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A B S T R A C T

The recent M5 competition has advanced the state-of-the-art in retail forecasting. However, there are important
differences between the competition challenge and the challenges we face in a large e-commerce company. The
datasets in our scenario are larger (hundreds of thousands of time series), and e-commerce can afford to have
a larger stock assortment than brick-and-mortar retailers, leading to more intermittent data. To scale to larger
dataset sizes with feasible computational effort, we investigate a two-layer hierarchy, namely the decision
level with product unit sales and an aggregated level, e.g., through warehouse-product aggregation, reducing
the number of series and degree of intermittency. We propose a top-down approach to forecasting at the
aggregated level, and then disaggregate to obtain decision-level forecasts. Probabilistic forecasts are generated
under distributional assumptions. The proposed scalable method is evaluated on both a large proprietary
dataset, as well as the publicly available Corporación Favorita and M5 datasets. We are able to show the
differences in characteristics of the e-commerce and brick-and-mortar retail datasets. Notably, our top-down
forecasting framework enters the top 50 of the original M5 competition, even with models trained at a higher
level under a much simpler setting.
1. Introduction

Forecasting plays an important role in decision-making processes.
In the retail industry, accurate sales forecasting is crucial for different
phases such as supply chain management (Fildes et al., 2022a,b) and
inventory control (Kourentzes et al., 2020). Probabilistic forecasts,
which quantify uncertainty about the future, are often essential in these
cases, e.g., for determining the stock level and reorder points (do Rego
and De Mesquita, 2015). However, effective uncertainty estimation
is a challenging problem due to the fact that the series are often
intermittent, i.e., a large percentage of entries are zero.

The recent M5 competition (Makridakis et al., 2021, 2022b) es-
tablished the state of the art of retail forecasting, through both an
accuracy track, which focused on point forecasting, and an uncertainty
track, which focused on probabilistic forecasting. Many of the M5
findings are applicable to our situation; however, we observe that our
use cases, drawn from a large Indonesian e-commerce retail company,
exhibit some important difference from the challenges posed in the M5
competition. The two biggest differences we have identified are that the

∗ Correspondence to: D3, UGR AI, Av. del Conocimiento, 37, 18016 Granada, Spain.
E-mail address: bergmeir@ugr.es (C. Bergmeir).

datasets in our application are often significantly larger and more in-
termittent than the datasets provided by the M5 competition. While the
M5 has less than 50,000 time series, over half a million different types
of products are purchased on the e-platform each day. Furthermore, the
M5 data is derived from traditional brick-and-mortar retail situations,
which have some important differences to the e-commerce setting; most
notably, e-commerce platforms can typically afford to have a larger
assortment of products available, and that many of these products
may have slow sales. This leads to a higher proportion of intermittent
series, and thus a high level of overall intermittency in the data. In
addition to handling the challenges presented by these differences,
our aim is to develop an approach that is ready for production use,
and as such involves additional constraints regarding robustness and
execution time that were not an element of the M5 competition. It
is important to mention that while promotions are often key drivers
in retail forecasting, they are not a main consideration in the M5, as
the data in this competition was taken from Walmart, which utilises
an everyday low price strategy. They are also not relevant in our
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business use cases, so we do not consider them when developing the
methodology in this paper.

Consequently, the main aim of our work is to adapt the best-
erforming M5 methodologies to the problem of forecasting in an e-
ommerce setting. The M5 is dominated by global
odels (Januschowski et al., 2020), which are learned across series.

This has important consequences for scalability, as global models
cannot be fitted in parallel as trivially as local models, which are
mbarrassingly parallelisable along the series dimension. As such we
equire our methods to scale to datasets that are at least an order
f magnitude larger than the M5 data. There are three immediate
trategies to handle this:

Model simplification An obvious option is to try and use simpler
models. However, by itself this does not guarantee the abil-
ity to train models with a feasible computational effort, and
the resulting forecast accuracy may be poor due to the model
simplification.

Data partitioning Data partitioning is an intuitive way of scaling
global models. The global models are trained not in a truly
‘‘global’’ way, i.e., across all available series, but several such
models are trained on subsets of the data. This is a popular
processing step, and most competitors in the M5 subdivide the
data in one way or another. One of the earliest papers proposing
this procedure that we are aware of is (Bandara et al., 2020), and
later this idea is studied more systematically in Godahewa et al.
(2021). However, subdividing the data is mainly done with the
aim of improving accuracy, and cannot be seen as a step with
the primary purpose of achieving scalability.

