
Induced operators on bounded lattices?

Luis Merinoa, Gabriel Navarrob,∗, Evangelina Santosa

aDepartment of Algebra and IMAG, University of Granada
bDepartment of Computer Science and Artificial Intelligence and CITIC, University of Granada

Abstract

In this paper we show a methodology for designing operators on spaces of lattice-valued mappings. More precisely,
from a family of operators on a bounded lattice L and mappings from a set X to itself, we may construct an operator,
that we call the induced operator, on the lattice of set mappings from X to L. Furthermore, if X is also a bounded
lattice, under suitable conditions preserving the orders on L and X, the induced operator belongs to the lattice of
monotone mappings from X to L. The procedure is quite simple, versatile and allows to obtain plenty of different
examples in a wide range of lattices. In particular, by appropriate choices of X and L, it can be applied to the most
important types of fuzzy sets. The relation with some properties associated to popular types of operators is studied.
Hence, we show that, under certain conditions, aggregation operators, implications, negations, overlap functions and
others are preserved by the induction process.
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1. Introduction

The fusion of information into a single output object that gathers, or represents, the original input is a ubiquitous
problem in several fields of knowledge as mathematics, economics or biology, among others. For a finite set of values,
the simplest and oldest solution is to consider the mean. But modern engineering problems, as decision making
problems, require something more sophisticated. For instance, the reader may consult the approaches based on the
Choquet integral like TOPSIS and TODIM for dynamic and heterogeneous decision making with criteria interaction
[30], influenced/disturbed multi-expert decision making [40] and group decision-making based on complex spherical
fuzzy and other types of aggregations [1]. Another examples can be found in fuzzy rule-based classification problems
(e.g., [32]), image processing [33], deep learnig [3] or computational brain [25]. As the reader may see, the problem
is quite heterogeneous and the measures standing for the information could not be simply represented by real values
but also by more complex structures.

Mathematically, the formalism to deal with this topic is covered by the notion of operator. Although it may admit
wider definitions, an operator is simply a mapping L1 × L2 × · · · × Ln → L, where L, L1, L2, . . . , Ln are the spaces
containing the types of objects under consideration. Obviously, this allows to cover other semantically different,
although formally similar, problems. For instance, it also models an action between several objects. Well-known
examples are the set of connectives that forms a logical system or the arithmetic operations associated to certain
domain. Normally, the problems handled by an operator are determined by the properties it satisfies. Thereby, one
may find in the literature some efforts for developing effective aggregation operators, or ways of construction of them,
aiming to solve practical problems requiring fusion procedures. For instance, as mentioned above, Choquet-based
approaches have been widely applied to real problems. Actually, weaker forms of monotonicity are sufficient to solve
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several kinds of problems, see [13, 31]. In [23] aggregation operators and OWA’s for interval fuzzy sets are studied.
More generally, in [7], a basic theory for operators on n-dimensional intervals is introduced. Later, in [19], admissible
orders, and a method for constructing them, are considered for these class of fuzzy objects prior OWA operators are
defined. In the field of type-2 fuzzy sets, the definition of aggregation operator can be found in [44], where, by using
the Zadeh’s extension principle, aggregation operators on (type-1) fuzzy sets are extended to aggregation operators
on type-2 fuzzy sets. This is generalized to arbitrary bounded posets in [18] providing more aggregation operators on
[0, 1][0,1], the membership values of type-2 fuzzy sets. In the context of approximate reasoning, the extension of the
classical logical connectives to appropriate models on a fuzzy ambient leads to some kind of operators as t-norms,
negations or implications. This is done, actually, by Zadeh in his seminal paper [47] and, later, for extended fuzzy
sets, in which the truth values belong to a lattice related to [0,1]. See, for instance, [27] for t-norms on type-2 fuzzy
sets, [6, 12, 16] for negations and t-norms on interval fuzzy sets, [10, 49] for implications on some extended fuzzy
sets. For classification tasks, we may consider the concept of overlap function [15], aiming to measure the degree of
overlap between classes in a fuzzy classification problem with two classes. For interval-valued overlap functions the
reader may consult the reference [4] and, for overlap and grouping functions on lattices, the references [35, 36]. All
these operators, in classical or in extended fuzzy sets, yield a wide and extensive variety of practical applications in
computer sciences-related areas .

The aim of this paper is to provide a method, that we call induction, for designing operators on spaces of lattice-
valued mappings. This continues and generalizes the studies made by these authors in [29] for constructing induced
t-norms, t-conorms and negations from families of such operators on the lattice chosen as codomain. The method
described here can be applied to arbitrary operators with no additional property. Nevertheless, since monotonicity
and boundary conditions are well-inherited from the input family to the resultant operator, it can be properly used for
designing aggregation operators. Analogously, by appropriate conditions, it can be applied to design other important
types of operators as the ones describe above. Fixed a bounded lattice L and a set X, the procedure input is a family Γ

of m-ary operators on L indexed in X, and m mappings Σ from X to X. We then construct an m-ary operator ΦΣ,Γ, the
induced operator, on Map(X, L), the lattice of set mappings from X to L. One may see that a potentially large class
of different operators on Map(X, L) can be considered by modifying Γ and/or Σ. Hence, in practice, for a specific
problem, a designer has many options available for choosing suitable input parameters in such a way the induced
operator is the most appropriate for the requirements of the problem. Despite the abstract description, our approach
can be applied to many frameworks simply by varying the lattice L and the set X. In particular, to the most popular
types of extended fuzzy sets. For instance, if X = L = [0, 1] we may deal with operators on [0, 1][0,1], the set of
membership degrees of type-2 fuzzy sets. Actually, if X is a lattice as well, we specify the theory so that the induced
operator is defined on Hom(X, L), the lattice of monotone mappings, covering more application frameworks. For
example, if L = [0, 1] and X = 2, the two element Boolean algebra, Hom(X, L) is the set of intervals on [0, 1], the
membership degree of the well-known interval fuzzy sets. In spite of the theoretical description, the method is simple
and can be applied with minimal mathematical requirements.

The paper is structured as follows: Section 2 provides a short reminder of the mathematical concepts needed to
develop the theory: the concepts of poset and lattice. Additionally, in order to illustrate the wide range of applicability
of our methods, we describe some feasible spaces of mappings, Map(X, L) or Hom(X, L), by choosing specific lattices
L and sets X. In particular, it is shown that the membership degrees associated to common fuzzy objects (as interval,
set-valued or type-2 fuzzy sets) can be recovered by a suitable choice of L and X. Section 3 deals with the induction
process and shows how a family of operators on the base lattice L can define an induced operator on Map(X, L) or on
Hom(X, L). We also prove that the class of aggregation operators is well-preserved under the process of induction.
Section 4 analyzes which operators on Map(X, L) are representable, that is to say, which can be constructed by the
induction process. In Section 5 we show how some common properties are inherited from operators on L to the
induced operator on Map(X, L). In Section 6 we illustrate the theory by describing some examples and analyzing
other types of operators. Finally, in Section 7 we give our conclusions.

2. Background and some ambits of application

For the convenience, we firstly fix the notation and recall the basic notions concerning the theory developed
throughout this paper. All along this work X denotes a set. A binary relation ≤ on X (that is, a subset of X × X) is said
to be a partial order if and only if it is reflexive, antisymmetric and transitive. A partially ordered set (a poset, for
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short) is then a pair (X,≤), where X is a set and ≤ is partial order on X. In general, if the context is clear, we simply
denote it by X.

A poset (L,≤) is called a lattice if, for any a, b ∈ L, there exist a least upper bound, or supremum, of a and b, and
a greatest lower bound, or infimum, of them. We recall that a supremum of a, b ∈ L is an element c ∈ L verifying that
a, b ≤ c and, if c′ ∈ L with a, b ≤ c′, then c ≤ c′. Dually, we define the infimum of a, b ∈ L. We may, equivalently,
say that a lattice is a set L with two operations ∧ and ∨, called infimum and supremum, respectively, verifying the
following properties:

i) associativity: for any a, b, c ∈ L, (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c).

ii) commutativity: for any a, b ∈ L, a ∧ b = b ∧ a and a ∨ b = b ∨ a.

iii) idempotency: for any a ∈ L, a ∧ a = a and a ∨ a = a.

iv) absorption law: for any a, b ∈ L, a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

Actually, the equivalence between both approaches is given by the relations a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a.
Again, when the context is clear enough, we do not mention the operators ∧ and ∨, and we simply denote by L the
lattice (L,∧,∨).

A lattice (L,∧,∨) is said to be bounded if there exist a maximum and a minimum of L. That is, two elements in L,
usually denoted by 1 and 0, respectively, such that, for every a ∈ L, 0 ≤ a ≤ 1 or, equivalently, a ∧ 0 = 0, a ∧ 1 = a,
a ∨ 0 = a and a ∨ 1 = 1.

Given a non empty set X and a lattice L, we shall denote by Map(X, L) the class of all set mappings from X to L.
In general, Map(X, L) inherits a poset structure ≤M from the one on L, say ≤L, by the following rule:

f ≤M g if and only if f (x) ≤L g(x) for all x ∈ X,

for a given pair of mappings f , g ∈ Map(X, L). Actually, Map(X, L) is also a lattice with operators ∧M and ∨M , given
by

( f ∧M g)(x) = f (x) ∧L g(x) and ( f ∨M g)(x) = f (x) ∨L g(x),

for any f , g ∈ Map(X, L) and x ∈ X, where ∧L and ∨L provide the lattice structure on L.
Whenever X has also a poset structure, we may consider the set Hom(X, L) of all monotone set mappings from X

to L, a subset of Map(X, L). Analogously to the latter discussion, Hom(X, L) can be endowed with a poset and a lattice
structure.

Given a bounded lattice L and a positive integer m, we denote by Om(L) the set of all m-ary operators on L, that
is, Om(L) = Map(Lm, L), the class of all set mappings from Lm to L. Hence, all along the paper, we shall consider
the sets Om(L), Map(X, L), Hom(X, L), Om(Map(X, L)) and Om(Hom(X, L)) with the corresponding inherited lattice
structure from L. Our primary aim in this paper is to construct useful m-ary operators on Map(X, L) and Hom(X, L)
from operators on L by a simple procedure. Let us first illustrate some frameworks covered by the theory described in
the following sections.

