (2016), structurally, the Loja basin is characterized by 
having a reverse fault on the eastern edge with a NW-SE 
strike and vergence east, which has a greater deformation 
that is evidenced by the presence of folds. While, in the 
western edge it is characterized by having normal faults 
with dipping to the east (Fig. 1c).

According to Soto et al. (2017), the San Cayetano, Belén 
and Trigal formations show a high clay content of the smec-
tite group. These minerals confer very high plasticity to the 
materials and contribute to the ground instability observed 
in Loja. The expansive behaviour of these clays, enhanced 
by the tropical climate, allows for low gradient slopes (10–
15°) that can also favour ground sliding. This characteris-
tic makes large sections of the Loja Valley susceptible to 
landslides.

The landscape of the Loja Valley is controlled by sloping 
and folded layers of the backfill, with a wide valley floor 
surronded by a hilly relief dominated by steep slopes. This 
rugged terrain is partially covered by the ninth largest city in 
Ecuador, Loja (170,280 inhabitants, INEC 2010). The urban 
expansion of this city in recent decades has taken place out-
side the area with the most stable terrain, invading the hill 
slopes at the bottom of the valley. In many cases, urban 
developers have underestimated the instability problems of 
these hillsides, and various slope movements have affected 
new neighbours, causing extensive damage and even fatali-
ties (Soto et al. 2017). Loja could serve as an analogue for 
other cities in Ecuador and the northern Andes with similar 
problems related to unstable slopes.

Loja has humid subtropical conditions because of its lati-
tude and elevation. The average annual rainfall is 917 mm, 
and the average monthly temperature is 16.2 °C. The period 
with the lowest average temperature lasts from June to Sep-
tember, July being the coldest month (14.9  °C) (PNUMA 
2007; Soto et al. 2017). The most intense rainfall is con-
centrated in the period from December to April, the humid 
season, but precipitation continues throughout the year.

The study area acts as a natural laboratory to test the pro-
posed procedure. Most of the geological parameters related 
to unstable slopes are well constrained by previous detailed 
research work (see Tamay 2018; Soto et al. 2017, 2019; 
Soto 2018 and references therein). Furthermore, because the 
analyzed earth flows are very active in the region, a wealth 
of data on their activity can be obtained in a few years. The 
area therefore affords ideal conditions to develop landslide 
hazard models and subsequently validate them.

1 3
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Fig. 1  Location sketch of the studied area (a) with respect to Ecuador (b) simplified geological map (c) geological cross section. (b and c, modified 
of Tamay et al. 2016)
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assessment. Figure 2 indicates the work-flow procedure fol-
lowed. The “Matrix” method (Irigaray 1995) was positively 
validated in the surroundings of the Cordillera Bética (Iriga-
ray 1995; Fernández et al. 2000; Irigaray et al. 2007), while 
the “Likelihood Ratio” method (Chung and Fabbri 1999; 
Chung and Fabbri 2005; Chung 2006) has been successfully 
applied in various Earth Science fields, and specifically to 
landslides (e.g., Remondo et al. 2003; Zêzere et al. 2004; 
Lee and Talib 2005; Chung and Fabbri 2008; Carrara et al. 
2008; Galve et al. 2015). Although these may be considered 
as classical methods, they have proven to perform well and 
are still used nowadays in landslide research (e.g., Boualla 
et al. 2019; Barella et al. 2019; Kavoura and Sabatakakis 
2020; Gerzsenyi and Albert 2021; Sahrane et al. 2022). 
Furthermore, these techniques allow easily to measure the 
participation of each variable in the prediction model which 
allows actions to be taken on improving the most predic-
tive variables to increase the forecasting capability of the 
models (see e.g., Lee and Talib 2005 and Galve et al. 2009, 

Methodology

We applied a metrodology comprising two main steps: (1) 
analysis of the spatial landsliding potential (susceptibil-
ity), and (2) estimation of the spatio-temporal probability 
of landsliding (hazard). The hazard models presented here 
are based on an analysis of the spatio-temporal distribu-
tion of landslides over the last two decades, using statis-
tical techniques. This period was chosen because there is 
no information available on landslides prior to 1999. A 
detailed inventory of landslides was carried out in the study 
area over a period of 16 years (1999–2015), considering the 
spatial and temporal distribution. The analysis is applicable 
for large landslides of a flow-type, as the general inventory 
shows a large percentage of landslides related to the type 
of creeping and flows (95%), generally involving creeping 
processes that later evolve into composite flows.

