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Abstract: Network monitoring systems can struggle to detect the full sequence of actions in a
multi-step cyber attack, frequently resulting in multiple alerts (some of which are false positive
(FP)) and missed actions. The challenge of easing the job of security analysts by triggering a
single and accurate alert per attack requires developing and evaluating advanced event correlation
techniques and models that have the potential to devise relationships between the different observed
events/alerts.

This work introduces a flexible architecture designed for hierarchical and iterative correlation of
alerts and events. Its key feature is the sequential correlation of operations targeting specific attack
episodes or aspects. This architecture utilizes IDS alerts or similar cybersecurity sensors, storing
events and alerts in a non-relational database. Modules designed for knowledge creation then query
these stored items to generate meta-alerts, also stored in the database. This approach facilitates
creating a more refined knowledge that can be built on top of existing one by creating specialized
modules. For illustrative purposes, we make a case study where we use this architectural approach
to explore the feasibility of monitoring the progress of attacks of increased complexity by increas-
ing the levels of the hyperalerts defined, including a case of a multi-step attack that adheres to the
ATT&CK model. Although the mapping between the observations and the model components
(i.e., techniques and tactics) is challenging, we could fully monitor the progress of two attacks
and up to 5 out of 6 steps of the most complex attack by building up to three specialized modules.
Despite some limitations due to the sensors and attack scenarios tested, the results indicate the
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architecture’s potential for enhancing the detection of complex cyber attacks, offering a promising
direction for future cybersecurity research.

Keywords: network security monitoring, Intrusion Detection Systems, cyberattacks models, alert
correlation, Mitre ATT&CK attack models
Categories: D.4.6
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1 Introduction

Cyberattacks are becoming more frequent and relevant, making network security a critical
issue. Assets defense requires knowledge of the state of the network and systems. To
detect incidents, CyberSecurity Officers (CSO) commonly use the so-called Network
Security Monitoring systems (NSM) [Ghafir 19], which operate as a decision support
system that provides situational awareness. NSMs use heterogeneous information from
multiple sources, such as traffic flows, alerts generated by deployed Intrusion Detection
Systems (IDS) [Garcia-Teodoro 09], or log traces collected from services of interest
[Martins 22].

Ideally, an effective NSM system should enable the Chief Security Officer (CSO) to
be alerted of incidents through a single, comprehensive message. This message should
include relevant information for the CSO to assess the incident and access related in-
formation. However, existing NSM systems, which rely heavily on Intrusion Detection
Systems (IDS)[Garcia-Teodoro 09], often produce a large volume of alarms for the same
incident, many of which are false positives. Additionally, cyberattacks are typically
composed of multiple actions or steps, complicating their detection [Navarro 18]. To
address these challenges and accurately and efficiently identify incidents, it is possible
to use advanced techniques and correlation models that can process vast amounts of data,
aggregating and linking all events or indicators related to the same attack.

The reduction of several alerts to fewer relevant ones has been extensively addressed
in the literature [Kotenko 23][Spathoulas 13]. The mainstream approach relies on real-
time correlation of alert properties and time relationships [Navarro 18][Khosravi 20].
However, producing just one alert per incident remains an ongoing research area in
cybersecurity [Wang 22]. Our approach towards this goal relies on using heterogeneous
correlation methods that could facilitate including attack models in a multilevel approach.
The basic idea consists of aggregating alerts and events in syperalerts that create basic
pieces of knowledge. These hyperalerts are then repeatedly correlated with other alerts,
events, and previous hyperalerts using various methods that create more sophisticated
pieces of knowledge. Each hyperalerts is assigned a specific level based on its reliance
on earlier defined hyperalerts. While the idea of multilevel aggregation of alerts is
not new [Soleimani 12][Husak 19], the sequence of steps or phases and their scope is
usually pre-established by an underlying model or by the kind of attack to detect (e.g.,
APTs, Advanced Persistent Threats, in [Ghafir 19b] or [Khosravi 20]). In addition, the
predetermined model decides the type of correlation technique needed on each step, such
as time-based correlation of identical alerts [Spathoulas 13][Haas 19]. However, this
model lacks the flexibility to incorporate new techniques or methods. The majority of
previous research concentrates solely on the alerts and their connections, while some
of the actions involved in a multi-step attack may go unnoticed by the IDS or even be
legitimate. Therefore, it is essential to include data from arbitrary sensors and contextual
information.
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This study suggests a flexible architecture for an NSM that addresses the challenges
outlined in [Zuech 15]. The architecture allows for advanced event correlation techniques
to be iteratively employed over pre-existing alerts or syperalerts, taking into account
contextual information and enabling the incorporation of attack models. Our architecture
provides flexibility in three key areas: the use of various correlation methods, iterative
aggregation, and the inclusion of generic events such as alerts or packet-flow reports
relevant to attack models. Additionally, we carry out a case study that shows how our
iterative aggregation method can detect attacks of increasing complexity by increasing
the hyperalert level.

In this paper, we extend our previous research [Castillo-Fernandez 23] by incor-
porating new correlation methods to the generic architecture defined in the paper. In
particular, we create an extra level of hyperalerts to relate the techniques and tactics
outlined in the Mitre ATT&CK model with the knowledge created from IDS alerts
and traffic flow reports. We also conduct an exploratory analysis on the feasibility of
mapping the network IDS alerts to the techniques and tactics defined in the Mitre model.
Ultimately, our goal is to study all the necessary inputs and techniques that would take
to generate single event, or (hyperalert), that contained comprehensive information for
each cyber incident.

The main contributions of this paper can be summarized as follows:

— We suggest an architecture for enabling complex correlation, and define several
knowledge pieces with different correlation levels (hyperalerts) geared toward de-
tecting attacks of different complexity.

— We carry out a preliminary study of the feasibility of inferring the techniques and
tactics defined in the ATT&CK attack model by using only IDS alerts and a set of
hyperalerts.

— We experimentally evaluate the architecture for cyberattack detection with three
attacks that show how increasing the hyperalert level enables the detection of more
complex attacks. In our last multi-step attack we are able to track the advance of the
attack through most stages of the ATT&CK attack model.