2.1. Products

Let 2 denote the set with two elements. Then Map(2, L) is the set L2 = L × L with the standard lattice product
structure, a particular case of the ones treated in [20] in the context of t-norms. Whenever L = [0, 1], this covers the
lattice of membership values for the so-called Neutrosophic Sets (NSs) in [42] by Smaradache. Actually, by a suitable
bijection, it also covers the membership values for the notion of Bipolar Valued Fuzzy Sets (BVFSs) given in [46] by
Zhang. In general, for any positive integer n, if n = {1, 2, . . . , n} is the set with n elements, then Map(n, L) is the set
Ln = L × · · · × L︸       ︷︷       ︸

n-times

endowed with the product lattice structure.
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2.2. Intervals
If we consider the standard Boolean lattice structure on 2, Hom(2, L) can be identified with the set of all L-intervals

I = {[a, b] such that a ≤ b with a, b ∈ L},

where [a, b] = {s ∈ L such that a ≤ s ≤ b}. Clearly, when L = [0, 1], this yields the space of membership degrees of
the well-known Interval-Valued Fuzzy Sets (IVFSs), the upper triangle described in Figure 1(a). The bijection maps
any f ∈ Hom(2, [0, 1]) to the interval [ f (0), f (1)] ∈ I.

1

10

f (0)

f (1)

(a) IVFSs

1

10

z
fz(ρ)

fz(a)

(b) PFSs

1

10

zfz(ρ)

fz(a)

(c) AIFSs

Figure 1: Space of membership values of some kind of fuzzy sets

Additionally, we may recover the membership values of other exotic kind of fuzzy sets. For instance, we recall
from [45] that a Pythagorean Fuzzy Set (PFS) over a universe U is a mapping A : U → D([0, 1]), where

D([0, 1]) = {(x, y) ∈ [0, 1]2 with x2 + y2 ≤ 1},

a quarter of the unit disc, see Figure 1(b). Consider then X = {a, ρ} with the order a ≤ ρ and L = [0, 1]. Hence,

Hom(X, L) � D([0, 1]).

Indeed, the bijection is given as follows: for each z = (x, y) ∈ D([0, 1]), the associated mapping fz : X → L is defined
as fz(a) = x and fz(ρ) =

√
x2 + y2.

Something similar can be done when considering Atanassov Intuitionistic Fuzzy Sets (AIFSs). An AIFS over a
universe set U is a mapping

A : U → S ([0, 1]) = {(x, y) ∈ [0, 1]2 with x + y ≤ 1},

where A(x) = (ν(x), µ(x)) with ν(x) being the membership degree of x and µ(x) its non-membership degree. The
lattice structure on S ([0, 1]) is provided by the partial order defined as (a, b) ≤ (c, d) if and only if a ≤ c and b ≥ d.
Therefore (0, 1) is the minimum of S ([0, 1]) and (1, 0), the maximum. Hence, S ([0, 1]) � Hom({a, ρ}, [0, 1]). In this
case, the bijection is given as follows: for each z = (x, y) ∈ S ([0, 1]), the associated mapping fz : X → L is defined as
fz(a) = x and fz(ρ) = x + y, see Figure 1(c).

In general, if n = {1, 2, . . . , n} is endowed with a chain lattice structure, as for instance 1 ≤ 2 ≤ · · · ≤ n, Hom(n, L)
is the set Ln(L) of n-dimensional L-intervals, that is to say,

Ln(L) = {(s1, s2, . . . , sn) ∈ Ln such that s1 ≤ s2 ≤ · · · ≤ sn}.

Again, if L = [0, 1], we construct the space of membership values of the so-called n-Dimensional Fuzzy Sets (nDFS).

2.3. Type-n fuzzy sets
In the 70’s Zadeh asserted that a major issue for handling fuzzy set theory is the establishment of the membership

degree of each element. Therefore, it is suggested to link soft object to them, meaning the uncertainty of computing
such degrees [48]. This motivates the introduction of Type-2 Fuzzy Set (T2FS), as a fuzzy set whose membership
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degree is a (type-1) fuzzy set on [0,1]. Consequently, it takes values in Map([0, 1], [0, 1]). In general, for an arbitrary
lattice L, a type-2 L-fuzzy set takes values in Map(L, L), the L-fuzzy sets on L.

Although, as far we know, no application has been developed using them, we may define recursively higher types
of FSs. Hence, a type-(n + 1) L-fuzzy set is a FS whose membership degree is a type-n L-fuzzy set (TnFS). That is to
say, if L is the universe of discourse, it is a function in Map(L,TnFS).

2.4. Set-valued fuzzy sets

An obvious generalization of IVFSs consists in allowing to choose an arbitrary subset of [0, 1] as membership
degree, yielding the notion of Set-Valued Fuzzy Set (SVFS). Therefore, a SVFS on a universe of discourse U assigns
to each element in U a non-empty set from the powerset P([0, 1]). In general, for an arbitrary set X, note that

P(X) � Map(X,2),

then, in this case, P(X) inherits the lattice structure from 2.

2.5. Necessary-and-possible fuzzy sets

Following [2], a Necessary-and-Possible Hesitant Fuzzy Set (NaPHFS) over a universe X is a pair H = (hn, hp)
of hesitant fuzzy sets over X such that the inclusion hn(x) ⊆ hp(x) holds for any x ∈ X. Obviously, the notion can
be trivially extended by considering non-finite sets yielding what may be called Necessary-and-Possible Fuzzy Set
(NaPFS) over X. By the latter examples, we may conclude that the membership degree of NaPFS’s is given by the
lattice

Hom(2,P(X)) � Hom(2,Map(X,2)).

2.6. Other example

Let us consider the finite lattice L given by the Hasse diagram of Figure 2.

l5
l4

l2
l3

l1

Figure 2: Hasse diagram of L

Hence, Hom(L, [0, 1]) is the set

D =

{
(x1, x2, x3, x4, x5) ∈ [0, 1]5 |

x1 ≤ x2 ≤ x5

x1 ≤ x3 ≤ x4 ≤ x5

}
.

Therefore, as showed in the next section, we may define operators on D from operators on [0, 1].

3. Inducing operators

In this section we deal with the main purpose of the paper, that is, to describe a construction method for operators
on Map(X, L) from a family of operators on L. We also prove that (pre)aggregation operators are preserved under this
method.

Let us consider a family of m-ary operators on L indexed in a set X, Γ = {Ox}x∈X . This actually can be seen as
the element in Map(X,Om(L)) mapping each x ∈ X to the corresponding operator Ox. For convenience, we work
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simultaneously with both points of view. Let also Σ = (σ1, . . . , σm) be an m-tuple, where each σi : X → X is an
arbitrary set mapping. We may then define an m-ary operator

OΣ,Γ : Map(X, L)m → Map(X, L)

as
OΣ,Γ( f1, . . . , fm)(x) = Ox( f1(σ1(x)), . . . , fm(σm(x))) (1)

for any ( f1, . . . , fm) ∈ Map(X, L)m and x ∈ X. That is to say, we may define a mapping

ΦΣ : Map(X,Om(L))→ Om(Map(X, L))

given by ΦΣ(Γ) = OΣ,Γ for any family Γ ∈ Map(X,Om(L)). In other words, it assigns a family of operators on L
indexed in X to an operator on Map(X, L). We shall say that ΦΣ(Γ) is Σ-induced (or simply induced, if the context is
clear) by the family Γ ∈ Map(X,Om(L)). All along the paper, we shall denote the composition of mappings f and σ
by using the symbol ◦, or simply by the juxtaposition fσ.

Remark 1. This construction can be stated in a more general, although more intricate, form. Let us suppose that
L1, · · · , Lm, L are lattices and X1, . . . , Xm, X are sets. Suppose also that there exist a family Γ = {Ox}x∈X of mappings
Ox :

∏m
i=1 Li → L for any x ∈ X and an m-tuple Σ = (σ1, . . . , σm) ∈

∏m
i=1 Map(X, Xi). Hence, we may define a

mapping

OΣ,Γ :
m∏

i=1

Map(Xi, Li)→ Map(X, L)

as
OΣ,Γ( f1, . . . , fm)(x) = Ox( f1(σ1(x)), . . . , fm(σm(x)))

for any ( f1, . . . , fm) ∈
∏m

i=1 Map(Xi, Li) and x ∈ X. All the claims in this section can be proved for this extended form
by a straightforward reformulation. Nevertheless, in order to improve the readability of the text, we shall use the
restricted version.

Remark 2. Observe that, despite its abstract formulation, the technique is easy to apply. An eventual user only has
to follow the next steps:

• Choose suitable L and X so that the lattice under consideration is the class of mappings from X to L.

• Select a family Γ of known operators on L

• Select m mappings from X to X.

Then the induced operator is defined as in (1).

We recall that an m-ary operator O is monotone whenever O ∈ Hom(Lm, L), where Lm is endowed with the product
lattice structure, that is to say, O(l1, . . . , lm) ≤ O(t1, . . . , tm) if li ≤ ti for any i = 1, . . . ,m.

Proposition 3. Under the above notation, let us suppose that the family Γ = {Ox}x∈X consists of monotone m-ary
operators on L. Then ΦΣ(Γ) is a monotone m-ary operator on Map(X, L).

Proof. Let O = ΦΣ(Γ), ( f1, . . . , fm), (g1, . . . , gm) ∈ Map(X, L)m with fi ≤ gi for any i = 1, . . . ,m and x ∈ X. Then
fi(σi(x)) ≤ gi(σi(x)) for any i = 1, . . . ,m, and then

O( f1, . . . , fm)(x) = Ox(( f1(σ1(x)), . . . , fm(σm(x)))
∗

≤ Ox((g1(σ1(x)), . . . , gm(σm(x)))
= O(g1, . . . , gm)(x),

where ∗ follows from the monotonicity of operators Ox. Hence, O( f1, . . . , fm) ≤ O(g1, . . . , gm).
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We may see that, in the lattice Map(X, L), the upper and lower bound are the constant mappings 1 and 0 that we
denote by C1 and C0, respectively. In general, for an element l ∈ L, we shall denote by Cl ∈ Map(X, L) the constant
mapping with the value l.

Proposition 4. Under the above notation, given a1, . . . , am, b ∈ L, if Ox(a1, . . . , am) = b for any x ∈ X, then
ΦΣ(Γ)(Ca1 , . . . ,Cam ) = Cb. In particular,

1. If Ox(1, . . . , 1) = 1 for any x ∈ X, then ΦΣ(Γ)(C1, . . . ,C1) = C1.

2. If Ox(0, . . . , 0) = 0 for any x ∈ X, then ΦΣ(Γ)(C0, . . . ,C0) = C0.

Proof. Let x ∈ X, then

ΦΣ(Γ)(Ca1 , . . . ,Cam )(x) = Ox(Ca1 (σ1(x)), . . . ,Cam (σm(x)))
= Ox(a1, . . . , am)
= b
= Cb(x),

thus ΦΣ(Γ)(Ca1 , . . . ,Cam ) = Cb.

Theorem 5. Let L be a bounded lattice, X a set and Γ = {Ox}x∈X a family of m-ary aggregation operators on L
indexed in X. Then, for each m-tuple Σ = (σ1, . . . , σm) ∈ Map(X, X)m, the m-ary operator ΦΣ(Γ) on Map(X, L) is an
aggregation operator.

Proof. It follows directly from Propositions 3 and 4.