In this research, two statistical-probabilistic methods 
were applied and compared for the initial susceptibility 

Fig. 2  Flowchart of the methodology used
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Lima et al., 2022), but also the authors’ experience in the 
study of behavioural characteristics of earth flows. The pre-
vious study by Soto et al. (2017) laid the foundations for the 
choice and treatment of geological data to derive lithology 
and geology factors. This research also appraised the geo-
morphic characteristics of the relief in terms of the occur-
rence of landslides. Thus, common factors related to slope 
geometry derived from DEMs —e.g., slope, curvature types 
and aspect— were also completed with a map of geomor-
phological units (i.e., the geomorphology factor) and the 
TPI factor. The “distance to rivers” factor was selected in 
view of fluvial erosion processes at the base of the slopes. 
The TWI factor was chosen because of the strong relation-
ship between the reactivation of slope movements and surfi-
cial moisture conditions. Land use is an omnipresent factor 
in this type of analysis, while the “distance to faults” factor 
was selected because of possible increased fracturing of the 
bedrock as a function of its proximity to faults.

The continuous factors were reclassified according to 
the following procedures. Classification by intervals of the 
DEM were made for every 100  m of altitude, considered 
representative for the scale of work, except for the first inter-
val (which ranges from the lower altitude of the study area, 
1,979 to 2,000 m a.s.l.) and the last interval (from 2,600 to 
2,642 m a.s.l., as the upper altitude of the study area). These 
ranges have been applied in the USA for slope movement 
susceptibility modelling (e.g., Highland and Bobrowsky 
2008). Regarding the slope factor, we follow the classifi-
cation used by Chen et al. (2018) or Van Westen (2016). 
The curvature, distance and TWI models were classified fol-
lowing our own expert criteria and knowledge of how these 
variables can affect earthflows.

Susceptibility modeling

Susceptibility analysis was performed under a probabilistic 
approach, using spatial data analysis techniques, by means 
of the two methods described below.

The “matrix” method

This method is a bivariate statistical quantitative procedure 
(DeGraff and Romesburg 1980; Irigaray 1995) to establish 
an instability index of a certain area. Although it cannot pre-
dict landslide susceptibility in terms of absolute probability, 
it allows one to evaluate the relative potential instability in a 
wide region by using a series of quantifiable values.

The “Matrix” method is founded on the generation of 
unique conditions units (UCUs), for which a landslide-sus-
ceptibility matrix (LSM) value is calculated. The UCUs are 
generated by overlapping the categorized maps of condi-
tion factors. The LSM value is the percentage of unstable 

2015). We applied them because they can be applied using 
the tools included in most common GIS softwares. Thus, 
these methods can be implemented by many technicians 
who may not have specialized expertise in predictive mod-
els, such as those required for advanced machine learning 
and deep learning techniques.

Landslide inventories and conditioning factor 
database

A fundamental and determining aspect for any assessment 
of susceptibility, hazard or landslide risk is the inventory and 
mapping of landslides occurrence, as key input determining 
the quality of the results. Therefore, the very first step is to 
collect information on past landslides, crucial for the predic-
tion of future spatial distribution (Ercanoglu and Gokceo-
glu 2004). Among the most commonly used techniques are 
photointerpretation with stereoscopic vision, LiDAR DEM 
analysis and field work (Wieczorek & Glade 2005; Einstein 
1988; Soeters and van Westen 1996; Palenzuela 2015). In 
this study, two techniques were used to carry out the land-
slide inventory. The first consists of applying photo inter-
pretation to map slope movements with their respective field 
validation, and thus generate the inventory between 1999 
and 2003 using aerial photographs at a scale of 1: 7,000 
from the year 2003. This inventory, the first ever carried out 
in Loja province, coincided with the first time that an emer-
gency caused by landslides was declared in Loja. For the 
inventory from 2003 to 2010, a 1:5,000 scale orthophoto of 
the year 2010 is used. Meanwhile, to generate the inventory 
for the period 2010 to 2015, field geomorphological map-
ping was applied exclusively, with a topographic map at a 
scale of 1:5,000 from a Digital Terrain Model (DTM) having 
a pixel resolution of 3 m (SIGTIERRAS 2010). All data was 
collected in a geodatabase generated with ArcGIS 10.1™, 
along with additional data corresponding to location, typol-
ogy, degree of activity, lithology, terrain morphometry, date 
of occurrence, and derived damage.

Then, 14 raster maps representing landslide condition-
ing factors were created at 3 m of resolution (Fig. 3). Four 
of them consisted of field thematic cartography at a scale 
of 1:5,000, including: geomorphology, land use, lithology, 
geology and distance to faults (Table 1). Nine factors were 
extracted by processing the DTM: elevation, slope, aspect, 
flat curvature, standard curvature, profile curvature, distance 
to rivers, Topographic Wetness Index (TWI) (Seibert et al. 
2007) and Topographic Position Index (TPI) (Persichillo et 
al. 2017).

Selection of the conditioning factors took into account 
the specialized literature on landslide susceptibility models 
(Feizizadeh and Blaschke 2013; Ozdemir and Altural 2013; 
Hamza and Raghuvanshi 2017; Reichenbach et al. 2018; 
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Fig. 3  Thematic maps produced in this study
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performed applying just one of the methods, in this case, the 
LR method; but the procedure could also have been carried 
out using the “Matrix” method.