Training with less data Another option is to train with less data. One
may simply omit part of the historical data and fit a model to
a subsample. Additionally, if data has a suitable hierarchical
structure, we can train models at a higher level of the hierar-
chy using substantially less series (with consequent reduction
in intermittency), and then apply a top–down disaggregation
strategy to obtain forecasts at lower levels.

Regardless of the strategy chosen, the forecasting must be done in a
robabilistic manner. This usually involves modelling either via para-
etric distribution assumption, or some more flexible non-parametric

pproach. Using the quantile loss function (Koenker and Bassett, 1978),
probabilistic forecasts can be generated without assumptions. However,
a drawback of this approach is that separate models must be trained
for each quantile of interest, which can make the process expensive
when handling large datasets. Additionally, quantile crossing (Bassett
and Koenker, 1982; He, 1997) can happen as a consequence of training
quantiles separately, adding another layer of complexity. Compromises

ay also need to be made to ensure a feasible implementation; for ex-
mple, having to train with reduced sample sizes. In contrast, paramet-

ric methods based on distributional assumptions (Snyder et al., 2012)
re relatively straightforward to implement and apply in practice. They
re faster and scale more readily to large datasets in comparison with
on-parametric methods. More importantly, classical choices such as

a Poisson or negative binomial distribution have useful mathematical
properties (Steutel and Van Harn, 2003) that can be leveraged when
scaling to large datasets.

In the M5 competition tree-based methods were very successful,
and most top competitors based their solutions on LightGBM (Ke et al.,
2017), a highly efficient gradient boosted tree (GBT) algorithm. For ex-
mple, the winning method in the accuracy track leveraged LightGBM
y training on grouped data from multiple categories and combining
he forecasts with equal weights (Makridakis et al., 2022b). Tree-based

implementations such as LightGBM and XGBoost (Chen and Guestrin,
2016) are open source and highly flexible tools. As LightGBM offers
fast training while maintaining predictive accuracy, it is generally
2 
considered a superior solution to other implementations of GBTs that
yield lower accuracy with longer training times.

In this paper, we propose an efficient way of generating accurate
and scalable forecasting systems. We make the most of a two-layer hier-
archy of raw and aggregated data, and develop a top–down forecasting
framework that is able to scalably predict with small computational
effort while maintaining competitive accuracy. Instead of directly deal-
ing with data on the decision level, we forecast with the aggregated
series and disaggregate back in a top–down fashion according to his-
torical proportions. Our forecasting framework is capable of generating
accurate probabilistic forecasts with simple assumptions of distribu-
tions. The proposed approach is analysed on a proprietary e-commerce
dataset, as well as the public Corporación Favorita dataset and the M5
competition dataset. As a notable side-product of this research, we have
implemented a negative binomial loss function for LightGBM (Ke et al.,
2017), for which the details are given in Appendix.

The rest of this paper is organised as follows. Section 2 reviews
the related work. Section 3 provides a comprehensive description of
the proposed top–down forecasting framework. Section 4 explains the
xperimental setup. Section 5 reports the results and provides a further

discussion. Section 6 concludes our work.

2. Related work

In this section, we cover relevant prior work; specifically, global,
ierarchical, probabilistic modelling strategies and intermittent fore-
asting.

2.1. Modelling across series with global models

Global modelling (Januschowski et al., 2020) has received substan-
tial recent attention in the forecasting community. All top contenders
in the M5 were global models, and even before this, global models
have shown strong performance in various Kaggle competitions (Bojer
and Meldgaard, 2021). Under the global modelling paradigm, available
time series are pooled together and a single model is built across them,
with shared parameters. As a global model is trained with more data,
it can afford to be more complex, compared with traditional local per-
series models in which each time series is viewed as a distinct dataset,
and models are built for each series separately. Montero-Manso and
Hyndman (2021) present some theoretical explanations for the superi-
rity of global models over local models, and argue that no similarity or
elatedness between series is necessary for global models to work well.

