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Abstract: In this work, we approach the forecast problem for a general non-homogeneous diffusion
process over time with a different perspective from the classical one. We study the main characteristic
functions as mean, mode, and α-quantiles conditioned on a future time, not conditioned on the past
(as is normally the case), and we observe the specific formula in some interesting particular cases,
such as Gompertz, logistic, or Bertalanffy diffusion processes, among others. This study aims to
enhance classical inference methods when we need to impute data based on available information,
past or future. We develop a simulation and obtain a dataset that is closer to reality, where there is no
regularity in the number or timing of observations, to extend the traditional inference method. For
such data, we propose using characteristic functions conditioned on the past or the future, depending
on the closest point at which we aim to perform the imputation. The proposed inference procedure
greatly reduces imputation errors in the simulated dataset.

Keywords: diffusion processes; Gompertz-lognormal; conditioned on future; nearest neighbor;
imputation; simulated sample paths; characteristic functions
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1. Introduction

Lognormal diffusion processes are widely used in various fields of application to
model phenomena where the growth rate of a system is proportional to its current state,
leading to multiplicative noise. These processes, which are characterized by lognormal
distributions, are particularly effective in capturing the dynamics of systems in which
values are closely positive, such as stock prices, biological growth, or certain physical
processes, making them a key tool in both finance and natural sciences.

Modeling random phenomena through diffusion processes has been widely applied
in various fields. One of the most relevant applications of modeling phenomena is its use
to study tumor growth. Therefore, various publications explore this research line, as can be
seen in [1–9].

Other types of phenomena related to natural growth can also be modeled using non-
homogeneous diffusion processes. Some authors have used such models, from the early
patterns of population growth [10,11] to growth in rabbits [12], mean weight of swordfish [13],
microorganisms in culture [14], pig growth data [15], and the spread of COVID-19 [16].

Recent studies have used lognormal non-homogeneous diffusion processes to model
the propagation of fake news [17,18].

As the literature shows, the use of non-homogeneous lognormal diffusion processes
has spread to model different growth mechanisms. For all these applications of the log-
normal non-homogeneous diffusion process, the authors usually recall known functions,
improve different aspects of the inference procedure, including new parametrizations,
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functions, and new methodologies, and provide more comprehensive and interpretable
approaches.

We usually find studies focused on modeling observed as well as simulated data,
which are detected at regular times, usually equidistant from each other and observed
at the same instants in all sample paths. Hence, because of the study of processes, it is
possible to make inferences about occurrences at moments later than those observed; that
is, forecasting the future by knowing the past and present. However, the observation of
phenomena that can be modeled as a non-homogeneous lognormal diffusion process does
not always respond to this scheme. Moreover, often, these observations are not presented
with the same number for different sample paths, nor are they observed at coincident
times. This may respond to different observation opportunities that the researcher is not
able to control and could complicate the modeling procedure and the comparison between
different individuals, given the different times in which they are observed.

Classical methodology assumes that future events can be predicted by considering
past information. However, when events are observed in a non-systematic manner (at
different times) and with varying frequencies across different sample paths, it is sometimes
not possible to make a point estimation using a characteristic function conditioned on past
values, as such observations may not exist or be available. This limitation reduces the
effectiveness of classical point estimation for values at many time points, particularly those
preceding the first observation.

In some cases, a previous observation may be available, allowing for imputation
using the classical method. However, if that observation is far in the past, and a posterior
observation exists, the classical method disregards the latter. Since the conditioned function
only considers past values, it overlooks the potential value of the closer, later observation,
thus missing valuable information that could improve the imputation.

We propose a methodology to use non-homogeneous lognormal diffusion processes
for modeling and making inferences. Specifically, we propose inference using information
not only from the past but also from the future, particularly using the distribution of
the process X(t) conditioned on the observed instant of time that is closest to time t.
Specifically, if the available information closest to the point of interest is found in a past
time, the usual inference is used for an instant t considering the distribution of X(t)|X(s),
s < t, conditioned from the information at a previous instant s. On the contrary, if the time t
whose value X(t) we desire to infer is closer to an available future observed value v (t < v),
we use the distribution of X(t)|X(v), conditioned on the future, to obtain the inference at t.

For this purpose, we first recall the non-homogeneous lognormal diffusion process
and the classical distribution conditional on the past. In second place, we study certain
particular non-homogeneous diffusion processes and derive their future-conditioned distri-
butions. Next, we obtain the distribution conditional on the future. Finally, we illustrate the
proposal procedure using simulated data generated such that each sample path contains a
random amount of data observed at unequal times. The maximum likelihood estimation of
the parameters is performed, obtaining point estimations. With them, inference on a set of
common points is carried out using three different methods: (a) classically, by employing
the process conditioned on the past, (b) contrarily, by employing the process conditioned on
the future, and (c) in the proposed way, by alternately employing the process conditioned
on the past or the future, contingent upon which instant observed is closest to the instant at
which we want to infer the process. We compare the three inference methods for the three
conditioned functions of interest: mean, mode, and median. After the comparison, we
conclude that the third methodology greatly improves the classical imputation procedure.

2. Non-Homogeneous Lognormal Diffusion Processes

In this section, we recall the definition and some characteristic functions of the non-
homogeneous lognormal diffusion process and summarize some particular cases of this process.
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2.1. The Process

Following [19] , a diffusion process X(t) with t ∈ [t0,+∞), t0 ∈ R+
0 and state space

given by the set of positive real numbers R+ is a non-homogeneous lognormal diffusion
process when its infinitesimal moments are given by the following:

A1(x, t) := hθ(t)x and A2(x) := σ2x2,

where hθ(t) is a positive, continuous, bounded, and differentiable function in any interval
[0, τ), with τ ≥ 0, and σ > 0. The vector θ ∈ Θ ⊆ Rk, k ∈ N contains all the parameters
involved in the definition of the process. Such process is the solution of the following
stochastic differential equation:{

dX(t) = hθ(t)X(t)dt + σX(t)dW(t)
X(t0) = X0,

(1)

where W(t) represents a standard Wiener process independent on the initial state X0. We
suppose that X0 is lognormally distributed, i.e.,

X0 ∼ Λ1(µ0, σ2
0 ), (2)

with µ0, σ0 > 0, or degenerate, i.e., P(X0 = x0) = 1 with x0 > 0. The choice of an
initial distribution of this type leads to an explicit and manageable expression for the joint
density function.

Thanks to the Itô’s formula, it is possible to obtain an explicit solution to Equation (1),
given as follows:

X(t) = X0 exp
(

Hξ(t0, t) + σ(W(t)− W(t0))
)
, t ≥ t0, (3)

where

Hξ(s, t) :=
∫ t

s
hθ(u)du − σ2

2
(t − s), 0 ≤ t0 ≤ s ≤ t, (4)

being
ξ = (θT , σ2). (5)

As shown in [20], if X0 has a lognormal distribution Λ1(µ0, σ2
0 ) or if P(X0 = x0) = 1,

all the finite-dimensional joint distributions of the process are lognormal. Specifically, given
n ∈ N and t0 < t1 < · · · < tn, the vector (X(t1), . . . , X(tn))

T follows a n-dimensional
lognormal distribution, i.e.,

(X(t1), . . . , X(tn)) ∼ Λn(ϵ, Σ), (6)

where ϵ = (ϵ1, . . . , ϵn) and Σ = (σi,j)i,j=1,...,n with

ϵi = µ0 + Hξ(t0, ti), σi,j = σ2
0 + σ2(min(ti, tj)− t0

)
, i, j ∈ {1, . . . , n}.