The remainder of this article is structured as follows. The motivation for the proposal
and some insights on previous work are presented in Section 2. Section 3 presents the
proposed architecture for the flexible incorporation of correlation techniques and attack
models. In Section 4, the proposed system is tested with traffic traces from a set of
techniques and a set of basic correlation modules. Section 5 explores the application of
the model to a multi-step attack. Finally, Section 6 concludes the paper and suggests
further research.

2 Previous Work and Motivation

IDSs frequently generate excessive alerts, notably FP. To mitigate this, strategies for
refining alert processing and data extraction have been proposed [Kotenko 23]. Alert
correlation, an active research domain since the inception of IDSs [Valdes 01], aims
to minimize False Positives by filtering out irrelevant alerts [Meng 14] by primarily
targeting alerts’ attributes in real time [Navarro 18].

Cyberattacks frequently involve multiple steps. While some steps may appear legiti-
mate if viewed in isolation, others could be identified as attacks by monitoring sensors.
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Consequently, multiple alerts may be triggered as a result of each individual action in
the attack. Initial research on alert correlation targeted basic attacks, employing straight-
forward methods like tree-based techniques [Sahu 15]. Contemporary studies, however,
are advancing towards complex correlation strategies, leveraging knowledge of attack
sequences [Husak 19] [Soleimani 12] [Zhang 19] and incorporating Big Data/Artificial
Intelligence techniques [Zuech 15]. Hidden Markov Models are particularly suited for
recognizing multi-stage attacks, given their proficiency in sequential data analysis.

Our approach is based on creating pieces of knowledge from the available sensors by
repeatedly aggregating hyperalerts of different levels, which could potentially accommo-
date the techniques and models related to multi-step attacks. The notion of hyperalerts
and the application of models to relate them is not new [Navarro 18]. However, most
of the existing proposals have fixed aggregation levels and models, while few adopt a
hierarchical approach [Kaynar 16]. For example, in [Khosravi 20], hosts are ranked based
on their likelihood to be exposed to APT attacks. They classify Security Information and
Event Management (SIEM) alerts into meta-alerts according to an Intrusion Kill Chain
(IKC) stage (reconnaissance, exploitation, operation, data collection and exfiltration)
based on the alert type. Then, a causal relationship among attack events on the same
host is determined based on temporal and IKC stage order. Similarly, in [Wang 21] the
authors use the concept of alert semantics to understand the meaning of sensor alerts
(e.g., Snort) and to obtain the attack stage of the host. Alerts are automatically mapped
to a specific attack stage (scan, exploit, get-access-privilege, post-attack) based on the
alert type. Their approach begins by correlating similar alerts for the same host. Next,
they create an alert graph in two stages: first, by correlating alerts generated on the same
host, and second, by correlating alerts across different hosts using causal correlation,
considering the timestamp and attack stage for each host. A key difference between our
work and [Wang 21] is that we include the notion level as a property of the hyperalert
and define three levels of hyperalerts (rather than a single hyperalert). Another difference
is that we include contextual information such as traffic flows (in addition to the alerts).
The work by Bryan et al. [Bryan 20] focuses on minimizing alerts in multi-stage attacks
by introducing a new log ontology for normalizing security sensor data and correlating
events at the SIEM. They pinpointed crucial information elements from sensors across
various domains for each phase of their kill chain. Modifying the SIEM baseline ontology
with their approach significantly reduced alerts with minimal forensic value.

There are various attack models besides the Kill Chain [Al-Mohannadi 16]. The
Mitres’s ATT&CK model [Strom 17] categorizes attacks as a sequence of tactics and
techniques, and is becoming more widely used in cybersecurity for threat modeling and
cyberattack assessment. Recent works have used attack graph techniques to incorporate
the ATT&CK model in the alerts correlation process [Sen 19], [Milakerdi 19]. For
example, Wang et at.[Wang 22] proposed a novel method for APT multi-step attack
reconstruction in large-scale networks for attack forensics and traceability. In their
framework, edge servers initially collect and parse alerts from local sensors using a
specific ontology that includes mapping alert types to the ATT&CK model’s tactics and
techniques. These alerts are then sent to the SOC for analysis, where alerts are correlated
using attribute comparison and Word Mover’s Distance algorithm. Alerts with clear
correlations based on their sources or targets within a specific timeframe are then linked.
These alerts are structured into a graph to identify and further minimize alerts by mapping
communication relationships. Missing attack steps are identified within this graph using
Monte Carlo Tree Search. Finally, the graph showcases multi-step attacks, allowing
security experts to explore them by hosts or attack paths. In their study, they classify the
alerts from NIDS Zeek to 14 distinct tactics of ATT&CK. However, the feasibility of
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Figure 1: Proposed modular architecture [Castillo-Fernandez 23].

such classification in general is not sufficiently addressed.

Our proposal, like [Wang 22], incorporates ATT&CK attack modeling into the
correlation process. But rather than pursuing to reduce the number of similar alerts
based on attribute similarity, our correlation approach is aimed at getting sufficient
knowledge to be able to generate a single alert with the attack progress. Using our
generic architectural framework, we define a new hyperalert of level 3 (i.e., integrates
the hyperalerts generated at levels 0-2) that informs about the attack state according to
the ATT&CK model (see Fig. 6), where states represent tactics, and transitions are based
on observed techniques during the attack execution. Our method differs from that of
works like [Sen 19] or [Wang 22] that depend on predefined action-based alert/attack
graphs, as we emphasize the identification of specific techniques used in each attack
phase based on available sensors.

As highlighted in [Castillo-Fernandez 23], establishing a correlation between IDS
alerts and ATT&CK techniques poses a challenge due to the fact that some techniques
are not detectable via network IDS. Rather than taking for granted such association, our
research explores the viability of associating sensor observations, predominantly network
IDS alerts, with ATT&CK techniques and evaluates the benefits of integrating additional
contextual information to enhance this linkage.

3 System Architecture

We aim to develop a flexible and scalable architecture for event correlation in NSM that
use sensors data, such as alerts or reports, to create hyperalerts that enhance knowledge.
As an attack progresses, the system iteratively applies various modules/functions to this
data, enriching the knowledge base and elevating the hyperalert level. To facilitate this
process, it is crucial to have all data types—from primary events and hyperalerts to other
information—readily accessible. Hence, a database is essential for ensuring uniform and
easy access to relevant data at every stage of the attack model.

