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A B S T R A C T

Although elevated atmospheric [CO2] has substantial indirect effects on vegetation carbon uptake via associated 
climate change, their dynamics remain unclear. The carbon and nitrogen allocation and partitioning in durum 
wheat were compared at different [CO2] and different water availability. The aim of this study was to investigate 
how the impacts of depleted and elevated [CO2] driven climate change on Mediterranean wheat plants under 
drought conditions. For that reason, double stable isotope labelling using 13CO2 and 15NH4–15NO3 was conducted 
to follow 13C and 15N allocation and partitioning in the different plant organs. Plants were studied in growth 
chambers under three different CO2 environments (depleted, current and elevated) and two water availability 
conditions (well-watered and mild-water-stress). Isotopic 13C and 15N determination, gas exchange analyses and 
growth parameters were measured.

We show that plants subjected to depleted and elevated [CO2] suffered up and down regulation of photo-
synthesis respectively, but their responses were both modulated by water availability. Depleted [CO2] and 
drought reduced plant biomass. However, elevated [CO2], show that the initial positive effect of elevated [CO2] 
on carbon uptake declined rapidly, showing a consequence of physiological acclimation and the inhibition of 
[Rubisco] and activity, this effect was more evident in combination with drought. In both cases, depleted [CO2] 
and elevated [CO2] condition modified the C and N allocation compared with current [CO2], overall combined 
with drought.

These results obtained highlight the different C and N management strategies of wheat and provide relevant 
information about the potential response of plants under global climate change conditions.

Introduction

Climate models have projected that the climate change will have a 
significant impact on climate, plant function, and agriculture, strongly 
reducing crop yields by 2050 (IPCC, 2007; Wing et al., 2021). The rapid 
increase in the concentration of atmospheric CO2 due to continued 
anthropogenic emissions of greenhouse gases in combination with loss 
of biodiversity and change land use are the main factors driving global 
climate change (Jaureguiberry et al., 2022). Terrestrial ecosystems 
absorb − 30 % of anthropogenic CO2 emissions and thus play a funda-
mental role in climate change (Chen et al., 2024) Atmospheric [CO2] 

remained stable at 260 ppm for thousands of years before the Industrial 
Revolution. However, since then, CO2 has steadily accumulated in the 
atmosphere. The global atmospheric [CO2] has increased from its pre-
industrial and continues to increase at a rate of about 2 ppm per year 
(Pagani et al., 1999; Pearson and Palmer, 2000; Tans, 2009). The CO2 
level reached 418.82 ppm in December 2022 (NOAA, 2023). By the end 
of this century, CO2 concentration is projected to reach 700 ppm 
(Oldeman et al., 2024; Prentice et al., 2001).

Moreover, model predictions also indicate that by the end of the 
century, temperatures will increase by between four and five degrees, 
along with changes in the amount and frequency of rainfall and the 
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intensity of tropical cyclones, droughts, and heat waves (IPCC, 2013). 
However, new literature about climatic future scenarios is appearing 
with a contribution of climatic mitigation to reduce the increasing of 
temperature (Kikstra et al., 2022). Drought is a climatic phenomenon 
that can occur periodically in all climatic zones, but occurs with greater 
frequency in tropical, sub-tropical and Mediterranean climatic regions, 
causing physiological damage to plants in ecosystems and agro-
ecosystems (Ciriaco da Silva et al., 2011). Drought affects both plant 
hydraulics and carbon balance because plants respond to decreasing soil 
water availability by reducing stomatal conductance, thereby reducing 
carbon assimilation rates (Yang et al., 2024; Brodribb and McAdam, 
2011). In addition, prolonged droughts cause declines in plant water 
potential (Mitchell et al., 2013), which negatively affect plant phloem 
functioning (Holtta et al., 2009) and can inhibit the mobilization and 
translocation of stored carbon from source to sink tissues (Lal et al., 
2022; Sala et al., 2010; Hartmann et al., 2013).

The rate of CO2 assimilation by plants is directly influenced by at-
mospheric [CO2] (Lorenz and Lal, 2010). Besides, CO2 availability also 
modulates the effects of drought on plants. It has been reported that 
elevated CO2 alleviates the effects of drought stress, because transpira-
tion is reduced when the stomata are partly closed (Cao et al., 2022; 
AbdElgawad et al., 2023), however, some of the mechanisms underlying 
these effects remain unclear (AbdElgawad et al., 2015; Aljazairi and 
Nogués, 2015; Wang et al., 2022). Therefore, it is essential to study how 
plants adapt from depleted [CO2] to current [CO2]. These adaptations 
may help to understand how plants would respond to future increases in 
[CO2] combined with water deficits (Sage and Coleman, 2001; Nogués 
and Azcón-Bieto, 2013; Aljazairi et al., 2014b; Aljazairi and Nogués, 
2015). Changes in precipitation associated with continued CO2 emis-
sions will bring changes in land suitability and wheat yields (IPCC, 
2013). The effect of drought on yield is mediated, to a considerable 
extent, by changes in photosynthetic activity and stomatal conductance. 
Thus, the increases of atmospheric [CO2], temperature, and changes in 
precipitation, have the potential to affect C3, C4, or CAM photosynthesis, 
however, that changes in the atmospheric CO2 levels will more likely 
influence the photosynthetic activities of C3 than of C4 and CAM plants 
(Ehleringer, 2005), specially in wheat (IFPRI, 2013), since the produc-
tivity and quality of this crop is greatly affected by environmental 
conditions, with water stress being the main abiotic constraint on pro-
ductivity (Araus et al., 2002; Dettori et al., 2022). Wheat is one of the 
most important food crops to human populations as it is consumed 
worldwide (Igrejas and Branlard, 2020).

Plants control their stomata to regulate water transpiration, which is 
modulated by [CO2] and water availability in the environment. 
Furthermore, the ability to accurately measure the CO2 responses of 
stomatal conductance, canopy evapotranspiration, and soil moisture is 
an important component of climate change studies (Leakey et al., 2009; 
Wang et al., 2022). Atmospheric CO2 reductions can enhance stress in-
tensity because at depleted [CO2], plants tend to open stomata and 
exacerbate the limitations associated with drought (Sage and Cowling, 
1999; Sage and Coleman, 2001; Marcinkowski and Piniewski, 2024). In 
contrast, under elevated [CO2], plants have lower stomatal conductance 
which should ameliorate water deficits and, in some cases, significantly 
increase plant growth under drought conditions (Morgan et al., 2004, 
2011; Perry et al., 2013; Alza et al., 2024). The opposite effect was found 
in other studies that have reported that elevated [CO2] can compensate 
for water deficit inducing reduction in growth (Aranjuelo et al., 2009a). 
Thus, elevated [CO2] also increases water use efficiency (WUE) in many 
plants under drought conditions, reducing their demand for water 
(Ainsworth and Long, 2005; Erice et al., 2007). That being said, 
knowledge of the mechanisms the interaction between depleted, cur-
rent, and enriched CO2 and water deficit should be receive more 
attention, as well as studies on photosynthesis and chlorophyll fluores-
cence, specially, in cereals (Lopes et al., 2004; Islam and Khan, 2019) 
and is a matter of a great concern for the understanding of plant 
behavior under stress condition and for the development of new 

strategies and tools for enhancing plant growth in the future with a new 
scenario of climate change (Morales et al., 2024).