Hence, the transition density function is available in closed form and it is given, for
0 ≤ t0 < s < t, by the following:

f (x, t | y, s) =
1

x
√

2πσ2(t − s)
exp

−

(
log( x

y )− Hξ(s, t)
)2

2σ2(t − s)

, x, y > 0.

Thus, it follows that

X(t) | X(s) = y ∼ Λ1

(
log y + Hξ(s, t), σ2(t − s)

)
, t0 < s < t.
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We remark that the process X(t) is conditioned on the past, since s < t. As the joint
distribution is known and is lognormal, other important characteristic functions of the
process can be obtained. For example, the n-th moment of X(t), with n ∈ N, is given by
the following:

E[X(t)n] = E[Xn
0 ]

(
exp

(
Hξ(t0, t) +

σ2

2
(t − t0)n

))n

, t ≥ t0.

In particular, the expected value of X(t) is given as follows:

E[X(t)] = E[X0] exp
(

Hξ(t0, t) +
σ2

2
(t − t0)

)
= E[X0] exp

(∫ t

t0

hθ(u)du
)

,

for t ≥ t0. From the expressions of the expected value and of the 2nd-order moment of
X(t), it is possible to obtain the variance of the process, which is given as follows:

Var[X(t)] = E
[

X2
0

]
exp

(
2Hξ(t0, t) + 2σ2(t − t0)

)
− (E[X0])

2 exp
(

2Hξ(t0, t) + σ2(t − t0)
)

.

Other characteristic functions of interest of the process X(t) are the mode, which is
given by

Mode[X(t)] = Mode[X0] exp
(

Hξ(t0, t)− σ2(t − t0)
)

, t ≥ t0,

and the α-quantile

Cα[X(t)] = exp
(

Hξ(t0, t) + µ0 + zα

√
σ2

0 + σ2(t − t0)

)
, t ≥ t0,

where zα denotes the upper α-quantile of a standard normal distribution. The median can
be obtained by setting α = 0.5:

Med[X(t)] = Med[X0] exp
(

Hξ(t0, t)
)
, t ≥ t0.

Similarly, the conditional characteristic functions of the process are given by the following:

E[X(t)n | X(s) = y] = exp
(

n
(
log y + Hξ(s, t)

)
+

n2

2
σ2(t − s)

)
,

Mode[X(t) | X(s) = y] = exp
(

log y + Hξ(s, t)− σ2(t − s)
)

,

Cα[X(t) | X(s) = y] = exp
(

log y + Hξ(s, t) + zασ
√

t − s
)

,

Med[X(t) | X(s) = y] = exp
(
log y + Hξ(s, t)

)
,

with 0 ≤ t0 < s < t. In the literature, the joint distribution of d sample paths of the
process X(t) is available in closed form. For completeness, we recall the expressions given,
for example, in [19], by considering a discrete sampling of the process X(t) based on d
sample paths. For any sample path, we fix different observation times, denoted by ti,j with
i = 1, . . . , d and j = 1, . . . , ni. The initial observation time is fixed and equal for any sample
path and it is given by ti1 = t0, i = 1, . . . , d. Let X =

(
XT

1 , . . . ,XT
d
)T be the matrix containing

all the observations with Xi =
(
X(ti1), . . . , X(ti,ni )

)T for any i = 1, . . . , d. Assuming that
the distribution of X0 is degenerate, i.e., P(X0 = x0) = 1, the joint probability density
function of X is given by the following:
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fX(x) =
d

∏
i=1

ni−1

∏
j=1

exp
(
− [log(xi,j+1/xi,j)−Hξ (ti,j ,ti,j+1)]

2

2σ2∆j+1,j
i

)
xi,j+1σ

√
2π∆j+1,j

i

, (7)

where x = (x1,1, . . . , x1,n1−1, . . . , xd,1, . . . , xd,nd−1) ∈ Rn with n = ∑d
i=1(ni − 1) and ∆j+1,j

i =
ti,j+1 − ti,j. From Equation (7), it is possible to obtain the log-likelihood function, which is
given by the following:

LX(ξ) =−
d

∑
i=1

ni−1

∑
j=1

[
log(xi,j+1/xi,j)− Hξ(ti,j, ti,j+1)

]2
2σ2∆j+1,j

i

− n
2

log(σ2)− n
2

log(2π)

−
d

∑
i=1

ni−1

∑
j=1

log
(

xi,j+1

√
∆j+1,j

i

)
,

where Hξ(s, t) is defined in Equation (4).

2.2. Particular Cases

The non-homogeneous lognormal diffusion process encompasses a family of processes
with different characteristics, whose mean functions have certain shapes and have been
widely studied and used in the literature to model different growths that can be found
in nature or as an effect of human activity. Although the non-homogeneous lognormal
diffusion process is defined from the expression of the stochastic differential equation
written in Equation (1), depending on how the function hθ(t) is considered, different
named processes can be reached. Among these specific processes, we highlight some that
are especially useful for modeling random phenomena. Therefore, they are valuable tools
for decision-making in the fields of public health, ecology, and social sciences.

We consider the Gompertz type, introduced in [12], Gompertz lognormal studied
in [21], the Bertalanffy process in the way observed in [13], the logistic-type as authors
show us in [14], the Richards-type process seen in [22], the Korf process seen in [23], and
the multi-sigmoidal process given in [24]. Table 1 shows which function hθ(t) should be
considered to work with each of them, as well as the mandatory Hξ(s, t) required to obtain
the characteristic functions.

Table 1. Particular cases of non-homogeneous lognormal diffusion process.

Name hθ(t) Function Hξ(s, t) with (s < t)

Gompertz-type
ξ = (m, β, σ2)T

me−βt with m, β > 0 −m
β

(
e−βt − e−βs

)
− σ2

2
(t − s)

Gompertz-lognormal
ξ = (m, β, c, σ2)T

me−βt + c with m, β > 0 −m
β

(
e−βt − e−βs

)
−
(

σ2

2
− c
)
(t − s)

Bertalanffy
ξ = (b, c, k, σ2)T

bck
ekt − c

with k > 0, b ≥ 1, t0 ≥ log c
k b log

(
ekt − 1
eks − 1

)
− σ2

2
(t − s)

Logistic-type
ξ = (b, c, σ2)T

bc
b + ect with b, c > 0 −bce−c log

(
b + ecs
b + ect

)
− σ2

2
(t − s)

Richards-type
ξ = (q, k, η, σ2)T − qkt log k

η + kt with q, η > 0, 0 < k < 1 q log
(

η + ks

η + kt

)
− σ2

2
(t − s)

Korf
ξ = (m, β, σ2)T

mt−(β+1) with m, β > 0 −m
β

(
t−β − s−β

)
− σ2

2
(t − s)



Mathematics 2024, 12, 3703 6 of 23

Table 1. Cont.
Name hθ(t) Function Hξ(s, t) with (s < t)

Multi-sigmoidal
ξ = (η, β1, . . . , βp, σ2)T

Pβ(t)e−Qβ(t)

η + e−Qβ(t)
, with Qβ(t) =

p

∑
i=1

βiti,

βp > 0, (β1, . . . , βp) ∈ Rp , η > 0,

Pβ(t) =
d
dt

Qβ(t)

log

[
η + e−Qβ(s)

η + e−Qβ(t)

]
− σ2

2
(t − s)

3. Non-Homogeneous Lognormal Diffusion Processes Conditioned on the Future

In real-world applications, non-homogeneous lognormal processes are used not only
for predictive purposes but also for modeling. In this case, it is sometimes not possible
to model at a point in time by conditioning on the past because this information is not
available, as the paths of the observed data may be incomplete. Such situations suggest
another way to use characteristic functions (mean, mode, and median), conditioning not on
past values but on future observed values. This can be useful in various instances, such as
to impute missing data for processes that have already been observed, or to infer at instants
of time conditional on arbitrary future values under certain scenarios.