Example 6. Let us consider X = [0, 1] and L = [0, 1], therefore Map(X, L) = [0, 1][0,1] = FS([0, 1]) the membership
values of type-2 fuzzy sets, i. e., the class of (type-1) fuzzy sets in [0, 1]. Consider as well the family of ternary
aggregation operators Γ = {Ot}t∈[0,1] on [0, 1] given by

Ot(a, b, c) =

{
a, if t ≤ 1

2 ,
a+b+c

3 , if t > 1
2 ,

for any t, a, b, c ∈ [0, 1]. Set also the tuple Σ = (σ1, σ2, σ3), where the mappings σi : [0, 1] → [0, 1] with i = 1, 2, 3
are defined as σ1(t) = t, σ2(t) = 1 − t and σ3(t) = t2 for any t ∈ [0, 1]. Hence, we may construct the induced ternary
operator on FS ([0, 1]), O : FS([0, 1])3 → FS([0, 1]), provided by

O( f1, f2, f3)(t) = Ot( f1σ1(t), f2σ2(t), f3σ3(t))
= Ot( f1(t), f2(1 − t), f3(t2))

=

{
f1(t) if t ≤ 1

2 ,
f1(t)+ f2(1−t)+ f3(t2)

3 , if t > 1
2 .

for any mappings f1, f2, f3 ∈ M and any t ∈ [0, 1]. By Theorem 5, O is a ternary aggregation operator on FS([0, 1]).
Hence, from aggregation operators on [0, 1], we may construct aggregation operators on type-1 fuzzy sets. In general,
from aggregation operators on type-n fuzzy sets, we may induce aggregation operators on type-(n + 1) fuzzy sets.

Let us suppose, additionally, that X is also a bounded lattice. Hence we may consider the space of monotone
mappings Hom(X, L), a subspace of Map(X, L), and study m-ary operators on this space. We say that a family {Ox}x∈X

of m-ary operators on L indexed in X is monotone if the family preserves the order on X, that is, it verifies that
Ox ≤ Oy whenever x ≤ y. It should not be confused with asserting that an operator Ox is monotone, meaning that
Ox(l1, . . . , lm) ≤ Ox(s1, . . . , sm) whenever li ≤ si for any i = 1, . . . ,m. For brevity, we shall denote by O↗m (L) the set of
m-ary monotone operators on an arbitrary bounded lattice L.

Theorem 7. Let Γ = {Ox}x∈X ∈ Map(X,O↗m (L)) be a family of m-ary monotone operators on L, Σ ∈ Hom(X, X)m and
ΦΣ(Γ) the Σ-induced operator. Then the following assertions are equivalent:
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i) Γ is monotone, i.e. Γ ∈ Hom(X,O↗m (L)).

ii) ΦΣ(Γ) is an m-ary monotone operator on Hom(X, L).

Proof. i) ⇒ ii). Given ( f1, . . . , fn) ∈ Hom(X, L)m, we prove that the mapping ΦΣ(Γ)( f1, . . . , fn) is in Hom(X, L).
Indeed, let x, y ∈ X with x ≤ y. Hence fi(σi(x)) ≤ fi(σi(y)) for any i = 1, . . . , n. Thus

ΦΣ(Γ)( f1, . . . , fn)(x) = Ox( f1(σ1(x)), . . . , fm(σm(x)))
∗

≤ Oy( f1(σ1(x)), . . . , fm(σm(x)))
†

≤ Oy( f1(σ1(y)), . . . , fm(σm(y)))
= ΦΣ(Γ)( f1, . . . , fm)(y),

where ∗ follows from the monotonicity of Γ and † from the monotonicity of Oy. Now, let f1, . . . , fm, g1, . . . , gm ∈

Hom(X, L) with fi ≤ gi for any i = 1, . . . ,m. Hence, for any x ∈ X,

ΦΣ(Γ)( f1, . . . , fm)(x) = Ox( f1σ1(x), . . . , fmσm(x)) ≤ Ox(g1σ1(x), . . . , gmσm(x)) = ΦΣ(Γ)(g1, . . . , gm)(x),

thus ΦΣ(Γ)( f1, . . . , fm) ≤ ΦΣ(Γ)(g1, . . . , gm) and then ΦΣ(Γ) ∈ O↗m (Hom(X, L)).
ii)⇒ i). Let x, y ∈ X with x ≤ y and l1, . . . , lm ∈ L. Hence

Ox(l1, . . . , lm) = Ox(Cl1 (σ1(x)), . . . ,Clm (σm(x)))
= ΦΣ(Γ)(Cl1 , . . . ,Clm )(x)
≤ ΦΣ(Γ)(Cl1 , . . . ,Clm )(y)
= Oy(Cl1 (σ1(y)), . . . ,Clm (σm(y)))
= Oy(l1, . . . , lm).

Thus Γ is monotone.

Therefore, under these conditions, the restriction

ΦΣ
|Hom(X,O↗m (L))

: Hom(X,O↗m (L))→ O↗m (Hom(X, L)), (2)

is well-defined. For simplicity, we shall also denote it by ΦΣ.

Example 8. The condition of Σ being a tuple of monotone mappings is necessary. Suppose, for instance, that σ1 is
not monotone, i. e., there exist x, y ∈ X with x ≤ y and σ1(x) > σ1(y). Consider the constant family of m-ary operators
Γ = {O}x∈X where O(l1, . . . , lm) = min{l1, . . . , lm} for all l1, . . . , lm ∈ L. Let us denote by O the induced operator.

Fix the monotone mappings C1 and f : L→ L given by

f (z) =

{
0, if z < σ1(x)
1 otherwise.

Hence,
O( f ,C1, . . . ,C1)(x) = Ox( f (σ1(x)), 1, . . . , 1)

= min{1, 1, . . . , 1}
= 1,

whilst,
O( f ,C1, . . . ,C1)(y) = Oy( f (σ1(y)), 1, . . . , 1)

= min{0, 1, . . . , 1}
= 0.

Thus O( f ,C1, . . . ,C1) < Hom(X, L).
Contrary to that, from a tuple formed by non monotone mappings we may obtain an operator on Hom(X, L)

(obviously, from a monotone family of operators). Set now m = 2, X = {0, 1}, L = [0, 1], Σ = (n, IdX), where n(0) = 1
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and n(1) = 0, and O0(a, b) = min{a, b} and O1(a, b) = max{a, b}. Hence ΦΣ(Γ) = O is an operator on Hom(X, L).
Indeed, if f , g ∈ Hom(X, L), that is, f (0) ≤ f (1) and g(0) ≤ g(1),

O( f , g)(0) = O0( f (1), g(0)) = min{ f (1), g(0)} and O( f , g)(1) = O0( f (0), g(1)) = max{ f (0), g(1)}.

Since min{ f (1), g(0)} ≤ g(0) ≤ g(1) ≤ max{ f (0), g(1)}, we find that O( f , g) ∈ Hom(X, L).

Analogously to Theorem 5, families of aggregation operators yield aggregation operators on Hom(X, L).

Theorem 9. Let L and X be a bounded lattice, Γ a family of m-ary aggregation operators on L indexed in X preserving
the order on X. Then, for each tuple Σ = (σ1, . . . , σm) ∈ Hom(X, X)m, the m-ary operator ΦΣ(Γ) on Hom(X, L) is an
aggregation operator.

Proof. It follows directly from Proposition 4 and Theorem 7.

Example 10. Let us consider X = {1, 2, 3}, the set with three ordered elements (1 < 2 < 3), and L = [0, 1].
Hence Hom(X, L) = L3([0, 1]), the set of 3-intervals on [0, 1]. Fix the family of aggregation operators on [0, 1],
Γ = {O1,O2,O3}, constructed from the p-norms,

Ot(a, b, c) =


a+b+c

3 , if t = 1,(
a2+b2+c2

3

) 1
2 , if t = 2,

max(a, b, c), if t = 3,

for any a, b, c ∈ [0, 1]. Clearly O1 ≤ O2 ≤ O3, thus Γ is a monotone family of aggregation operators. Let σ1, σ2, σ3 ∈

Hom(X, X) be constant mappings given by σ1(t) = 1, σ2(t) = 2 and σ3(t) = 3 for any t = 1, 2, 3. Hence, O = ΦΣ(Γ)
is a ternary aggregation operator on L3([0, 1]). Concretely, for any a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) ∈
L3([0, 1]).

O(a, b, c) =

a1 + b2 + c3

3
,

a2
1 + b2

2 + c2
3

3

 1
2

,max(a1, b2, c3)

 .
Observe that a different choice of Σ provides a different induced operator. Actually, it could provide a different image
for ΦΣ, see Figure 3 below. For instance, consider the tuple Σ′ = (IdX , IdX , IdX). Hence, O = ΦΣ′ (Γ) is defined as

O(a, b, c) =

a1 + b1 + c1

3
,

a2
2 + b2

2 + c2
2

3

 1
2

,max(a3, b3, c3)

 .
for any a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) ∈ L3([0, 1]).

Under certain conditions, our theory remains valid for pre-aggregation operators. We recall from [31] that an
m-ary operator O : [0, 1]m → [0, 1] is said to be a pre-aggregation operator if verifies

a) the boundary conditions, O(1, . . . , 1) = 1 and O(0, . . . , 0) = 0,

b) and the property of being r-increasing for a non zero vector r = (r1, . . . , rm) ∈ [0, 1]m, that is,

O((x1, . . . , xm) + c(r1, . . . , rm)) ≥ O(x1, . . . , xm)

for any (x1, . . . , xm) ∈ [0, 1]m and any c > 0 such that (x1, . . . , xm) + c(r1, . . . , rm) ∈ [0, 1]m.

Let now X be a set, we may consider two operations on Map(X,R) inherited from the sum and product on real
numbers. Namely, for any f , g ∈ Map(X,R) and c ∈ [0, 1], the mappings f + g and c f are defined as ( f + g)(x) =

f (x) + g(x) and (c f )(x) = c f (x), respectively, for all x ∈ X. This allows us to define the directional monotonicity in
Map(X, [0, 1]).
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Definition 11. Given a non zero m-tuple r = (r1, . . . , rm) ∈ Map(X,R)m, an operator O : Map(X, [0, 1])m →

Map(X, [0, 1]) is r-increasing if

O(( f1, . . . , fm) + c(r1, . . . , rm)) ≥ O( f1, . . . , fm)

for any ( f1, . . . , fm) ∈ Map(X, [0, 1])m and any c > 0 such that fi + cri ∈ Map(X, [0, 1]) for all i = 1, . . . ,m. Of course,
we understand here that c(r1, . . . , rm) = (cr1, . . . , crm).

Consequently, the definition of pre-aggregation operator on Map(X, [0, 1]) can be stated as follows.

Definition 12. An m-ary pre-aggregation operator O on Map(X, [0, 1]) is an m-ary operator satisfying that O(C1, . . . ,C1) =

C1, O(C0, . . . ,C0) = C0 and the property of being r-increasing for some non zero vector r ∈ Map(X, [0, 1])m.