Hewamalage et al. (2022) confirm these findings empirically and make
them more nuanced in a simulation study. They argue that minimal
assumptions on relation between time series are necessary as global

odels have the capacity of learning complex patterns and perform
ell even when the series are heterogeneous. One of the earliest and
ost prominent global models in the literature is DeepAR (Salinas

et al., 2020), which is a global forecasting method based on autore-
gressive neural networks. It has demonstrated high forecasting accuracy
for Amazon sales data, and can be considered a standard benchmark
in retail forecasting. Other modelling choices for implementation can
involve classical linear models, standard machine learning models such
as LightGBM (Januschowski et al., 2021), and neural networks (Kunz
t al., 2023). Consequently, we focus in our work on global models,

as prior research has established their general superiority over local
models in retail settings similar to the one under consideration in this
work.
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2.2. Hierarchical forecasting

Retail sales data is naturally organised in a hierarchal fashion,
i.e., per-store product sales data at the bottom level can be combined
according to product categories and regions. Typically, hierarchical
forecasting is concerned with producing coherent forecasts across dif-
ferent levels of the hierarchy (for different decisions to be made, such as
strategical, tactical, or operational decisions). Additionally, hierarchical
forecasting methods have been used in the past to transport information
between series, such as bringing seasonal patterns only emerging at
higher levels of the hierarchy into the noisy bottom-level series fore-
casting. Classical approaches of hierarchical forecasting in the literature
are top–down, bottom–up and middle-out methods (Hyndman et al.,
2011), in which forecasts are produced on only a single level of the
hierarchy and then aggregated up or disaggregated down, using histor-
ical (or through other ways obtained) proportions. More sophisticated
alternatives include optimal reconciliation approaches (Hyndman et al.,
2011), in which all series in the hierarchy are forecasted, and then a
ubsequent step a reconciliation (optimisation) is performed to adjust

the forecasts and make them coherent. The most recent methods com-
bine forecasting and reconciliation into a single step, building global
models that are able to produce reconciled forecasts directly. The most
prominent methods in this space are HierE2E (Rangapuram et al.,
2021), SHARQ (Han et al., 2021), HIRED (Paria et al., 2021), and
ROFHIT (Kamarthi et al., 2022).

On the other hand, probabilistic hierarchical forecasting is a much
more challenging problem as it requires, in theory, the distribution of
the forecasts of the aggregated series being the same as the distribu-
tion of sum of the forecasts of its children series. This is difficult to
achieve, for example, quantile forecasts produced at a certain level
cannot be simply added together, or divided up, to derive forecasts
on other levels. In contrast, point forecasts can be straightforwardly
generated based on the summation constraint of the hierarchy. In the
literature, different definitions on the coherence of probabilistic hierar-
chical forecasting have been provided. Taieb et al. (2017, 2020) define
probabilistic coherence from the perspective of convolution of marginal
predictive distributions of the children series. Panagiotelis et al. (2022)
ropose a more intuitive definition where densities of children series
hould lie on a coherent subspace, and a similar notation can be found
n Rangapuram et al. (2021). Han et al. (2021) explore the coherence

of quantiles with a regularised quantile loss function. Kamarthi et al.
(2022) propose a distributional coherency regularisation to ensure the
distributional consistency of the entire hierarchy.

Our motivation for using a hierarchy differs from the usual use
cases. We do not use the hierarchical structure from the perspective of
reconciliation, and are not particularly interested in coherent forecasts
for the entire hierarchy. Instead, we leverage the hierarchy as a way
to scale the forecasts from more aggregated levels in the hierarchy,
where fewer time series exist, to lower levels where the amount of
series and their intermittency hinder traditional forecasting techniques.
Thus, the sophisticated methods from the literature are not directly
applicable to our use case. We are interested in generating probabilistic
forecasts in our application; however, as noted previously, quantile
forecasts cannot be directly used to produce forecasts at other levels.
This motivates us to explore distributional assumptions and properties
that could potentially make the problem tractable. These are discussed
in the next section.

2.3. Probabilistic forecasting for intermittent data

We categorise the existing probabilistic forecasting approaches into
wo main parts: non-parametric methods such as quantile regression
nd bootstrapping, and parametric methods under some distributional
ssumptions. A particularly flexible non-parametric technique is quan-
ile regression. By utilising the pinball loss, quantile forecasts can be
3 
directly generated, and implementations are available in most open-
source GBT frameworks. In this case, the modelling and training process
needs to be repeated for each quantile of interest. For intermittent
data, Lainder and Wolfinger (2022) propose a quantile forecasting

ethod using LightGBM and data augmentation techniques; this tech-
nique achieved first place in the M5 uncertainty track. Bootstrapping
has been utilised to solve intermittent forecasting problems (Willemain
et al., 2004; Viswanathan and Zhou, 2008; Zhou and Viswanathan,
2011; Hasni et al., 2019) with some highlights in forecast accuracy, but
t requires an access to a large amount of historical data and potentially

