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In nature, intelligent living beings have developed emotions to modulate their behavior as a 
fundamental evolutionary advantage. However, researchers seeking to endow machines with this 
advantage lack a clear theory from cognitive neuroscience describing emotional elicitation from first 
principles, namely, from raw observations to specific affects. As a result, they often rely on case-
specific solutions and arbitrary or hard-coded models that fail to generalize well to other agents 
and tasks. Here we propose that emotions correspond to distinct temporal patterns perceived in 
crucial values for living beings in their environment (like recent rewards, expected future rewards 
or anticipated world states) and introduce a fully self-learning emotional framework for Artificial 
Intelligence agents convincingly associating them with documented natural emotions. Applied 
in a case study, an artificial neural network trained on unlabeled agent’s experiences successfully 
learned and identified eight basic emotional patterns that are situationally coherent and reproduce 
natural emotional dynamics. Validation through an emotional attribution survey, where human 
observers rated their pleasure-arousal-dominance dimensions, showed high statistical agreement, 
distinguishability, and strong alignment with experimental psychology accounts. We believe that the 
framework’s generality and cross-disciplinary language defined, grounded on first principles from 
Reinforcement Learning, may lay the foundations for further research and applications, leading us 
toward emotional machines that think and act more like us.
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The capacity for emotions of varying complexity has evolved as an intrinsic and essential constituent of the 
mental processes in living beings displaying intelligent behaviors1,2. The reason is well supported by established 
disciplines such as neuroscience3–5, psychology6–8, and biology1,9: contrary to western philosophical tradition, 
which views them as detached from reason and hindering rational thought, emotions-and related phenomena 
like affects, feelings or sentiments-are currently understood as an evolutionary advantage, as first-order 
psychodynamic forces enhancing an organism’s adaptability to its environment, supporting the ultimate goal 
of survival. They play a crucial role in learning and in social behavior, and evidence suggests that damages in 
emotional components of the brain are severely detrimental to decision making3.

To date, though, these evolutionary advantages have not been effectively utilized in the field of Artificial 
Intelligence (AI), in which the study of emotions and feelings, vigorously developed since the 19th century, has 
had limited resonance. This stands in stark contrast to the profound influence exerted on AI (and vice versa) by 
breakthroughs from neuroscience, such as artificial neural networks10,11, bioinspired neural architectures12,13, 
and attention mechanisms14,15); biology, with examples like evolutionary algorithms16,17, multi-agent systems18 
or swarm intelligence19; and psychology, for example goal-oriented behavior or reinforcement learning 
(RL)20. Instead, AI research has historically concentrated on emulating human reasoning, namely, the rational 
performance of our natural minds, relegating their emotional dimension to a second plane, or most frequently 
neglecting it. The field concentrated in the ascription of reason, or ‘cold logic’, to machines21,22.

But relevant voices have raised the issue that AI might be missing a key element to the flexibility, creativity, 
and efficiency of animal minds, suggesting a potential necessity for emotions in achieving true intelligence23,24. 
It has been argued that our current understanding of psychology and neuroscience brings into question the 
possibility of ‘pure rationality’ devoid of what we know as emotions25.

Early attempts to integrate emotions into AI focused on simulating their expression during human-computer 
interactions for more believable agents26,27, evolving into their detection in human inputs, such as emotion 
recognition from text, speech, or facial expressions28–30. Significant advancements have been made in this 
domain, particularly with the application of machine learning to physical and physiological signals like EEG 
(electroencephalogram), enabling more accurate cross-subject emotion recognition31,32. Additionally, the use of 
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fuzzy logic or emotion-adaptive control systems in human-machine interfaces has expanded the capabilities of 
these systems, allowing for more nuanced interactions that account for emotional states33,34. With applications 
spanning brain-computer interfaces, empathic human-computer dialogue, assisted decision-making, and virtual 
reality35, the field is clearly making steady steps toward developing agents that can both understand and display 
emotions.

In contrast, much less progress has been registered in the complementary field of emotion synthesis, where 
this research is focused. Here, the fundamental challenge remains: creating AI agents that can elicit emotions 
truly comparable to natural ones. Most research in this area is predominantly theoretical23,34,36–39, with little 
practical advancement in learning, synthesizing, and integrating emotions in AI models and frameworks25. Even 
in RL, where some potential has been shown, the impact is limited, and current approaches often rely on pre-
programmed, narrow emotion ranges or case-specific, arbitrary emotional models40,41. Innovative exceptions 
are rare and typically constrained to small, predefined emotion sets42, or tailored to specific environments, 
exhibiting limited generality43,44.

This slow integration of synthetic emotions in AI may have been caused by challenges in defining and 
measuring emotions, historical emphasis on rationalism over emotion3, and the success of classic, reason-based 
AI45. However, one major deterrent may be the absence of a universally accepted psychological framework 
explaining how emotions develop from raw inputs and prior learning, that specialists can adapt for AI41. 
Psychology itself lacks consensus on fundamental aspects, including the definition of emotions, their types, and 
terminology (emotion, affect, sentiment, etc.)46. Disagreements extend to the nature of emotions (discrete6,47, 
dimensional7, or mixed48), their triggers and physiological responses8, and whether they are universal5,6 or 
culturally dependent49.

The work presented here, building on key breakthroughs in these fields, aims to bridge this gap by defining 
such a framework from a computational perspective, motivated by the possibility that there lies an unrealized 
potential in truly emotional AIs.

A generic self-learning emotional framework
Inspirational background
Drawing on insights from neuroscience, psychology, and biology, we approach artificial emotions from a 
functional and information-theory perspective. We analyze the end-to-end dynamics that transform original 
perceptions into emotions, examining their triggers, intensity, sequence, and, critically for their synthesis, the 
cognitive abilities that each requires. Our goal is to reconcile, integrate, or extend existing AI frameworks and 
methods to understand and emulate emotions functionally, rather than replicating them at a low level.

Key factors that play a role in the emotional phenomena and guide our research include: 

 1.  Perception: Rooted in neuroscience, perception is the initial stage of cognition, where sensory neurons cap-
ture external stimuli (like retinal photoreceptors or pain nociceptors). In combination with past experiences, 
perceptions are processed into increasingly abstract concepts, structuring a perceived reality into an internal 
representation50, crucial for emotional phenomena51.

 2.  Reward and pain signals: Emotions are linked to the limbic system, including structures like the hypothal-
amus and amygdala. The reward circuit and pain signals, forming the ‘common neural currency’52 guiding 
animal behavior53, are fundamental to emotional experiences. These subjective signals, our referential scale 
for what feels ‘good’ or ‘bad’, are shaped by individual homeostatic dynamics, maintaining the organism’s 
internal equilibrium54,55.