Additionally, if X is also a bounded lattice, we may state a similar definition for operators on Hom(X, [0, 1]).
Indeed, we say that an m-ary operator O on Hom(X, [0, 1]) is a pre-aggregation operator if O(C1, . . . ,C1) = C1,
O(C0, . . . ,C0) = C0 and there exists a non zero vector r = (r1, . . . , rm) ∈ Map(X, [0, 1])m such that

O(( f1, . . . , fm) + c(r1, . . . , rm)) ≥ O( f1, . . . , fm)

for any ( f1, . . . , fm) ∈ Hom(X, [0, 1])m and any c > 0 such that fi + cri ∈ Hom(X, [0, 1]) for all i = 1, . . . ,m. Observe
that, when X = 2, this definition coincides with [41, Definition 10].

Theorem 13. Let X be a set, Γ = {Ox}x∈X a family of m-ary operators on [0, 1] and Σ = (σ1, . . . , σm) ∈ Map(X, X)m.
Suppose that, for each x ∈ X, Ox is an rx-increasing pre-aggregation operator for a vector rx = (rx

1, . . . , r
x
m) ∈ [0, 1]m

verifying that rσi(x)
i = rx

i for all x ∈ X and i = 1, . . . ,m. Then ΦΣ(Γ) is an m-ary (r1, . . . , rm)-increasing pre-aggregation
operator on Map(X, [0, 1]), where ri(x) = rx

i for all x ∈ X and any i = 1, . . . ,m.
If, additionally, X is a bounded lattice, Γ preserves the order on X and Σ ∈ Hom(X, X)m, the same result holds for

operators on Hom(X, [0, 1]).

Proof. By the former results, it is sufficient to show that ΦΣ(Γ) is (r1, . . . , rm)-increasing. Let f1, . . . , fm ∈ Map(X, [0, 1])
and c > 0 such that fi(x) + crx

i ∈ [0, 1] for all x ∈ X and all i = 1, . . . ,m, then, for all x ∈ X,

ΦΣ(Γ)(( f1, . . . , fm) + c(r1, . . . , rm))(x) = Ox(( f1 + cr1)(σ1(x)), . . . , ( fm + crm)(σm(x)))
= Ox( f1(σ1(x)) + cr1(σ1(x)), . . . , fm(σm(x)) + crm(σm(x)))
= Ox( f1(σ1(x)) + crσ1(x)

1 , . . . , fm(σm(x)) + crσ1(x)
m )

= Ox( f1(σ1(x)) + crx
1, . . . , fm(σm(x)) + crx

m)
≥ Ox( f1(σ1(x)), . . . , fm(σm(x)))
= ΦΣ(Γ)( f1, . . . , fm)(x).

Then ΦΣ(Γ)(( f1, . . . , fm) + c(r1, . . . , rm)) ≥ ΦΣ(Γ)( f1, . . . , fm).

Example 14. Let us consider the family Γ = {Lλ}λ∈[0,1] of binary pre-aggregation operators on [0, 1] formed by the
weighted Lehmer means, i.e., for any λ ∈ [0, 1] and x, y ∈ [0, 1],

Lλ(x, y) =
x2λ + y2(1 − λ)
xλ + y(1 − λ)

with the assumption 0/0 = 0. Let us consider Σ formed by the identity mappings, hence L = ΦΣ(Γ) is a binary
pre-aggregation operator on [0, 1][0,1]. Namely,

L( f , g)(λ) = Lλ( f (λ), g(λ)) =
f (λ)2λ + g(λ)2(1 − λ)
f (λ)λ + g(λ)(1 − λ)

for any f , g ∈ [0, 1][0,1] and λ ∈ [0, 1]. Observe that, for any λ ∈ [0, 1], Lλ is (1 − λ, λ)-increasing [31], and then L is
(r1, r2)-increasing, where r1(t) = 1 − t and r2(t) = t for any t ∈ [0, 1].
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4. Representable operators

At this point, a natural question is to determine which operators on Map(X, L) can be constructed in this way. Let
us firstly analyze the aforementioned mappings ΦΣ.

Proposition 15. Let L be a bounded lattice, X a set and Σ = (σ1, . . . , σm) ∈ Map(X, X)m. The mapping ΦΣ is injective.
Actually, a left inverse is given by

Λ : Om(Map(X, L))→ Map(X,Om(L))

O 7−→ Λ(O) : X → Om(L),

where Λ(O)(x)(a1, . . . , am) = O(Ca1 , . . . ,Cam )(x) for any x ∈ X and any a1, . . . , am ∈ L.

Proof. Let Γ = {Ox}x∈X , {O′x}x∈X = Γ′ be two different families of operators, then there exist (a1, . . . , am) ∈ Lm and
x ∈ X such that Ox(a1, . . . , am) , O′x(a1, . . . , am). Hence

ΦΣ(Γ)(Ca1 , . . . ,Cam )(x) = Ox(a1, . . . , am)
, O′x(a1, . . . , am)
= ΦΣ(Γ′)(Ca1 , . . . ,Cam )(x).

Then ΦΣ(Γ) , ΦΣ(Γ′) and therefore ΦΣ is injective. The mapping Λ is left inverse to ΦΣ. Indeed,

Λ(ΦΣ(Γ))(x)(a1, . . . , am) = ΦΣ(Γ)(Ca1 , . . . ,Cam )(x)
= Ox(Ca1 (σ1(x)), . . . ,Cam (σm(x)))
= Ox(a1, . . . , am)
= Γ(x)(a1, . . . , am),

thus Λ ◦ ΦΣ = IdMap(X,Om(L)), the identity mapping.

Remark 16. Observe that the mapping Λ is left inverse to ΦΣ independently of Σ. For different choices of Σ, the
mappings ΦΣ may provide different “copies” of Map(X,Om(L)) in Om(Map(X, L)), see Figure 3.

Map(X,Om(L))

Om(Map(X, L))

ΦΣ1
ΦΣ2

ΦΣ3

Λ

Figure 3: Mappings Λ and ΦΣ

The same result can be stated whenever X is a lattice and we deal with operators on Hom(X, L).
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Proposition 17. Let L and X be bounded lattices and Σ = (σ1, . . . , σm) ∈ Hom(X, X)m. The mapping

Λ : O↗m (Hom(X, L))→ Hom(X,O↗m (L))

defined as in Proposition 15 is left inverse of the mapping ΦΣ described in (2).

Proof. Following the proof of Proposition 15, it only remains to prove that Λ is well-defined. Indeed, let O ∈
O
↗
m (Hom(X, L)) and x, y ∈ X with x ≤ y. Hence, for any a1, . . . , am, b1, . . . , bm ∈ L with ai ≤ bi for any i = 1, . . . ,m,

Λ(O)(x)(a1, . . . , am) = O(Ca1 , . . . ,Cam )(x) ≤ O(Cb1 , . . . ,Cbm )(x) = Λ(O)(x)(b1, . . . , bm),

since O ∈ O↗m (Hom(X, L)), then Λ(O)(x) ∈ O↗m (L). On the other hand,

Λ(O)(x)(a1, . . . , am) = O(Ca1 , . . . ,Cam )(x) ≤ O(Ca1 , . . . ,Cam )(y) = Λ(O)(y)(a1, . . . , am).

Thus Λ(O)(x) ≤ Λ(O)(y), and then Λ(O) ∈ Hom(X,O↗m (L)).

Definition 18. Given an m-tuple Σ ∈ Map(X, X)m, an m-ary operator O ∈ Om(Map(X, L)) is said to be Σ-representable
whenever O ∈ Im ΦΣ, the image of ΦΣ or, equivalently, ΦΣ ◦ Λ(O) = O.

Theorem 19. Let Σ = (σ1, . . . , σm) ∈ Map(X, X)m and O ∈ Om(Map(X, L)) be an m-ary operator. The following
conditions are equivalent:

i) O is Σ-representable,

ii) for each m-tuple ( f1, . . . , fm) ∈ Map(X, L)m and each x ∈ X,

O( f1, . . . , fm)(x) = O(C f1(σ1(x)), . . . ,C fm(σm(x)))(x),

iii) for each m-tuples ( f1, . . . , fm), (g1, . . . , gm) ∈ Map(X, L)m and each x ∈ X, if fi(σi(x)) = gi(σi(x)) for any i =

1, . . . ,m then
O( f1, . . . , fm)(x) = O(g1, . . . , gm)(x).

Proof. i)⇒ ii) If O is Σ-representable, there exists a family of operators on L, Γ = {Ox}x∈X , such that

O( f1, . . . , fm)(x) = Ox( f1(σ1(x)), . . . , fm(σm(x)))
= Ox(C f1(σ1(x))(σ1(x)), . . . ,C fm(σm(x))(σm(x)))
= O(C f1(σ1(x)), . . . ,C fm(σm(x)))(x).

ii)⇒ iii) If fi(σi(x)) = gi(σi(x)) then C fi(σi(x)) = Cgi(σi(x)) and the result follows.
iii)⇒ i) Let us denote Ô = ΦΣ(Λ(O)). Then

Ô( f1, . . . , fm)(x) = ΦΣ(Λ(O))( f1, . . . , fm)(x)
= (Λ(O))x( f1(σ1(x)), . . . , fm(σm(x)))
= O(C f1(σ1(x)), . . . ,C fm(σm(x)))(x)
= O( f1, . . . , fm)(x),

since fi(σi(x)) = C fi(σi(x))(σi(x)) for all i = 1, . . . ,m.

Remark 20. By virtue of Remark 16, given an m-ary operator O on Map(X, L), the family Λ(O) is the only one which
can eventually provide the representability of O.

Remark 21. In view of Proposition 17, analogous versions of Definition 18 and Theorem 19 for operators on
Hom(X, L) can be formulated almost word for word.
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Example 22. Unfortunately, not all operators on Map(X, L) are representable. We may see this by an easy combi-
natorial exercise. Consider X = L = {0, 1}, hence the number of binary operators on L is 16. Map(X, L) is given by
four elements, then there exist 416 binary operators on Map(X, L). Now, there exist 42 different choices for Σ and 162

different families of operators on L indexed in X, thus there exist, at most, 16242 = 46 induced operators. That is,
most of the operators on Map(X, L) are not representable.

Example 23. An operator can be Σ1-representable and Σ2-representable for two different tuples Σ1 and Σ2. Set m = 2,
X = {0, 1} and L = [0, 1]. Let us consider the following family of operators Γ = {O0,O1}:

• O0(a, b) = a+b
2 for any a, b ∈ [0, 1], the mean, and

• O1(a, b) = 1 for any a, b ∈ [0, 1], the constant operator.

Set Σ1 = (IdX , IdX) and Σ2 = (IdX ,C0). Hence, given f , g ∈ Map(X, L)

ΦΣ1 (Γ)( f , g)(0) = O0( f (0), g(0)) =
f (0) + g(0)

2
, and

ΦΣ1 (Γ)( f , g)(1) = O0( f (1), g(1)) = 1.