huge computational costs, both of which pose questions regarding
plausibility in real-life problem settings (Syntetos et al., 2015). Using
empirical in-sample quantiles is an especially simple way to generate
robabilistic forecasts and has been found to work well in retail fore-

casting (Kolassa, 2016; Spiliotis et al., 2021; Kolassa, 2022). We employ
this established method as a strong benchmark. Another method to
turn point forecasts into probabilistic forecasts is through level set
forecasting (Hasson et al., 2021). Level-set forecasting first partitions
the training set according to the predicted values obtained from a
certain point forecaster. Then, when forecasting, the algorithm picks
the closest set based on its point forecast and takes the corresponding
true values of that set as distributional forecasts. However, level-set
orecasting is a general algorithm that is not specifically designed to

deal with the challenges caused by intermittent series.
On the other hand, parametric methods involve understanding, or

aking assumptions regarding, the characteristics of historical data
nd the nature of the data generating process. Classical distributional
hoices for fitting retail data in the literature include the Poisson dis-
ribution (Heinen, 2003; Snyder et al., 2012), or the negative binomial

distribution (Agrawal and Smith, 1996; Snyder et al., 2012), potentially
mixed with zero-inflation (Lambert, 1992) and hurdle models (Cragg,
1971) to accommodate the excess zeros typical in this domain. Based
on distributional assumptions, relevant model parameters are learned
empirically. Snyder et al. (2012) proposed a hurdle shifted Poisson
model and introduced a dynamic state-space structure for both damped
and undamped versions. de Rezende et al. (2021) extended this struc-
ure to the negative binomial distribution, and this technique achieved
ixth place in the M5 uncertainty competition. Parameter estimation

of such state-space models is often performed via maximum likeli-
hood, frequently in conjunction with the expectation maximisation
algorithm; these procedures can be computationally intensive. Kolassa
(2016) studied a set of parametric methods with Poisson and negative
binomial assumptions and applied these methods in a later paper to the
M5 data (Kolassa, 2022). They emphasised the consideration of over-
dispersion in retail forecasting, which is in line with the parametric
methods studied in Spiliotis et al. (2021). However, these works only
focus on local methods, and did not consider ways of scaling up the
forecasting process.

Unlike many machine learning algorithms which are only capable
f producing a single output, the generalised additive model (location,
hape, scale) (GAMLSS, Stasinopoulos and Rigby, 2007) approach can
roduce estimates for all relevant parameters of the assumed distribu-
ion. Ziel (2021) applied this approach to the M5 dataset with different

distribution assumptions, including a zero-inflated Poisson distribution.
 major pitfall of GAMLSS is the huge computational cost; to deal

with this, models are trained only based on subsamples in that work.
DeepAR generates probabilistic forecasts based on distributional as-
sumptions. For example, a negative binomial distribution can be chosen
for count data, with both mean and shape parameters produced as the
outputs of the neural network. Following the literature, we consider
the Poisson distribution and negative binomial distribution, as mixed
distributions require extra parameters which can bring with them
dditional complexity during the modelling process. Moreover, these

two distributions are characterised as being infinitely divisible (Steutel
and Van Harn, 2003); for example, a Poisson random variable can be
expressed as the sum of an arbitrary number of independent Poisson
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Fig. 1. The demand classification scheme and cutoff values used in this work (Syntetos
et al., 2005).

random variables. In this case, we can decompose the aggregated level
forecasts and generate probabilistic forecasts based on the distributions
for both layers. Olivares et al. (2021) tested Poisson mixtures from
 perspective of hierarchical reconciliation while modelling with a
eep neural network. In this paper, we also examine negative binomial

mixtures, as the addition of a dispersion parameter can introduce more
odelling flexibility.

3. Methodology

As outlined earlier, our methodology consists of improvements to
he state of the art in retail forecasting, specifically to address issues re-
arding large amounts of data and intermittency in the training series.

In particular, we propose a methodology consisting of the following
two components: (1) a data partitioning step commonly used in retail
settings (see Section 3.1); and (2) a hierarchical top–down approach to
orecasting, in which we forecast the top level series and disaggregate
he forecasts to the lower level series (see Section 3.2).