 3.  Retrospection: Past experiences heavily influence the emotional state, strongly correlated with recent out-
comes56,57 and with the perceived sign of trend changes58. Additionally, repeated exposure to a reinforcing 
stimulus leads to ‘habituation’59, while neutral exposures result in ‘extinction’60.

 4.  Anticipation: Essential for their survival, animals predict future rewards using perception and memo-
ries, encoded in human neurons within the basal ganglia, midbrain, parietal, and cortex61, linked to dopa-
mine-producing neurons62. Dopamine, key in reward prediction learning63, is widespread in animal phyla, 
with octopamine as its counterpart in Arthropoda64.

 5.  Knowledgeability: Some emotions may be associated with cognitive representations of the environment 
(such as surprise or curiosity)65, or with beneficial or harmful elements based on an individual’s subjective 
reality66,67.

 6.  Feedback mechanism: Lastly, emotions can act as signals, communicating internal states to the external 
environment and influencing interactions-such as fear or anger, signalling threats to others and prompting 
specific responses1,6,68. Internally, emotions can also guide behavior adjustments, maintaining balance and 
achieving goals3,5.

 7.  Cognitive gradation: All these factors engage specific brain regions and cognitive abilities, unique to each 
species, suggesting a progression or genealogy of emotions, as described in biology1,69.

Introduction to the framework
In alignment with this foundational background, we propose here a generic, fully self-learning emotional 
framework for AIs that, based on first principles from the field of RL, allows any agent interacting with an 
environment to automatically learn, elicit and utilize its own synthetic emotional spectrum, convincingly 
resembling the natural emotions described in the literature. An overview of the framework is explained here, 
while its formal description and detailed methodology can be found in the supplementary section ‘Theoretical 
framework’. The framework is based on the following fundamental hypothesis:
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Hypothesis: All emotions correspond to distinct temporal patterns perceived in crucial values for a living 
being, such as recent rewards, expected future rewards or anticipated world states.

Consequently, given that said crucial values, generated as cognitive variables, are determined by the individual’s 
specific cognitive abilities, they condition the complexity of the emotions experienced. The most basic ones 
reflect trends or patterns in reward / punishment signals, while increasingly sophisticated emotions integrate 
their subjectively anticipated values, anticipated world states, associations with other individuals or objects, etc. 
(Unlike in psychology or neuroscience, the term ‘reward’ encompasses positive and negative outcomes in RL, 
rarely using punishment for the latter, a convention that we also follow henceforth.)

This, in turn, suggests the viability of AI agents in RL automatically learning such patterns too, based on 
historical information-or subjective experiences-underpinning the self-learning framework introduced here.

Example In Fig. 1 we introduce the main components of the proposed framework with an illustrative example 
of a simplified bioinspired RL setup. An AI agent’s goal is to survive in an environment where energy sources-the 
reward signal-are scarce and disputed with other agents. Its energy slowly diminishes over time (for example, 
average reward ≈ −0.1), but it can perceive its nearby environment as a state, and is endowed with simple ac-
tuators for displacement, feeding and combat. Its cognitive abilities include a short-term-or replay-memory, a 

Figure 1. How emotions can be learned from experiences, then elicited and interpreted. (a), Learning: 
A reinforcement learning agent’s interactions are registered as sequences of multivariate time series 
(instantaneous reward and future predicted rewards-or state-value-in the example). An emotional encoder 
(such as a deep autoencoder) is trained unsupervised on the sequences, encoding them into a low-dimensional 
latent space. Distinct dynamic patterns in the sequences emerge as clusters whose centroids can be mapped 
to known emotional reference profiles (showing three here for simplicity). (b, c), Elicitation: The extended 
actor-critic architecture of an emotional agent integrates an emotional encoder storing the latest observed 
values (e.g., rewards and state-values), dynamically encoding ongoing sequences into instantaneous emotions. 
This encoded emotion extends the perceived state, enriching the policy’s input with an internal emotional state. 
Its training is not necessarily driven by the temporal difference (TD) errors. (d), Interpretation: Instantaneous 
emotions can also be mapped to known referential profiles for external interpretation or communication to 
other agents. A probabilistic clustering model can be used (e.g., Gaussian mixture) to predict their distribution 
probabilities over all clusters, associating them to the clusters’ preassigned profiles. The example interprets six 
consecutive profiles out of the 30 combinations in a LOVE 2:5x6 interpretability mapping (two observed values 
with 5 and 6 possible patterns respectively; see supplementary ‘Interpretation of the learned emotions’ and 
Fig. 2 for details). (Figures created by Alberto Hernández Marcos.).
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state-based prediction of future rewards-or state-value function-and a policy defining its behavior. As shown in 
Fig. 1a, the agent observes sequences of recent and predicted rewards during the simulation, producing differ-
entiated temporal patterns as sequences of multivariate time series (MTS). We now describe how such patterns 
can be associated with emotions.

During a continuing successful execution without foreseeable hurdles, the agent would observe a series of 
positive rewards along with equally positive predictions, which might correspond to happiness. Contrarily, 
a disastrous and irreparable situation-such as a damaged actuator preventing progress-would yield a series 
of negative rewards and equally negative predictions, which might correspond to distress. Some other basic 
emotions might be equally described from similar stable patterns, or emotional reference profiles, like concern or 
optimism (top rows of Table 1).

Crucially, within the framework, values are deemed positive, average or negative based on their comparison 
with historical observations, thus capturing the pivotal role of homeostasis in emotions (for instance, a positive 
reward that is substantially lower than the average reward would be considered as negative).

Other emotions can be associated with the dynamics of change, corresponding to recent trends of increases or 
decreases in these values, for example excitement and frustration (middle rows of Table 1). Finer interpretation 
of temporal trends allows the differentiation between closely linked emotions like anger and fear (bottom rows 

Figure 2. How cognitive abilities determine the emotional spectrum. A gradation of emotional spectra arises 
from increasingly higher cognition based on Latest Observed Values Encodings (or LOVE patterns) relative 
to subjective historical averages. (a), Order I. Immediacy: a single instantaneous reward value defines the 
simplest spectrum. (b), Order II. Retrospection: a short-term memory of the latest rewards allows elementary 
emotional dynamics. (c), Order III. Anticipation: the ability to predict future rewards (state-value) defines a 
much richer learnable spectrum of predictive dynamic emotions, which is used in the case study.