On the other hand,

ΦΣ2 (Γ)( f , g)(0) = O0( f (0), g(0)) =
f (0) + g(0)

2
, and

ΦΣ2 (Γ)( f , g)(1) = O0( f (0), g(0)) = 1

Therefore, for each f , g ∈ Map(X, L), ΦΣ1 (Γ)( f , g) = ΦΣ2 (Γ)( f , g), and thus ΦΣ1 (Γ) = ΦΣ2 (Γ). It is clear that O0 ≤ O1,
thus this example is also valid for operators on Hom(X, L).

5. Lifting properties

In this section, we focus on examining how some properties of operators are preserved by the induction process.
Although we will not mention it explicitly, all the statements here are also valid when working over monotone families
of operators, yielding monotone operators on Hom(X, L). We shall follow the same notation of the former sections.

5.1. Commutative/Symmetric operators

In what follows, let us denote by Sm the set of all permutations with m elements. Let us recall that an m-ary
operator O on a bounded lattice L is said to be commutative (or symmetric) if, for each l1, . . . , lm ∈ L, O(l1, . . . , lm) =

O(lτ(1), . . . , lτ(m)) for any permutation τ ∈ Sm.

Proposition 24. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (σ1, . . . , σm) ∈ Map(X, X)m. The
induced operator O = ΦΣ(Γ) is commutative if and only if

i) Ox is commutative for any x ∈ X, and

ii) O is Στ-induced for any τ ∈ Sm, that is to say, ΦΣ(Γ) = ΦΣτ (Γ) for any τ ∈ Sm, where Στ = (στ(1), . . . , στ(m)).

Proof. Suppose first that O = ΦΣ(Γ) is commutative. Let us prove i). For any x ∈ X, l1, . . . , lm ∈ L and τ ∈ Sm,

Ox(l1, . . . , lm) = Ox(Cl1 (σ1(x)), . . . ,Clm (σm(x)))
= O(Cl1 , . . . ,Clm )(x)
= O(Clτ(1) , . . . ,Clτ(m) )(x)
= Ox(Clτ(1) (σ1(x)), . . . ,Clτ(m) (σm(x)))
= Ox(lτ(1), . . . , lτ(m)).
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Thus Ox is commutative for any x ∈ X. Now, we prove ii). Let τ ∈ Sm, f1, . . . , fm ∈ Map(X, L) and x ∈ X, hence

O( f1, . . . , fm)(x) †
= O( fτ−1(1), . . . , fτ−1(m))(x)
= Ox( fτ−1(1)σ1(x), . . . , fτ−1(m)σm(x))
∗
= Ox( f1στ(1)(x), . . . , fmστ(m)(x))
= ΦΣτ (Γ)( f1, . . . , fm)(x),

where † and ∗ follow from the commutativity of O and Ox, respectively.
Conversely, let τ ∈ Sm, f1, . . . , fm ∈ Map(X, L) and x ∈ X,

O( f1, . . . , fm)(x)
ii)
= Φ

Στ
−1 (Γ)( f1, . . . , fm)(x)

= Ox( f1στ−1(1)(x), . . . , fmστ−1(m)(x))
i)
= Ox( fτ(1)σ1(x), . . . , fτ(1)σm(x))
= O( fτ(1), . . . , fτ(m))(x),

thus O( f1, . . . , fm) = O( fτ(1), . . . , fτ(m)). Hence O is commutative.

Example 25. Let X = {1, 2, 3}, L = [0, 1] and Γ = {O1,O2,O3} be the family of operators given by

• O1(a, b) = max(a, b) for any a, b ∈ [0, 1],

• O2(a, b) = a+b
2 for any a, b ∈ [0, 1],

• O3(a, b) = 1 for any a, b ∈ [0, 1],

and Σ = (σ1, σ2), where σ1 = IdX and σ2(1) = 1, σ2(2) = 2 and σ2(3) = 1. Clearly, the operators in Γ are
commutative. Let O = ΦΣ(Γ) and O = ΦΣ(Γ), where Σ = (σ2, σ1). Hence, for any f , g ∈ Map(X, L),

• O( f , g)(1) = O1( f (1), g(1)) = max( f (1), g(1)) = O( f , g)(1),

• O( f , g)(2) = O2( f (2), g(2)) =
f (2)+g(2)

2 = O( f , g)(2),

• O( f , g)(3) = O3( f (3), g(1)) = 1 = O3( f (1), g(3)) = O( f , g)(3),

i. e., O = O. By Proposition 24, the Σ-induced operator O is commutative.

Corollary 26. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (σ, . . . , σ) ∈ Map(X, X)m, a constant
m-tuple. Hence, ΦΣ(Γ) is commutative if and only if Ox is commutative for any x ∈ X.

Proof. Since Σ = Στ for any τ ∈ Sm, the result follows immediately from Proposition 24.

5.2. Neutral element

An element e ∈ L is said to be neutral for an operator O ∈ Om(L) if O(e, . . . , e, f , e, . . . , e) = f for any f ∈ L,
where f stands at any position i ∈ {1, . . . ,m}.

We shall need the following technical lemma.

Lemma 27. Let L be a bounded lattice, X a set and σ : X → X a mapping such that, for each f ∈ Map(X, L),
f ◦ σ ≤ f . Then σ = IdX .

Proof. Let x ∈ X with σ(x) , x, consider the mapping fσ(x) : X → L given by

fσ(x)(y) =

{
1, if y = σ(x),
0, otherwise.

Hence fσ(x)(σ(x)) = 1 > 0 = fσ(x)(x), yielding a contradiction.
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Proposition 28. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (σ1, . . . , σm) ∈ Map(X, X)m. For e ∈ L,
the mapping Ce is neutral for ΦΣ(Γ) if and only if e is neutral for Ox for any x ∈ X and σ1 = . . . = σm = IdX .

Proof. Let us suppose that Ce is neutral for O = ΦΣ(Γ). Fix i ∈ {1, . . . ,m}. For simplicity we assume i = 1. Let l ∈ L
and x ∈ X, hence

Ox(l, e, . . . , e) = Ox(Clσ1(x),Ceσ2(x) . . . ,Ceσm(x))
= O(Cl,Ce . . . ,Ce)(x)
= Cl(x)
= l.

Now, for any x ∈ X,
f (x) = O( f ,Ce, . . . ,Ce)(x)

= Ox( fσ1(x),Ceσ2(x), . . . ,Ceσm(x))
= Ox( fσ1(x), e, . . . , e)
= fσ1(x).

By Lemma 27, σ1 is the identity.
Conversely, let f ∈ Map(X, L),

O(Ce, . . . ,Ce, f ,Ce . . . ,Ce)(x) = Ox(Ce(x), . . . ,Ce(x), f (x),Ce(x), . . . ,Ce(x))
= Ox(e, . . . , e, f (x), e, . . . , e)
= f (x),

for any x ∈ X, therefore O(Ce, . . . ,Ce, f ,Ce . . . ,Ce) = f , and Ce is a neutral element for O.

5.3. Associative operators
An m-ary operator O on an arbitrary lattice L is said to be associative whenever, for any l1, . . . , l2m−1 ∈ L,

O(O(l1, . . . , lm), lm+1, . . . , l2m−1) = O(l1,O(l2, . . . , lm+1), lm+2, . . . , l2m−1)
= · · ·

= O(l1, . . . , lm−1,O(lm, lm+1, . . . , l2m−1))

Proposition 29. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (σ, . . . , σ) ∈ Map(X, X)m verifying that
σ2 = σ and Ox = Oσ(x) for all x ∈ X. The operator ΦΣ(Γ) is associative if and only if Ox is associative for each x ∈ X.

Proof. Let us denote O = ΦΣ(Γ). Suppose that O is associative. Hence, for each x ∈ X,

Ox(Ox(l1, . . . , lm), lm+1, . . . , l2m−1) = Ox(O(Cl1 , . . . ,Clm )(σ(x)), lm+1, . . . , l2m−1)
= Ox(O(Cl1 , . . . ,Clm )(σ(x)),Clm+1 (σ(x)), . . . ,Cl2m−1 (σ(x)))
= O(O(Cl1 , . . . ,Clm ),Clm+1 , . . . ,Cl2m−1 )(x)
= O(Cl1 , . . . ,Clm−1 ,O(Clm , . . . ,Cl2m−1 ))(x)
= Ox(Cl1 (σ(x)), . . . ,Clm−1 (σ(x)),O(Clm , . . . ,Cl2m−1 )(σ(x)))
†
= Ox(Cl1 (σ(x)), . . . ,Clm−1 (σ(x)),Ox(Clm (σ(x)), . . . ,Cl2m−1 (σ(x)))
= Ox(l1, . . . , lm−1,Ox(lm, . . . , l2m−1)),

where † follows from the equality σ2 = σ. The other equalities can be proved similarly, thus Ox is associative.
Conversely, given f1, . . . , f2m−1 ∈ Map(X, L) and x ∈ X,

O(O( f1, . . . , fm), fm+1, . . . , f2m−1))(x) = Ox(O( f1, . . . , fm)(σ(x)), fm+1(σ(x)), . . . , f2m−1(σ(x))))
†
= Ox(Ox( f1(σ(x)), . . . , fm(σ(x))), fm+1(σ(x)), . . . , f2m−1(σ(x))))
= Ox( f1(σ(x)), . . . , fm−1(σ(x)),Ox( fm(σ(x)), . . . , f2m−1(σ(x))))
‡
= Ox( f1(σ(x)), . . . , fm−1(σ(x)),O( fm, . . . , f2m−1)(σ(x)))
= O( f1, . . . , fm−1,O( fm, . . . , f2m−1))(x),

where † and ‡ follow from the hypothesis σ2 = σ and Ox = Oσ(x) for any x ∈ X. Thus

O(O( f1, . . . , fm), fm+1, . . . , f2m−1)) = O( f1, . . . , fm−1,O( fm, . . . , f2m−1)).

The other equalities are proved similarly.
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In sight of Propositions 24, 28 and 29, we find the following result, which asserts that [29, Proposition 2] cannot
be extended for Σ , (IdX , IdX). For results about induced t-norms, t-conorms and negations the reader may consult
[29] and the references therein.

Theorem 30. Let Γ = {Tx}x be a family of binary operators on L indexed in X and Σ ∈ Map(X, L)2. Hence ΦΣ(Γ) is
a t-norm (respect. a t-conorm) on Map(X, L) if and only if Tx is a t-norm (respect. a t-conorm) for any x ∈ X and
Σ = (IdX , IdX).

Example 31. Let X = [0, 1], L = [0, 1] and Σ = (IdX , IdX), hence Map(X, L) = [0, 1][0,1]. Consider the family of
t-norms on [0, 1] given by Γ = {T MT

λ }λ∈[0,1] (the family of Mayor-Torrens t-norms), where

T MT
λ (x, y) =

max{x + y − λ, 0}, λ ∈]0, 1], x, y ∈ [0, λ],
min{x, y}, otherwise.