Furthermore, nitrogen availability is one of the main stressors in 
plants (Ciríaco da Silva et al., 2011). Nitrogen is an essential element 
that frequently limits plant growth in many terrestrial ecosystems 
(Vitousek, 1994). Recent studies suggest that responses to elevated 
[CO2] depend on nitrogen form, and elevated [CO2] reduces nitrate 
reduction, rizhosphere availability and inhibit nitrate assimilation in 
shoot of C3 species, such as wheat and Arabidopsis, whereas ammonium 
utilization does not decrease, and exhibit greater stimulation from CO2 
enrichment (Rubio-Assensio and Bloom, 2017). Therefore, isotopic 
changes in the nitrogen cycle have been of great interest to plant 
physiology and ecology (Werner and Schmidt, 2002). In addition, the 
nitrogen status of a plant has a significant influence on its water rela-
tionship, as nitrogen and water often interact. When the soil experiences 
a prolonged period of drought, nitrogen mobility can be severely 
restricted. In fact, when a plant faces a water deficit, nitrogen deficiency 
occurs and rapidly inhibits plant growth (DaMatta et al., 2002). 
Whole-plant or organ nitrogen isotope compositions are determined by 
the isotope ratio of the external nitrogen source and physiological 
mechanisms within the plant. Whole-plant isotope composition can 
directly reflect that of the nitrogen source when the plant nitrogen de-
mand exceeds the supply. Understanding the mechanisms underlying 
the control of whole plant, foliar nitrogen isotope composition, and 
source-sink ratio dynamics, will advance our knowledge of plant nitro-
gen acquisition and allocation, and how physiological transformations 
of nitrogen can influence whole-plant and leaf δ15N (Evans, 2001). A 
better understanding of the interactive effects of [CO2], water stress, and 
plant N is necessary to develop strategies to minimize the harm caused 
by drought and climate change.

The overall aim of this study was to explore the combined effects of 
different [CO2] and water availability on C and N allocation, and their 
implications on the other plant processes. To date, the mechanisms 
conditioning the C and N allocation responses to different [CO2] sce-
narios and the effects of different water conditions have not been suf-
ficiently documented. Studying this may help us to understand the 
behavior of C3 crop plants in future climate change scenarios. To better 
understand C and N partitioning among the organs of these plants 
exposed to depleted and elevated [CO2], double labeling with 13CO2 and 
15NH4–15NO3 was conducted.

This study tested several hypotheses. Long term exposure to depleted 
and elevated [CO2] leads to physiological acclimation of wheat, but this 
physiological acclimation on wheat plants is modulated by water 
availability. Given that plants modify the biomass to different [CO2], 
and water deficit induces reduction in biomass, it was hypothesized that 
the combinatory effect of both would lead to a large decrease in biomass 
in all the CO2 treatments. The combined effect of both [CO2] and water 
availability, leads to changes in C and N allocation on plants. During 
grain filling, the new sink (the spike) can modify physiological accli-
mation and the C and N balance between the source and sink. Given the 
higher stomatal closure under elevated [CO2], it was hypothesized that 
plants under depleted [CO2] would suffer more water deficit than plants 
in the future, that would be better adapted to drought.

Material and methods

Plant material

Durum wheat (Triticum turgidum var. Sula) was used in this experi-
ment. Sula (released in 1994) is a wheat variety grown in Spain. It is 
characterised by its short stature, early heading, maturity, and high 
yield potential. Wheat seeds were germinated in petri dishes on wet 
Whatman paper. After 84 h, seedlings were transferred to 4-litre pots 
(one plant per pot) filled with quartz sand of 1 mm grain size.
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Experimental design

Plants were grown in three fully controlled plant-growth chambers 
(Conviron E15, Controlled Environments Ltd., Winnipeg, Canada) at 22/ 
18 º C (day/night) and 60 % relative humidity. Plants were supplied with 
a photosynthetic photon flux density (PPFD) of 400 ± 30 mmol m-2s-1 

during the 16 h light period (day). The humidity, temperature, and CO2 
levels in the chamber were continuously monitored by a sensor every 5 
min (CMP3243 Controlled Environments Ltd, Winnipeg, Canada) and 
compared every two weeks with a Vaisala sensor (Vaisala MI70 Helsinki, 
Finland) with two indicators (HMP75 humidity and temperature; and 
GMP222; 0–2000 ppm carbon dioxide). Plants were watered with 
Hoagland complete nutrient solution (Arnon and Hoagland, 1939), 
alternating with distilled water in order to avoid salt accumulation over 
the whole life cycle.

Plants were grown during their entire life cycle (from September to 
January) under three different levels of CO2 (700, 400 and 260 ppm) at 
the Experimental Fields Service of the University of Barcelona, Barce-
lona, Spain (more information is available in Aljazairi and Nogués, 
2015). Forty-eight plants were placed in the first Conviron chamber and 
maintained at a high (future) CO2 concentration level (ca. 731.7 ± 16.9 
mmol mol-1). Compressed industrial air was used to increase the CO2 
level in the chamber. The mix of the commercial CO2 (δ13C ca. − 38.2 ‰) 
(provided by Carburos Metálicos S.A. Barcelona, Spain) with the 
ambient air (δ13C ca. − 12.5 ‰) resulted in a CO2 isotopic composition of 
δ13C ca. − 22.6 ‰ inside the Conviron chamber. Another batch of 
forty-eight plants were placed in the second Conviron chamber, which 
was maintained at current CO2 concentration levels (ca. 409.3 ± 2.5 
mmol mol-1). Finally, the same number of plants was placed in the third 
Conviron Chamber, which was maintained at pre-industrial CO2 con-
centration levels (ca.259.4 ± 13.6 mmol mol-1). In this third chamber, 
the CO2 was reduced by pumping the air inside the chamber through a 1 
L column filled with soda lime (Soda lime with indicator QP, Panreac 
Quimica SA., Barcelona, Spain). The soda lime was changed every two 
weeks. Plants were rotated inside the chamber every week and between 
the different chambers every three weeks to avoid chamber influences in 
the treatments.

Mild water-stress treatment (WS) was maintained by having the 
water content of soil pot capacity at 60 % applied to half of the plants in 
each plant-growing chamber. Contrary, control plants were well 
watered (WW) by maintaining 100 % water content of the soil pot ca-
pacity, which is the amount of water content held in the soil after excess 
water has drained away from the pot. Each pot was weighed every four 
days and refilled with water. Plant water status was evaluated by 
measuring the leaf relative water content (RWC, Weatherley, 1950).

Data measurements were obtained in three different plant stage pe-
riods (Pre-anthesis, T0; grain filling, T1; and the end of grain filling, T2).

Isotope labeling procedures with 13C and 15N

Simultaneous C and N labelling was conducted for the whole plant 
and at different CO2 levels. For this reason, plants were placed inside 
Conviron growth chambers during the anthesis period and labelled with 
13C and 15N. In addition, δ13C was modified at elevated [CO2] because of 
the δ13C of the CO2 was used to increase the [CO2] within the growth 
chamber, according to Aljazairi et al. (2014b), Medina et al. (2016).

The δ13C of air inside the three Conviron chambers was modified to 
distinguish it from δ13C of ambient air. In the Conviron chambers, 
commercial CO2 (AT% of 13C ca. 99.9 % Carburos Metálicos SA, Bar-
celona, Spain provided by Eurisotop, Saint-Aubin, France) mixed with 
the ambient air (δ13C ca. − 12.5 ‰) resulted in a 13CO2 isotopic 
composition of δ13C ca. 165 ‰. Air samples were taken to analyze the 
CO2 isotopic composition using gas-chromatography-combustion- 
isotope ratio mass spectrometry (GC/C/IRMS; Thermo Scientific™ GC 
IsoLink™) according to Nogués et al. (2004).