Validation of conditioning factors and models  In this study, 
a temporal validation was used to evaluate the prediction 
capability of the susceptibility models. We split the land-
slide inventory in two sub-samples according to the date 
of the landslides. The training dataset, used to produce the 
models, is constituted by landslides registered before and 
during 2010; and the test dataset, used to validate the mod-
els, is composed of landslides that occurred after 2010.

To evaluate the conditioning variables and the models, 
Prediction-Rate Curves (PRC) were generated (Chung and 
Fabbri 1995; Chung and Fabbri 2003). These cumulative 
frequency curves express, quantitatively and graphically, 
the proportion of inventory landslides not used in the gen-
eration of the model (i.e., test sample), which are located in 
areas with a certain level of susceptibility. This method has 
been frequently applied to evaluate landslide susceptibility 
models (Fabbri and Chung 2008).

The Area Under the Prediction-Rate Curve (AUPRC) 
was used as an index to quantitatively assess the forecasting 
power of the model. However, the shape or geometry of the 
curve is even more useful, since it provides valuable infor-
mation on how the different susceptibility classes behave. 
In general, the more asymptotic and closer the curve to the 
ordinate axis in its initial section, the better the model for 
discriminating the area of greatest susceptibility. Similarly, 
the earlier the curve reaches 100% of the landslides, the bet-
ter the definition of the least susceptible (i.e., stable) zones, 
hence the safest area. In other words, the shape of the PRCs 
showed us where the best performance of the models is 
located. PRCs show if the model is better at predicting areas 
where landslides are concentrated (i.e., very high suscepti-
bility area) but not so well the areas with less landslides, or 
it provides a prediction with a clear “stable” area but it does 
not recognize or delimitate well where the most susceptible 
regions are. An example of this is presented in the results 

area within the UCU. Once the LSM value is calculated for 
each UCU, the latter are sorted according to the LSM value, 
from the highest to the lowest; they are then assigned to five 
susceptibility classes following that order. The LSM range 
of these five classes can be determined using the natural-
breaks method. A detailed explanation of the method can be 
found in Irigaray et al. (2007).

The likelihood ratio (LR) method

This method is a probabilistic analysis based on favorability 
functions (Chung and Fabbri 1993). The LR method using 
categorical variables estimates the susceptibility by means 
of Eq. 1

LRx =
ux/u

sx/s
� (1)

where LRx is the Likelihood Ratio estimated for the cat-
egory x of a variable; ux is the area occupied by unstable 
ground in the category x; u is the total area covered by the 
unstable ground in the study area; sx is the area occupied 
by stable ground in the category x; and s is the total area of 
stable terrain in the study area. In other words, ux/u is the 
proportion of unstable terrain within the area of the category 
x and sx/s is the proportion of stable terrain within the same 
category x. If these proportions calculated for each category 
of a variable are different from one another, it means that the 
variable can explain the distribution of the unstable terrain, 
and therefore it has predictive capability.

By applying Eq. 1, each category of each variable has a 
LR value, and the variable maps are transformed into LR 
maps. These LR maps are multiplied to obtain the final sus-
ceptibility map. The method and its mathematical develop-
ment are described in greater detail in Chung (2006).

To define the variables involved in the analysis, a pre-
liminary study was carried out for each individual factor 
to create a one-variable model. Thus, the conditioning fac-
tors were ordered and selected according to their predic-
tive capacity and potential to point out the most susceptible 
areas. Being only a pre-emption to order variables, it was 

Table 1  Causal factors, source and scale of maps
Conditioning factors Source Scale
Geomorphology Cueva 2015; Soto 2018. 1:10,000
Land use Modified from Carrillo 2010; 1:25,000

Orthophotos of the Loja basin (SIGTIERRAS 2010); Soto 
2018.

Lithology Soto 2010, 2018. 1:25,000
Geology and faults Tamay et al. (2016). 1:25,000
Altitude, slope aspect, profile curvature, flat curvature, standard 
curvature, slope, Humidity Topographic Index, distance to rivers, 
topographic position index.

SIGTIERRAS 2010. Digital Terrain Model (DTM), with a pixel 
resolution of 3 m.

1:5,000
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computed on the basis of the step decreasing monotonic 
function.

	● ns is the number of pixels mobilized each year, that is, 
the mean frequency estimated from the multitemporal 
landslide inventory.

	● nc is the number of pixels in the susceptibility class.

In practice, the steps to transform the susceptibility model 
into the hazard model were the following. First, the suscep-
tibility model was reclassified into five classes according to 
the segments of an interval-defined non-increasing mono-
tonic function fitted to the frequency of landslides in each of 
the original 200 susceptibility classes (see Fabbri et al. 2003 
for further explanations). Second, Eq. 2 was applied to each 
of the five classes to estimate the annual probability of each 
pixel moving in the future.