 

Latest rewards Latest predictions Emotion Rationale

Positive Positive happiness Successful execution, no foreseeable hurdles

Negative Negative distress Poor execution, no foreseeable improvements

Average Negative concern Regular execution, expected to worsen

Average Positive optimism Regular execution, expected to improve

... ... ... ...

Average Increased excitement An opportunity emerged during regular execution

Decreased Average frustration A reward stopped being received

... ... ... ...

Average Decreased-to-average anger A threat arose, seen as potentially addressable

Average Decreased-to-negative fear A threat arose, seen as hardly addressable

Table 1. Association of some emotions to latest observed values.
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of Table 1), where cognitive appraisal of the agent’s control on its chances to overcome the challenge reflects a 
slight or steep drop respectively70.

We introduce the following additions to the classic RL setup (Fig. 1a):

 – an emotional encoder (or emotional model) which, trained on various MTSs experienced, learns its latent 
features as a low-dimensional representation Ψt ∈ Rd representing the emotional state at time-step t;

Figure 3. Learning emotions in a practical case study. The emotional framework was tested on the classic 
RL environment LunarLander-V2, on which an actor-critic PPO model (see “Methods”) had been previously 
trained to solve the task. (a), Learning the emotions from experience: The trained agent was run on new 
scenarios to obtain a dataset with stepwise values for reward and state-value. A 1D-Convolutional autoencoder 
was then trained on sequences from the dataset, and their low-dimensional latent representation obtained 
(as shown in the 2D graph using t-distributed stochastic neighbor embedding, or t-SNE). Finally, a clustering 
model identified eight distinct, uneven-sized clusters, whose prototypical sequences are shown on the right as 
20-step average sequences of reward and state-value, where the shaded areas indicate the standard deviation. 
(b), Interpreting the learned patterns. Mapping the patterns against Order III - LOVE 2:5x6 reference profiles 
identified seven basic emotions, one of them in two degrees of intensity. (c), Interpretation of the learned 
emotional space. The distribution of the learned emotions over the latent emotional space is shown in this 2D 
t-SNE graph. The overlapping between the identified classes, originating from the continuous nature of the 
5-dimensional values, is accentuated in their 2D representation.
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 – an emotional interpreter which, trained on the value distribution of ψ over the latent space Rd, maps its val-
ues to emotion terms for human interpretation, based on known reference profiles.The use of the emotional 
encoder within an extended RL architecture allows the emotional agent to dynamically elicit instantane-
ous emotions, enriching the state used by an emotionally-enabled policy with a subjective, emotional state 
(Fig. 1b, c). For interpretability, the emotional interpreter can be used during the execution of the task to map 
instantaneous emotional states to known terms. Fig. 1d illustrates how a longer succession of events and their 
temporal patterns is associated with a series of coherent consecutive emotions. Richer emotional sequences 
in an actual RL environment, covering entire episodes, are discussed in ‘Results’.

This illustrative example describes the core ideas of the framework based on a limited set of cognitive values, 
namely, reward and predicted rewards (or state-value). Agents endowed with higher cognitive abilities, like a 
world model anticipating future states, or social associations, would acquire more complex emotions, belonging 
to higher emotional orders, but are left out of this introduction (see overview in Fig. 2). A detailed definition 
of the framework can be found in ‘Theoretical framework’ (see Supplementary information), formalizing the 
concepts of emotion, emotional encoder, emotional spectrum, emotional orders (the agent in Fig. 1 was Order 
III), etc., as well as the detailed methodology applied to the case study.

In conclusion, we have introduced how the proposed framework captures the natural foundations described 
above, extending the RL framework to allow the learning, elicitation and utilization of synthetic emotions, as 
well as their external interpretation. The framework integrates objective perception (external state and rewards) 
with internal, subjective appraisals and the homeostatic definitions of average based on past experiences. The 
case study included in ‘Results’ illustrates how this synthetic emotional system naturally reproduces other 
well-known dynamics: elicitation/decay, coexistence, alternation, subjectivity, environment-dependency, and 
confusion.

Results
Application of the framework on a practical case study
The methodology was applied and tested in an RL case study using the classic LunarLander-v2 environment71, 
selected for its simplicity (short episodes of 250–300 time-steps, and a maximum of 1000 for failed episodes), 
and the variety of life-or-death situations it presents for the simulated pilot, with potential for basic emotions 
spanning intense emotional ranges. Additionally, the lack of any emotional cues-no in-game character, face or 
body language is shown-guarantees an unbiased emotional attribution test.

By applying the steps detailed in ‘Methods’, the following two models were obtained (Fig. 3a):

 – Emotional encoder: A deep autoencoder (DAE)72 was trained on 20,220 landing sequences experienced by a 
previously trained RL agent. The input values used were 20-step sequences of reward and state-value, in order 
to obtain an Order III emotional agent (see ‘Theoretical framework’ in the Supplementary information), gen-
erating their 5-dimensional step-wise representations.

 – Emotional interpreter: A probabilistic Gaussian mixture model was trained on the 5-dimensional latent space 
learned by the emotional encoder, identifying eight distinct, uneven-sized clusters, whose centroids repre-
sented their respective prototypical multivariate sequences. For their interpretation, an Order III - LOVE 
2:5x6 mapping was used (2 values, 5 reward × 6 state-value patterns, for more accurate mapping of clusters 
3 and 7 than LOVE 2:5x5 in Fig. 2c).After the theoretical validation of its terms (see “Theoretical validation 
of LOVE profile terms”), the mapping was applied to the sequences, and seven differentiated basic emotions 
were identified (distress, optimism, neutral, satisfaction, concern, excitement and fear), one of them in two 
degrees of intensity (optimism and high optimism) (Fig. 4). The predominant class (cluster 2, with 29.8%), 

Figure 4. Interpretation of the instantaneous emotion. The emotional agent was tested on unseen scenarios 
and step-wise emotions synthesized by the learned emotional encoder based on the latest observed values of 
reward and state-value. The learned clustering model predicted the step-wise probability distribution of each 
encoded emotion over the eight clusters. In the image, where the agent is having difficulty aiming the spaceship 
toward the lunar base, a lower-than-average state-value (still unnormalized on the left) distinguishes ‘concern’ 
as the predominant emotion (cluster 5).
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technically classified as neutral, shows a distinct below-average state-value and was treated as neutral/slight 
concern. As for the more clearly valenced emotions emerged, their distribution reflects its overall good com-
petence at landing, with ‘positive’ emotions (optimism, satisfaction, high optimism, excitement) totalling a 
44.1%, while ‘negative’ emotions (distress, concern, fear) only add up 26.1%.