Hence ΦΣ(Γ) = T is defined as

T( f , g)(x) =

max{ f (x) + g(x) − x, 0}, if x ∈]0, 1], f (x), g(x) ∈ [0, x],
min{ f (x), g(x)}, otherwise.

for any f , g ∈ [0, 1][0,1] and x ∈ [0, 1]. By Theorem 30, T is a t-norm on [0, 1][0,1].

5.4. Idempotency

An element z ∈ L is said to be idempotent for an m-ary operator O if O(z, . . . , z) = z.

Proposition 32. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ ∈ Map(X, X)m. An element z ∈ L is
idempotent for Ox for all x ∈ X if and only if Cz is idempotent for ΦΣ(Γ).

Proof. Cz is idempotent for ΦΣ(Γ), if and only if ΦΣ(Γ)(Cz, . . . ,Cz) = Cz, if and only if ΦΣ(Γ)(Cz, . . . ,Cz)(x) = Cz(x)
for any x ∈ X, if and only if Ox(Czσ1(x), . . . ,Czσm(x)) = z for any x ∈ X, if and only if Ox(z, . . . , z) = z for any x ∈ X.

5.5. Conjunctive and disjunctive operators

We recall that an m-ary operator O on L is said to be conjunctive, or to have the property of downward re-
inforcement, if O(l1, . . . , lm) ≤ l1 ∧ . . . ∧ lm for any l1, . . . , lm ∈ L. O is said to be disjunctive, or to have the
property of upward reinforcement, if O(l1, . . . , lm) ≥ l1 ∨ . . . ∨ lm for any l1, . . . , lm ∈ L. O is called averaging if
l1 ∧ . . . ∧ lm ≤ O(l1, . . . , lm) ≤ l1 ∨ . . . ∨ lm for any l1, . . . , lm ∈ L.

Proposition 33. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (IdX , . . . , IdX) ∈ Map(X, X)m. Hence
ΦΣ(Γ) is conjunctive (disjunctive, averaging) if and only if Ox is conjunctive (disjunctive, averaging) for any x ∈ X.

Proof. It follows easily from the definition of induced operator.

5.6. Migrativity

A binary operator O : [0, 1]2 → [0, 1] is said to be migrative [14] if O(αx, y) = O(x, αy) for all x, y, α ∈ [0, 1]. An
extension for interval-valued functions can be found in [8]. For a bounded lattice L, by an obvious generalization of
the definition given in [37], an m-ary operator O : Lm → L is said to be A-migrative, where A = {A1, . . . , Am} with
Ai : L × L→ L for any i = 1, . . . ,m, if and only if

O(A1(α, a1), a2, . . . , am) = O(a1, A2(α, a2), . . . , am) = · · · = O(a1, a2, . . . , Am(α, am))

for any α, a1, . . . , am ∈ L.
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Proposition 34. Let Γ = {Ox}x∈X be a family of m-ary operators on L and Σ = (IdX , . . . , IdX) ∈ Map(X, X)m. Let
Ax = {Ax

1, . . . , A
x
m} be a set of binary operators on L for each x ∈ X, and let A = {A1, . . . ,Am}, where, for each

i = 1, . . . ,m, Ai : Map(X, L)2 → Map(X, L) is induced from the family {Ax
i }x∈X and the pair (IdX , IdX). Hence ΦΣ(Γ) is

A-migrative if and only if Ox isAx-migrative for any x ∈ X.

Proof. Denote O = ΦΣ(Γ). Let us assume that Ox isAx-migrative for any x ∈ X. Hence, for each x ∈ X,

O(A1( f , g1), g2, . . . , gm)(x) = Ox(A1( f , g1)(x), g2(x), . . . , gm(x))
= Ox(Ax

1( f (x), g1(x)), g2(x), . . . , gm(x))
= Ox(g1(x), g2(x), . . . , Ax

m( f (x), gm(x)))
= Ox(g1(x), g2(x), . . . ,Am( f , gm)(x))
= O(g1, g2, . . . ,Am( f , gm))(x).

Hence O(A1( f , g1), g2, . . . , gm) = O(g1, g2, . . . ,Am( f , gm)) for any f , g1, . . . , gm ∈ Map(X, L). The other equalities can
be proved similarly, and then O isA-migrative. Conversely, let α, a1, . . . , am ∈ L and x ∈ X,

Ox(Ax
1(α, a1), a2, . . . , am) = Ox(Ax

1(Cα(x),Ca1 (x)),Ca2 (x), . . . ,Cam (x))
= Ox(A1(Cα,Ca1 )(x),Ca2 (x), . . . ,Cam (x))
= O(A1(Cα,Ca1 ),Ca2 , . . . ,Cam )(x)
= O(Ca1 ,Ca2 , . . . ,Am(Cα,Cam ))(x)
= Ox(Ca1 (x),Ca2 (x), . . . ,Am(Cα,Cam )(x))
= Ox(Ca1 (x),Ca2 (x), . . . , Ax

m(Cα(x),Cam (x)))
= Ox(a1, a2, . . . , Ax

m(α, am)).

The other equalities can be proved similarly. Then Ox isAx-migrative.

Remark 35. Observe that, if Γ = {Ot : [0, 1]2 → [0, 1]}t∈[0,1] is a family of migrative operators on [0, 1], in the
original sense of [14], for any t ∈ [0, 1], the induced operator O = Φ(Id[0,1],Id[0,1])(Γ) verifies that O(α f , g) = O( f , αg)
for any α, f , g ∈ [0, 1][0,1].

5.7. Abstract homogeneity
We recall from [40] that, given a mapping g : [0, 1]2 → [0, 1] and an automorphism ψ : [0, 1]→ [0, 1], a mapping

F : [0, 1]m → [0, 1] is said to be abstract homogeneous with respect to g and ψ, or (g, ψ)-homogeneous for short, if

F(g(λ, x1), g(λ, x2), . . . , g(λ, xm)) = g(ψ(λ), F(x1, x2, . . . , xm))

for any λ, x1, . . . , xm ∈ [0, 1]. Obviously, for an arbitrary bounded lattice L, abstract homogeneity can be defined
verbatim.

Proposition 36. Let Ψ = {ψx}x∈X be a family of automorphisms of L, G = {gx}x∈X a family of binary operators on
L and Γ = {Fx}x∈X be a family of m-ary operators on L. Let ψ = ΦIdX (Ψ), g = Φ(IdX ,IdX )(G) and F = ΦΣ(Γ), where
Σ = (IdX , . . . , IdX), the corresponding induced operators on Map(X, L). Hence F is (g, ψ)-homogeneous if and only if
Fx is (gx, ψx)-homogeneous for any x ∈ X.

Proof. Firstly, we must prove that ψ is an automorphism of Map(X, L). For any f1, f2 ∈ Map(X, L):

• For any x ∈ X, ψ( f1∧ f2)(x) = ψx( f1(x)∧ f2(x)) = ψx( f1(x))∧ψx( f2(x)) = ψ( f1)(x)∧ψ( f2)(x) = (ψ( f1)∧ψ( f2))(x).
Then ψ( f1 ∧ f2) = ψ( f1) ∧ ψ( f2).

• Analogously we may prove that ψ( f1 ∨ f2) = ψ( f1) ∨ ψ( f2).

• ψ is injective, since ψ( f1) = ψ( f2), if and only if ψ( f1)(x) = ψ( f2)(x) for all x ∈ X, if and only if ψx( f1(x)) =

ψx( f2(x)) for all x ∈ X, if and only if f1(x) = f2(x) for all x ∈ X, if and only if f1 = f2.

• ψ is surjective. Let h ∈ Map(X, L), consider f ∈ Map(X, L) given by f (x) = ψ−1
x (h(x)) for each x ∈ X, hence

ψ( f )(x) = ψx( f (x)) = ψx(ψ−1
x (h(x))) = h(x) for all x ∈ X, then ψ( f ) = h.
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Now, suppose Fx is (gx, ψx)-homogeneous for any x ∈ X. Then, for any λ, f1, . . . , fm ∈ Map(X, L) and x ∈ X,

F(g(λ, f1), . . . , g(λ, fm))(x) = Fx(g(λ, f1)(x), . . . , g(λ, fm)(x))
= Fx(gx(λ(x), f1(x)), . . . , gx(λ(x), fm(x)))
= gx(ψx(λ(x)), Fx( f1(x), . . . , fm(x)))
= gx(ψ(λ)(x), F( f1, . . . , fm)(x))
= g(ψ(λ), F( f1, . . . , fm))(x).

Hence F(g(λ, f1), . . . , g(λ, fm)) = g(ψ(λ), F( f1, . . . , fm)), and thus F is (g, ψ)-homogeneous. Conversely, let b, a1, . . . , am ∈

L and x ∈ X,
Fx(gx(b, a1), . . . , gx(b, am)) = Fx(gx(Cb(x),Ca1 (x)), . . . , gx(Cb(x),Cam (x)))

= Fx(g(Cb,Ca1 )(x), . . . , g(Cb,Cam )(x))
= F(g(Cb,Ca1 ), . . . , g(Cb,Cam ))(x)
= g(ψ(Cb), F(Ca1 , . . . ,Cam ))(x)
= gx(ψ(Cb)(x), F(Ca1 , . . . ,Cam )(x))
= gx(ψx(Cb(x)), Fx(Ca1 (x), . . . ,Cam (x)))
= gx(ψx(b), Fx(a1, . . . , am)).

Hence Fx is (gx, ψx)-homogeneous.

6. Examples

In this final section we show some examples that illustrate the theory developed in the previous ones.

6.1. Takáč operator

According to Zadeh’s extension principle, Takáč [44] extends an n-ary operator O on [0, 1] to an n-ary operator O
on [0, 1][0,1] as

O( f1, . . . , fn)(x) = sup{ f1(y1) ∧ · · · ∧ fn(yn) : O(y1, . . . , yn) = x},

for any f1, . . . , fn ∈ [0, 1][0,1] and any x ∈ [0, 1]. The operator O is well-defined whenever O is surjective. For instance,
we may consider O as the arithmetic mean, that is surjective, and mappings Cai : [0, 1]→ [0, 1] for some values ai for
i = 1, . . . , n. Hence

O(Ca1 , . . . ,Can )(x) = sup{Ca1 (y1) ∧ · · · ∧Can (yn) : O(y1, . . . , yn) = x} = a1 ∧ · · · ∧ an

for any x ∈ [0, 1]. Thus the operator O does not always preserve the intrinsic nature of the operator O (that is to
say, calculate the mean). Nevertheless, we may consider the tuple Σ = (Id[0,1], . . . , Id[0,1]) and the constant family
Γ = {O}t∈[0,1]. Hence, the induced operator Ô = ΦΣ(Γ) on [0, 1][0,1] is given by

Ô( f1, . . . , fn)(x) =

∑n
i=1 fi(x)

n

for any f1, . . . , fn ∈ [0, 1][0,1] and any x ∈ [0, 1].