It is worth noting that the meaning of our model is dif-
ferent from conventional landslide hazard models that con-
tain the probability of a pixel being impacted by a landslide. 
According to the criteria behind our model, the value of 
each pixel indicates the probability of that pixel moving 
the following year. We take this probability value follow-
ing the simplest interpretation of the frequentist probability. 
According to the frequentist interpretation, probability is 
understood as the frequency of an event repeated in a given 
time. If annual probability has a value of 1, it means the 
event will occur once a year. If its value is 0.1, the frequency 
is 1/10, hence the event is expected to occur at least once 
every 10 years, so that each year there is a 10% probability 
of occurence, or in other words, the event will happen in one 
of ten possible future years. In turn, by adding the values 
of the pixels covering a certain area, we can estimate the 
probability of that area being moved by a landslide. If the 
probability in a pixel is 0.1 and the class that contains that 
pixel has 10 pixels with that same value, we can expect that 
within the area covered by those pixels, at least one will 
move every year (0.1 × 10 = 1).

Results

Inventory of landslides

A total of 292 landslides were inventoried dating from 1999 
to 2015 (Fig. 3a), with a mobilized area of 417.9 hectares. 
The most characteristic landslides of the Loja valley have 
lengths ranging from 100 to 250 m and widths of between 
60 and 150 m, but landslides up to 1,200 m long and 250 m 
wide have also been mapped. Most mobilized volumes of 
material were determined between 15,000 m3 and 750,000 
m3, but in some cases they cover up to 2,000,000 m3. These 
magnitudes are approximate because the real dimensions 

AQ3

section when the shape of the PRCs of the models produced 
using LR and Matrix methods are compared.

Landslide hazard modeling

Hazard models are forecasts of the spatio-temporal prob-
ability of future landslides. In order to generate hazard 
models, it is important to analyse triggering factors such as 
precipitation, seismic activity and anthropic activity. Soto et 
al. (2019) performed an analysis to estimate the empirical 
threshold of critical rain that causes landslides in the city 
of Loja, Ecuador, concluding that a clear correlation could 
not be established between the climatic frequencies and the 
major rain events that provoke landslides. However, given 
the high frequency of landslides, allowing for constant data 
collection, a multi-temporal analysis based on field invento-
ries of different time intervals could be used in this research 
for hazard assessment and validation.

Few studies have addressed this problem with sufficiently 
representative time series (e.g., Van Steijn 1991; Coromi-
nas, 1992; Cendrero et al. 1994; González-Díez 1995; 1999; 
Remondo 2001; Bonachea et al. 2009). Remondo (2001) 
points out that when an area has a time series of landslides, 
the probability of occurrence can be estimated, and used to 
prepare hazard maps, if the environmental conditions are 
relatively homogeneous, as in our study area.

We opted to produce the landslide hazard model by 
combining the susceptibility models generated. After try-
ing different combinations, the maximum, mode and aver-
age between the normalized values of the “Matrix” model 
and the “Likelihood Ratio” model were validated. Finally, 
the combination-based on the average offered a greater pre-
dictive capacity and was selected, as will be explained in 
Sect. 4.2.1.

To transform the susceptibility values into hazard values, 
a methodology proposed by Fabbri et al. (2003), Remondo 
et al. (2005) and Bonachea (2006) was adopted. The method 
works by minimizing deviations from the observed fre-
quencies of new landslides within each susceptibility class, 
ensuring that the total of all susceptibility classes sums to 1 
as a spatial probability. Next, using an adjustment function 
and the temporal frequency of landslides, an annual prob-
ability value P was calculated for each unit using the fol-
lowing equation (Chung 2006; Galve et al. 2009, 2011):

P = 1− {1− psc}
ns
nc � (2)

where:

	● psc is the proportion of pixels expected to be in motion 
in the next year in the susceptibility class, a parameter 
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knowledge. In grasslands and crop land lack the tree root 
action against slope instabilities and usually these areas are 
selected because their clayed soils, mostly related to the 
clayed bedrock prone to landsliding. Furthermore, human 
activities that transform landscape changing slope geom-
etries and drainage may favour landslide processes. The 
geomorphology factor indicates that the relief unit with the 
greatest presence of movilized area is the “dissected slope 
surface” (69.7%), then the “slope surface” and “slope front” 
(7.7% and 7.6%, respectively) as can be expected because 
landslide processes are mainly distributed in the slopes. The 
slope variable shows that the highest percentage of area 
affected by landslides is between 10° and 20° of slope, with 
35%, followed by the slopes between 5° and 10° (25.1%), 
and the slopes between 20°and 30° (20.4%). Indeed, in this 
instance, the slope does not appear to provide substantial 
information regarding susceptibility, as evidenced by the 
similar percentages across each slope class, although the 
area of each class could also operate in the susceptibility 
classification providing critical data. Furthermore, it is note-
worthy that the landslides occur at lower gradients in Loja. 
This may be related as mentioned above with the action of 
plastic clays in the studied phenomena. The “distance to the 
faults” factor indicates that most movilized area is in the 
range greater than 1,000 m (59.2%), but is also the range 
that occupies the largest area of land; the range of 400 to 
1,000 m represents 26.3% of moved area, which indicates 
that theoretically this variable will not have a high predic-
tive capability but some influence seems to have as was 
initially selected by its preliminary validation. The TPI vari-
able indicates logically that the majority of movilized area 
is in the hillside class, 60.9%.