The fully-interpreted emotional spectrum in Fig. 3c suggests clearly natural transitions, critical for the utility 
of the model, such as: (a) neutral → excitement → optimism → high optimism → satisfaction; (b) neutral → 
concern → distress; (c) neutral → fear, etc.

To further validate its credibility, the agent was tested on unseen scenarios, step-wise emotions were 
synthesized by the emotional encoder and their probability distribution over the eight clusters was predicted by 
the clustering model (Fig. 4). Building on this, Fig. 5 vividly illustrates the stepwise elicitation and interpretation 
of the learned emotions during two complete episodes: a successful and a failed landing.

In summary, we found that the methodology spontaneously learned eight basic, recognizable emotions in 
an unsupervised manner. The synthetic emotional system naturally reproduced well-known natural emotional 
dynamics like:

 – Elicitation and decay of step-wise emotions in synchrony with external changes observed and internal cog-
nitive appraisals;

 – Natural emotion transitions, with coexistence and progressive or sudden alternation driven by external and 
cognitive changes;

 – Homeostasis, based on the agent’s subjective experience of average values registered;
 – Subjectivity, with dependency on the individual’s appraisals (from the state-value function) and said home-

ostatic references.
 – Environment dependency, with the emotional spectrum shaped and determined by the specific historical 

interactions between agent and environment;
 – States of shock and confusion, with fast-overlapping negative emotions in highly unstable situations.The re-

sults illustrate as well how, by associating instantaneous emotions with continuous values characterized by 
non-uniform distributions-which tend to give rise to clusters-the framework seamlessly integrates principles 
derived from both discrete and dimensional emotion theories, experimentally described in the literature73.

In this experiment, however, with very short-lived episodes, the documented dynamics of ‘habituation’ and 
‘extinction’ were not reproduced, despite their feasibility within the framework, as analyzed in ‘Discussion’.

Finally, in most clustering models tried, two axes consistently aligned with key emotion dimensions from 
psychology: pleasure (or valence) and arousal. For instance, in Fig. 3c, the horizontal axis (pleasure) arranges 
emotions from negative (concern, distress, neutral/slight concern, fear) to positive ones (excitement, optimism, 
satisfaction, high optimism). The vertical axis (arousal) sorts emotions from low (neutral/slight concern) to 
high (distress, fear, satisfaction), with the others in-between. The significance of this alignment with historically 
documented emotion dimensions remains unanalyzed.

Experimental validation of the learned emotions
Emotional attribution test with humans
To validate whether the synthetic emotions learned reflected true natural emotions, an emotional attribution 
survey was executed, comparing the subjective observations made by 96 independent participants during 48 
different short sequences against their previously attributed emotion terms-concealed to them. The methodology 
used was Lang’s Self-Assessment Manikin (SAM)74, an extensively applied evaluation technique that directly 
measures emotional responses on three dimensions: pleasure, arousal and dominance (PAD)75, by rating each 
from 1 to 9 (see “Experimental validation of learned emotions with humans” for details and the Figure in 
’Extended data’).

Upon analyzing the 2304 PAD data points registered, we observed that their average values, both by 
sequence (Fig. 6a) and attributed emotion (Fig. 6b), reflected a differentiated emotional spectrum. PAD values 
corresponded well with their associated emotions; for instance, sorting by pleasure shows a logical progression 
from negative to positive emotions: distress, fear, concern, neutral/slight concern, excitement, high optimism, 
optimism, satisfaction (with the exception of the two optimism states, similar in pleasure, distinguished though 
by the higher arousal attributed to high optimism). Notably, low arousal ratings were scarce, likely due to the 
dynamic, high-stakes nature of the sequences, with most ratings falling between 5 and 7.

The values for dominance, spanning from 2.5 to 7.2, were highly correlated with pleasure in this environment, 
and the ordering of emotions from ‘low’ to ‘high’ is almost the same: distress, fear, concern, neutral/slight 
concern, excitement, optimism, high optimism, satisfaction. The less clearly identified class was excitement, 
showing the highest dispersion in pleasure and dominance.

The test obtained a high reliability, with a high degree of agreement on PAD values for each video sequence 
across raters, according to the ICC2k statistical tests run (Intraclass Correlation Coefficient, two-way random 
effects model, absolute agreement) (see the Table in ‘Supplementary information’).

Equally remarkable, the underlying hypothetical emotions, despite being unknown to the raters, showed a 
high degree of statistical distinguishability according to the Hotelling’s T-squared pairwise tests run: optimism 
and high optimism were the least distinguishable emotions (with p = 0.116), followed by excitement and 
neutral (p = 0.002), while all other pairwise comparisons showed p-values well below 0.001 (see the Table in 
‘Supplementary information’).
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Figure 5. Interpreting live emotions. (a), Emotions during a successful landing. Emotional attributions start at 
step 20 (the time window of the encoder) and during this episode, positive emotions convincingly match the 
events experienced by the agent, who only faces a minor incident around step 200 (eliciting fear). Emotional 
transitions happen naturally as reward accumulates (with some hiccups in the 200–230 interval) and 
expectations vary, ending in the sequence neutral-excitement-optimism. The stepwise probabilities frequently 
allow predominant and secondary emotions to blend into richer states (like excitement and high optimism at 
the start). Notice how the smoothing applied imposes some latency to the attributions, but reduces instability 
(for example, a spurious neutral glitch at step 230). (b), Emotions during a failed landing. This episode starts 
with lower expectations than (b) (excitement fails to manifest itself), and concern is elicited at some point 
during the descent. Then the inaccurate landing in a precarious position produces fear, followed by concern 
and distress during the fall, as negative rewards accumulate down to a negative score. Once stabilized at the 
bottom, fear dominates the emotional state; notice though how the probabilistic attributions naturally elicit 
some sort of ‘emotional confusion’ in a hectic situation, with overlapping emotions.
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Mapping versus documented experimental accounts
Finally, to further validate the significance of the learned emotions, the PAD rates obtained for each emotion 
were mapped versus select pivotal experimental accounts from human subjects, numerically documented in 
psychology literature, obtaining significant agreement with some of the most broadly referenced PAD lists, 
selected by their mathematical qualities and impact in their field75–79.

To compare the PAD multivariate distribution obtained for each emotion with the referential PAD values, 
we applied statistical tests (Hotelling’s T-squared) and plain euclidean distance among means, focusing on the 
emotion terms of relevance for our context (short life-or-death landing maneuvers), excluding complex social, 
moral, self-conscious affects (such as kind, guilty, repentant), or the frequent non-emotion terms (like butter, 
cemetery, chair). We identified the three top matches in each account for each emotion, and then produced a 
semantic collage for each learned emotion with the five top matches across authors, obtaining the final mapping 
shown in Table 2:

Remarkably, despite the disparity of terms, PAD values and applied mapping variants, significant agreement 
emerged between the originally attributed terms (from the LOVE 2:5x6 mapping) and their respective top 
matches across authors.