3.1 Generic Architecture

The proposed generic architecture consists of the following modules (see Fig. 1):
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— Sensors: Elements that generate data from network and environmental monitoring.
Sensors typically include external elements that generate a variety of data, such
as flow analyzers for providing netflow information, flow classifiers for reporting
protocol information, and network logs. Most works in the literature, as we do, rely
on an network IDS as main source of data.

— Integration: To integrate sensor data into the database, we use specific preprocessor
modules for each sensor. These modules condition the data and ensure it has a
consistent format in the common fields that are relevant for knowledge generation.
The goal is to normalize the data and make it homogeneous.

— Knowledge base: Database containing all system information (sensing data, oper-
ative parameters, and hyperalerts). The information from the NSM is stored in a
database, which facilitates its access and indexing according to various criteria. As
the information to store is heterogeneous, a non-relational database is considered.

— Knowledge generation: It comprises correlation modules and an iterator component
that translates the logic implemented on each module to database queries and data
manipulation. Each module has a specific purpose and conducts correlation opera-
tions through database queries. The iterator module applies a sequence of operations
through a sequence of queries to the database. Query results may include IDS alerts,
packet flows and previous hyperalerts. Each operation result is given an index (ID)
that is stored along with the data and enables traceability.

— Inspection: Tools to access the knowledge base. They should be able to select
elements and traceback their components/aggregated items. For example, graph
tools facilitate the identification of attacks.

Despite its simplicity, this architecture offers high versatility and effectiveness.
While we only utilize two sensors and focus on a single knowledge generation module
in this study, the architecture is openly designed to integrate new algorithms, correlation
techniques, and sensors. Its greatest strength lies in the iterative application of algorithms
based on outputs stored in the database and the organization of aggregated information
into hyperalerts through a layered structure.

The database will provide input data for each module, and the resulting hyperalerts
will be inserted back into the database. This process allows for aggregating primary
elements, such as sensor data or previous hyperalerts, which creates different levels of
aggregation and enables an iterative procedure. For example, a correlator module based
on a time window could aggregate alerts generated during the exploration of a web
service vulnerability by a user with the same IP address. The iterator module would first
obtain a list of alerts within the time range, and then the correlator would be applied to
each alert, checking for duplicates and grouping together similar alerts with the same
victim IP and SID. It is worth noting that every alert or hyperalert generated is assigned
and unique identifier (ID), which is used as a reference to be included in the results of
future operations.

3.2 Definition of a Basic Set of Basic Hyperalerts Levels

We’ll use two sensors in our study: a signature-based IDS as the primary data source for
correlation, and a flow generator as a second sensor to provide contextual information
from traffic flows.

In this paper, we propose a case of use with the following levels of hyperalerts:
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— Level-0 hyperalert. A level-0 hyperalert aggregates all IDS alerts referred to the same
victim host and SID over a time window. It includes the victim’s IP address, start
and end timestamps, the SID from the IDS alert, and the list of IDs (i.e., pointers) of
the original alerts during the period under consideration.

— Level-1 hyperalert. A level-1 hyperalert aggregates all previous alerts or level-0
hyperalerts over a given time window that include the same IP as the victim. It
includes the IPs and ports of the communication and the list of IDs that identify the
corresponding alerts or level-0 hyperalert. A level 1 hyperalert also includes the
network flows involving the victim’s IP (if available). An incomplete example of a
level-1 hyperalert can be found in Figure 4.

— Level-2 hyperalert. A level-2 hyperalert aggregates (by including their IDs) all
alerts or hyperalerts (of levels 0 or 1) associated with the victim’s IP or with those
hosts that communicated with the victim up to two hops that happened during
a specific time window. It also includes the traffic flows related to all these hosts
during such period.

We believe that the previous set of hyperalerts could be useful in the detection of
attacks or in forensic analysis. At a simple glance, we could see in the level 0 hyperalerts
the triggered alerts, in the level 1 hyperalerts everything related to the victim, and in the
level 2 hyperalerts everything that has interacted with anyone who has interacted with
the victim. This basic set will also be accounted for in the knowledge detection for the
detection of multi-step attacks developed in next Section.

3.3 Implementation Issues

Next, we will discuss some practical implementation aspects of the architecture. We
have developed a proof of concept of the proposed architecture using Python. Although
the system is designed to be open and incorporate multiple sensors of various kinds in
the future, in a first approach, we will only count with the alerts generated by an IDS,
along with the traffic packet flows. Deep packet inspection will be utilized to classify
flows based on the carried protocol [El-Maghraby 17]. The tools chosen for these tasks
are Snort', a widely used public domain NIDS, and Tranalyzer?, a flow analyzer with
multiple functionalities, including flow classification. The parsers in the integration block
(Fig. 1) will preprocess and normalize the sensors’ output data. Some fields, such as
timestamps, IP addresses, etc., will be employed for indexing purposes.

The database has been structured in several collections that correspond directly to
the data obtained from the sensors: alerts (Fig. 2) and the flow information (Fig. 3). Each
alert and flow is saved as a document in its corresponding collection. New collections
can be generated by each of the aggregator modules, e.g. level 1 hyperalerts (Fig. 4). The
database server selected for this implementation was MongoDB due to its scalability and
interoperability with many of the sensors.

The implemented set of basic aggregator modules that correspond to the levels 0, 1
and 2 hyperalerts described above. Thus, following the previous example, a first module
groups the information from identical alerts (same IP and SID but different timestamps)
produced during a time window. The result is a level 0 hyperalert that will be stored in the
database. The second module creates level 1 hyperalerts by grouping level 0 hyperalerts

L https://snort.org
2 https://tranalyzer.com
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"_id" : ObjectId("605f7ab7853a36dee68117cb"),
"type" : "event",
"event" : {
"classification" : "Detection of a Net Scan",
"sensor-id" : O,
"event-id" : 10,
"event-second" : 1591982026,
"signature-id" : 1917,
"source-ip" : "10.6.12.203",
"destination-ip" : "239.255.255.250"

... (some fields ommitted) }
"_id" : ObjectId("605f7ab7853a36dee68117cc"),

"type" : "packet",
"packet" : {
"sensor-id" : O,
"event-id" : 10,
"event-second" : 1591982026,
. (some fields ommitted) oo

Figure 2: Alert register sample (selected fields), including information from the alert
and the packet triggering the alert.