Validation of the susceptibility models

Interestingly, when validation tests were performed on the 
prediction curves (PRCs) derived from the best susceptibil-
ity models, the tests established coincident values of 0.77 
for both methods. It is important to note that the “Matrix” 
method better recognizes the areas of highest susceptibility, 
but it defines a wide area as low susceptibility, coinciding 
with mobilized terrain units. LR does not provide such good 
results in the high susceptibility zone, but it discriminates 
well between a safe zone and at zone of low susceptibil-
ity. The result of the validation curve of the LR & “Matrix” 
combined model (Fig. 8) shows that the prediction capacity 
improves substantially, giving a value of 0.8.

Hazard model

A spatio-temporal analysis of landslide occurrence in the 
Loja basin (Table 4) was carried out to estimate the mean 

and geometries are difficult to determine, showing fuzzy 
limits in many cases. Most landslides began as creeping 
processes and often evolved into earth flows or complex 
movements. The distribution of landslides according to their 
typology is 55.7% creep type, 38.8% flow type, 4.5% trans-
lational and 1% rotational. It is important to stress that the 
approach proposed was performed as a whole when applied 
to creep and flow typologies. This consideration is derived 
since the general inventory shows a large percentage of 
landslides related to the creep and flow typology (95%), 
which are generally compound processes starting as creep 
that later evolve into flows. Figure 3b and d represent the 
inventories of landslides corresponding to the periods of 
years between 1999 and 2003; from 2003 to 2010; and from 
2010 to 2015, respectively (Fig. 4).

Susceptibility models

Once the validation analysis of each conditioning factor had 
been carried out, nine factors were selected (Fig. 5) as they 
better predict the test according to AUPRC values equal to 
or greater than 0.59: faults, lithology, geomorphology, pro-
file curvature, flat curvature, standard curvature, slope, land 
use and TPI. Accordingly, these conditioning factors will 
be used to generate the different susceptibility models by 
applying different scores to them for each method proposed 
in this research.

In order to estimate their predictive capacity, and by 
combining the nine conditioning factors selected (Fig.  5), 
ten susceptibility models resulted from applying the two 
methodologies described (Table 2). The best susceptibility 
model resulted from the combination of six conditioning 
factors (lithology, slope, geomorphology, faults, TPI, land 
use). Figure 6 presents the susceptibility maps created by 
means of LR (Fig. 6a) and “Matrix” (Fig. 6b).

The maps obtained were reclassified into five equal 
area classes so as to compare the models. Table  3 shows 
the amount of area in hectares and in percentage that cor-
responds to each class of susceptibility. As can be seen, the 
classes occupy similar percentages.

A comparison matrix served to correlate the landslides 
and the six conditioning factors used for the susceptibility 
model (Fig.  7). According to the lithology variable, most 
landslides are associated to sandstones with clay and con-
glomerate lens (32%), followed by conglomerates with 
silty-sandy matrix and clays (23%). These lithologies are 
associated to the Belen and San Cayetano Fms., already 
identified by Soto et al. (2017) as the geological units most 
prone to landslides due to the plastic clays content (see 
Sect.  2). The land use variable indicates that most occur 
in grasslands (64%) and among crops (15.8%). This result 
is also coherent with the field observations and general 
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landslides per year in Loja on average. Relating the total of 
mobilized terrain pixels in the three periods (505,673) with 
the total number of landslides (310) corresponding to the 
three-time intervals, we obtained an average value of 1,631 

annual frequency of pixels in motion to then produce the 
hazard model. We analyzed three different periods: P1 
(1999–2003), P2 (2003–2010), P3 (2010–2015). We esti-
mated that 31,604 pixels or 284,441 m2 are mobilized by 

Fig. 4  (a) Landslide inventory map, (b-d) multi-temporal inventory maps
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there is a relatively safe area (very low hazard) that occupies 
25% of the study area (2,698 ha) where the model predicts 
that only 1% of the pixels correspond to terrain prone to 
sliding (0.4 ha). Between these two large areas, there is a 
low-hazard class that extends across an area similar to the 
total area of the three most hazardous classes (37%). In this 
class, the model indicates that 14% (5 ha) of the pixels can 
move annually (Table 6).