In summary, the videos previously associated with each emotion, invisible to the external raters, were 
described by them with consistent and differentiated values for their pleasure, arousal and dominance 
dimensions, validating their distinguishability and recognizability. The PAD values obtained could then be 
successfully associated with remarkably similar emotions described by their own PAD values in psychology 
literature.

Discussion
In this work, we address emotions, a notably elusive concept across psychology, neuroscience, biology, and 
AI35,80–82. Our proposed framework’s novelty lies in its capacity to associate them with quantifiable, mathematically 
describable temporal patterns, akin to a ‘Periodic Table’ for emotions. This systematic categorization allows 

Learned emotion Top PAD matches across authors

Distress Helpless, Scared, Nervous, Fearful(x2)

Optimism Capable(x2), Optimism, Masterful, Skilled

Neutral/Slight Concern Anxious, Startled(x2), Troubled, Intense

Satisfaction Proud(x2), Confident, Safe, Achievement

High Optimism Capable, Brave, Confident, Strong, Pride (feeling)

Concern Confused, Nervous, Moody, Suspicious, Startle

Excitement Aroused, Startled, Power, Anxious, Impulse

Fear Insecure, Nervous, Thrill, Fearful, Fright

Table 2. Top pleasure-arousal-dominance (PAD) matches across authors for each learned emotion.

 

Figure 6. Results of the emotional attribution study. An emotional attribution survey (n = 96) was conducted 
to rate the pilot’s emotion at the end of 48 short unlabeled sequences. For the test, Lang’s Self-Assessment 
Manikin (SAM)74 was used (see ‘Methods’), capturing the dimensions of pleasure, arousal and dominance 
(PAD) with Likert scales from 1 (lowest) to 9 (highest). (a), PAD attributed to each sequence. Unaware of 
the emotions previously attributed to the sequences, the participants consistently rated samples of the same 
class with similar PAD values, as illustrated by the color mapping. (b), Resulting PAD attribution to each 
emotion. The average PAD values of the videos associated with each emotion show a meaningful and coherent 
progression along the axes.
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for an organized understanding and analysis of their spectrum, facilitating their integration into machine 
learning frameworks-a crucial step toward the goal of enabling artificial agents to generate and process their 
own emotions83,84.

Diverging from affective computing’s focus on external emotion recognition and communication to human 
subjects28–30,35-a rapidly evolving field thanks to the convergence of multiple technologies-our approach directly 
formalizes and integrates self-elicited synthetic emotions within practical emotional agents. Furthermore, unlike 
previous predominantly theoretical, case-specific, arbitrary or hard-coded models23,34,36–44, our transferable 
methodology learns them unsupervised within the RL framework, from first principles, and encompassing their 
entire spectrum, thus responding to a critical challenge identified in the field of AI23–25,85.

Crucially, the proposed framework is both analytically and experimentally verifiable, as shown in the 
‘Results’. The emotional spectrum, learned during unlabelled agent interactions, was automatically grouped into 
eight basic emotions, such as distress, optimism, and satisfaction, obtaining strong empirical confirmation by 
subjective human observers. Participants, who were unaware of the emotions attributed by the system, rated 
pleasure-arousal-dominance (PAD) values during 48 sequences with high ICC2k agreement rates and, most 
relevantly, a strong alignment with the eight learned emotions (high statistical distinguishability in Hotelling’s 
T-squared tests), reflecting situational coherence as well as a natural progression from negative to positive 
emotions. PAD rates also showed significant semantic agreement with five key psychological studies in the 
literature.

The analysis of fully stepwise-interpreted episodes demonstrated that the learned emotions are also relatable 
to documented characteristics of natural emotions, such as the relevance of recent events, homeostasis-driven 
elicitation and decay, natural progressions aligned with external events and subjective appraisals, and the temporal 
coexistence resembling confusion in turbulent situations. The framework effectively integrates both discrete and 
continuous aspects of emotions by representing them as low-dimensional latent points, subsequently interpreted 
through probabilistic clustering. Additionally, the learned emotional spectrum is congruently shaped by the 
dynamics of the environment and the agent’s cognitive abilities. Future testing in new environments, yielding 
diverse emotional spectra, will further validate or challenge these findings.

The integration of emotional agents in RL, not explored in our initial experiments, shows promise. 
Incorporating learned synthetic emotions into the agent’s state, as detailed in ‘Extensions of the actor-critic 
method’, could increase its expected utility. Benefits similar to those in nature, like improved behavioral 
responses, efficient learning, and enhanced social competencies, are anticipated.

Currently though, the framework has only been tested on short-term ‘basic’ emotions, and has not been 
proved to capture retrospective dynamics like habituation (requiring more remote values) and extinction 
(requiring continuous learning of the agent’s functions), as well as emotional associations to external objects 
or subjects (like facilitators or blockers), knowledge-related emotions (like surprise) and higher-order emotions 
(such as social, moral or self-conscious).

‘Habituation’ simply requires the inclusion of moving averages as observed values-with continuous 
homeostatic renormalization-possibly combined with an expanded, smooth emotional window, while ‘extinction’ 
depends on the continuous training of the agent’s subjective state-value function on newly-neutral stimuli. More 
sophisticated cognitive abilities are required for the rest, as well as higher-order interpretability mappings and 
concurrent multiple-range windows, that are not discussed here.

Future testing might also target a broader coverage of the introduced mappings-not fully demonstrated in 
this first case study-or explore new patterns (like high/low decreases or policy dispersion degrees) and their 
potentially uneven prevalence.

More ambitious research might explore the extension of the framework to multiple reward setups, reflecting 
the heterogeneous rewards experienced by living beings (from physical sensations like satiation to higher-
order feelings like self-realization). Likewise, tests incorporating partially observable environments, continuous 
learning, and multi-agent setups-exploiting social aspects of emotions-could enrich our understanding of the 
field and contribute to more comprehensive models.

Finally, in addressing ethical considerations, particularly whether machines should have emotions, our study 
clarifies that the emotions are synthetic and mathematically derived, with no AI experiencing actual suffering or 
enjoyment. However, the spontaneous emergence of emotions in AI, evidenced in apparently unrelated tasks-like 
next character prediction86-and suggested in RL as a byproduct of reward maximization87, cannot be ignored. 
Our framework provides interpretability tools for identifying and understanding such emergent emotions. 
Looking ahead, this clarity could be extended to computational models of empathy, predicting emotions of other 
agents or humans based on their approximate states and values.