15N labelling was also applied during the same period by replacing 

the 14N in the Hoagland solution (Hoagland and Arnon, 1938) with 
double 15N labeled ammonium nitrate (15NH4- 15NO3, AT% of 15N 10 
%). After labelling, 15N was removed by washing the quartz sand with 
distilled water. Plants were then irrigated with normal Hoagland solu-
tion. The double labelling was performed during anthesis so plants had 
the same amount of 13C and 15N available, regardless of the CO2 or water 
treatment to which they were subjected.

C and N isotope compositions of total organic matter (TOM)

Samples from different parts of the plant (i.e. leaves, stems, roots and 
spikes) were dried in an oven at 60 º C for 48 h and ground to a fine 
powder. Then, 1 mg was weighed in tin capsules, and the carbon and 
nitrogen isotope composition were determined using an Elemental 
Analyzer Flash 112 (Carbo Erba, Milan) coupled to an isotope ratio mass 
spectrometer (IRMS) Delta C Conflo III Interface (Termo Finnigan, 
Germany).

The results were expressed in conventional δ notation as parts per mil 
(‰). Carbon was referenced against the international standartV-PDB 
(Vienna Pee Dee Belemnite). Nitrogen was referenced using the inter-
national secondary standards with known 15N/14N ratios (IAEA N1 and 
IAEA N2 ammonium sulphate and IAEA NO3 potassium nitrate) with 
reference to the international primary standard air N2, which has a δ15N 
value of 0 ‰.

Stable isotope compositions were expressed according to the 
following equation 

δX =

(
Rsample

Rstandard

)

− 1 (1) 

where δX represents either δ13C, δ15N, and R denote the abundance of 
the ‘heavy’ to ‘light’ isotope ratio of samples and reference materials

Isotope discrimination (ΔX) was calculated from δa and δp (Farquhar 
et al., 1989) as: 

ΔX =
δa − δp

δp + 1
(2) 

where ΔX represents either Δ13C, Δ15N, and a and p refer to air and plant 
for 13C, and soil solution and plant for δ15N, respectively.

Open system for isotopic dark respiration determinations

The δ13C of the respired CO2 in dark conditions of the different plant 
organs (flag leaf, the remaining leaves, spikes, stems, and root) was 
studied in a respiration chamber previously described (Nogués et al., 
2004). The chamber was connected in parallel to the sample air hose of a 
LI-COR 6400 system. The PPFD inside the chamber was maintained at 
0 µmol m-2 s-1 by covering the chamber. The organ was first placed in the 
chamber with ambient air (δ13C ca. − 10.3 %). The chamber was then 
flushed with CO2-free air and the CO2 respired by the organ was 
collected using gas syringes (SGE International Pty Ltd, Australia) and 
stored in 10-mL vacutainers. The air in the three growing chambers (e.g. 
pre-industrial, current and future CO2) was also sampled using 10-mL 
vacutainers. The CO2 inside the vacutainers was analyzed using 
GC–C-IRMS.

All the GC–C-IRMS and EA/IRMS analyses were performed at the 
Scientific Technical Services of the University of Barcelona.

Proportion (p) of new C and N calculation

The proportion of ‘new’ carbon (derived from the labelling) in CO2 
respired in darkness after illumination and ‘new’ carbon and nitrogen in 
TOM were calculated according to Nogués et al., 2004: 

x = 100
(

δYʹ − δY
δo − AY − δY

)

(3) 
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where δY’ and δY are the isotope compositions from the labelled and 
control, respectively; δo is the isotope composition of the outlet air and 
ΔY is the isotopic discrimination calculated using Eq. (4 for C for N). 

Δ15N =
δa − δp

δp + 1
(4) 

Leaf carbon and nitrogen content

Leaves used for gas exchange were collected, dried at 65 ◦C to a 
constant weight, and ground to a powder. Powder samples were assessed 
for the percentage C and N contents using an elemental analyzer at the 
Scientific Technical Services at the University of Barcelona, Spain.

Gas exchange analyses

An infrared gas analyzer (LI-COR 6400 system, LI-COR Inc., Lincoln, 
NB, USA) equipped with a Leaf Chamber Fluorometer (LI6400-40) was 
used to perform simultaneous measurements of gas exchange in an 
expanded flag leaf. A-Ci curves and dark respiration rates were con-
ducted for each CO2 level and water regimen.

The curves were repeated for four different plants per treatment and 
were measured from 0 to 2000 µmol mol-1 of CO2. The light intensity 
was saturated at 1200 µmol photon m-2 s-1 of PPFD, at a temperature of 
25º C. The parameters measured were: Assimilation Rate (Asat), 
maximum CO2 assimilation rates at saturated light (Amax), stomatal 
conductance (gs) and Stomatal Limitation (SL) which were estimated at 
a PPFD of 1200 µmol m-2 s-1 using equations developed by Von Caem-
merer and Farquhar (1981).

Growth parameters

Plant production in durum wheat under three CO2 growth conditions 
(700, 400 and 260 ppm) and two water availability conditions were 
analyzed. Spike number per plant (SN); Spike weight per spike (SW/S, 
gr); Shoot weight (SW, gr) and Root weight (RW, gr). Further informa-
tion is available in Aljazairi and Nogués (2015).

Data analysis

The CO2 effects on wheat plant development were tested by two 
factors (CO2 treatment and durum wheat genotype) analyses of variance 
(ANOVA). The statistical analysis was conducted using the SPSS 17.0 
software package (SPSS Inc., Chicago, IL, USA). The means ± standard 
errors (SE) were calculated for each parameter. When a particular test 
was significant, the means were compared using Duncan’s multiple 
comparison test. The results were considered statistically significant at p 
< 0.05.

Results

[CO2] effects on plants

The different CO2 treatments affected wheat plants isotopic compo-
sition. Before labelling (T0), the δ13C of TOM (natural abundance) was 
more 13C enriched at depleted [CO2] than at current [CO2] (with in-
creases of 4.1 ± 0.5 ‰ in spikes, 3.0 ± 0.2 ‰ in leaves, 3.8 ± 0.6 ‰ in 
stems, and 3.1 ± 0.4 ‰ in roots and at elevate [CO2] was more 13C 
depleted than at current [CO2] (with decreases of 8.8 ± 0.1 ‰ in spikes, 
8.1 ± 0.3 ‰ in leaves, 7.9 ± 0.4 ‰ in stems, and 9.3 ± 0.1 ‰ in roots) 
(Fig. 1).

During labelling, the δ13C of the air in the three plant-growth 
chambers was ca. 165 ‰, and the δ13C of TOM in labelled plants was 
more 13C enriched than the corresponding non-labelled plants in all the 
CO2 treatments (Fig. 1), where spikes were the main C sink. After 
labelling (T1 and T2), the δ13C of TOM was more 13C enriched at 

depleted than at current [CO2] (with increases of 26.1 and 11.4 ‰ in 
spikes, 7.2 and 18.5 ‰ in leaves, 9.2 and 19.2 ‰ in stems, and 22.3 and 
11.1 ‰ in roots; T1 and T2 respectively). At elevated [CO2], 13C was 
more depleted than at current [CO2] (with decreases of 56.3 and 31.6 ‰ 
in spikes, 24.2 and 21.8 ‰ in leaves, 64.8 and 26.9 ‰ in stems, and 25.1 
and 23.5 ‰ in roots; T1 and T2 respectively) (Fig. 1).