6.2. Partially unknown data

We may use the induction process for working with mappings whose images are not entirely known. For example,
in the context of type-2 fuzzy sets, let X = L = [0, 1] and consider a family of m-ary aggregation operators Ot :
[0, 1]m → [0, 1] for each t ∈ [0, 1]. Suppose that by an appropriate binning algorithm, we find the frontier points

a0 = 0 < a1 < · · · < an−1 < an = 1.

We may then define the piece-wise mapping σ : [0, 1] → [0, 1] as σ(x) = ai if x ∈ [ai−1, ai) for i = 1, . . . , n and
σ(1) = 1, see Figure 4, although there are plenty of other options.
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Figure 4: Mapping σ

Set Σ = (σ, . . . , σ). Hence the family Γ = {Ot}t∈[0,1] and Σ induce a representable m-ary aggregation operator
O :

(
[0, 1][0,1]

)m
→ [0, 1][0,1] on [0, 1][0,1]. Then O( f1, . . . , fm) = O(g1, . . . , gm) under the condition fi(a j) = gi(a j)

for each i, j = 1, . . . , n, that is, for each f ∈ [0, 1][0,1], we have to consider solely the values at the chosen points
f (a0), f (a1), . . . , f (an). This could be convenient whenever the analytic expression of f is unknown and we merely
have experimental data. We may then aggregate partially known input mappings. If some mapping fi is completely
known, we simply may set, for instance, σi = Id[0,1] in order to consider the whole information provided by the
mapping.

6.3. Approximate reasoning

Implication operators play a prominent role in fuzzy logic since they are used for handling the inference rules in
approximate reasoning. Formally, an implication on a lattice L is a mapping I : L2 → L verifying I(1, 1) = I(0, 1) =

I(0, 0) = 1 and I(1, 0) = 0. Then we may use Proposition 4 to induce implications on spaces of mappings Map(X, L),
for some set X. Namely, if Γ = {Ox}x∈X is a family of implications on L and Σ = (σ1, σ2), then the induced operator
ΦΣ(Γ) is an implication on Map(X, L).

Stronger concepts of implication can be considered if the implication mapping I verifies additional properties. For
instance, we may consider the properties:

1. If x ≤ z then I(x, y) ≥ I(z, y) for any y ∈ L.

2. If x ≤ z then I(y, x) ≤ I(y, z) for any y ∈ L.

3. I(1, x) = x for any x ∈ L.

4. I(x, I(y, z)) = I(y, I(x, z)) for any x, y, z ∈ L.

5. I(x, y) = I(x, I(x, y)) for any x, y ∈ L.

6. I(x,N(x)) = N(x) for any x ∈ L and any involutive negation N on L.

7. N(x) = I(x, 0) is an involutive negation on L.

8. I(x, 1) = 1 for any x ∈ L.

9. I(x, y) ≥ y for any x, y ∈ L.

10. I(x, y) = I(N(y),N(x)) for any x, y ∈ L and any involutive negation N on L.

11. I(0, x) = 1 for any x ∈ L.
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Table 1: Conditions on Σ for preserving the properties

Property Requirements on Σ

1. none
2. none
3. σ2 = IdX

4. σ2 = IdX

5. σ2 = IdX

6. σ2 = IdX , σ1 = σ, N is σ-representable
7. σ1 = IdX

8. none
9. σ2 = IdX

10. σ2 = IdX , σ1 = σ, N is σ-representable
11. none

Then one might wonder whether the induced implication on Map(X, L) inherits any of these properties from the
inducing family of implications on L. In Table 1, we sum up some requirements on Σ = (σ1, σ2) for preserving these
properties. For instance, we may prove the property 5. Indeed, assume that the implications of the family Γ = {Ix}x∈X

satisfy Ix(a, b) = Ix(a, Ix(a, b)) for any a, b ∈ L, and that σ2 = IdX . Hence, for any f , g ∈ Map(X, L),

I( f , I( f , g))(x) = Ix( fσ1(x), I( f , g)(x)) = Ix( fσ1(x), Ix( fσ1(x), g(x))) = Ix( fσ1(x), g(x)) = I( f , g)(x),

for any x ∈ X, thus I( f , g) = I( f , I( f , g)). With respect to the properties 6 and 10, we also need the involutive negation
N is σ-representable for some decreasing mapping σ : X → X, according to the results showed in [29]. We recall
from [29] that a negation N on Map(X, L) is said to be σ-representable, where σ : X → X is a decreasing mapping, if
there exists a family {Nx}x∈X of negations on L such that N( f )(x) = Nx( f (σ(x))) for any f ∈ Map(X, L) and any x ∈ X.

Regarding the induction of implications on Hom(X, L), Theorem 7 cannot be applied, since implications are not
monotone. Nevertheless, something can be done if we assume that they hold the properties 1 and 2. In such a case,
these operators are monotone considering the opposite order in the first component. Hence, we may state the following
result, which can be proved similarly to Theorem 7 following the comments in Remark 1.

Theorem 37. Let Γ = {Ix}x∈X be a family of implications on L verifying the properties 1 and 2. Let Σ = (σ1, σ2) ∈
Map(X, L), where σ1 is decreasing and σ2 is increasing. Then ΦΣ(Γ) is an implication on Hom(X, L) verifying the
properties 1 and 2 if and only if Γ is monotone.

Proof. Following the notation in Remark 1, fix L1 = Lop, L2 = L, X1 = Xop and X2 = X, where op denotes the
opposite order. Hence, for any monotone mappings σ1 : X → Xop (decreasing) and σ2 : X → X (increasing),

ΦΣ(Γ) : Hom(Xop, Lop) × Hom(X, L)→ Hom(X, L)

verifies the properties 1 and 2. But Hom(Xop, Lop) = Hom(X, L), and then the statement follows.

Under the conditions of Theorem 37, the properties 3-6 and 8-11 are preserved as described in Table 1, which
agrees with, and extends, [10, Theorem 17]. There is no suitable condition in order to lift the property 7 whenever
working on Hom(X, L). This is due to the fact that a mapping N defined as N( f ) = I( f ,C0) for any f ∈ Hom(X, L)
is not necessarily well-defined, since N( f ) could be non decreasing. This fact is exemplified in [10, Remark 18] for
implications on interval fuzzy sets. The reader may also compare with [49, Section 6] for results about implications
on n-dimensional fuzzy sets.

Something similar can be said about negations. Induced negations are studied in [29]. When working over set
mappings, induced negations can be constructed successfully in the standard way. Nevertheless, for negations on
Hom(X, L), Theorem 7 cannot be applied, since negations are not monotone. They are anti-monotone. Clearly, the
problem can solved by considering Remark 1. A negation on L is then a mapping n : Lop → L, where Lop denotes
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the same lattice L endowed with the opposite order. Now, given a lattice X, a family of negations {nx}x∈X on L and a
mapping σ : X → Xop (a decreasing map!), we may induce a negation

N : Hom(Xop, Lop) = Hom(X, L)→ Hom(X, L),

which coincides with the study made in [29]. The reader may also compare with [6] and [11].

6.4. Overlap in a classification task
The notion of overlap function over the unit interval comes from [15], aiming to measure the degree of overlap

between classes in a fuzzy classification problem with two classes. This degree can be interpreted as the representation
of the lack of knowledge of an expert in determining if an object belongs to one of these classes. Several extensions to
wider contexts have been considered in the literature. For instance, for classification problems with m different classes
in [26], for interval-valued fuzzy sets in [8], or for complete lattice in [35] and [36]. As an extension of this topic,
the so-called general overlap and quasi-overlap functions are defined in [22] and [9], respectively. Dually, gruping
functions [17] are supposed to yield the degree up to which the combination of classes is supported.

Here we propose a description of these notions for arbitrary bounded lattices and prove that these concepts can
also be induced to spaces of mappings and, consequently, the construction methodology described in this paper is
available for them. In order to improve the readability of the statement of Definition 38, we have enclosed both, the
notions of overlap and gruping function into a general description using an arbitrary aggregation operator. We recall
that a non empty subset D of L is called upward (resp. downward) directed if each pair of elements in D has an upper
(resp. lower) bound in D.

Definition 38. Let L be a bounded lattice, O : Lm → L an m-ary operator and A : Lm → L an aggregation operator.
Consider the following properties:

O1. O is symmetric.

O2. O(a1, . . . , am) = 0 if and only if A(a1, . . . , am) = 0.

D2. If A(a1, . . . , am) = 0 then O(a1, . . . , am) = 0.

O3. O(a1, . . . , am) = 1 if and only if A(a1, . . . , am) = 1.

D3. If A(a1, . . . , am) = 1 then O(a1, . . . , am) = 1.

O4. O is monotone in each component.

O5. For each component i = 1, . . . ,m,

O(a1, . . . , ai−1,
∨
j∈Λ

d j, ai+1, . . . , am) =
∨
j∈Λ

O(a1, . . . , ai−1, d j, ai+1, . . . , am)

for any a1, . . . , ai−1, ai+1, . . . , am ∈ L and any upward directed set {d j} j∈Λ ⊂ L.

O6. For each component i = 1, . . . ,m,

O(a1, . . . , ai−1,
∧
j∈Λ

d j, ai+1, . . . , am) =
∧
j∈Λ

O(a1, . . . , ai−1, d j, ai+1, . . . , am)

for any a1, . . . , ai−1, ai+1, . . . , am ∈ L and any downward directed set {d j} j∈Λ ⊂ L.

Then:

a) Suppose that A(a1, a2, . . . , am) = T (a1,T (a2, . . . ,T (am−1, am))) for any a1, . . . , am ∈ L for some t-norm T on L.
The operator O is called T-overlap if it satisfies the set of properties {O1,O2,O3,O4,O5,O6}, general T-overlap
if it satisfies the set of properties {O1,D2,D3,O4,O5,O6}, and quasi T-overlap if it satisfies the set of properties
{O1,O2,O3,O4}.

21



b) Dually, suppose that A(a1, a2, . . . , am) = S (a1, S (a2, . . . , S (am−1, am))) for any a1, . . . , am ∈ L for some t-conorm
S on L. The operator O is called S -gruping if it satisfies the set of properties {O1,O2,O3,O4,O5,O6}, general
S -gruping if it satisfies the set of properties {O1,D2,D3,O4,O5,O6}, and quasi S -gruing if it satisfies the set of
properties {O1,O2,O3,O4}.

Remark 39. a) The definition of T-overlap operator provided in Definition 38 does not generalize the ones given in
[35] and [36] for complete lattices when m = 2. There, O2 is stated as: “O(a1, a2) = 0 if and only if a1 = 0 or
a2 = 0”. Nevertheless, for some lattices, there is no t-norm verifying this property. For instance, let L = {0, 1, a, b}
be the lattice described by the Hasse diagram in Figure 5. A t-norm T on L must verify that T (a, b) = 0.