In this section, we analyze the main features of the process X(t) conditioned on the
future, i.e., X(s)|X(t) = y, with t0 < s < t which, as we will see in Section 4, will be im-
mensely useful for imputing missing data and completing the classical estimation method.

In detail, the following proposition provides the expression of the distribution condi-
tioned on the future.

Proposition 1. The process X(s), given X(t) = y with t0 < s < t, follows a one-dimensional
lognormal distribution, i.e.,

X(s) | X(t) = y ∼ Λ1

(
mξ,µ0,σ2

0
(s | y, t), sσ2

0 ,σ2(s | t)
)

,

where

mξ,µ0,σ2
0
(s | y, t) := µ0 + Hξ(t0, s) +

σ2
0 + σ2(s − t0)

σ2
0 + σ2(t − t0)

·
(
log y − µ0 − Hξ(t0, t)

)
, (8)

and

sσ2
0 ,σ2(s | t) :=

(
σ2

0 + σ2(s − t0)
)
σ2(t − s)

σ2
0 + σ2(t − t0)

, (9)

where µ0, σ0 are the parameters of the initial lognormally distributed state X(t0), y > 0, and
Hξ(t0, t) is defined in Equation (4). (Note that a degenerate distribution is the particular case when
taking σ2

0 = 0.)

Proof. It is known that when (X, Y) follows a two-dimensional lognormal distribution and
Y a one-dimensional lognormal distribution, then X | Y = y also follows a one-dimensional
lognormal distribution. More precisely, if

(X, Y) ∼ Λ2

((
µX
µY

)
,
(

σ2
X σXY

σXY σ2
Y

))
, Y ∼ Λ1

(
µY, σ2

Y

)
,

with µX , µY, σXY ∈ R, σX , σY > 0 then

X | Y = y ∼ Λ1

(
µX + ρ

σX
σY

(log y − µY); σ2
X

(
1 − ρ2

))
,
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with ρ =
σXY

σXσY
. Consequently, considering the joint distribution of (X(s), X(t)), t0 < s < t,

obtained in Section 2, i.e.,

(X(s), X(t)) ∼ Λ2(ϵ, Σ), t0 < s < t,

where
ϵ = (ϵ1, ϵ2) =

(
µ0 + Hξ(t0, s), µ0 + Hξ(t0, t)

)T ,

Σ =

(
σ2

0 + σ2(s − t0) σ2
0 + σ2(s − t0)

σ2
0 + σ2(s − t0) σ2

0 + σ2(t − t0)

)
and the fact that X(t) ∼ Λ1

(
µ0 + Hξ(t0, t), σ2

0 + σ2(t − t0)
)
, we finally obtain the desired

result.

From Proposition 1, it is easy to obtain the explicit expressions of some characteristic
functions of interest of the process X(s)|X(t) = y with t0 < s < t, such as the n-th moment,
n ∈ N, the mode, and the α-quantile. More in detail, the n-th moment of X(s)|X(t) = y
with n ∈ N is given by

E[X(s)n | X(t) = y] = exp
(

n mξ,µ0,σ2
0
(s | y, t) +

n2

2
sσ2

0 ,σ2(s | t)
)

, t0 < s < t,

and the expected value of X(s) | X(t) = y is given by

E[X(s) | X(t) = y] = exp
(

mξ,µ0,σ2
0
(s | y, t) +

1
2

sσ2
0 ,σ2(s | t)

)
, t0 < s < t.

Moreover, the mode of X(s) | X(t) = y is

Mode[X(s) | X(t) = y] = exp
(

mξ,µ0,σ2
0
(s | y, t)− sσ2

0 ,σ2(s | t)
)

, t0 < s < t,

the α-quantile is

Cα[X(s) | X(t) = y] = exp
(

mξ,µ0,σ2
0
(s | y, t)− zα

√
sσ2

0 ,σ2(s | t)
)

, t0 < s < t,

and the median is given by

Med[X(s) | X(t) = y] = exp
(

mξ,µ0,σ2
0
(s | y, t)

)
, t0 < s < t.

To determine the expressions of these characteristic functions for the processes sum-
marized in Table 1, it is enough to particularize with the function Hξ(t0, s) indicated in the
same table.

For the sake of clarity, in Appendix A, Table A1 summarizes the symbols and the
notation used, together with the corresponding meaning.

4. Simulation Study

To properly develop our simulation study, we replicate real-life observations. We
approach our data to a matrix similar to those provided by real data, as researchers find
via cohort studies like Helsinki Birth Court (Finland) [25], The Japan Environment and
Children’s Study (JECS) [26] (Japan), the Danish National Birth Cohort (Denmark) [27],
the data of the Center for the Health Assessment of Mothers and Children of Salinas
(CHAMACOS) [28] (USA), the Pelotas (Brazil) birth cohort study [29], the INfancia y Medio
Ambiente (Environment and Childhood) (INMA) Project (Spain) [30,31], and many others
such as those we can find in [32].
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We follow [33], studying the biparietal diameter observed via ultrasound, to generate
data with similar behavior to which we found about fetal growth in the birth cohort of
the Genetics, Early Life Environmental Exposures and Infant Development in Andalucía
(GENEIDA) Project (Spain) (Web site https://www.easp.es/web/geneida/ accessed on 7
November 2024).

Similar observations could be found when using other databases of fetal measurements.
Data with the same characteristics could also emerge when studying other phenomena.

The next steps describe the type of non-homogeneous process selected and how the
final simulated sample data are obtained.

4.1. The Simulated Process

We simulate data for a Gompertz-lognormal process whose specific expression is
available in Section 2.2 with the hθ(t) function displayed in Table 1. This specific process
includes Gompertz-type diffusion when c = 0 and homogeneous lognormal diffusion when
m = 0, as well as paths changing their curvature, turning from increasing to decreasing or
turning from concave to convex shapes (see [21,34]), as can be seen in Figure 1. This fact
makes the Gompertz-lognormal diffusion process a very useful tool for modeling a wide
range of sample paths, including exponential and sigmoidal growth.

(a) (b)

(c) (d)

Figure 1. Simulated paths for Gompertz-lognormal diffusion process. (a) Exponential shape
(c = 0.05); (b) mixed shape (c = 0.008); (c) Gompertz shape (c = 0.001); (d) mixed shape
(c = −0.05).