With the above data in mind, and taking into account 
the distribution of landslide size (Table 5), we can estimate 
the annual number of landslides anticipated for each of the 
groups of classes. By dividing the pixels of the mobilized 
terrain units between different categories of landslide size, 
we can roughly estimate the number of landslides to be 
expected in the areas covered by each hazard class. Thus, 
in the area occupied by the three most hazardous classes 

pixels or 14,680 m2 per landslide. Finally, the ratio of mobi-
lized ground pixels per year (31,604) to the mean value of 
movilized terrain pixels caused by landslides (1,631) indi-
cates that 19 landslides occurred or are reactivated per year 
on average. Likewise, the distribution of landslide size in the 
study area was analysed (Table 5), based on the inventory.

Once the mean annual frequency of pixels in motion 
had been estimated, we used the the function fitting shown 
in Fig. 9 to apply Eq. 2 and generate the hazard model of 
Fig. 10.

Since the hazard map is completely quantitative, we can 
hardly make observations about the forecasting it performs 
or obtain useful information for risk management. The three 
most hazardous classes represent 38% of the study area 
(4,100 ha) (Table 6) where the majority (85%) of pixels that 
moved annually (34,494 pixels) are concentrated. In turn, 

Table 2  AUPRC of the 10 susceptibility models generated with the Matrix method and likelihood ratio
Conditioning factors Matrix method Likeli-

hood 
ratio 
method

Distance to faults, lithology, slope degree, geomorphology, land use, TPI. 0.77 0.77
Distance to faults, lithology, geomorphology, land use, TPI. 0.76 0.76
Distance to faults, lithology, geomorphology, land use, distance to rivers. 0.75 0.76
Flat curvature, standard curvature, profile curvature, Distance to faults, lithology, slope degree, geomorphology, 
TPI.

0.75 0.76

Flat curvature, standard curvature, distance to faults, lithology, slope degree, geomorphology, TPI. 0.75 0.76
Standard curvature, distance to faults, lithology, slope degree, geomorphology, TPI 0.75 0.76
Distance from faults, lithology, slope, geomorphology, TPI 0.75 0.76
Distance to faults, lithology, geomorphology, TPI. 0.74 0.75
Lithology, geomorphology. 0.67 0.71
All factors. 0.71 0.74

Fig. 5  Diagrams of the validation curve of the 14 conditioning factors, using the Likelihood ratio, with their respective value of the area below the 
curve (AUPRC). Values highlighted in bold are those selected for the susceptibility models
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model in the two groups of classes defined in the previous 
section. This model based on two groups accurately predicts 
the percentage of pixels corresponding to landsliding in each 
zone in 2016 and 2017 (Table 8), therefore forecasting the 
model that resembles what actually happened. If we go into 
depth and validate the five-classes model, we observe that 
the model deviates further into the medium hazard class, but 
the low and very low hazard classes define the affected area 
correctly (Table 8). Regarding the prediction of the number 
of landslides in each zone and their size, it is seen that the 
simple model based on two groups of classes predicts quite 
well the events registered during 2016 and 2017 (Table 9).

Because the model is designed to reflect an average of at 
least one to two decades, a larger registry would be needed 
to appraise the real forecasting capacity of the model. Still, 
we can affirm that the record of the two years following the 

(medium, high and very high), around 22 landslides a year 
might be triggered or reactivated; in the less hazardous 
zones (low and very low), the number of landslides expected 
would be around 4, most probably located in the low hazard 
zone (Table 7).

Preliminary evaluation of the hazard model

At the beginning of 2018, a landslide inventory was carried 
out based on field work and the compilation of all informa-
tion on landslides. A total of 45 new and reactivated land-
slides were registered during 2016 and 2017. Although a 
2-year dataset is not statistically adequate for medium- to 
long-term predictions, it does permit a preliminary evalua-
tion of the degree of fit of the hazard model. Due to the lim-
ited data, this evaluation was carried out by simplifying the 

Table 3  Comparison of the area occupied by each class of susceptibility generated by the two models
Method Susceptibility level

Very low Low Medium High Very high
ha % ha % ha % ha % ha %

Matriz 4,881.1 45.1 1,600.8 15 2,178.9 20.2 1,056.7 9.7 1,074.5 9.9
LR 4,866.1 45.2 1,620.1 14.8 2,185.2 20.2 1,048.1 9.8 1,072.6 10

Fig. 6  Landslide susceptibility map derived from the Likelihood ratio model (a) and Matrix model (b). The circles indicate the areas where the 
difference in the level of susceptibility generated between the two models is most evident
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Fig. 7  Comparison matrix between the conditioning factors selected for the analysis and their classes with the percentage of landslides
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realization of the model fits the prediction reasonably well. 
In general, the data recorded lies in the same range, and in 
some cases perfectly matches the forecast.