"_id" : ObjectId("605f7ac253¢c22c72d4294275"),

ngirn ; mAW,
"timeFirst" : ISODate("2020-06-12T17:13:23.3472Z"),
"timeLast" : ISODate("2020-06-12T17:13:23.3472"),
"srcMac" : ["00:11:75:68:42:d43"],

"dstMac" : ["98:40:bb:2a:f7:e5"],

"srcIP" : "10.6.12.157",

"srcPort" : 60444,

"dstIP" : "10.6.12.12",

"dstPort" : 389,

"nDPIclass" : "LDAP",

. (Netflow-like fields ommitted) }...

Figure 3: Flow register sample (selected fields).

based on the same IP address as the victim, and the traffic flows associated with these
alerts and IPs. It should be noted that in this case, contextual information is added by
including the flows report generated by Tranalyzer. This will generate an hyperalert
including not only the alerts but all the interactions associated to the given IP that have
triggered an alert. Next, level 2 hyperalerts are generated from lower-level ones. They
will include the IDs of all the alerts and flows related to all the interactions generating
alerts of the given IP and the IPs interacting with it up to 2 hops.

The proposed architecture allows defining flexible criteria for grouping the infor-
mation contained in the database, whether alerts, flows, or hyperalerts of any levels,
or additional information from other sensors included. Despite being simple, the mod-
ules implemented could help discover lateral movements (other IPs attacked by the
same offending IP) or two-level command and control topologies (IPs controlled by IPs
controlled by other IPs). The code of our propotype can be found at [framework 23].

4 Defining a Level-3 Hyperalert for Multi-step ATT&CK Attacks

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge)
model [Strom 17] is a globally accessible knowledge base of adversary tactics and
techniques based on real-world observations. Each tactic corresponds to a phase in the
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"_id" : ObjectId("60c8ca7f66d956ebab74bf20"),
"tupla" : {
"srcIP" : "205.185.125.104",
"destIP" : "10.6.12.203",
"srcPort" : 80,
"destPort" : 49739
},
"nAlerts" : 5,
"alerts" : [
{ "alert" : {
"_id" : ObjectId("605f7ab7853a36dee68117eb"),
"event" : {
"event-id" : 24,
"event-second" : 1591982119,
o1,
"flow" : ObjectId("605f7ac353c22c72d429d4c5"),
"classificationProt" : "HTTP",

Figure 4: Level 1 hyperalert sample (selected fields).

Reconnaisance Discovery

Resource Credential
Development Access

Evasion

Privilege
Escalation

Figure 5: Tactics and it sequenciation in ATT&CK model.

adversary’s attack life-cycle (see Fig. 5) and the adversary’s technical goals at each phase
(i.e., the "why” of a technique). On the other hand, techniques are the "how” in the model,
describing the actions adversaries may take to achieve their objectives within a tactic.
MITRE ATT&CK is continuously updated to reflect the evolving tactics, techniques,
and procedures (TTPs) used by threat actors in real-world campaigns. As such, it is a
living model.

Since attack techniques can be related to one or more tactics, an initial approach
could be to use a finite state automaton (FSA) model where the tactics were states and
the techniques would trigger transitions between states. A illustrative example is shown
in Fig. 6.

In the remainder of this Section, we explore the feasibility of creating a new level 3
hyperalert based only on an underlying FSA extracted from the Mitre ATT&CK model
and the sensors in place in this work. This new hyperalert would inform about the current
tactic in a multi-step attack so the cyber operator can monitor how the attack progresses
in different stages.
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Figure 6: Example model (finite states automaton) for an attack as a function of
involved techniques (attack 3).

4.1 On the Design of the Hyperalert
An initial description of this hyperalert would be:

— Level 3 hyperalert. It identifies an attack tactic from the ATT&CK model (see Fig.
5) associated with the alerts or hyperalerts (levels 0, 1, 2) generated during a time
window and related to a single victim host.

If possible, a level 3 hyperalert should carry information about the event(s) that
triggered a state transition, the information collected from the sensor (i.e. IDS signature
ID — SID) and the associated ATT&CK technique. Please note that the FSA model should
also had to consider the possibility that some states could not be visited because they
have not been implemented in the attack or because they have not been observed with the
sensors deployed. Anyhow, level 3 hyperalerts should include the following information:

— Sequence of related Alerts and Hyperalerts over the time window that justify the
inference of the technique, including timestamp and involved IPs addresses.

— Network flows related to the hosts referenced in hyperalters level 1 or higher, includ-
ing its corresponding protocols (using deep packet inspection), timestamp, address
tuple, duration and number of packets.

— State reliability level and evidences according to FSA model.

Please note that we assume that an attack technique can be inferred from the infor-
mation in the lower-level (hyper)alerts, and that such a technique determines the tactic.
The following Subsection investigates the extent to which this assumption holds and
elaborates on the process of generating level 3 hyperalerts counting exclusively on the
alerts generated by the IDS sensor through an experimental study.

4.2 On the Feasibility of Mapping Signature-based IDS Alerts to a Tactic in the
ATT&CK Model

To apply an FSA model for tactic detection, it is essential to map techniques to observable
events, which in this study are Snort alerts. Although numerous works assume that this
mapping is possible (e.g., [Zhang 22, Shawly 20]), we did not find any study that
investigates the extent of this claim.
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4.2.1 Experimental Study: Techniques Detectability through IDS Alerts

The first question is to what extent attack techniques can be detected exclusively via
alerts generated by a signature-based IDS such as Snort. To study this question, we
carried out the following tasks:

— We collected the network traffic from 48 instances of attacks, corresponding to 31
different techniques according to the classification by the Mitre ATT&CK framework.
Out of these 48 instances of attack, 33 were executed locally, wherein an appropriate
scenario was recreated, the attack was carried out, and the corresponding traffic file
was captured in pcap format (the pcap files are available in [Data 23]). The remaining
15 instances of attack were obtained from the dataset CIC2018 (CSE-CIC-IDS2018),
designed for IDS experimentation. Further details are provided in Appendix A.