Figure 1 displays 100 values of 10 simulated paths of a Gompertz-lognormal process
from X(t0) = 0.1 with ti − ti−1 = 1 ∀i = 1, . . . , 100. Figure 1a shows simulated sample
paths with an exponential trend. Figure 1b shows sample paths with a mixture shape,
turning from convex to concave shape. Figure 1c shows sample paths with a sigmoidal
shape. Figure 1d shows the sample paths with a shape that changes from convex to concave
and convex again, turning from increasing to decreasing development. All paths are
simulated with m = 0.5, β = 0.1, and σ = 0.01. The difference between them is the value
of parameter c, which changes from 0.05 to −0.05. This wide range of possibilities in the
behavior of the process makes it a very useful tool for modeling different kinds of data.

https://www.easp.es/web/geneida/
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4.2. The Data

The dataset is generated based on the concepts proposed in [35], where a generic
simulation technique was described. The observations simulated with this procedure are
all obtained in equispaced times of constant and equal jump in each sample path. However,
this is not realistic, since in practice, the observations of the phenomena are often not
observed at the same time instants, nor are these times equispaced. Specifically, in fetal
growth data, it is usual that the observations made on each individual are taken at different
time instants, although they are usually around certain values of interest. Also, the number
of observations varies in each case, and the observations are not equispaced. To make the
simulation study as realistic as possible, we do not work with the simulated observations
directly. To create our final sample, we chose data from the original simulated dataset in
the following way:

1. The starting point is a matrix with N sample paths, each one containing n data
simulated in equispaced times t1, t2, . . . , tn with ti − ti−1 = r ∀i = 2, . . . , n that we
obtain following the software propose in [36].

2. We fix a mean size λ ∈ R+, with λ being the expected number of observations for the
final sample paths.

3. We choose p times, called points of interest, around which data will be available in the
final sample. These points of interest are IPi with i = 1, . . . , p. For p = 0, this step
is skipped.

4. For each sample path i, we generate mi ∈ N a random number mi ∼ Poisson(λ) with
i = 1, . . . , n, enforcing 2 ≤ mi ≤ n, which will be the total available observations for
the i-th sample path in the final sample.

5. Each mi is divided between the number of points of interest, p, to fix how many data
will be available around each point of interest for each sample path, obtaining qi,j. For
p = 0, this step is skipped.

6. We randomly choose for the sample path i in the point of interest j a total of qi,j values
of the times from the original matrix following a normal distribution with mean IPj
and common chosen variance. We repeat this for all sample paths i = 1, . . . , n and for
all points of interest j = 1, . . . , p. For p = 0, we select mi values via a discrete uniform
distribution between t1 and tn.

7. The selected times lead us to their corresponding simulated values.
8. The selected times with the selected data are the final simulated sample, where there

is no regularity in times nor in the amount of data for different sample paths.

With the objective of simulating 250 sample paths, similar to fetal growth, taking
into account the results of [33] regarding biparietal diameter in fetuses, we consider the
parameters m = 0.11, β = 0.018, c = 0.002, and σ = 0.01 to simulate the paths. We
also consider X(t0) = 0.14 as a possible length of an ovum before it is fertilized [37].
Sample paths begin at (t0 = 0, X(t0) = 0.14) and are simulated from t0 with ti − ti−1 = 1,
i = 1, . . . , 280, observing the expected duration of a normal pregnancy, as the values of t
represent each day of pregnancy.

Our points of interest are IP1 = 84, IP2 = 140, and IP3 = 238, which correspond to
the times of interest on the first, second, and third quarters in pregnant women. Then, we
generate a number of observations for each case with a Poisson distribution with parameter
λ = 4, starting at t = 70 because before this time, it is not easy to take measures via
ultrasound. Finally, as variability of the normal distribution, we take a variance of 7 because
ultrasound measures are usually scheduled in the same week of the time of interests.

The R code (R software version 4.3.3) for the simulation procedure is available in
Appendix B.

In Figure 2, we can see the simulated data. Figure 2a shows the complete paths
generated from t0 = 0 to tn = 280 for N = 250 individuals. We highlight some random
paths in different colors to better observe the behavior of the sample paths and understand
the selection of values. The selected final data are depicted in Figure 2b, where we discard
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all information that is not easily available in real-world cases. The colored paths in Figure 2a
can be seen as colored points in Figure 2b. We also mark the three times of interest ,IP1,
IP2, and IP3, with vertical discontinuous red lines.

(a) (b)

Figure 2. Simulated data. Figure (a), on the left, shows a total of 250 simulated sample paths
of the Gompertz-lognormal process with m = 0.11, β = 0.018, c = 0.002, and σ = 0.01.
Figure (b), on the right, shows selected sample of the simulated paths with a mean size of 4
and 3 points of interest around which the samples are taken with a deviation of 7 and from
t = 70. These data are similar to those for fetal growth measures.

We provide the final simulated dataset represented in Figure 2b, which is available as
open data at https://doi.org/10.5281/zenodo.13929734.

4.3. Estimation and Inference

Once we obtain the final dataset, we estimate the parameters of the process via
maximum likelihood estimation method using the maxLik package in R [38] with all initial
values equal to 0.01. We summarize in Table 2 the values of the parameters and their
maximum likelihood estimation.

Table 2. Parameters of the model: values for the simulation and their maximum likelihood
estimation.

Parameter Simulation Value ML Estimation

m 0.11 0.1095
β 0.018 0.0178
c 0.002 0.0017
σ 0.01 0.0100

With the estimated parameters, we can impute the values for times of interest IP1,
IP2, and IP3 using the mean, mode, and median functions, each in the three following
cases: (a) conditioning on the previous data, (b) conditioning on the next following data,
and (c) conditioning on the nearest available data. In cases (a) and (b), if such necessary
observation for the conditioned function does not exist, the imputation is a missing value.
We do not take X(t0) = 0.14 as an available observation in any case because it is an
arbitrary number rather than a real observation. Later on, we will study how this value
affects the imputations.

We consider the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).
Following [39], in this case, MAE is more reliable than RSME due to the leptokurtic
distribution of the residuals ϵi,j = xi(IPj)− x̂i(IPj), where xi(IPj) is the simulated value
for the i-th path at the j-th interest point, and x̂i(IPj) the imputed value at the IPj time.

Table 3 displays the errors in the inference of the three interesting points, considering
(IP1 = 84, IP2 = 140, IP3 = 238) as follows:

RSME(IPj) =

√√√√ 1
Nj

Nj

∑
i=1

ϵ2
i,j and MAE(IPj) =

1
Nj

Nj

∑
i=1

|ϵi,j|

https://doi.org/10.5281/zenodo.13929734
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where Nj is the number of final imputations and IPj is the j-th point of interest (j = 1, . . . , p).

Table 4 shows the joint error for the simulated data. Naming N̂ =
p

∑
j=1

Nj, we define

the joint error measurements as follows:

RSME =

√√√√ 1
N̂

p

∑
j=1

Nj

∑
i=1

ϵ2
i,j and MAE =

1
N̂

p

∑
j=1

Nj

∑
i=1

|ϵi,j|.

Tables 3 and 4 also show the number of missing imputations we obtain (NA values)
in cases where unavailable data do not allow for the inference procedure. This is the
case when one uses the function conditioned to the past or when one uses functions
conditioned to a future observation but such observed data do not exist. In order to
compare error measurements at the same imputation points, although not all functions have
unavailable imputation points, we consider both cases: all possible imputations (NA = 0)
and imputations at the points at which all functions can make the forecast (NA > 0).