Discussion

Quantitative landslide hazard models are excellent tools for 
land planning in mountain areas. With them, spatial plan-
ners can calculate losses and check different alternatives 
for urban development or infrastructure projects. Yet it is 
very difficult to collect all the information needed to pro-
duce these models, for which reason they have only been 
made for certain places affording sufficient temporal and 
spatial data (e.g., Zêzere et al. 2004; Remondo et al. 2005; 
Nefeslioglu et al. 2011; Das et al. 2011; Jaiswal et al. 2011; 
Sanda et al. 2015; Galve et al. 2015, 2016). Here we present 
an area where a model was successfully produced, perform-
ing well despite being made with classical techniques.

We opted to focus our efforts on: (1) preparing a com-
prehensive database, taking into consideration all relevant 
details; (2) adopting a simple approach that combines all 
the information gathered; and (3) validating the model by 
means of a widely-accepted technique. The result is a model 
one can readily understand and its approximate performance 

Table 4  Spatio-temporal analysis of landslides, given inventories in 
the 3 periods considered
Period Landslides Moving pixels Years
P1 (1999–2003) 84 58,813 4
P2 (2003–2010) 111 128,745 7
P3 (2010–2015) 115 318,114 5
Total 310 505,673 16

Table 5  Distribution of sizes of landslides in the inventory
Landslides size Area (ha) Average area 

(pixels)
Pixels per 
landslides size

%

Very Large 25 − 15 23,486.3 7,268 21.1
Large 15 − 5 9,436.5 10,220 29.6
Medium 5-1.5 3,293.3 7,134 20.7
Small 1.5–0.5 974.6 7,615 22.1
Very small < 0.5 205.4 2,257 6.5

Fig. 8  Representation of the validation curve of each of the applied methods, and additionally, the validation curve as a result of the average 
between the two methods
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in the world (Lacroix et al. 2020), the methodology applied 
here could serve to produce models intended to manage the 
risk associated with such slope movements.

On the downside, a deficiency detected in our model is 
that the influence of human activity may have been underes-
timated —the only variable that represents it is a static land-
use map. Moreover, any other impact from human activity 
on producing this type of event cannot be ruled out. The 
demand for territory owing to urban and population expan-
sion, implies constant activities such as: excavation, land-
fill, new residential development, opening of roads, forestry 
actions and agricultural activities, all entailing hydrologi-
cal changes. Hence, such interventions can be seen as pre-
paratory agents; that is, despite not being the direct cause 
of slope movements, in combination with other triggering 
agents they contribute to increasing the number of land-
slides. Future enhancements of the model should take into 
account all land use changes and the incorporation of data 
regarding local human activity.

To conclude this discussion, it is important to note that 
the developed landslide hazard model provides the Loja 
municipality with a tool precise enough to analyze landslide 
risk within its territory, as corroborated by its spatiotempo-
ral validation. Current efforts are now focused on acquiring 
data regarding personal and economic losses to produce a 
risk model offering information in monetary or personal risk 
terms. With this information at hand, strategies to reduce 
or mitigate risks through spatial planning can be imple-
mented objetively and optimized (e.g. Galve et al. 2012a, 
b). At the same time, models with greater forecast capac-
ity using the lessons learning in the described process and 
using advanced methods based on AI will be developed to 
be applied in a subsequent risk analysis cycle.

is assessed through its validation. By “understanding the 
model” we refer to the fact that the resulting hazard pat-
tern is evidenced in the spatial pattern of the conditioning 
factors, so that we know which factor(s) define high or low 
hazard in each area. This strength allows for extrapolation 
and improvement of our model, in light of local conditioning 
factors. Such problems or aspects can include: (1) misclas-
sification of a geology unit or land-use class, (2) erroneous 
or deficent categoritation of a variable, and (3) defects in the 
elaboration of the conditioning factor maps. Once identified 
a problem, we can fix it. These methods moreover serve as a 
guide when focusing on the improvement of variables with 
a favourable balance between cost and benefit. Notwith-
standing, methods applied with tools that come as default in 
extensively used GIS softwares (e.g., ArcGIS or QGIS), if 
they perform well, are widely applicable, since they require 
no specific training on advanced techniques or specialized 
software, nor (a priori) high computational performance.

It is also important to highlight that our model presents 
a distinct approach to landslide prediction. While the model 
estimates the probability of motion for specific portions of 
terrain—a common technique—we innovatively aggregate 
these results according to the observed landslide size dis-
tribution. This allows us to estimate how many landslides 
are expected to be reactivated or initiated in the future, cat-
egorized by their size (Tables 7 and 9). In other words, the 
model provides estimates that can indicate potential future 
reactivations of known large slow-moving earthflows, as 
well as the occurrence of new landslides, as demonstrated 
by the validation of the presented hazard model.