— The network IDS Snort (version available in August 2023) has been utilized to
analyze the pcap files from each attack. The Talos Community rules (07/27/2023)
signatures repository was used (default configuration). All alerts and their respective
identifiers (SIDs) were gathered for each attack instance.

— To identify false alarms (FP), we have also included the dataset CIC2018. This
public dataset includes legitimate traffic across 17 days and it is designed to detect
malicious activity. It includes traffic profiles according to user profiles and widely
used protocols such as: HTTPS, HTTP, SMTP, POP3, IMAP, SSH, and FTP. This
traffic was then injected into the network IDS. The SIDs in the resulting alarms will
be considered false positive.

Table 1 summarizes the main results (more detailed and comprehensive results can be
found in Appendix A). It shows for all the possible techniques (7ech) associated to each
tactic, how many of them that can be detected via network traffic (Net7ec) according
to the Detection DataSource field of the techniques in the Mitre matrix. A first and
self-evident result based on Table 1 is that certain tactics, such as Privilege Escalation,
cannot be detected by network IDS as they do not leave any trace on the network. We can
observe that only 69 out of 227 can be detected through network traffic. This means that
only 30% of the total number of different techniques leave trace in the network traffic.
In our experimental study, we have included attacks instances belonging to 31 out of
these 69 techniques, covering 13 out of the 14 possible tactics (excluding only Privilege
Escalation)

Column (Covered) from Table 1 shows how many of the network-detectable tech-
niques have been included in our study and column (/nstances) shows the number of
attack instances implementing these techniques. The next column (/ns-Detected), shows
how many of these attack instances were detected by our IDS (i.e., at least one alert).
The next column (7ech-Detected) shows the number of NetTech for which at least one
instance has been detected. Finally, the last column shows the number of different sig-
nature identifiers (SIDs) included in the alerts generated by Snort (#SID). For the sake
of readability, we provide in Appendix 1 (Table 4) more details about the implemented
techniques, the tactics they belong to, and the number of different SIDs obtained for each
tactic.

The main result of this experiment is that we were only able to detect less than half
of the attacks instances (20 out of 48) using the default ruleset configuration. The same
holds with the techniques: only 15 out of 31 are detected. If we extrapolated these results
to uncovered techniques, we could say that about less than 50% of the attack techniques
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Tactic Tech|NetTech|TechCovered|Instances|Inst-Detected|Tech-Detected|# SID
Reconnaissance 10 3 2 4 4 2 90
Execution 14 3 3 3 1 1 1
Resource Development| 8 2 2 2 1 1 12
Initial access 9 4 2 4 2 2 5
Persistence 19 6 2 3 0 0 0
Credential Access 17 5 2 5 1 1 1
Collection 17 2 2 2 1 1 2
Impact 13 5 4 12 5 3 12
Command and Control | 16 16 3 3 0 0 0
Defense Evasion 42 9 2 2 0 0 0
Lateral Movement 9 5 2 3 1 1 1
Discovery 31 3 3 4 3 2| 330
Exfiltration 9 7 2 3 1 1 3
Privilege Escalation 13 0 0 0 0 0 0

227 69 31 48 20 15| 457

Table 1: Enterprise ATT&CK matrix tactics detection results

that leave trace in network traffic (which are a 30% of the potential techniques) are
missed by Snort using the default ruleset. Overall, there were four tactics in which we
were not able to detect attacks in our experiment.

Regarding false positives identified within the legitimate traffic dataset, it is worth
mentioning that the utilization of Snort, employing an identical set of rules, resulted
in the generation of 14,857 alarms, corresponding to 60 different SIDs. Should these
SIDs have been filtered out during a signature tuning process aimed at minimizing false
positives — a common practice in real-world scenarios [Diaz-Verdejo 22] - only 10 out
of the 48 attack instances (constituting 20%) and 6 out of the 31 employed techniques
would have been detected.

The interested reader can find detailed results of this experiment in Appendix A
(Table 4).

4.2.2 Identifying the Technique through Alerts’ SIDs

A second question to analyze is the correlation between techniques and SIDs (i.e., can
we identify a technique given an SID?). The results presented in Table 4 show that out
of the 457 distinct SIDs, 87% (397) belong to a single technique, while the remaining
13% (60) have been observed in two techniques (with only two instances of a single SID
being identified across three different techniques).

There are two techniques with peculiar results: Active Scanning, which caused 46
different SIDs, and Network Service Scanning (with 328 different SIDs associated). For
the rest of the detected attacks, on average, we had two different SIDs. Thus, a simple
SID would not be enough to detect the technique in such cases.

Therefore, it can be inferred that, to a large extent (but not always) one SID is always
related to a single technique.

4.2.3 On the Relationship between Mitre’s Techniques and Tactics

We explored the network-traceable techniques in Mitre Enterprise ATT&CK matrix
and found that only five techniques were used across multiple tactics: External Remote
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Services, BITS Jobs, Traffic Signaling, Pre-OS Boot, and Adversary-in-the-Middle.
These techniques were used in various tactics such as Initial Access, Persistence, Defense
Evasion, Credential Access, and Collection.

Thus, our results show that 95% of the network traceable techniques are utilized
exclusively in a single tactic, indicating a nearly one-to-one correspondence between the
techniques and the tactics.

4.3 Discussion and Limitations

The experiment carried out has significant limitations. It overlooks techniques that leave
no network trace, implementing only slightly less than half of all techniques and relying
solely on default Snort signatures. However, we believe that the results obtained are
representative enough to conclude that:

1. Mitre’s techniques could (to a large extent) determine the transitions between states
of the model,

2. SIDs from Snort alarms do not suffice to reliably identify the technique used in
attacks. More than half the techniques in our experiment went undetected, and the
association between SID and technique is not one-to-one.

The conclusions above suggest that additional context information (such as the
number of flows or protocols used) is necessary to complement SIDs information in
order to reliably identify attack techniques (specially for scanning attacks). Although our
level 3 hyperalert (described above) includes context information (flows), it is necessary
further investigation about which sensors would be more suited to complement the
information from IDS alerts. Another line of investigation is the tuning of Snort rules.