Table 3. Obtained errors at times of interest IP1, IP2, and IP3: RSME and MAE, number
of values that cannot be imputed (NAs) in the inference procedure using mean, mode,
and median functions conditioned on the closest past, closest future, and closest observed
values.

Error Time Conditioned on Mean Function Mode Function Median Function

Imputation at first time of interest IP1 = 84

0 NAs 101 NAs 0 NAs 101 NAs 0 NAs 101 NAs

RSME(IP1)
Past ∗ 0.4926 ∗ 0.4925 ∗ 0.4925

Future 0.7968 0.8856 0.8021 0.8925 0.7980 0.8872
Closest 0.5447 0.4657 † 0.5448 0.4641† 0.5446 0.4651 †

MAE(IP1)
Past ∗ 0.2903 ∗ 0.2907 ∗ 0.2903

Future 0.5173 0.6021 0.5236 0.6113 0.5190 0.6044
Closest 0.3123 0.2582 † 0.3130 0.2579 † 0.3125 0.2580 †

Imputation at second time of interest IP2 = 140

0 NAs 11 NAs 0 NAs 11 NAs 0 NAs 11 NAs

RSME(IP2)
Past ∗ 2.8285 ∗ 2.8368 ∗ 2.8288

Future ∗ 2.6682 ∗ 2.7137 ∗ 2.6809
Closest 1.8364 1.8632 † 1.8352 1.8624 † 1.8354 1.8623 †

MAE(IP2)
Past ∗ 1.8817 ∗ 1.8739 ∗ 1.8763

Future ∗ 1.6885 ∗ 1.7085 ∗ 1.6923
Closest 1.0626 1.0737 † 1.0663 1.0783 † 1.0636 1.0750 †

Imputation at third time of interest IP3 = 238

0 NAs 87 NAs 0 NAs 87 NAs 0 NAs 87 NAs

RSME(IP3)
Past 6.1756 6.5106 6.2065 6.5132 6.1741 6.4963

Future ∗ 3.7365 ∗ 3.7184 ∗ 3.7300
Closest 4.2479 3.4014 † 4.2900 3.4011 † 4.2599 3.4011 †

MAE(IP3)
Past 3.6568 4.2782 3.6737 4.2593 3.6584 4.2681

Future ∗ 1.7851 ∗ 1.7777 ∗ 1.7826
Closest 1.8240 1.4672 † 1.8568 1.4727 † 1.8332 1.4688 †

∗ The error cannot be obtained because the data do not allow all imputations with the conditioned characteristic
function. † Smallest error obtained when comparing the three analyzed methods.
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Table 4. Obtained errors for all time of interest jointly: RSME and MAE, number of
points at which values cannot be imputed (NAs) in the inference procedure using mean,
mode, and median functions conditioned on the closest past, closest future, and closest
observed values.

Error Time Conditioned on NAs Mean Function Mode Function Median Function

RSME
past 108 4.2292 4.2489 4.2285

future 91 2.5091 2.5207 2.5112
closest † 0 2.6903 2.7123 2.6964

MAE
past 108 2.1935 2.1971 2.1920

future 91 1.2623 1.2699 1.2636
closest † 0 1.0663 †† 1.0787 †† 1.0698 ††

† The only method that allows for all desired imputations. †† Smallest MAE obtained when comparing the three
analyzed methods.

5. Discussion
5.1. Imputation at First Point of Interest IP1 = 84

When analyzing the information in Table 3 regarding the inference at the first time of
interest, we observe that there are two columns for each characteristic function estimating
the values at IP1 = 84. These columns summarize the errors for two distinct subsets of indi-
viduals: the first, labeled NA = 0, represents cases where all target points can be estimated.
The asterisk ∗ indicates that for IP1, it is not possible to infer all points using the process
conditioned solely on past values, as in some instances, past data are unavailable. Conse-
quently, this approach results in 101 missing imputations (NAs) out of the 250 required,
amounting to 40.4% of the target data, which renders the procedure unsuitable.

In contrast, when using the process conditioned on future values, all estimations are
feasible. Similarly, switching dynamically between the processes conditioned on past and
future values—depending on which data are closer to the time point being imputed—also
enables complete estimation.

Under NA = 101, we compare the errors for each data input method within the
common subset of 149 imputations. Examining these columns and comparing the RMSE
and MAE across all functions (mean, mode, and median), we find that the smallest errors
occur when the process is conditioned on the nearest available value.

When focusing solely on the two procedures that allow for inference for all individ-
uals, conditioning on the nearest available data consistently outperforms conditioning
exclusively on future available data.

For the first point of interest, previously observed data are often unavailable. In
such cases, the most effective approach is to impute data by conditioning on the closest
available value.

5.2. Imputation at Second Point of Interest IP2 = 140

In this case, we have two columns corresponding to the values of NA: 0 and 11. It
is evident that the number of NA values is not significant, with NA = 7 for the process
conditioned on the past and NA = 4 for the process conditioned on the future. These
represent 2.8% and 1.6% of the data, respectively, indicating that the loss is minimal when
using these conditioned methods.

Once again, when we use the process conditioned on the closest available value, we
encounter no NA values, as there are always at least two observations for each individual.
Furthermore, by comparing the RMSE and MAE for the three characteristic functions at
IP2, we find that this procedure not only avoids generating NA values in the imputation
but also results in smaller RMSE and MAE values, indicating that it outperforms both the
methods conditioned exclusively on the past or the future.
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5.3. Imputation at Third Point of Interest IP3 = 238

When examining the inference for IP3 in Table 3, because of the allocation of this time,
we obtain 87 missing imputations using the process conditioned to the future. This indicates
that no further information is available after IP3 for 87 individuals. Nevertheless, the other
two methods produce 0 NA values; however, again, the smallest error measurements are
for the process conditioned to the nearest available data.

These observations indicate that the functions conditioned on the closest value should
be selected as the best imputation method.

5.4. Comparison Between Characteristic Functions

Moreover, by comparing the three conditional functions—mean, mode, and median—
we observe that there is no clear advantage for any of them; at IP1, we see that the me-
dian function is slightly better in RSME conditioning on the closest value for NA = 0
(RSME = 0.5446 versus 0.5447 and 0.5448), but the mean function produces a smaller MAE
(0.3123 versus 0.3130 and 0.3125). At this point of interest, the mode function is slightly
better when NA = 101 (RSME = 0.4641 versus 0.4657 and 0.4651, MAE = 0.2579 versus
0.2582 and 0.2580), and the mean function outperforms the other functions when using the
process conditioned to the future with NA = 0 (RSME = 0.7968 versus 0.8021 and 0.7980,
MAE = 0.5173 versus 0.5236 and 0.5190) and with NA = 101 ( RSME = 0.7968 versus 0.8021
and 0.7980, MAE = 0.5173 versus 0.5236 and 0.5190).

At the second time of interest IP2, we notice that the mean function has a smaller
RMSE when we use the process conditioned to the past or the future; however, the median
function presents a smaller RSME for the function conditioned to the nearest available
value, all of them considering NA = 11. When NA = 0, the mode function produces a
smaller value (RSME = 1.8352 versus 1.8364 and 1.8354).