1

a b

0

Figure 5: Hasse diagram of the lattice L

b) The properties O5 and O6 reflect the continuity of O on each component. In this case, the notion of continuity is
the standard for arbitrary lattices: the Scott-continuity. Hence, O5 and O6 mean that O is Scott-continuous for L
and the dual of L.

c) As in the classic case, the concepts of T-overlap and S -gruping function are dual one to each other if there exists
a De Morgan triple (S ,T,N) for some involutive negation N on L.

Theorem 40. Let L be a bounded lattice, X a set, Λ = {Ax}x∈X a family of m-ary aggregation operators on L and
Γ = {Ox}x∈X a family of m-ary operators on L. Denote A = ΦΣ(Λ) and O = ΦΣ(Γ), where Σ = (IdX , . . . , IdX) ∈
Map(X, L)m. If, for all x ∈ X, Ox verifies any of the properties O1, O2, D2, O3, D3, O4, O5, O6 (with respect to Ax,
when needed), then O verifies the same property (with respect to A, when needed). Additionally, if X is a bounded
lattice and Λ and Γ are family of monotone operators preserving the order on X, the same result holds for operators
on Hom(X, L).

Proof. The proof follows the same guidelines of similar statements proven all along the paper. Simply observe that,
if { fi}i∈Λ is an upward (resp. downward) directed subset of Map(X, L), hence, for each x ∈ X, { fi(x)}i∈Λ is an upward
(resp. downward) directed subset of L.

Corollary 41. Under the conditions of Theorem 40, if Ox is Ax-overlap (general Ax-overlap, quasi Ax-overlap, Ax-
gruping, general Ax-gruping, quasi Ax-gruping) for all x ∈ X then O is A-overlap (general A-overlap, quasi A-
overlap, A-gruping, general A-gruping, quasi A-gruping).

Example 42. Let us provide an example of usage. Fix a positive integer n > 1, and consider T the product t-norm in
[0, 1] and the family of T-overlap operators Op : [0, 1] × [0, 1]→ [0, 1] given by

Op(x, y) = xn−p+1yn−p+1

for any x, y ∈ [0, 1] and p = 1, . . . , n. Set X = {1, . . . , n} with the order 1 ≤ 2 ≤ · · · ≤ n. Clearly Op ≤ Oq if p ≤ q, i. e.,
the family of operators preserves the order on X. We may then induce an operator O on Hom(X, [0, 1]) = Ln([0, 1]),
the set of n-dimensional intervals in [0, 1]. Concretely,

O( f , g)(p) = Op( f (p), g(p)) = f (p)n−p+1g(p)n−p+1,
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for any f , g ∈ Hom(X, [0, 1]) and p ∈ {1, . . . , n}. For instance, set n = 3. Since each element in L3([0, 1]) can be seen
as a 3-tuple of increasing values, if we consider f = (0.1, 0.3, 0.6) and g = (0, 0.6, 0.9), O( f , g) = (0, 0.0324, 0.54).

Now, by Corollary 41, the induced operator O is T-overlap on Ln([0, 1]), where

T( f , g)(p) = T ( f (p), g(p)) = f (p)g(p)

for any f , g ∈ Hom(X, [0, 1]) and p ∈ {1, . . . , n}.

6.5. Multi-Expert Decision Making

A direct application of aggregation operators (or, pre-aggregation operators [40]) is to deal with the aggregation
and exploitation phases in a multi-expert decision making (MEDM) problem [38]. We may then consider the induction
process for designing these aggregation operators. We recall that a MEDM problem can be summarized as follows.
There exist a set of alternatives A = {a1, . . . , ap} and a set of experts E = {e1, . . . , em}. The experts provide their
preferences about the alternatives, and these preferences are represented by m matrices, one for each expert,

Pi =


pi

11 pi
12 · · · pi

1p
pi

21 pi
22 · · · pi

2p
...

...
...

...
pi

p1 pi
p2 · · · pi

pp


for i = 1, . . . ,m. For any i, j, k, the value pi

jk expresses the degree of preference of the alternative a j over the alternative
ak given by the expert ei. Hence, in general, the elements of the diagonal are not considered. The selection of an
alternative consists of two phases:

1. The aggregation phase, where the preference matrices are joined into a collective preference matrix.

2. The exploitation phase, where a given method is applied to the collective preference matrix to obtain a selection
of alternatives.

The degrees of preference are usually represented by numbers in [0, 1], but we may make use of the induction tech-
nique to develop operators for handling degrees in other lattices, as, for instance, intervals or mappings on [0, 1].
Firstly, the aggregation phase needs to define a mapping

G :Mp×p(R)m →Mp×p(R),

where Mp×p(R) is the set of p × p-matrices with coefficients in the lattice R, in order to join together the set of
preferences of the experts into a single matrix Pc. This can be obtained simply by extending component-wise an
aggregation operator G : Rm → R, i. e., the (i, j)-component of G(P1, . . . , Pm) is G(p1

i j, . . . , pm
i j) for any i, j = 1, . . . , p.

Observe that, in this way, G is the induced operator of the family {G}x∈X , where X = {1, . . . , p2}, and Σ is the tuple
with identity mappings. Nevertheless, as we have seen, the induction process can provide another alternatives. On the
other hand, if the lattice R is Map(X, L) for some set X and lattice L, or Hom(X, L) when appropriate, the aggregation
operator A may be also designed by induction from operators on L.

Once the preference matrices are collected into the matrix Pc, in the exploitation phase, a method is applied to Pc

in order to yield a selection of alternatives. This can be done, for instance, by applying another aggregation operator
H to the rows of Pc, which can also be designed by induction. Then, to each alternative xi with i = 1, . . . , p, we
associate an element ri = H(pc

i1, . . . , pc
ip) ∈ R. Obviously, if the set {r1, . . . , rp} is totally ordered (as it always happens

when R = [0, 1]), the alternatives can be ordered according to the elements ri. If not, a method for ranking them must
be applied. Let us illustrate these comments with a numeric example.

Example 43. Consider a MEDM problem with three alternatives a1, a2, a3 and four experts e1, e2, e3, e4. These ex-
perts provide preference degrees that belong to the lattice I = Hom(2, [0, 1]) of closed intervals in [0, 1]. The prefer-
ence matrices provided by these experts are displayed in Figure 6.
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P1 1 2 3
1 − [0.2, 0.3] [0.4, 0.6]
2 [0.5, 0.7] − [0.8, 0.9]
3 [0.2, 0.5] [0.3, 0.6] −

P2 1 2 3
1 − [0.4, 0.6] [0.2, 0.3]
2 [0.1, 0.3] − [0.7, 0.9]
3 [0.5, 0.8] [0, 0] −

P3 1 2 3
1 − [0.5, 0.5] [0.1, 0.2]
2 [0.5, 0.5] − [0.5, 0.7]
3 [0.8, 0.9] [0.4, 0.6] −

P4 1 2 3
1 − [0, 0.3] [0.4, 0.6]
2 [0.8, 1] − [0.5, 0.6]
3 [0.2, 0.5] [0.4, 0.5] −

Figure 6: Preference matrices expressed by the experts.

In order to compute the collective preference matrix Pc we consider the aggregation operators on [0, 1] given
by G0(x1, x2, x3, x4) = min(x1, x2, x3, x4) and G1(x1, x2, x3, x4) = max(x1, x2, x3, x4) for any x1, x2, x3, x4 ∈ [0, 1].
Obviously G0 ≤ G1, and then we may consider the induced operator on closed interval G : I4 → I given by

G([x1, y1], [x2, y2], [x3, y3], [x4, y4]) = [min(x1, x2, x3, x4),max(y1, y2, y3, y4)]

for any intervals [x1, y1], [x2, y2], [x3, y3], [x4, y4] ∈ I. Suppose that, for some reason, we need to apply some penalty to
the opinion of experts e1 and e2 about the preferences of a2 over the other options, then analogously, we may consider
the operator

G′([x1, y1], [x2, y2], [x3, y3], [x4, y4]) = [min(x2
1, x

2
2, x3, x4),max(y2

1, y
2
2, y3, y4)]

for any intervals [x1, y1], [x2, y2], [x3, y3], [x4, y4] ∈ I. Hence we set G :M3(I)4 →M3(I) as the operator given by

G(P1, P2, P3, P4)i j =

{
G′(P1

i j, P
2
i j, P

3
i j, P

4
i j) if (i, j) = (2, 1) or (i, j) = (2, 3),

G(P1
i j, P

2
i j, P

3
i j, P

4
i j) otherwise,

for any matrices P1, P2, P3, P4. Thus Pc = G(P1, P2, P3, P4) is given by

Pc 1 2 3
1 − [0, 0.6] [0.1, 0.6]
2 [0.01, 1] − [0.49, 0.81]
3 [0.2, 0.9] [0, 0.6] −

Now, consider the aggregation operator M : [0, 1]2 → [0, 1] given by the arithmetic mean M(x, y) =
x+y
2 for any

x, y ∈ [0, 1], which yields the induced aggregation operator M : I2 → I defined as

M([x1, y1], [x2, y2]) =

[ x1 + x2

2
,

y1 + y2

2

]
for any [x1, y1], [x2, y2] ∈ I. Thus the elements r1, r2 and r3 associated to the alternatives are the following:

r1 = M([0, 0.6], [0.1, 0.6]) = [0.05, 0.6],
r2 = M([0.01, 1], [0.49, 0.81]) = [0.25, 0.9],
r3 = M([0.2, 0.9], [0, 0.6]) = [0.1, 0.75].

Hence r1 ≤ r3 ≤ r2 and, consequently, a1 ≤ a3 ≤ a2.

7. Conclusions

In this work we have provided a method, that we have called induction, for extending operators to classes of
lattice-valued mappings. Explicitly, for a lattice L and a set X, given a family of operators on L and set mappings
from X to X, we build an operator on Map(X, L), or on Hom(X, L) whenever X is also a lattice. We have shown this
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methodology can be applied to a wide range of frameworks simply by varying L and X. In particular, it covers the
best known classes of extended fuzzy sets. Nevertheless, the theory is described for arbitrary lattice L and set X in
order to cover also the case of a future potentially useful lattice. Despite the abstract mathematical machinery, the
method is simple and ready to use with minimal mathematical knowledge. We have also studied the preservation of
certain properties under the induction process. Then we have proved that important types of operator are preserve
under induction. In particular, families of aggregation operators on L yield aggregation operators on the lattice-valued
mappings space. Analogously, implications, negations, overlap functions and others are well-preserved. In this sense,
our study generalizes some results in the literature dealing with these kind of operators in the context of extended
fuzzy sets. The method offers high flexibility in order to design ad-hoc operators for solving a specific problem under
consideration, then, hopefully, it could be exploited in practical applications.
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