Before labelling (T0), the δ15N of TOM (natural abundance) showed 
no significant differences between depleted and current [CO2]; however 
small increases in δ15N were observed (with 0.1 ± 0. 3 ‰ in spikes, 0.8 
± 0.4 ‰ in leaves, 0.4 ± 3.4 ‰ in stems, and 2.3 ± 1.0 ‰ in roots). Also, 
no differences were found between elevated [CO2] and current [CO2]; 
however small increases in δ15N were observed (3.7 ± 0.5 ‰ in spikes, 
1.6 ± 0.3 ‰ in leaves, 0.8 ± 1.9 ‰ in stems, and 1.6 ± 0.7 ‰ in roots) 
(Fig. 1).

During labelling, the δ15N value of the water solution in the three 
plant-growth chambers was ca. 4043.2 ‰. After labelling (T1), the δ15N 
of TOM in labelled plants was more 15N enriched than the corresponding 
non-labelled plants in all the CO2 treatments (Fig. 1) where spikes and 
roots were the main C sink. After labelling (T1 and T2), the δ15N of TOM 
was more 13C enriched at depleted than at current [CO2] (with increases 
of 847.9 and 1007.4 ‰ in spikes, 410.0 and 978.6 ‰ in leaves, 983.7 
and 1063.5 ‰ in stems, and 1076.8 and 323.7 ‰ in roots; T1 and T2 
respectively). At elevated [CO2], δ15N was more enriched than at current 
[CO2] (with increases of 105.0 and 462.1 ‰ in spikes, 758.9 and 548.2 
‰ in leaves, 935.9 and 122.7 ‰ in stems, and 548.4 and 501.3 ‰ in 
roots; T1 and T2 respectively), (Fig. 1).

Respired CO2 is an important C sink for all organs, and we could 
observe significant differences between CO2 concentration and 13C of 
respired CO2 in all the organs (p < 0.005 flag; p < 0.0001 spike; p < 
0.001 stem; p < 0.005) except in leaf (F: 1.242; p = 0.326) (Table S2). 
Clearly, before labelling (T0), plant respiration was less enriched in 13C 
than after labelling (T1 and T2); however, respiration in spikes and stems 
was higher than that in flag leaves and other leaves. At T0, respired CO2 
was more 13C enriched at depleted [CO2] than at current [CO2], and the 
most depleted was under elevated [CO2]. However, at T1, respired CO2 
was more 13C enriched at current [CO2] than the other [CO2]. We also 
observed that on the last sampling day (T2), 13C values of respired CO2 
were negative once again, and their values decreased when the [CO2] 
increased (Fig. 2).

Fig. 3 shows the CO2 effects on recently fixed C and N for wheat 
under two water treatments after 13C and 15N labelling. We assumed that 
100 % of C or N supplied during short-term labelling could be assimi-
lated by plants. If we observe the different plant organs, the percentage 
of new C was higher in spikes, followed by stems, roots, and leaves. 
However, the percentage of new N was higher in roots followed by stems 
and spikes and finally, the lowest values were founded in leaves. Fig. 3
also shows that the percentage of new C increases when the [CO2] de-
creases. The same was true for the percentage of new N. However, at T1, 
we observed that plants uptake more or similar percentages of new N at 
elevated [CO2] than at current or depleted [CO2].

Two different patterns were observed in% of new C and N under the 
[CO2] effects (Fig. 3). The % of new C increased with increasing [CO2]; 
however, the % of new N content decreased with increasing [CO2]. The 
main sink for C and N content was root and stem, followed by leaf and 
spike. In general, the C and N increased between T0 and T1 and 
decreased at T2, except the sink organs under elevated [CO2] (Fig. 3).

Analyses of growth parameters showed that the [CO2] treatments 
affected wheat plants. We found significant differences between [CO2] 
treatments in terms of spike weight per spike (SW/S), shoot weight and 
root weight. Plants showed an increase in SW/S (i.e. 1.7; 2.0 and 2.5 mg; 
and 0.8; 1.3 and 2.5 mg, WW and WS respectively) and RootW (i.e. 8.8; 
9.5 and 10.5 mg; and 3.1; 3.8 and 4.4 mg, WW and WS respectively) 
with increases in the [CO2] (Table S1), but the opposite happened with 
the ShootW with decreases when the CO2 increased. No significant dif-
ferences were found between [CO2] in spike number (SN, Table S1); but 
we observed a trend of decreasing SN when the CO2 increased (more 
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Fig. 1. CO2 effects (700, 400 and 260 ppm) on δ13C and δ15N in TOM (flag, spikes, leaves, stems and roots) under two water treatments well watered (WW, close 
bars) and water stress (WS, open bars), before labeling (T0), 24 h after labeling (T1) and 7 days after labeling (T2).
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growth parameters data are shown in Aljazairi and Nogués, 2015). 
However, under elevated [CO2], plants showed less biomass than under 
current [CO2] in terms of weight. A similar effect was observed in plants 
grown under depleted [CO2].

Analyses of gas exchange parameters showed that the CO2 treat-
ments affected the plants. At elevated [CO2], we observed that carbox-
ylation activity was diminished or similar to the current [CO2], as 
indicated by the reduction in Asat and stomatal conductance. Asat and 
stomatal limitation were similar or lower at depleted than at current 
[CO2], but increased after prolonged exposure to depleted [CO2], 
although differences between CO2 treatments were not significant. 
(Table S2).

Water availability effects on plants

Analysis of stable isotopes also showed that the water treatments 
affected the plants under current [CO2]. Before labelling (T0), the δ13C of 
TOM (natural abundance) showed no significant differences between 
WS and WW plants, but small increases in 13C were observed in WS 
treatments. However, WW plants were more 13C enriched than WS 
plants in all organs at T1 and T2 (with increases of 0.4 and 4.1 ‰ in 
spikes, 7.7 and 7.8 ‰ in leaves, 3.4 and 10.3 ‰ in stems, and 2.3 and 1.5 

‰ in roots at T1 and T2, respectively).
In addition, before labelling, the δ15N of TOM (natural abundance) 

did not differ significantly between the WS and WW plants. However, 
WW plants were more 15N enriched than WS plants in all organs at T1 
and T2 (with increases of 594.2 and 751.5 ‰ in spikes, 786.7 and 772.9 
‰ in leaves, 621.1 and 499.2 ‰ in stems, and 1019.4 and 678.3 ‰ in 
roots, T1 and T2, respectively).

The 13C of respired CO2 (δ13CO2_Respired) in the dark due to the 
different water availability (WW and WS) was observed with significant 
differences in flag (p < 0.005), spike (p < 0.0001), and stem (p < 
0.005); but not in leaves (F: 2.881; p = 0.118) and root (F: 2.724; p =
0.127) (Table S2). In general, it was observed in all the organs that δ13C 
losses through dark respiration were greater in WS than in WW treat-
ments, before and after labelling, except in some leaves (Fig. 2).

The percentage of new C and N in TOM and two water treatments 
after short-term labelling (Fig. 3) revealed that the C stored was higher 
in WW plants than in WS plants for the different wheat organs. Between 
T1 and T2, the percentage of new C decreased, except in leaves WW 
plants under depleted [CO2]. The percentage of new N was higher in the 
WW plants than in the WS plants for the different wheat organs. In 
general, between T1 and T2, the percentage of new N decreased, except 
in some leaves and spikes of WW plants.