5 Case Study: Multistep Attacks

To further illustrate the potential of the multilevel approach proposed and the hyperalerts
defined above, we have carried out a case study with three real-life multi-step attacks.
The first one is a simple attack between an attacker and a victim involving only two
nodes. This attack can be identified with a level 1 hyperalert. The second attack involves
more than two nodes and its identification requires level 2 hyperalerts. The first two
scenarios aim to test L1 and L2 level hyperalerts’ ability to aggregate data. The third
one is a web-based attack resulting in data exfiltration. This scenario will be analyzed in
greater depth and focuses on how ATT&CK modeling can be integrated by identifying
techniques through level 3 hyperalerts that include not only the IDS sensor but also
information about the traffic flows.

3 Please note that according to Table 1, 31 techniques belonging to different tactics have been
covered, but only 29 different techniques have been implemented. The reason is that one of the
implemented techniques (Traffic Signaling) is used in 3 different tactics. The same happens
with the total number of techniques that can be detected by network traffic although the overall
number is 69 in the table, there are only 62 different techniques.
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Figure 7: Results (insight) for case study: a) Interaction graph for Eternal Blue Double
Pulsar attack, b) Idem for Zloader.

5.1 Implemented Attacks
5.1.1 Attack 1: Remote access using Eternal Blue Double Pulsar

The first attack tested considers a network in which we have installed a backdoor. We
have executed Eternal Blue Double Pulsar [Sheila 17] attack followed by a DLL injection
using Double Pulsar. Both steps have been carried out using metasploit*. This attack
includes three tactics: (initial access, execution and persistence).

In this case, only the attacker IP and the victim IP are involved, so it is expected that
all events associated with alerts, flows and victim IP are grouped into a single hyperalert
of level 1. The results showed that 5 alerts were triggered by Snort under 2 different
SIDs. This resulted in two level 0 hyperalerts (same SID and victim IP) and a single
level 1 hyperalert (from 2 LVLO hyperalerts sharing the same victim IP). During the
aggregation of the level 0 hyperalerts, information of 23 flows related to the victim IP
was added to the level 1 hyperalert. Fig. 7.a) graphically shows the relationships (IPs,
flows and identified protocol) involved in the single level 1 hyperalert found in this case
based on these traffic flows.

5.1.2 Attack 2: Zloader Infection

The second attack is executed by replaying a selected capture from the Traffic Analisys
Exercices collection at malware-traffic-analysis.net’. We have chosen an infection by
Zloader malware (exercise for the day 2020-06-12), as it involves various victims (IPs)
and several steps.

In this case, the tactics involved are initial access, execution, defense evasion and
command and control. As various IPs are involved, at least level 2 hyperalerts are
expected to be needed to merge all the related information.

During the execution of the attack, we obtained 111 IDS alerts and 881 flows involv-
ing 6 different IPs. Level 0 analysis grouped all the alerts in 6 hyperalerts (i.e. there were
only 6 different SIDs) that, in turn, resulted in 6 level 1 hyperalerts (for six different IPs).

4 https://www.metasploit.com
5 https://malware-traffic-analysis.net
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Figure 8: ATT&CK FSA implemented model for attack 3.

Note that level 1 hyperalerts include the information for all the flows in the interactions
generating alerts among two nodes. Finally, a single level 2 hyperalert is obtained.

Unlike the previous scenario, this second attack generated level 2 hyperalerts, which
allowed the identification of all the IPs involved in the attacks and the nature of their
interactions — see Fig. 7.b) —.

5.1.3 Attack 3: Data Exfiltration using Caldera

The third attack is a data exfiltration, a multi-step attack involving multiple tactics. Our
goal is to be able to analyze its progress through level 3 hyperalerts. For this, we have
considered the ATT&CK tactics executed from Caldera, a tool from Mitre, using some
of its available attack techniques. This way, we can break down the attack by technique
and facilitate the mapping between techniques and tactics to the events observed.

The scenario implemented uses a vulnerable web server as the entry point, and up to
6 different tactics are executed through its corresponding attack technique. As the tactics
and techniques are known, setting a FSA to model the attack should be straightforward,
but the FSA defined is based on the results from the previous Section. After conducting
experiments (refer to Appendix A), we have determined that changes between states will
primarily be triggered by the SID of the alerts generated by the IDS. However, for states
that involve scanning techniques (such as reconnaissance and discovery), we will rely on
context information from the traffic flows instead. In particular, an unexpectedly high
number of protocols (e.g., more than 50) or data flows (e.g., more than double than the
last observation). The resulting FSA is ilustrated in Fig.8 and includes the conditions
found to be effective to trigger state changes. Those in green represent the ones that have
been triggered during the experiment.

In Table 2, we can see the amount of events discovered after the execution of each
tactic through its respective technique. This includes the total number of alerts (identified
by different SIDs) in the column Ndiff and some of the SIDs from the alarms produced.
To achieve maximum detection, Snort was used with all Talos rules activated. The table
also includes the number of different flows generated and the different protocols seen.
Interestingly, two tactics (discovery and exfiltration) did not trigger any alerts, even with
the maximum detection settings. However, these tactics did generate associated flows.
It can also be observed significant differences between tactics. For example, discovery
(T1046) and reconnaissance (T1595) generated a large number of flows and protocols.

Thus, using only the activated SIDs is the simplest solution to identify some tech-
niques and generate the corresponding level 3 hyperalert. In this case, the hyperalert
only incorporates these alert identifiers (SIDs) as relevant information. Table 2 shows
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Alerts Flows
Tactic Techn.|Ndif|SIDs N{Types (protocols)
Reconnaissance |T1595| 46|825,835,839, 845, 849,853,---, | 13093|DNS, - -- (+50 types)
43290

Initial Access |T1190| 4(1061, 7070, 13990, 19439 156 HTTP

Execution T1047 1/1394 1736{HTTP, MDNS, IGMP,
IGMPv6

Discovery T1046 (1S 131366/POP, RTSP, --- (+150
types)

Lateral Moveme.|T1210 211394, 42944 4|ICMP

Exfiltration T1048 0+ SOHTTP, FTP_CONTROL

Table 2: Alerts and flows for each tactic/technique (attack 3).

the SIDs activated in each technique for the multistage attack considered, as well as the
number of flows and their types. Unfortunately, this solution cannot be extended to all
states.