This is not consistent with the MAE values, which show the smallest value when
using the mode function for the process conditioned on past values (MAE = 1.8739 versus
1.8817 and 1.8763) and for the mean function for the process conditioned on future values,
(MAE = 1.6885 versus 1.7085 and 1.6923). If we select the process conditioned on the
nearest value, we obtain less MAE if we use the mean function, both considering NA = 0
and NA = 11.

At the third point of interest, we observe a similar situation. The mean function
has a smaller RSME for the process conditioned on the future and NA = 87, the mode
function produces a smaller RSME for the process conditioned on the future or on the
closest available data when N = 87, and the median function produces a smaller RSME for
the process conditioned on the nearest value and NA = 87 together with the mode function.
But looking at the MAE values, we will choose the mean function for imputation with
the process conditioned on the nearest value and the mode function if we use the process
conditioned on the past or on the future.

Contrary to what happens when we select a method, choosing one function or another
does not produce clearly better estimates. When considering the MAE measure and the
nearest neighbor method, the mean function seems to be slightly better than the median
or mode.

5.5. Joint Error Measurements

Table 4 shows the RSME and MAE for all points of interest using the process exclu-
sively conditioned on the past, exclusively conditioned on the future, and conditioned on
the past or the future depending on which observation is closer to the imputation moment.
In the first scenario, using the process conditioned to the past, we cannot impute 108 obser-
vations (101 on the IP1 and 7 on IP2), and we obtain the worst RSME and MAE values for
the three functions: mean, mode, and median. For the second approach, using the process
conditioned to the future, we have 91 missing imputations and a slightly smaller RSME
than the third approach, but a greater MAE. The third method is the only one that allows
us to impute all the data, and moreover, it provides the best values for MAE. This measure
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is more reliable than RSME because of the leptokurtic distributions of the errors; thus, we
clearly find that this third methodology is the best among the three we studied.

For Table 4, we again cannot propose the mean, mode, or median function as better
than the others because the functions return very similar values for RSME and MAE and
because we do not always find the minimum error value for the same function. However,
if we pay attention to characteristic functions conditioned on the nearest observed value,
where NA=0, these cases show lower RSME and MAE values for the conditional mean
function rather than the mode or median.

5.6. Parameter Choice

The final sample was very similar to the real data of a birth cohort in which the
biparietal diameter is observed via ultrasound (see [33]), carefully selecting the parameters
that make the dataset appear realistic. We discuss below how this selection might affect the
final characteristics of the dataset and the error measures in the imputation procedure.

5.6.1. m, β, and c Parameters of the Infinitesimal Mean of the Process

Changing the values of these three parameters will only affect the shape of the paths,
as we can see in Figure 1. It has no effect on the estimation procedure or on the error
measurements.

5.6.2. Initial Value X(t0)

Since we have taken an arbitrary value X(t0) = 0.14 and it may be unknown, we carry
out the estimation and imputation process with other possible values of X(t0) = x0. We
observe the results when x0 takes different values between 0.06 and 0.17 following [37],
and we observe that the results are independent of the initial value x0 taken, as long as it is
in a plausible range. These results can be seen summarized in Table A2 of Appendix C.

5.6.3. σ Parameter of the Infinitesimal Variance of the Process

The value of σ is related to the noise in the process. High values of σ result in paths
with peaks that do not clearly show the trajectory of the process. Low values of σ result in
smooth paths whose behaviors can be more clearly susceptible to modeling.

If this value is increased, we will obtain large error measures, due to the fact that the
model fits worse than if the value of σ is kept low.

Common values for this parameter are around 0.01 [22]; enough to represent random-
ness but not so high as to hide the true shape of the paths.

5.6.4. Number and Location of Points of Interest

Three points of interest have been selected to be located in three different segments
within the observation period. Thus, the first point of interest, located at the beginning
of the observation period, is characterized by a large number of paths that have not been
observed before, and it happens when the forward condition is most useful. The second
point of interest is located in an intermediate zone, where it is common to find observations
before and after the one to be imputed, although this is not always the case. The third point
of interest has been placed at the end of the observation period, so that a significant number
of subjects do not present observations subsequent to the one to be imputed and therefore
cannot be conditioned to the future.

If more or fewer points of interest are taken, they will have similar characteristics
to some of the three considered, so that they will not present significant differences with
respect to the obtained errors.

5.6.5. Poisson Distribution and λ Parameter

Using the Poisson model in the simulation of the amount of data for each path makes
sense given the nature of the values to be obtained. It gives discrete values with no upper
bound, with a unimodal probability distribution. Using another distribution or a constant
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quantity would only impact the amount of data for the paths in the final dataset. We have
selected an extreme case, where the amount of data is low, which fits the actual data that
studies have reported in the birth cohorts. No other distribution (or constant value) can
result in a dataset with paths that have more missing data, since with these values with
many trajectories already have the minimum number of data points, which is 2.

To investigate whether the amount of observations on the paths influences the results,
we analyzed different types of paths (with more or fewer values) in the final dataset. The
obtained MAE values, summarized using the mean function, are presented in Table A3 in
Appendix D.

Firstly, we point out that to compare the three methods, it is necessary to have at least
one observation prior to the first point of interest and another after the last. This requirement
means that most of the simulated paths cannot be considered in this comparison. For
instance, among the 34 trajectories with only n = 2 observations, only 3 of them (with
31 having missing values) could be used to determine the comparative error between
the methods. This represents less than 10% of the observed trajectories in this case, even
though the method of conditioning on the nearest available value is capable of performing
all imputations. It is evident that this situation improves as the number of observed data
points increases. For n = 3, the percentage rises to nearly 20%, reaching over 50% when the
number of observed data points is at least five.

For IP1, it is observed that when n is small, the minimum error is achieved equally
by the method conditioned on past values and the method conditioned on the nearest
value. This result is logical, as both methods rely on the first observation of the trajectory to
predict that point. As the number of observations increases, providing more values that
may be closer to IP1 but observed at a later time, the method conditioned on the nearest
value yields the lowest errors.

For IP3, a similar pattern emerges, but with the methods conditioned on future values
and the nearest value. Specifically, their errors are equivalent when the number of observa-
tions is small, but the method conditioned on the nearest value achieves lower errors as the
number of observations increases.

In the case of IP2, being an intermediate point in the trajectory, the error is almost
always lower for the method conditioned on the nearest value, regardless of the number
of paths.

In summary, the prediction method based on the nearest observed value consistently
demonstrates errors that are lower than or equal to those of the classical method conditioned
on past values and the method conditioned on future values, regardless of the missing
values in the trajectory.

5.6.6. Variance of the Normal Distribution

For each point of interest, we choose observations for the final sample using a normal
distribution with a mean at the point of interest itself and a standard deviation of 7.

Moving the value of this deviation will only affect how far apart the observations are
and may cause the error measures to increase or decrease, but it will not change how much
smaller they are relative to each other, nor will it change the fact that with the classical
methodology, many imputations are not possible.