Fig. 2. CO2 effects (700, 400 and 260 ppm) on δ13CO2_Respired (flag, spikes, leaves, stems and roots) of wheat under two water treatments well watered (WW, close 
bars) and water stress (WS, open bars), before labeling (T0), 24 h after labeling (T1) and 7 days after labeling (T2).
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Fig. 3. CO2 effects (700, 400 and 260 ppm) on %New C and %New N in TOM (spike, leaf, stem and root) of wheat under two water treatments well watered (WW) 
and water stress (WS), before labeling (T0), 24 h after labeling (T1) and 7 days after labeling (T2).
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Analyses of gas exchange parameters showed effects of water treat-
ment on plant assimilation and stomatal limitation (Table 1). In general, 
WW plants showed higher or similar assimilation and lower stomatal 
limitation than WS plants, some cases were modulated by [CO2], as 
shown in the next section. However, we did not find significant differ-
ences in assimilation between water treatments, but in stomatal limi-
tation was found.

[CO2] effects on plants modulated by water availability

Analysis of stable isotopes also showed that the CO2 effects are 
modulated by water availability on our plants, with significant differ-
ences between CO2 and water treatments for 13C (F = 8.352; p < 0.005; 
F = 6.037; p < 0.01; F = 4.013; p < 0.05 for leaf, stem, and root 
respectively). However, no significant differences were found in spikes 
(F = 2.041; P = 0,176), but similar trends were observed in the other 
plant organs (Table S2). As we mentioned before, WW plants were more 
13C enriched than WS plants in all organs and CO2 treatments. However, 
these differences were higher in depleted [CO2] than at elevated [CO2]. 
Plants were more 13C depleted in elevated [CO2] and WS than in current 
[CO2] and WS treatments, and more 13C enriched in the depleted [CO2] 
and WW treatments than in the current [CO2] and WW treatments. We 
also observed that plants were less 13C enriched when CO2 increased, 
but these differences were modulated by water treatments. Before 
labelling, these differences were not very large. But after, labelling (T1), 
and overall, on the last sampling day (T2), the differences were generally 
much higher at depleted [CO2] and between water treatments as a sum 
of both effects (Fig. 1 and Table S2).

Analysis of 15N showed no significant differences between CO2 and 
water availability effects on our plants (F = 2.041; P = 0.176; F = 1.341; 
P = 0.301; F = 2.143; P = 0.164; F = 0.958; P = 0.414 for spike, leaf, 
stem and root respectively); however, we observed similar trends and 
differences between treatments and plant organs (Table S2). Before 
labelling (T0), the δ15N of TOM was similar in all CO2 and water treat-
ments. However, during labelling, the δ15N of the water solution in the 
three plant-growth chambers was ca. 4043,2 ‰ and after labelling (T1 
and T2), the δ15N of TOM in labelled plants was more 15N enriched than 
the corresponding non-labelled plants in all the CO2 and water treat-
ments (Fig. 1). Spikes and roots were more enriched in 15N; overall, at 
depleted CO2 and WW treatments were the most enrichment than the 
other treatments. In addition, plants organs decreased δ15N between T1 
and T2, and this decrease was higher in WW plants, except for spikes and 
leaves of plants grown at elevated and current [CO2] and WW treat-
ments, and increased δ15N as the main sink of 15N (Fig. 1 and Table S2).

The 13C of respired CO2 (δ13CO2_Respired) in the dark was also 
modulated by both parameters: [CO2] and water availability. However, 
we observed significant differences only in spikes (p < 0.005; table S1). 
At T0, we found that WS plants were more enriched in 13C than WW 
plants, with higher differences between WS and WW plants in flag 
leaves, other leaves, and spikes, at current [CO2] than the other CO2 
treatments. However, at T1, the 13C values of respired CO2 values 
increased with decreasing CO2 concentration, and we found higher 
differences between WW and WS plants at depleted than at current 
[CO2]. Furthermore, the lowest 13C of respired CO2 differences between 

water treatments were found at elevated [CO2]. Finally, we observed 
that on the last sampling day (T2), 13C values of respired CO2 were 
negative once again and the differences between water treatments were 
small (Fig. 2).

The percentage of new C and N in TOM after short-term labelling 
revealed that the CO2 effects were also modulated by water treatments. 
The percentage of new C was higher in WW than in WS plants and 
increased when [CO2] decreased. In addition, leaves in depleted [CO2] 
and WW plants showed an increased in the % of new C between T1 and 
T2 (Fig. 3). The % of new N increased when the [CO2] decreased, and it 
was higher in WW than in WS plants at depleted, current, and elevated 
[CO2] conditions for the different plant organs. This difference was very 
high between water treatments at both times. During T1, the % of new N 
increased but decreased during T2. However, the spike had % increased 
of N at current and depleted [CO2] in both water treatments and became 
as the main sink of N during the grain filling. It also happened in WW 
leaves (Fig. 3).

The C and N contents (mg/mg) were affected by [CO2] and these 
effects were modulated by water availability in plants (Fig. 3). The C 
content was higher in WW than in WS plants and increased as the [CO2] 
increased. Higher differences were observed between water treatments 
under elevated [CO2] than at depleted [CO2]. Plants showed higher C 
content under elevated [CO2] (i.e. 5 % and 3 % under WW and WS 
respectively) and lower leaf C content under depleted [CO2] (i.e. 3 % 
and 5 % under WW and WS respectively) than current [CO2], but the 
differences were not significant. However, the N content was higher in 
WW than in WS plants at depleted and current [CO2] conditions, but it 
was lower in WW than in WS plants under elevated [CO2] conditions. At 
depleted and elevated [CO2], plants had a lower N content, with a larger 
difference at elevated [CO2] (48 % and 6 % less N for WW and WS, 
respectively) than at the current [CO2], whereas at depleted [CO2], 
plants also had a higher N content (16 % and 4 % for WW and WS, 
respectively) (Fig. 3).

Analyses of growth parameters showed that [CO2] effects were 
modulated by water treatments on wheat plants. WW plants showed 
more down-regulation of growth under elevated [CO2] than WS plants, 
with decreases across a range of growth parameters (Table 1; Table S1).

Analyses of gas exchange parameters showed that the [CO2] effects 
were modulated by water treatments. At current [CO2], WW conditions 
resulted in higher assimilation and lower stomatal limitation than mild 
WS conditions. At depleted [CO2], lower values in both, assimilation and 
stomatal limitation, were found compared to current [CO2]; however, 
some of the parameters of assimilation increased during grain filling, 
thus indicating up-regulation of photosynthesis. At elevated [CO2], WW 
conditions resulted in lower assimilation and lower stomatal limitation 
than mild WS because of photosynthetic acclimation. However, we did 
not find any significant differences between [CO2] x water treatments 
(Table S2).

Discussion

One of the main goals of this study was to analyse the combined 
effects of three different [CO2] (i.e. depleted, current and elevated) 
under mild water stress on C and N allocation in durum wheat plants 

Table 1 
CO2 effects (260, 400 and 700 ppm) on Biomass (Number of spike per plant, NS; weight of spike/spike (grams), WS/S; weight of shoot (grams), WShoot and weight of 
root (grams), WRoot), Photosynthetic Assimilation at saturation light rate (Asat) and Stomatal limitation (SL) of wheat, under two water treatments well-watered (WW) 
and mild water-stress (WS).