We have introduced here a universal emotional language learned from first principles in reinforcement 
learning and inspired by primary cognitive variables like reward/punishment signals and predicted future 
values. The supporting theoretical framework and demonstrated methodology are, to the best of our knowledge, 
the first successful attempt to formally describe and synthesize a full range of recognizable, functional emotions 
of comparable characteristics to those of living beings. This pioneering work not only bridges the gap between 
artificial and natural emotional processes, but also opens new avenues for exploring the intersection of cognition, 
emotion, and machine learning. We believe that the generality of our framework could lay a foundation upon 
which further research and applications will lead us toward emotional machines that think and act more like us.

Methods
Application of the framework on a practical case study
Here we detail the exact step-by-step procedures followed to obtain the results described in ‘Results’ in the classic 
RL environment chosen, which can be applied to other RL setups with little modification.
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Learning emotions from experience
Pre-training of a conventional RL agent. For simplicity, the offline learning approach was chosen, in which the 
emotional model is trained with the experiences collected by an already competent non-emotional agent. The 
open-source library OpenAI’s Spinning Up88, compatible with OpenAI’s Gym71, was chosen because its modular 
and well-documented implementation of RL algorithms facilitated the extensions required for the experiments.

The chosen method, actor-critic PPO (Proximal Policy Optimization)89, from the policy-gradient family, is 
broadly used for its stability during training, avoiding too large policy updates. Its training learns both a policy 
π (the actor) and a value function v (the critic).

The non-emotional agent was trained to solve the task (average episode reward ≥ 200 over 100 consecutive 
episodes), with these features:

 – Agent: Actor-critic PPO model, artificial neural network architecture: (64, 64), activation function: rectified 
linear unit (ReLU), seed: 10;

 – Hyperparameters: gamma: 0.99, lambda: 0.97, policy learning rate: 0.0003, state-value function learning rate: 
0.001, target Kullback-Leibler (KL): 0.01.The architectures explored involved combinations of 1-2-3 hidden 
layers, 32-64-128 neurons per layer, ReLU/tanh activation functions, and varied seeds.

Dataset generation. Selection of input values and emotional window. The trained agent was run on unseen 
scenarios to obtain a representative dataset of 60 episodes as MTS with stepwise values for a broad set of potential 
variables (reward, state-value, temporal difference, average reward, exponential moving average reward, and 
cumulative reward).

Upon review of the recorded episode dynamics and MTS, an Order III target mapping was chosen, for 
which only reward and state-value were required (see discussion of alternatives in the ‘Theoretical framework’, 
‘Emotional orders’). (We anticipate that this mapping may perform well in a large variety of setups for its 
potential to capture a broad range of short-term, fundamental emotions with moderate, addressable complexity.) 
A tentative value for the emotional window was set at 20, expected to suffice to capture instantaneous emotions, 
and later corroborated by results.

The resulting dataset contained 20,220 20-step long sequences from the recorded MTS (training/test split = 
16,281/3939). The two-variables (reward, state-value) were z-score normalized for training based on training-set 
statistics, thus establishing their average values as homeostatic references.

Training of the emotional model from dataset sequences. A 1D-Convolutional Autoencoder-a type of deep 
autoencoder (DAE)72 whose architecture is suitable for time series-was chosen for the task of representation 
learning (as explained in ‘Supplementary information’, ‘Model architecture’). The model was trained and tested 
on the dataset in an unsupervised manner to reproduce 20-step × 2 values normalized MTS sequences by 
learning their latent representation in a low-dimensional latent space90.

We used the Keras/TensorFlow library91, defining an encoder and a decoder with these features: encoding_
dim = 5, l1_filters = 32, l1_kernel_size = 5, l1_strides = 2, l2_filters = 16, l2_kernel_size = 5, l2_strides = 2, 
padding = ‘same’, activation = ‘relu’. The separate encoder, used for emotion elicitation, consisted of 3,333 learned 
parameters. The training took 29 epochs with batch_size = 10 and validation_split = 0.1.

Various architectures and parameters were tested, including different encoding dimensions. Among these, 
an encoding dimension of 5 provided the best balance between reproduction root mean squared error (RMSE) 
and compression ratio. For this configuration, the RMSE values were 2.97119 for rewards and 4.32781 for state-
values, with a compression ratio of 5:40. Although an encoding dimension of 10 resulted in lower RMSE values 
(2.48047 for rewards and 4.21228 for state-values), it produced a less favorable compression ratio of 10:40.

As noted, the model was not designed for input regeneration or denoising, but rather to capture high-level 
trends and magnitudes within the observed sequences. For context, the reward time series ranged from [− 100, 
100], with a mean of 0.67 (standard deviation: 5.60), while the state-value time series spanned from [− 12.37, 
109.51], with a mean of 62.41 (standard deviation: 18.99).

Elicitation of emotions
The trained emotional encoder obtained was used to encode the ongoing sequences of latest observed values 
from the full dataset, obtaining their 20,220 latent representations in the 5-dimensional latent emotional space. 
This was the emotional spectrum data used for interpretation. (The integration of the emotional encoder within 
the extended RL actor-critic architecture introduced in Fig. 1c was not addressed in this experiment.)

Interpretation of the learned emotions
Clustering of the emotional spectrum. To identify the distinct dynamic patterns in the emotional spectrum 
captured, a probabilistic Gaussian mixture model was trained on the latent space learned. This method models 
data as a mixture of a number of Gaussian distributions, capturing its covariance structure in clusters of uneven 
spatial extents, which suited the nature of the problem.

For the clustering of the latent space, we trained a probabilistic Gaussian mixture model from the Scikit-
learn library92 and found the most promising clustering distributions to consist of 7 or 8 clusters, with minimal 
BIC scores (Bayes Information Criterion) and sufficient differentiation, although somewhat dependent on the 
initial random seed. The final choice was arbitrary, following practical experimentation on real sequences, and 
settled on 8 components with covariance type = ‘full’ (assigning to each component its own general covariance 
matrix). This approach exhibited satisfactory performance, thereby obviating the need for automation. The 
eight resulting classes, along with the average multivariate sequence representing their corresponding cluster 
centroids, are shown in Fig. 3a.
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Selection and validation of the interpretability mapping. To map the eight resulting clusters with familiar 
emotion terms, the LOVE 2:5x5 mapping was initially tried (corresponding to the Order III emotional spectrum 
learned, with two values: reward and state-value (Fig. 2c), and then extended to LOVE 2:5x6 for a more accurate 
denomination of emotions 3 and 7 (Fig. 3b). This allowed the distinction between anger and fear based on the 
individual’s appraisal on its certainty and control on future outcomes (with anger associated with a decrease to 
average, and fear with a decrease to negative70).