5.7. Applicability

The applicability of the proposed method for data imputation is a key aspect of its
potential impact, since there is no single universal solution to the missing data problem
on real-world datasets [40]. This method is designed to handle datasets with varying
characteristics, such as irregular time intervals or missing values, making it suitable for a
wide range of real-world applications. By considering both past and future observations,
it offers a more comprehensive approach compared to traditional methods. However,
its effectiveness depends on the specific nature of the data, and further validation across
different datasets is necessary to fully assess its general applicability.
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5.8. Conclusions Derived from Simulation Study

In short, we obtain better inference when using the process conditioned to the closest
observed value for two reasons: all points can be estimated, contrary to the classical method,
and the difference between the real and imputed data is smaller, on average, than those
obtained with the classical procedure or only conditioning to future observations. Moreover,
the conditional mean function seems to be the characteristic function that provides lower a
MAE error with this method, although conditional mode and median functions both give
very similar error measurements, close to those given by the conditional mean function.

6. Conclusions

As demonstrated, non-homogeneous lognormal diffusion processes are useful for
modeling real situations. This leads us to develop tools that allow us to handle this type of
information similarly to what is provided in real situations. Simulation is necessary and
useful; however, it typically provides a nonrealistic dataset, where we do not find missing
data or irregularities. Therefore, classical inference, which is tested with classical simulated
data, employs functions conditioned on the past, considering the future as unknown but
capable of being predicted. Classical inference forecasts future values for complete and
regular datasets.

However, for many opportunities, we should use the available information of future
times. Real-life data are frequently non-systematic and contain many missing values and
different sample sizes for individuals. We focus on such situations and propose changing
the target from forecasting to imputation. We consider not only the data available for past
times but also available data; past and future observations.

Conditioning on future time should be useful in a wide range of situations. For
example, the population size may be known at specific time points following the initial
time t0, and it may be desirable to approximate the initial state X0. In such cases, it can be
useful to study the process X(s) conditioned on the future X(t) = x with t > s ≥ t0.

We formally obtain the distribution of X(s)|X(t) with t > s ≥ t0. With the obtained
distribution, we can use the information of future observations for imputation. We also
derive the expressions for the characteristic functions of mean, mode, and alpha-quantile,
which are useful for the imputation procedure.

If we combine both ideas, conditioning on the past and conditioning on the future, we
can achieve a method to impute data that improves the classical method in terms of the
number of possible imputations and in terms of RSME and MAE. Thereby, conditioning
on the nearest available value improves the imputation.

We present the procedure with a simulated dataset that includes the characteristics
that we could observe in a birth cohort, where the observations are not at the same time
nor in equal quantities. For the simulated data, we determine, as we expected, that the
non-homogeneous lognormal process conditioned on the nearest value works better than if
the conditioning is only on past values or only on future values.
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Appendix A. Summary of Key Symbols and Parameters

Table A1. Summary of symbols and notations and their corresponding meanings.

Symbol Meaning Reference

µ0, σ2
0 Parameters of the initial lognormal distribution. Equation (2)

X(t) The lognormal diffusion process evaluated at time t. Equation (3)
σ2 Parameter related to the infinitesimal variance of X(t). Equation (3)
Hξ(t0, s) Integral function related to the drift of the lognormal diffusion process. Equation (4)
ξ Vector of the parameters of X(t). Equation (5)
Λn The n-dimensional lognormal distribution. Equation (6)
mξ,µ0,σ2

0
(s | y, t) First parameter of the conditional distribution of X(s) | X(t) = y.

Depends on the parameters ξ, µ0, σ2
0 and on the values y, s and t. Equation (8)

sσ2
0 ,σ2 (s | t) Second parameter of the conditional distribution of X(s) | X(t) = y.

Depends on the parameters σ2
0 , σ2 and on the values s and t. Equation (9)

Appendix B. R Code for Simulation Procedure

library(Sim.DiffProc)

#Code of the GeneralLognormalSimulation function
GeneralLognormalSimulation<-function(N_Sp,n,r,t0,x0,s,method = c(‘‘TransfW

’’,‘‘sde’’)){method<-match.arg(method)
process<-PROCESS()
h<-switch(process, An=HFunction(), GT=‘‘m*exp(-beta*t)’’, MGL=‘‘m*exp(-

beta*t)+c’’, Be=‘‘b*c*k/(exp(k*t)-c)’’, LT=‘‘b*c/(b+exp(c*t))’’, T=‘‘b
*c*q/(b+exp(c*t))’’)

env<-switch(process, An=ENV(), GT=ENVGompertzType(),MGL=
ENVMixGompertzLognormal(), Be=ENVBertalanffy(), LT=ENVLogisticType(),
RT=ENVRichardsType())

exprh <- as.expression(eval(substitute(substitute(e, env),list(e = parse(
text = h)[[1]]))))

if (length(x0)>1)
Initial<-rlnorm(N_Sp,x0[1],x0[2])

else
Initial<-rep(x0, N_Sp)

if (method==‘‘TransfW’’){
Win<-WienerSimulation(N_Sp,n,r)
h.t <- function(t) NULL
body(h.t)<-parse(text=exprh)
NHLog1<-array(0,c(n+1,N_Sp))
Time<-seq(t0,length=n+1,by=r)
AA<-sapply(Time, function(u,l,h) integrate(h,l,u)$value, h=h.t, l=t0)

-(s^2)*(Time-t0)
for(i in 1:N_Sp) {

NHLog1[,i]<-Initial[i]*exp(t(AA)+s*Win[,i])
}
NHLog<- cbind(Time,NHLog1)

}
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else {
exprd<-parse(text=paste(exprh, ‘‘*’’, expression(x)))
exprs<-as.expression(eval(substitute(expression(a * x), list(a = s))))
NHLog<- snssde1d(N=n,M=N_Sp,x0=Initial,t0=t0,Dt=r,drif=exprd,

diffusion=exprs)$X
}
invisible(NHLog)}

#Code of the functions used by GeneralLognormalSimulation function to
simulate sample paths of a standard Wiener process

WienerSimulation<-function(N_Sp,n,r){
Wiener<-rbind(rep(0,N_Sp), apply(array(rnorm(N_Sp*n,0,sqrt(r)),dim=c(n,

N_Sp)),2,cumsum))
invisible(Wiener)

}

#To request the name of the particular diffusion process to be simulated
PROCESS <- function(){

vector<-c(‘‘GT’’,‘‘MGL’’,‘‘Be’’,‘‘LT’’,‘‘RT’’,‘‘An’’)
p <- readline(‘‘Process to be simulated (you can choose between GT (

GompertzType), MGL (Mix Gompertz Lognormal), Be (Bertalanffy), LT (
LogisticType), RT (RichardsType) or An (Another)) = ’’)

while(!is.element(p,vector))
p <- readline(‘‘The name entered is incorrect. Process to be simulated

(you can choose between GT (GompertzType), MGL (Mix Gompertz
Lognormal), Be (Bertalanffy), LT (LogisticType), RT (RichardsType)
or An (Another)) = ’’)

p
}

#To request the values of parameters of a Mix Gompertz Lognormal diffusion
process

ENVMixGompertzLognormal<-function(){
Value_m <- readline(‘‘Value of m? ’’)
m1<-as.numeric(Value_m)
Value_beta<- readline(‘‘Value of beta? ’’)
beta1<-as.numeric(Value_beta)
Value_c<- readline(‘‘Value of c? ’’)
c1<-as.numeric(Value_c)
E = list(m=m1, beta=beta1,c=c1)

}

SimulatedSampled<-GeneralLognormalSimulation(N_Sp=250,n=280,r=1,t0=0,x0
=0.14,s=0.01,method=‘‘TransfW’’)

MGL
0.11
0.018
0.002

#Code for selecting random samples of simulated sample paths.
RandomSelectionSamples<-function(data,MeanSize=(nrow(data)-1),

InterestPoints=c(),variation=1,minimum=1){
N=ncol(data)-1;#Number of simulated paths
n=nrow(data)-1; #Number of points in each path
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if(minimum<1|minimum>n){
stop(‘‘The parameter minimum, which indicates from which time

instant to sample, must be between 1 and the number of the
simulated paths data ’’,n)

}
p=length(InterestPoints);#Number of points of interest. If it is empty

is because p=0 and there are no points of interest.