CO2 Water NS WS/S (gr) WShoot (gr) WRoot (gr) Asat SL

700 WW 2,3Aa ± 0,3 2.5Aa ± 0,1 16,0Ba ± 0,9 10,5 Aa ± 1,9 15,17Aa ± 0,8 22.7 Aa ± 3.5
700 WS 1,3Ab ± 0,3 2.5Aa ± 0,3 6,5Aa ± 1,2 4,4 Ab ± 0,2 16,57Aa ± 1,9 30.5Ab ± 4.0
400 WW 3,7Aa ± 0,7 2Aa ± 0,3 24,8Aa ± 1,7 9,5 Aa ± 1,2 18,03Aa ± 1,8 20.2 Aa 8 ± 3.3
400 WS 2,7Ab ± 0,3 1.3Bb ± 0,2 8,2Ab ± 1,8 3,8 Ab ± 1,1 15,67Aa ± 3,8 28.8Ab ± 5.6
260 WW 2,7Aa ± 0,7 1.7 Ba ± 0,7 19,0 Ba ± 2,0 8,8 Ba ± 1,3 18,27Aa ± 1,3 20.2 Aa ± 1.4
260 WS 2,7Aa ± 0,3 0.8 Ba ± 0,3 10,3 Aa ± 3,7 3,1 Aa ± 0,3 4,67Ba ± 1,27 15.1Bb ± 5.0
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(Triticum turgidum). This study showed that CO2 treatments affected the 
plants, and that these effects were modulated by water availability.

[CO2] effects on plants

The mechanism of conditioning the C and N allocation responses to 
different [CO2] has been described in previous studies. Aljazairi et al. 
(2014b) and Nogués and Azcón-Bieto (2013), showed that wheat plants 
can acclimatize their photosynthesis rate to the long-term exposure to 
depleted and elevated [CO2] conditions. Photosynthetic acclimation is 
the physiological adjustment of plants to a given [CO2]. But this accli-
mation can be conditioned by other factors such as plant phenology, 
other stresses (i.e. water stress), and environmental conditions (Amthor, 
2001; Nowak et al., 2004; Leakey et al., 2009; Alshaal et al., 2017; Pardo 
et al., 2009; Aranjuelo et al., 2009b, 2011a; Aljazairi and Nogués, 2015; 
Zhang et al., 2024).

For depleted [CO2] and during tillering, similar values of gas ex-
change parameters (i.e. Asat) were found compared to current [CO2]. 
During grain filling, those values (i.e. Asat) increased, showing up- 
regulation of photosynthesis. This increase in assimilation during 
grain filling under depleted [CO2] resulted in increased of C and N 
content, % of new C and N or higher labelling of 13C and 15N than 
current [CO2] (Aranjuelo et al., 2011b) because, at depleted [CO2], 
wheat had C source limitations, as we can observe before the labelling. 
Plants showed higher allocation of C to green areas (photosynthetically 
active) than roots, compared to the other CO2 treatments (Aljazairi and 
Nogués, 2015; Aranjuelo et al., 2011a). However, this increase in C 
allocation on green areas did not result in an increase in biomass unlike 
plants under current [CO2] conditions (Aljazairi and Nogués, 2015), as 
shown in other studies (Allen et al., 1991; Dippery et al., 1995; Gerhart 
and Ward, 2010; Aranjuelo et al., 2011). This suggests that in the past, 
plant species reduced the potential productivity, and for that, the C 
uptake from the atmosphere.

Lower values of gas exchange parameter (i.e. Asat,) was found, 
indicating down-regulation of photosynthesis at elevated [CO2] in 
comparison to current [CO2] condition. Sage and Coleman (2001)
demonstrated that plant acclimation processes during long term expo-
sure to different [CO2] can compensate for the effects of CO2 variation 
on plant processes. This implies that significant photosynthetic adjust-
ments may have taken place in the past and will occur in the future, 
thereby changing the allocation and balance of C and N in plants. 
However, during grain filling, there was an increase in photosynthetic 
assimilation, breaking the down regulation, as shown in Aljazairi et al. 
(2014a).

Plant growth was also modulated by the different [CO2], which im-
plies that significant adjustments in C and N allocation have been made 
(Fuertes-Mendizabal et al., 2010; Reddy et al., 2010). Plants can modify 
photosynthetic assimilation, the biomass and the C and N to be send to 
the different sinks. As suggested by Urban (2003), one of the parameters 
that can affect photosynthetic regulation by [CO2] is the modification of 
the source-sink ratio. Aranjuelo et al. (2013), found that the plant ca-
pacity to increase the biomass was lower at current or depleted [CO2] 
than at elevated [CO2]. Moreover, spikes, roots and stems were the main 
C and N sinks, especially under elevated [CO2]. Plant growth under 
depleted [CO2] can be associated with increased C allocation to the 
shoot (spike and stem). These modifications of the source-sink ratio by 
depleted [CO2] has often been observed in previous studies (Gebauer 
et al., 1996; Poorter and Nagel, 2000; Lehmeier et al., 2005; Aljazairi 
et al., 2014b), and resulted from direct responses of allocation to stress 
or disturbance, that favoured the plant part which intercepts the most 
severely growth limiting resource. In our case, at depleted [CO2], plants 
favoured shoot growth to assimilate as much C as possible and may have 
stimulated the allocation of C towards leaves and shoots because of C 
necessity. However, at elevated [CO2], most studies show an initial 
enhancement on growth and photosynthesis, but this enhancement 
disappears in time (Bazzaz, 1990; Slot et al., 2021). Plants can increase C 

allocation in roots because the C source is very high (Lawlor and 
Mitchell, 1991; McConnaughay and Coleman, 1999; Poorter and Nagel, 
2000). It is also associated to decreases in leaf or spike biomass, de-
creases in N content and Rubisco activity (Thompson et al., 2017; Gojon 
et al.; 2023) and increases in starch levels (Yilmaz et al., 2017). 
Increased biomass allocation to the roots has been shown to be caused 
by the N-limitation on leaf at elevated [CO2] (Soussana et al., 1996).

Another example is that wheat has a high requirement for N during 
grain formation. Grain nitrogen content is taken from N that is remo-
bilized from different parts of the plant (stored before grain filling) or 
new uptake nitrogen in that same period (Dupont and Altenbach, 2003). 
Like in our case, the nitrogen content in all the organs under elevated 
[CO2] is less than that under depleted [CO2] (Mitsutoshi et al., 2005). 
Elevated CO2 may reduce the N content of plant tissues. Consequently, 
elevated CO2 may drive N deficiency into the plant (Tuba and Lich-
tenthaler, 2007). However, the mechanisms controlling N and C allo-
cation are still not well understood (Farrar and Jones, 2000; Gojon et al., 
2023), because the relationship between C and N input and metabolism 
are made complicated by dynamic exchanges between plant organs, and 
atmospheric [CO2] has a strong impact on the physiology of plants and a 
direct effect of nitrogen uptake and assimilation (Gojon et al., 2023).