Thus, we adapted the hazard analysis to large slow-
moving earthflows, a type of landslide that is widespread 
in clayey and marly terrains (Hungr et al. 2014). As these 
landslides also cause great economic losses in many regions 

Fig. 9  (a) Histogram of frequencies of landslides that occurred in each of the different susceptibility classes of the model, (b) Fit curve of the 
susceptibility model
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“Likelihood Ratio” methods. The models with highest pre-
dictive capability were achieved through the integration of 
six conditioning factors: distance to faults, lithology, slope, 
geomorphology, Topographic Position Index (TPI), and 
land use. While both methods demonstrated comparable 
performance, the “Matrix” method excelled in predicting 

Conclusions

In this study, we developed a robust quantitative landslide 
hazard model tailored for the Loja region in Ecuador. We 
applied a combination of two probabilistic methods to pro-
duce a landslide susceptibility model: the “Matrix” and the 

Table 6  Estimates of pixels moved annually by hazard class and hazard zones
Hazard class % of area per class % of area per zone Pixels moved per class Píxeles moved per zone % of pixels moved per class
Very high 2 38 7,842.6 34,492 19.3
High 11 13,931.6 34.3
Medium 24 12,719.9 31.4
Low 37 62 5,664.2 6,070.5 14.0
Very Low 25 406.2 1.0

Fig. 10  Hazard map of landslides with the loca-
tion of inventoried landslides
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A preliminary validation of the hazard model, using land-
slide data from 2016 and 2017—collected after the model 
was developed—showed that the areas classified by the 
model according to their spatio-temporal probability aligned 
well with the frequency of landslides that occurred during 
these years. This alignment indicates that the methodologies 
employed and the variables selected contribute to a model 
that is both reliable and accurate.

The applied procedure and estimates are specifically 
tailored for large, slow-moving earthflows and have the 
potential to be applied in other regions of the Andean belt or 
globally, where similar landslide phenomena occur. More-
over, the methods used, which are based on accessible and 
easy-to-apply classical spatial analysis techniques, deliver 
effective and reliable results. In practice, these methods 
offer sufficient forecasting capability to support landslide 
hazard assessments and take initial steps in landslide risk 
management.

Author contributions  J.S.L. and J.P.G. developed the analysis, wrote 
the main manuscript text and prepared figures and tables. J.A.P., J.M.A 
and C.I. concived the presented study, aided in interpreting the results 

areas of high susceptibility, whereas the “Likelihood Ratio” 
method was more effective in identifying the safest zones. 
The synergy of these two approaches resulted in a mixed 
model with an AUPRC of 0.80, indicating strong spatial 
predictive capability.

The susceptibility model was subsequently transformed 
into a hazard model by integrating spatial predictions with 
the temporal frequency of landslides in the study area. This 
model allowed us to estimate potential future reactivations 
of existing landslides, as well as the occurrence of new 
ones. In other words, it enables us to predict future landslide 
activity in the municipality of Loja, including the number 
and size of landslides that may occur or reactivate annually. 
Based on the model, we estimate that 22 landslides per year 
will occur in Loja on average, primarily concentrated in the 
highest hazard zone which cover 38% of the study area. Of 
these landslides, three of them are expected to be larger than 
1.5 hectares with a high damaging capacity. Additionally, 
the model delineates a low hazard area covering 62% of the 
study area, where only four small landslides (< 1.5 ha) are 
anticipated annually.

Table 7  Estimates of the number of annual landslides by hazard class
Size of landslides Area (ha) % Medium to very high hazard Low to very low hazard

Pixels Landslide per year Pixels Landslide per year
Very large 25 − 15 21.1 7,268 0 1,279 0.1
Large 15 − 5 29.6 10,220 1 1,799 0.2
Medium 5-1.5 20.7 7,134 2 1,255 0.4
Small 1.5–0.5 22.1 7,615 8 1,340 1.4
Very small < 0.5 6.5 2,257 11 397 1.9

Total 22 3.9

Table 8  Percentage of pixels anticipated to move and actually moved, by class
Class Hazard Area Model Reality
Hazard model with 2 classes
5-4-3 High 38% 85% 85%
2 − 1 Low 62% 15% 15%
Hazard model with 5 classes
5 Very high 2% 19% 12%
4 High 11% 34% 31%
3 Medium 24% 31% 43%
2 Low 37% 14% 15%
1 Very low 25% 0% 1%

Table 9  Number of landslides by size in each class of the model with two classes (two years)
Size of landslides Area Zone of high hazard Zone of low hazard

Hazard: Very high, high, medium Hazard: Low, very low
Model Inventored Model Inventored

Very large 25 − 15 ha 0 0 0 0
Large 15 − 5 ha 2 0 0 0
Medium 5–1.5 ha 4 4 0 0
Small 1.5–0.5 ha 16 10 3 3
Very small < 0.5 ha 22 27 4 7
Total landslides 44 41 7 10
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