Three relevant issues can be observed. First, as already mentioned, some techniques
do not trigger IDS alerts. Secondly, depending on the technique, the number of SIDs
and alerts is highly variable. As seen in Table 2, some techniques trigger up to 46 SIDs,
while others only trigger 1. Thirdly, if the detection process is assessed in depth, we
find that, in many cases, a generic detection has been carried out. As an example, the
technique 77190 triggered a detection by SOL xp_cmdshell attempt. That is, alerts are
activated for accessing the resource xp_cmdshell. Therefore, as already shown in Section
4, it is impossible to identify the technique used in all cases solely by the activated SIDs.

In contrast to the previous section’s results, no SIDs were found for the T1046
discovery technique, which was detected by our FSA thanks only to the flows. SIDs were
also not observed in the exfiltration technique. We have already seen that the detection
of this technique depends on the protocol used and, in this case, it has not been detected.

In Table 3, we have summarized the progress of the attack by analyzing the level 3
hyperalerts generated and the results of our experiment. Our findings indicate that we
were able to detect five out of the six states (or tactics) of the multi-step attack, which
suggests that this approach could be effective in practical scenarios. We also observed
that including contextual information from the traffic flows was critical in transitioning
between certain states of the model (reconnaissance and discovery), as illustrated in
Figure 8. Finally, we were only unable to detect the last state of the attack using level 3
hyperalerts, what illustrate the potential of this proposal on detecting the progression
of a multi-step attack. Anyway, once the lateral movement state is reached, it would be
possible to search for some specific flow types involving the IPs in the level 3 hyperalert,
e.g. HTTP and FTP_CONTROL, which can be associated to a transition to exfiltration
state. That is, additional contextual information can be helpfull in the cases in which no
alert is triggered.

6 Conclusions and Further Work

We have presented an architecture articulated through the ideas of hyperalert, processing
of stored information rather than real-time event correlation, and the generation of
knowledge via specialized modules. The proposed architecture is applicable to NMS and
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ID|Tactics Trigger By Technique|Identified by
1 |Reconnaissance T1595 flows
2 |Initial Access T1190 SID 1061
3 |Execution T1047 SID 1394
4 |Discovery T1046 flows
5 |Lateral Movem. T1210| SID 42944

Table 3: Level 3 Hyperalerts.

provides flexibility and potential for incorporating new sensor elements and correlation
techniques, including ATT&CK attack modeling.

We have adapted the proposed architecture to accurately identify the advancement
of a multistage attack by utilizing a new level of hyperalerts (level 3). We conducted
extensive experimentation to distinguish the various stages of an attack, leveraging
the ATT&CK model and observable data from NMS systems such as IDS alarms and
flow/protocol characteristics.

The case study conducted has shown the effectiveness of this approach, even with
the use of basic correlator modules. With the help of a visualization tool developed, the
CSO only needed to analyze a level 2 hyperalert to investigate the attacks. Furthermore,
the study validated the usefulness of the model for new level 3 hyperalerts.

This work is only the first step from the authors toward developing a system that
uses multi-stage attack modeling and additional context information to generate more
meaningful and relevant alerts. We plan to extend our architecture in various ways in
future research. First, incorporating and evaluating additional correlation techniques that
introduce extra intelligence. Second, expanding our exploratory analysis for ATT&CK
to new attack instances and new data sources, like Host IDS. The next step will also
include an in-depth analysis of ATT&CK mapping to consider different rulesets and
more realistic data traffic to refine the False Positive collection. On the other hand,
the inclusion of flows in the aggregation processes shows the importance of including
contextual information from additional sensors to establish relationships between assets
and events.

Acknowledgements

Work supported by Spanish MICIN/AEI/10.13039/501100011033 under Project PID2020-
115199RB-100.

Appendix A

Table 4 shows detailed information on the utilized techniques and subtechniques used
in the 48 different attack instances implemented. The table also shows the attack in-
stance source (column SOURCE: can be locally generated or CIC2018 dataset), the
number of different signatures found in the alerts (column #SID), number of alerts
(colum Alerts) and example of signature identifiers (column SID examples). In order
to generate the local attack instances, we have utilized a variety of tools to implement
the attack techniques, including nmap, Dirb, GoBuster, wget, Metasploit, Hydra, SQL
injection, Sqlmap, Knockd, Arpspoof, Macof, hping3, XMRIG, dnscat2, Caldera, ssh,
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Instance| TACTIC TECHNIQUE (SUB)TECH ID|#SID#SID FP|SOURCE|SID examples |Alerts
1 Reconnaissance Active Scanning T1595.002 2 2 local 1421,1418 4

2 Reconnaissance Active Scanning T1595.003 44 |0 local 1434,1433,... 9562
3 Reconnaissance Active Scanning T1595.003 43 |0 local 1434,1433,... |62

4 Reconnaissance Search Open Technical Databases T1596.001 1 0 local 255 1

5 Execution User Execution T1204.001 0 0 local - 0

6 Execution Windows Management Instrumentation| T1047 1 1 local 1394 18

7 Execution Exploitation for Client Execution T1203 0 0 CIC2018 |- 0

8 Resource Development Compromise Accounts T1586.001 0 0 local - 0

9 Resource Development Compromise Infraestructure T1584.005 12 |12 CIC2018 |1448,42340,...|14719
10 Initial Access Exploit Public-Facing Application T1190 0 0 local - 0

11 Initial Access Exploit Public-Facing Application T1190 3 0 local 1061,1122,... |5

12 Initial Access Exploit Public-Facing Application T1190 0 0 CIC2018 |- 0

13 Initial Access Phishing T1566.001 2 0 CIC2018 [1292,46983 |3

14 Persistence Server Software Component T1505.001 0 0 local - 0

15 Persistence Server Software Component T1505.005 0 0 local - 0

16 Persistence, C&C,DE Traffic Signaling T1205.001 0 0 local - 0

17 Credential Access Brute Force T1110.001 0 0 local - 0

18 Credential Access Brute Force T1110.001 0 0 CIC2018 |- 0

19 Credential Access Brute Force T1110.001 1 1 CIC2018 |650 1

20 Credential Access Adversary-in-the-Middle T1557.002 0 0 local - 0

21 Credential Access Adversary-in-the-Middle T1557.002 0 0 local - 0

22 Collection Data from Configuration Repository  |T1602.001 2 2 local 1411, 1417 792
23 Collection Data from Information Repositories T1213 0 0 local - 0