The allocation and partitioning of C and N among plants and their 
organs can be studied using stable isotopes as tracers. Understanding the 
mechanisms controlling whole wheat plant N and C isotope composition 
will further advance our knowledge of plant N and C acquisition and 
allocation in different climatic scenarios. For this reason, we performed 
15N/14N and 13C/14C labelling during the grain filling because of the 
importance of this period in the C and N allocation in wheat plant 
(Fig. 1). Fig. 3 shows the CO2 effects on recently fixed C and N for wheat 
under two water treatments after labelling. We assumed that 100 % of C 
or N supplied during short-term labelling could be assimilated by the 
different parts of the plant, thereby permitting us to calculate the pro-
portion of “new” C and N (i.e. recently fixed or uptake) in TOM and 
respired CO2 (Nogués et al., 2004; Ghashghaie and Badeck, 2013). This 
C is allocated through three main processes: i) storage in the plant tis-
sues (in our case the 13C and % of new C increased when the [CO2] 
decreased (Figs. 1 and 3), ii) translocation to other organs of the plant 
(in our case plants sent more 13C and % of new C to green organs at 
depleted than elevated [CO2] (Figs. 1 and 3), and iii) losses through 
plant respiration (in our case, lower losses of 13C were observed at 
elevated [CO2], and these losses were higher in spike and stem organs 
than in leaves or roots (Fig. 2) (Ghashghaie and Badeck, 2013; Schnyder 
et al., 2003; Nogués et al., 2004).

The study of 15N in plant N cycle under different [CO2] is a powerful 
tool to assess whether processes, in the N cycle, are influenced by rising 
atmospheric [CO2] (Robinson, 2001; Gojon et al., 2023) and could guide 
future studies to identify the exact processes involved in the N cycle 
response to future climate change (Bassirirad et al., 2003). In our case, 
we found out that [CO2] strongly influenced the patterns of assimilation 
and allocation of N in plant organs (as in Yoneyama and Kaneko, 1989; 
Yoneyama et al., 1991; Evans et al., 1996; Halpem et al., 2022). More-
over, we observed that the uptake, transport, accumulation, realloca-
tion, and excretion of nitrogen during growth caused differences in 
concentrations among organs (i.e. between leave and spike or stem) 
because most reactions discriminate against 15N (Shearer and Kohl, 
1986; Yoneyama et al., 1998). Also, differences are due to phenology 
and source-sink ratio (increases of 15N and N content during grain filling 
in all organs, overall in spike and stem; Aranjuelo et al., 2012); and 
because of [CO2] treatments (higher 15N and N content at depleted than 
elevated [CO2]; Aljazairi and Nogués, 2015; Halpem et al., 2022; Gojon 
et al., 2023).

Water availability effects on plants

Well-watered (WW) and mild-water stress (WS) treatments showed 
significant changes in the response to C and N uptake. Many studies have 
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identified the water regimen as one of the main factors of global change 
that controls plant productivity and C and N allocation (Rao et al., 
2016). Our data suggest that WW plants have a large capacity to create 
new sinks during grain filling and can accumulate greater quantities of 
C, and especially N. These reserves are mainly sent to spikes, but also to 
roots and stems (Ward and Strain, 1997). In our study, C and N alloca-
tion during grain filling was conditioned by different factors: (i) the 
availability of these elements to plants (Fuertes Mendizabal et al., 2012), 
(ii) the water availability (Aranjuelo et al., 2007) and (iii) CO2 avail-
ability. Nogués and Baker (2000) showed that drought induces lower 
photosynthetic capacity suggesting that drought decreases Rubisco ca-
pacity. But also, transcription profiles under water stress suggested an 
inhibition of primary C fixation and N assimilation (Medina et al., 2016). 
As we previously reported (Aljazairi and Nogués, 2015), WS reduced the 
water status, and consequently the photosynthesis, the plant growth, 
and the C uptake were also reduced. Drought also inhibited the N uptake 
through their effect on biomass production and plant could suffer down 
expression of Rubisco, chlorophyll, and other pigments to diminish 
damage by ROS production (Aranjuelo et al., 2007; Dalal and Tripathy, 
2012). Ciriaco da Silva et al. (2011) showed that under drought stress, 
there is a reduction in nutrient uptake by the roots partially due to the 
reduction in soil moisture, which causes a decreased rate of N diffusion 
from the soil to the absorbing root surface and translocation to the leaves 
and then to the reproductive organs like in our case. In other words, 
drought causes low nitrogen availability in the soil and lower nutrient 
transport in plants (Hu et al., 2007). The percentage of new C in TOM 
and δ13C_CO2 respired during the grain filling revealed that the C stored 
was higher in WW than in WS plants for the different wheat organs and 
that the spike and Stem were the organs with the highest percentage of 
new C and N.

[CO2] effects on plants are modulated by water availability

Our experiment showed significant changes in C and N uptake and 
plant growth under both, CO2 (depleted, current, and elevated [CO2]) 
and water availability (WW and WS) factors. The main global change 
factors controlling plant productivity are CO2, temperature, water re-
gimes and Nitrogen deposition (Alshaal et al., 2017).

In addition, evaporative water loss from leaves during the CO2 up-
take is unavoidable. Therefore, when water is a limiting factor, it is 
advantageous for plants to increase their water use efficiency. A 
fundamental component of plant productivity response is the control of 
stomatal conductance to CO2 and water vapour. Many studies on plants 
grown under elevated and depleted [CO2] have shown the relationship 
between CO2 assimilation rate and the conductance at which plants 
grow (Franks and Hoffmann, 2012; Li et al., 2017). Following the initial 
CO2 change from the environment, stomatal conductance seemingly 
adjusts back towards a value that optimises carbon gain with respect to 
water loss (Cowan and Farquhar, 1977; Dubbe et al., 1978; Farquhar 
et al., 1978; Medlyn et al., 2011). This involves reducing stomatal 
conductance (increasing stomatal limitation) under elevated [CO2] 
(Gojon et al., 2023) or increasing stomatal conductance (decreasing 
stomatal limitation) under depleted [CO2] (Batke et al., 2020). This was 
observed in the plants and is widely observed in other studies 
(Ainsworth and Rogers, 2007; Aljazairi et al., 2014a; Zhang et al., 2022). 
Water stress in plants reduced transpiration by closing stomata; there-
fore, there is a substantial reduction of net CO2 assimilation. Besides, 
depleted [CO2] worsened CO2 assimilation rate, while elevated [CO2] 
enhanced CO2 assimilation rate in wheat plants. Our plants showed 
photosynthetic upregulation at depleted [CO2] and photosynthetic 
downregulation at elevated [CO2], but it was broken during the grain 
filling, the same trend was observed by Aljazairi et al. (2014a). How-
ever, plants grown under mild WS increased the stomatal limitation to 
avoid water loss. But under depleted [CO2], WS plants suffered more 
than in all the other treatments and decreased both the stomatal 
conductance and the photosynthesis assimilation. This indicates that our 

plants were less resistant to drought at depleted [CO2], a possible sce-
nario in the past when the [CO2] was lower.