The final terms for the eight emotions learned in this use case, as well as for the full set of thirty, were 
theoretically validated as described in ‘Theoretical validation of LOVE profile terms’, verified in live simulations 
and, finally, experimentally contrasted with external references (see ‘Experimental validation of the learned 
emotions with humans’).

Attribution of emotion terms. Based on the LOVE 2:5x6 mapping, the eight patterns were analytically 
associated with the following best-matching emotion terms (see Fig.  3a,b; note that the y-axis of the eight 
learned patterns is in logarithmic scale):

 – Cluster 0: Distress (reward: below-average values; expectation: negative, well below −σ values). The high vari-
ance of reward reflects very uneven values, which was deemed as subjectively negative due to the well-studied 
loss aversion principle (the pain of a loss is felt by individuals twice as intensively as the pleasure of an equiv-
alent gain93).

 – Cluster 1: Optimism (reward: average values; expectation: positive values around +σ).
 – Cluster 2: Neutral/slight concern (reward: average values; expectation: below-average values). The most fre-

quent emotion in this always uncertain environment (29.8% of the samples) falls closer to neutral than to 
concern, but the low expectation pattern justifies the compound naming.

 – Cluster 3: Satisfaction (reward: increased values; expectation: decreased-to-average values). The least frequent 
emotion, triggered upon reception of a significant reward, with expectations decreasing accordingly

 – Cluster 4: High optimism (reward: average values; expectation: well above +σ values). Technically, both 1 and 
4 match Optimism, but expectations in 4 significantly exceed +σ.

 – Cluster 5: Concern (reward: average values; expectation: negative, well below −σ values).
 – Cluster 6: Excitement (reward: average values; expectation: increased values).
 – Cluster 7: Fear (reward: average values; expectation: decreased to negative values).Finally, the stepwise prob-

abilities predicted by the emotional encoder were smoothened for more stable cluster attributions and easier 
external interpretation: a moving average of 5 steps on values and a minimal probability of 0.9 as reclassifica-
tion threshold (or, alternatively, a minimal number of consecutive attributions of 10).

Visualization. To visualize the learned emotional space in both 2D and 3D, we used t-SNE (T-distributed 
Stochastic Neighbor Embedding) (see Fig. 3c for 2D and Section ‘Data availability’ for a 3D animation). For 
the 2D representation, the Scikit-learn library92 was employed with the following parameters: seed = 90, n_
components = 2, perplexity = 200, init = ’pca’, and n_iter = 2000.

Although not technically required by the methodology, the use of colors to differentiate the classes learned by 
the emotional encoder was instrumental in the final selection of the autoencoder.

Theoretical validation of LOVE profile terms
The principles described by the theoretical framework provide an initial foundation to associate LOVE 
profiles (idealized patterns of the latest values) with the best possible emotion terms in human language (see 
‘Interpretation of the learned emotions’). However, given the difficulty of the task, their coherence was validated 
and refined both theoretically and experimentally. For the former, a sequence-coherence test was run, following 
this methodology: 

 1.  Attribute an initial term to each of the 30 profiles, based on said theoretical principles.
 2.  Run offline simulations of event-guided, plausible emotional sequences where each profile is a state:

 – Start from a stable state (for example, neutral).
 – Try different sequences involving positive/negative evolutions of rewards and state-value (or expectations), 

with brief explanatory narratives.
 – Discard beyond-scope transitions (such as positive → increased, or negative → decreased).
 – Avoid too many abrupt transitions (positive → negative, negative → positive).
 – End in stable or already visited states.

 3.  Review the resulting term sequences and repeat step 2 till fully natural transitions are obtained in all cases, 
leaving no pattern unused (ideally a few times).For step 2, the sequence-coherence test was iterated and 
refined over thirty-eight simulated emotional sequences with full profile coverage, such as:

Neutral → (An opportunity arises...) → Excitement → (and seems to hold.) → Optimism → (Suddenly the 
opportunity vanishes...) → Anger → (and we are back to normal.) → END.

For additional clarity, a flow chart illustrating some examples of simulated emotional sequences is included in 
‘Extended data’ under this same title.

Experimental validation of learned emotions with humans
The following methodology was used for the emotional attribution survey and its ensuing mapping to psychology 
literature references.
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Emotional attribution test with humans
Dataset. A representative list of 3–6 s long sequences was automatically selected from the dataset in which one 
specific learned emotion clearly prevailed over the others (six for each of the eight learned emotions, totalling 48 
sequences at different stages of the landing maneuver). This guaranteed equal representation of all eight emotions 
(which presented some difficulty in the case of 3, satisfaction, the least frequent emotion, often smoothened out 
at sequence end by the probability smoothing applied).

To reduce the effect of fatigue on raters, the test was randomly split in two evenly-distributed lists of 24 videos 
(A and B), the sequence order further randomized in two versions each, and raters assigned alternating versions 
(A1, A2, B1, B2, A1, etc.).

The tests with Lang’s SAM manikin. All participants were adult volunteers who were native Spanish speakers, 
recruited from diverse academic and professional backgrounds. A subset of 26 participants received university 
credits as acknowledgment for their involvement. The study was conducted online, in Spanish language, and 
after registering and giving legal consent, an introduction was displayed explaining the dynamics of the study, 
the information shown during the sequences, the scoring system and the mission of the agent trying to land on 
a lunar base, described as a life-or-death task.

Once familiarized with the agent’s task, Lang’s Self-Assessment Manikin (SAM)74, a test extensively applied in 
psychological experiments and market research, was introduced to the participants. They were allowed to try it 
on two practice videos, characterizing a successful and a failed landing, whose respective results were discarded.

Finally, the subjects proceeded to the test, and for each of the 24 videos, reproduced on a separate screen, they 
were asked to describe the emotions they would associate to the state of the pilot at the end of each sequence 
using SAM. The test had no time limit, the videos could be played as many times as desired and ratings could be 
reviewed before the final submission.