24 Impact Data Manipulation T1565.001 0 0 local - 0

25 Impact Endpoint Denial of Service T1499.02 1 0 local 40063 92
26 Impact Endpoint Denial of Service T1499.02 0 0 CIC2018 |- 0
27 Impact Endpoint Denial of Service T1499.02 0 0 CIC2018 |- 0

28 Impact Endpoint Denial of Service T1499.03 0 0 CIC2018 |- 0

29 Impact Endpoint Denial of Service T1499.03 0 0 CIC2018 |- 0

30 Impact Network Denial of Service T1498.001 1 1 local 1917 8

31 Impact Network Denial of Service T1498.001 1 1 local 402 15
32 Impact Network Denial of Service T1498.001 1 1 CIC2018 |402 10134
33 Impact Network Denial of Service T1498.001 0 0 CIC2018 |- 0

34 Impact Network Denial of Service T1498.001 0 0 CIC2018 |- 0

35 Impact Resource Hijacking T1496 1 1 local 254 2

36 Command and Control (C&C)|Application Layer Protocol T1071.004 0 0 local - 0

37 Command and Control (C&C)|Non-Standard Port T1571 0 0 local - 0

38 Defense Evasion (DE) System Binary Proxy Execution T1218.010 0 0 local - 0

39 Lateral Movement Exploitation of Remote Services T1210 1 1 local 42944 1

40 Lateral Movement Exploitation of Remote Services T1210 0 0 local - 0

41 Lateral Movement Exploitation of Remote Services T1210 0 0 CIC2018 |- 0

42 Discovery Network Service Scanning T1046 319 |1 local 1071,1242,... |1846
43 Discovery Network Service Scanning T1046 9 7 local 384,453,... 9

44 Discovery Remote System Discovery T1018 2 2 local 1421,1418 2

45 Discovery Network Service Discovery T1046 0 0 CIC2018 |- 0

46 Exfiltration Exfiltration Over Alternative Protocol |T1048.003 3 3 local 29456,384,... |48
47 Exfiltration Exfiltration Over Alternative Protocol |T1048.003 0 0 local - 0

48 Exfiltration Exfiltration Over C2 Channel T1041 0 0 local - 0

Table 4: Enterprise ATT&CK Matriz attack instances detection results.

Regsvr32.exe, Nikto, and hping3. For further information on the pcap traffic generated
during each attack, please refer to [Data 23].

Based on the data, we can state that nearly 50% of the attacks didn’t trigger alarms
and went undetected by the IDS (when using default rules). However, it is important to
keep in mind that the effectiveness of detection varies depending on the technique being
used. For example, technique T1048.003 can be detected if exfiltration is over [CMP,
but not over FTP.

We have utilized legitimate traffic from the CIC2018 dataset to verify the false
positives of the IDS, identifying 60 Snort rules that generate false positives. These
correspond to the following SIDs: 1045, 11968, 1257, 1280, 1325, 1390, 1394, 1411,
1413, 1417, 1418, 1419, 1420, 1421, 1444, 1447, 1448, 1616, 1867, 1917, 2003, 2004,
2049, 2339, 2418, 254, 27899, 28555, 28556, 28557, 29456, 31136, 365, 366, 368, 372,
373, 382, 384, 385, 396, 399, 401, 402, 404, 408, 409, 41978, 42255, 42340, 42944, 449,
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Tactic |Technique |Technique ID|{SubTech. Tool #SID [SID #Alerts

Discov. [Network T1046 - Nikto 319(1071, - - -, 43285 1846
Service
Scanning

Discov. |Network T1046 - nmap 9(257, 384, 408, 451, 453, 598, 9
Service 1418, 1420, 1421
Scanning

Reconn. [Active Scan-{T1595(.002) |Vulnerab. nmap 2(1418, 1421 4
ning Scanning

Reconn. [Active Scan-{T1595(.003) (Wordlist Scan-Dirb 441825, 835, 839, 845, 849, 853,/ 9562
ning ning 879, 882, 885, 886, 887, 895,

896, 937, 940, 993, 1016,
1025, 1071, 1129, 1141, 1145,
1201, 1206, 1213, 1218, 1231,
1288, 1301, 1433, 1434, 1489,
1543, 1520, 1551, 1521, 1606,
1662, 1826, 1852, 1877, 2062,
43285, 43290

Reconn. [Active Scan-{T1595(.003) (Wordlist Scan-{GoBuster| 43|825, 835, 839, 845, 849, 853, 62
ning ning 879, 882, 885, 886, 887, 895,
896, 937, 940, 993, 1016,
1071, 1129, 1141, 1145,
1201, 1206, 1213, 1218, 1231,
1288, 1301, 1433, 1434, 1489,
1520, 1521, 1543, 1551, 1606,
1662, 1826, 1852, 1877, 2062,
43285, 43290

Q)

Table 5: Details for different scanning techniques implemented instances.

451, 453, 566, 579, 613, 648, 649, 650.

In column # SID FP of Table 4, we include the count of detected SIDs that are among
the previously listed SIDs generating false positives. Had these rules been removed, the
detection capability would be reduced by half.

It is important to mention that when using scanning techniques (T1595, T1046), a lot
of alerts are generated (328 for scanning network services and 46 for active scanning).
This can make it challenging to associate these techniques (and the corresponding tactic)
with a single SID. Table 5 breaks down the outcomes of the different attack instances used
for these two techniques. Nikto, which is used for website scans, generated numerous
alerts with various SIDs (319). In contrast, nmap-scanned network services generated
only nine alerts that had different SIDs. A similar problem arises during the recognition
phase, where there is a noticeable difference in the number of alarms generated between
vulnerability searches and website wordlist scans. The former only produced 4 alarms
with 2 unique SIDs, whereas the latter created numerous alarms. This indicates that the
scan detection process should consider more data beyond just SIDs, such as network
flows. More details on implemented attack instances and pcap files used are available in
[Data 23].
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