Plants grown under depleted [CO2] exhibited lower C assimilation, 
and those grown under elevated [CO2] exhibited higher C assimilation, 
relative to plants growing at current [CO2] (Franks and Hoffmann, 
2012). As in our case, at depleted [CO2], lower or similar Asat values 
were found in comparison to current [CO2]. During grain filling, Asat 
values increased under depleted [CO2] (ca. 26.13 ± 1.95 and 22.90 ±
0.7 in WW and WS, respectively), showing up-regulation of photosyn-
thesis. The consequence was not only a net C and N content increase, but 
also increase in % of new C and N, or higher labelling of 13C and 15N 
compared to current [CO2], especially in WW plants. However, we must 
consider that during the labelling, the availability of C and N is very 
high, and plants grown under depleted [CO2] are more receptive for this 
new C and N than plants grown under elevated [CO2], as published by 
Aljazairi et al., (2014). Other studies showed that drought reduced leaf 
growth by inhibiting cell division and expansion as well as plant growth, 
as we showed in Aljazairi and Nogués (2015), where the growth of plant 
organs was lower under mild-WS than WW treatments. However, 
elevated [CO2] and drought have opposite interacted effects on growth, 
since elevated [CO2] favours growth while WS reduces growth. In our 
case, the difference in plant biomass between watering regimes was also 
lower at elevated [CO2], but this difference was not significant as re-
ported in other CO2 studies (AbdElgawad et al., 2015; Gámez et al., 
2023; Tcherkez, et al., 2020). Elevated [CO2] in combination with 
mild-WS, the biomass is similar or greater to that of WW plants (Ottman 
et al., 2001; Kimball et al., 2001; Varga et al., 2017). This shows that the 
[CO2] effects are modulated by the water availability, and, as we 
mentioned before, there is an interactive effect between elevated [CO2], 
N and water regimen (Ofori-Amanfo et al., 2023). The effects of depleted 
and elevated atmospheric [CO2] on plants under drought are complex.

The photosynthetic effect of depleted [CO2] can be worse under 
drought conditions because of the stomatal opening and the water loss. 
In contrast, under elevated [CO2] and WS, the photosynthesis is stimu-
lated by the CO2 availability, even though the stomatal closure and 
consequently, water stress is lesser than in depleted [CO2] (Robredo 
et al., 2007). These data suggest that the relative photosynthetic benefits 
of elevated [CO2] are greater in more arid regions due, at least in part, to 
water savings through stomatal closure (Morgan et al., 2004).

Besides, prolonged suppression of CO2 assimilation under prolonged 
drought may require plants to utilise stored carbohydrates to maintain 
metabolism, thereby enhancing the chances of survival (McDowell et al., 
2011). We found that our wheat at WS decreased the C and N uptake 
compared to WW plants, and the growth was inhibited, especially under 
depleted [CO2]. Drought may also overwhelm the benefits of elevated 
[CO2] (Kimball et al., 2001; Sneed, 2018). In our study, the plants’ 
growth under elevated [CO2] was similar to that of current [CO2] 
because of photosynthesis acclimation. However, this growth was lower 
under WS, indicating that drought has counteracted and modified the 
effects of CO2 (Gedalof and Berg, 2010; Phillips et al., 2009; West et al., 
2005).

As mentioned before, the C and N allocation in the plant depends on 
the different environments, such as increased CO2 (Aljazairi et al., 
2014a), water availability (Ahmadi and Baker, 2001; Aljazairi and 
Nogués, 2015) or N nutrition (Gojon et al., 2023), but also depends on 
the source-sink ratio that clearly changes during grain filling (Asseng 
and Van Herwaarden, 2003; Aranjuelo et al., 2012; Barzegar et al., 
2013). These factors interact simultaneously and modulate the response 
and the direction of the C and N allocation. However, very little is known 
about the mechanisms that control the C and N allocation between the 
grain, new photoassimilates and reserve pools (Schnyder, 1993; 
Lemoine et al., 2013; Martínez-Peña et al., 2022). With the stable iso-
topes we could observe and follow the different origins and allocations 
of C and N under CO2 and water treatments during grain filling. Our data 
suggests that during grain filling and at depleted [CO2], plants were 
more receptive and conservative (for example, lower losses by 
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respiration of C) for C and N than at elevated [CO2]. However, water 
stress reduces this C and N uptake capacity. Under depleted [CO2] and 
WW conditions, most of these new photoassimilates were sent to 
reproductive organs. WS treatment also affected the N uptake during 
grain filling, showing lower 15N uptake capacity from soil in all the CO2 
treatments, especially under depleted [CO2]. Moreover, under depleted 
[CO2], the 15N losses were lower during the grain filling, even increasing 
together with the % of new N at the end of the grain filling in spikes and 
leaves. This effect was higher in WW than in WS plants, suggesting that 
N is mobilized from storage plant areas (stems and roots) to the grain, 
because of the low availability of CO2 in the environment. For this 
reason, photoassimilates (i.e. sugars) and reserves (i.e. starch) play an 
important role during metabolite transport for grain filling and storage 
carried out by plant organs (Lemoine et al., 2013), and facilitate whole 
plant communication, particularly in the transmission of information 
concerning the resources availability (Griffiths et al., 2016). The rela-
tionship between C and N inputs and metabolism are further compli-
cated by dynamic exchanges between plant organs and the effect of the 
environment (Baghalian et al., 2014).

Conclusions

Using long-term treatments with different CO2 concentrations 
(depleted, current, and elevated) and water availability (well-watered 
and mild water stress), as well as short term labelling with 13C and 15N in 
wheat durum plants, we found the following: 

The plants’ response to different environmental [CO2] was modu-
lated by water availability, and therefore, C and N allocation was 
also modulated by both factors.
The physiological plant response was acclimation to different envi-
ronmental CO2 was modulated by water availability; the photosyn-
thetic acclimation affected the C and N allocation in plants. 
However, this acclimation was broken during grain filling changing 
the C and N allocation in Durum wheat plants (Triticum turgidum var. 
Sula).
Plants under depleted [CO2] presented lower drought tolerance than 
those under the current [CO2]. Plants under elevated [CO2] pre-
sented higher drought resistance than those in the current [CO2].

However, the mechanisms controlling whole C and N plant acquisi-
tion and allocation under different climatic scenarios with environ-
mental stresses in wheat plants are not completely clear and require 
further studies.
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Fuertes-Mendizabal, T., González-Murua, C., GonzalezMoro, M.B., Estavillo, J.M., 2012. 
Late nitrogen fertilization affects carbohydrates mobilization in wheat. J. Plant Nutr. 
Soil Sci. 173, 907–919.
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Lehmeier, C.A., Schäufele, R., Schnyder, H., 2005. Allocation of reserve-derived and 
currently assimilated carbon and nitrogen in seedlings of Helianthus annuus under 
subambient and elevated CO2 growth conditions. New Phytol. 168, 613–621. 
https://doi.org/10.1111/j.1469-8137.2005.01531.x.

Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., 
Bonnemain, J.-C., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., 
Girousse, C., Lemonnier, P., Parrilla, J., Durand, M., 2013. Source-to-sink transport 
of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https:// 
doi.org/10.3389/fpls.2013.00272.

Li, Y., Li, X., Yu, J., Liu, F., 2017. Effect of the transgenerational exposure to elevated CO2 
on the drought response of winter wheat: stomatal control and water use efficiency. 
Environ. Exp. Bot. 136, 78–84.

Lopes, M.S., Nogués, S., Araus, J.L., 2004. Nitrogen source and water regime effects on 
barley photosynthesis and isotope signature. Funct. Plant Biol. 31, 995–1003.

Lorenz, K., Lal, R., 2010. Carbon Sequestration in Forest Ecosystems. Springer Science+
Business Media B.V., Berlin, pp. 29–30. https://doi.org/10.1007/978-90-481-3266- 
9_2.

Marcinkowski, P., Piniewski, M., 2024. Future changes in crop yield over Poland driven 
by climate change, increasing atmospheric CO2 and nitrogen stress. Agric. Syst. 213, 
103813. https://doi.org/10.1016/j.agsy.2023.103813.
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