SAM is a pictorial assessment technique that directly measures emotional responses on three main 
dimensions: pleasure, arousal and dominance75, associated with a person’s affective reaction to a wide variety of 
stimuli, typically by rating each dimension from 1 to 9 on a Likert scale. Some SAM tests incorporate a collection 
of words positioned at the relevant end of each Semantic Differential scale to identify the anchors of each 
dimension to the subject94. These original terms95 were predominantly translated to Spanish from the version by 
Gurbindo96, supplemented with nuanced contributions derived from the French version by Detandt97. The final 
terminology and set-up used is shown in ‘Supplementary information’.

Statistical significance. The study engaged raters aged between 18 and 64 (n = 96), with a fairly even split of 
53 males and 43 females. The majority of participants (89) held a University degree, reflecting a diverse pool of 
individuals with varied educational backgrounds for comprehensive statistical analysis.

Test reliability. In order to assess the reliability of the ratings, the ICC2k statistic was used (Intraclass 
Correlation Coefficient, two-way random effects model, absolute agreement). The pleasure and dominance 
dimensions obtained ‘excellent’ correlation rates according to the orientative criteria by (Koo, 2016)98 (greater 
than 0.90) and (Cicchetti, 1994)99 (greater than 0.75), while arousal achieved ‘good’ per one guideline (between 
0.75 and 0.90) and ‘excellent’ per another (greater than 0.75) (see Table in ‘Extended data’).

PAD values attributed to the 48 videos. Each of the 48 sequences was assigned a pleasure, arousal and 
dominance (PAD) triad of values, obtained as an average of the registered values, as shown in Fig. 6a. Tables with 
the obtained values and Pearson correlation values are included in ‘Extended data’.

PAD values attributed to the eight learned emotions. Similarly, each of the eight emotions was assigned 
a PAD triad of values as an aggregation over all raters from its six corresponding videos. The results can be 
visualized in Fig. 6b, and their values and correlations in ‘Extended data’.

Distinguishability of the learned emotions. To accurately validate the distinguishability of the eight 
emotions from their assigned PAD values, the robust Hotelling’s T-squared statistical test was used, comparing 
the distribution of each pair of multivariate samples.

Mapping versus documented experimental accounts
The PAD values of each learned emotion, obtained from human ratings, were compared to select pivotal 
experimental findings in psychology literature. From a diverse array of studies and reports, priority was given to 
those offering well-documented values for the three referential dimensions, showcasing the highest significance 
and impact within their field. The references chosen, all of them detailing mean and standard deviation for all 
three dimensions, were: 

 1.  Russell-Mehrabian (1977) [RM]75: 151 emotional states. The terms seem to have been selected by the au-
thors.

 2.  Bradley-Lang (1999) [BL]76: Affective Norms for English Words (ANEW), including 1,034 terms. The list 
contains very heterogeneous terms (like abduction, abortion, absurd, abundance, etc.) along with actual emo-
tions.

 3.  Redondo (2007) [RE]77: Spanish ANEW; 1,034 Spanish words corresponding to the original ANEW with 
newly obtained PAD values.

 4.  Landowska (2018) [LA]78: ANEW-MEHR; 112 words selected from the Russell & Mehrabian’s list with the 
PAD values from ANEW.

 5.  Scott (2019) [SC]79: Glasgow Norms, including 5553 words. The list contains very heterogeneous terms (like 
abattoir, abbey, abbreviate, abdicate, etc.) along with actual emotions.The task required overcoming a num-
ber of difficulties; firstly, we found a high degree of discrepancy in the terms included, heterogeneity of the 
emotional scopes, abundance of non-emotion terms, and other arbitrary peculiarities.
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 – Arbitrariness: the terminologies chosen by the authors, far from conforming a shared, standard set of emo-
tions, often seemed inconsistently artificious (such as weary with responsibility, quietly indignant, proud and 
lonely, snobbish and lonely, in RM), or nuanced (for instance, angry and angry but detached; hostile and hostile 
but controlled in RM). All these terms were kept, despite producing somewhat heterogeneous top-match lists.

 – Heterogeneity of the emotional scopes: All authors seamlessly mingled complex affects (like social, moral, 
self-conscious) with primary, instantaneous or more basic emotions (like fright, anxious, euphoria). For the 
purpose of tagging this agent’s task (short life-or-death landing maneuvers), we did not map the emotions 
associated with social relationships, moral judgements or self-conscious reflections, along with a few overly 
redundant or vague ones and one case of bodily needs (including guilty, kind, repentant, lonely, hungry in RM 
and LA; unfaithful, loyal, insolent, admired in BL and RE; dignity, paranoid, emotional or achievement and 
achieved, frightened and fright in SC).

 – Non-emotions: The scope of some references was not limited to emotion terms, including all sorts of con-
cepts (such as butter, cemetery, chair in BL and RE; abdominal, apple (fruit) or musketeers in SC), which were 
not used for emotional interpretation.The terminology for the three dimensions has also historically dif-
fered among authors (namely, pleasure/valence; arousal/activation; dominance/control); however, we found 
that the more traditional (pleasure-arousal-dominance) model was easier to articulate and comprehend for 
non-expert participants.

As for the methodologies followed by the authors to obtain the PAD values, they also differed in format and 
profile of the participants, which probably contributed to the variance found in the reported values. For example, 
the different values reported for ‘angry’ (within the range of [− 1, 1]) are as follows:

 – RM: (− 0.510, 0.590, 0.250)
 – BL, LA: (− 0.538, 0.543, 0.138)
 – RE: (− 0.700, 0.403, − 0.290)
 – SC: (− 0.652, 0.227, 0.105)Finally, despite all authors reporting standard deviations and number of samples, 

the lack of covariance matrices limited the applicability of standard statistical tests to compare two distribu-
tions, like Hotelling T-squared. To address this, we applied three different methods to map the PAD distribu-
tions obtained from our test for each emotion (sample 1) against reported PAD mean and standard deviation 
values (sample 2), often with unequal results in each table:

 –
 – Method 1: Hotelling T-squared test, assuming three independent variables in sample 2 (diagonal covariance 

matrix).
 – Method 2: Hotelling T-squared test, assuming sample 2 had the same covariance matrix as sample 1.
 – Method 3: Euclidean distance, comparing only the means.To obtain the final mapping of each learned emo-

tion, drawing inspiration from the ensemble of models concept, we independently mapped it against each 
reference table, identifying its three top matches, and then we merged the five top matches across authors into 
a semantic collage (see details in ‘Extended data’).

Data availability
The data used in the case study, as well as some additional graphic material, are available on GitHub at https://
github.com/Alberto-Hache/love-emotional-framework.

Code availability

The code used in the learning, elicitation and interpretation of emotions in the case 
study is available on GitHub at https://github.com/Alberto-Hache/love-emotional-
framework.
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