#Code to random selection of the sample size between 2 and n with mean
parameter indicated in MeanSize

m<-rpois(N,MeanSize);
BADmi<-which((m<2)|(m>n))
while(length(BADmi)>0){

m<-replace(m,BADmi,rpois(1,MeanSize))
BADmi<-which((m<2)|(m>n))

}
m<-matrix(m,nrow=1,ncol=N)
Maxm<-max(m);

#Code to select observation times of the samples of the simulated
paths

if((n-minimum)<Maxm){
stop(‘‘The number of observation times considered is insufficient

for the required sampling.’’)
}
if(p==0){ #if there is not points of interest we select for each

sample path mi different values for t between the minimun and n-1
time<-t(apply(m,2,function(m){

time<-sample(minimum:n,m)
time<-sort(time)
while(length(time)<Maxm){

time<-c(time,NA)
}
return(time)

}))
}
else{ #if there exists points of interest we generate q=mi/p around

each one until we reach mi values. These are values between the
minimum and n-1.
if(min(InterestPoints)<minimum){

stop(‘‘At least one of the indicated points of interest is
below the specified minimum value ’’,minimum)

}
if(max(InterestPoints)>n){

stop(‘‘At least one of the indicated points of interest is
above the maximum value observed on the simulated path ’’,n)

}
time<-t(apply(m,2,function(m){

q=1;
if((m/p)>1){

q=trunc(m/p);
}
time<-c();
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InterestPoints<-matrix(InterestPoints,nrow=1,ncol=p)
time<-apply(InterestPoints,2,function(IP){

obs<-round(rnorm(q,IP,variation))
BADobs<-which((obs<minimum)|(obs>n))
while(length(BADobs)>0){

obs<-replace(obs,BADobs,round(rnorm(1,IP,variation)))
BADobs<-which((obs<minimum)|(obs>n))

}
return(obs)

})
time<-as.vector(time)
time<-sort(time)
time<-unique(time)
while(length(time)>m){

A<-sample(1:length(time),1); time<-time[-c(A)]
}
while(length(time)<m){

obs<-sample(minimum:n,1)
time<-c(time,obs)
time<-sort(time)
time<-unique(time)

}
while(length(time)<Maxm){
time<-c(time,NA)
}

return(time)
}))

}

#Code to select the samples of the simulated paths
samplesselected<-apply(time,2,function(t){

data[t+1,2]
})

#Code to export information
time_samples<-rbind(time,samplesselected)
time_samples<-matrix(as.vector(time_samples), nrow=nrow(time), ncol=2*

ncol(time))
def_time_samples<-matrix(c(1:N),nrow=N,ncol=1)
def_time_samples<-cbind(def_time_samples,t(m))
def_time_samples<-cbind(def_time_samples,time_samples)

return(def_time_samples)
}

y<-RandomSelectionSamples(SimulatedSampled, MeanSize=4,InterestPoints=c
(84,140,238),variation=7,minimum=70)

write.csv(y,‘‘RandomSelectionSamples.csv’’)
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Appendix C. RSME and MAE Obtained in the Imputation Procedure with the Mean
Function Using Different Values for X(t0)

Table A2. Obtained errors at times of interest IP1, IP2, and IP3: RSME and MAE, number
of values that cannot be imputed (NAs) in the inference procedure, taking different values
of X(t0) = x0 and using the mean function conditioned on the past, future, and closest
observed value.

Error Time Conditioned on x0 = 0.06 x0 = 0.08 x0 = 0.1 x0 = 0.12 x0 = 0.16 x0 = 0.17

Imputation at first time of interest IP1 = 84 with 101 NAs

RSME(IP1)
Past 0.5150 0.5032 0.4966 0.4935 0.4932 0.4940

Future 0.8892 0.8877 0.8867 0.8860 0.8853 0.8852
Closest 0.4963 0.4837 0.4753 0.4695 0.4631 0.4623

MAE(IP1)
Past 0.3067 0.2995 0.2948 0.2916 0.2915 0.2922

Future 0.6067 0.6050 0.6036 0.6027 0.6017 0.6016
Closest 0.2796 0.2710 0.2652 0.2610 0.2575 0.2572

Imputation at second time of interest IP2 = 140 with 11 NAs

RSME(IP2)
Past 2.8352 2.8307 2.8287 2.8282 2.8293 2.8299

Future 2.6555 2.6577 2.6608 2.6642 2.6723 2.6745
Closest 1.8737 1.8696 1.8667 1.8647 1.8621 1.8617

MAE(IP2)
Past 1.8808 1.8799 1.8799 1.8801 1.8833 1.8840

Future 1.6779 1.6770 1.6826 1.6852 1.6921 1.6940
Closest 1.0810 1.0777 1.0758 1.0743 1.0739 1.0740

Imputation at third time of interest IP3 = 238 with 87 NAs

RSME(IP3)
Past 6.5313 6.5211 6.5151 6.5120 6.5104 6.5108

Future 3.6906 3.7002 3.7114 3.7237 3.7499 3.7567
Closest 3.4072 3.4040 3.4023 3.4016 3.4018 3.4022

MAE(IP3)
Past 4.2582 4.2597 4.2649 4.2708 4.2857 4.2897

Future 1.7646 1.7686 1.7743 1.7798 1.7908 1.7942
Closest 1.4877 1.4806 1.4751 1.4708 1.4646 1.4641

Appendix D. MAE Obtained in the Imputation Procedure with the Mean Function for
Different Values of the Number of Observations in the Paths

Table A3. Obtained errors at times of interest IP1, IP2, and IP3: MAE, number of values
that cannot be imputed (NAs) in the inference procedure, splitting the dataset by the
number of observations in the path, and using the mean function conditioned on the past,
future, and closest observed value.

Size of the Path Number of Paths NAs Time Conditioned on MAE(IP1) MAE(IP2) MAE(IP3)

n = 2 34 31
Past 0.3225 4.6208 15.4855

Future 1.5658 1.4219 1.4961
Closest 0.3225 4.6208 1.4961

n = 3 42 34
Past 0.6206 3.2807 8.1100

Future 1.2605 2.9085 5.3381
Closest 0.6206 2.4764 5.3381

n = 4 55 34
Past 0.3041 1.8889 5.0255

Future 0.7458 1.3904 1.0748
Closest 0.2816 0.6485 1.0556

n ≥ 5 119 50
Past 0.2327 1.6009 3.4024

Future 0.4704 1.3703 1.5072
Closest 0.1895 0.7873 1.2792
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