3.1. Demand classification

Following the scheme proposed by Syntetos et al. (2005), we classify
the time series into one of four groups: smooth, erratic, lumpy, and
ntermittent. This is done according to the average demand interval
ADI) and coefficient of variation squared (CV2) of the series:

ADI =
Days available since first sale

Days with sale , (1)

V2 =
(

Standard deviation of daily sales
Mean of daily sales

)2
. (2)

Specifically, we dichotomise the ADI and CV2 values for the series
using thresholds of 1.32 and 0.49 respectively, yielding four distinct
categories (see Fig. 1). Even though these threshold values are orig-
inally proposed as an optimal method for choosing between simple
exponential smoothing and a modified Croston’s method (Syntetos and

oylan, 2005), methods which we are not using in our work, we employ
these threshold values as they are well-established in the literature.

Naturally, there are certain limitations of such a classification
scheme. The use of hard cutoffs means that series which are inherently
similar, but have ADI and CV2 values close to the thresholds, may
fall into different categories. Furthermore, the classification is usually
performed in a one-off manner and thus may not be accurate if there is
4 
a shift of characteristics in the series with time. However, these are
common problems affecting any type of hard classification, and we
argue this type of partitioning is suitable for our work as it is the

ost established method used in the literature. We also argue that
such a partitioning is in fact necessary; this is because the series in the
different classes described above have characteristics which make them
behave quite differently in terms of forecasting. Smooth and erratic
series tend to have larger values on average by definition. If we evaluate
all series together, they are likely to dominate the error measure when
using scaled metrics. Likewise for a scale-free measure, the intermittent
and lumpy series will typically contribute a very large part of the
overall error, as their values are generally smaller which makes them
more difficult to forecast in relative terms, due to the integer nature
of the series. Thus, we perform a demand classification and evaluate
using scaled metrics for each group separately.

3.2. Top–down distributional forecasting framework

We can form a two-layer hierarchy by aggregating the series at
the decision level, denoted as level 𝐿, based on product hierarchy to
an aggregated level, denoted as level 𝐴. The constructed two-layer
hierarchy is illustrated in Fig. 2. At each time point 𝑡, a series 𝑗
t level 𝐴, denoted as 𝐴𝑡,𝑗 , can be constructed from the sum of the
orresponding 𝑛𝑗 series at level 𝐿. 𝐿𝑡,𝑗 ,𝑖 is used to denote a series 𝑖
t level 𝐿 at time 𝑡, where 𝑗 matches the 𝑗th series at level 𝐴 in the
ierarchy. Thus the relation

𝐴𝑡,𝑗 =
𝑛𝑗
∑

𝑖=1
𝐿𝑡,𝑗 ,𝑖

is always satisfied.
We are interested in producing forecasts at the decision level 𝐿.

ased on the two-layer hierarchy introduced above we first train global
odels at level 𝐴, a higher level in which the data are less intermittent

and the number of series to forecast is feasible. We then disaggregate
and produce forecasts recursively for the entire horizon. Any off-
the-shelf global forecasting model can be used in this framework to
generate point forecasts at level 𝐴; that is, the top–down distributional
framework is model-agnostic. In this work, we use LightGBM models
and linear models. For time point 𝑡 in the horizon ℎ, we denote the
point forecast (conditional mean) at the aggregated level for series 𝑗
by �̂�𝑡,𝑗 .

The proposed forecasting framework consists of four steps. At each
ime point in the forecast horizon, we (1) point-forecast the values

at the aggregated level 𝐴 using the predicted conditional means; (2)
estimate the parameter(s) of the distributions at the aggregated level;
(3) obtain the historical proportion of lower-to-higher level sales, and
disaggregate to obtain the lower level 𝐿 point forecast; and (4) estimate
he parameter(s) of the distributions at the lower level. In this section,

we start by introducing the distribution properties and then discuss
ach step in detail.

3.2.1. Distribution properties and forecasting
Poisson forecasts. We assume that sales are realisations of either

Poisson or negative binomial random variables. For Poisson distributed
sales, 𝑋 ∼ Poisson(𝜆) with rate parameter 𝜆. Once we have the point
forecast (i.e., the estimated conditional mean), the parameter 𝜆 can be
estimated using the point forecast, as the maximum likelihood estimate
of 𝜆 is simply the sample mean, i.e., �̂�𝐴𝑡,𝑗

= �̂�𝑡,𝑗 . We can then produce
distributional forecasts according to the probability model

𝐴𝑡,𝑗 ∼ Poisson
(

�̂�𝐴𝑡,𝑗

)

.

in the usual fashion.
Negative-binomial forecasts. Consider a random variable 𝑋 ∣ 𝜆 ∼

Poisson(𝜆) that conditionally follows a Poisson distribution, and let 𝜆
be a Gamma distributed random variable, i.e.,
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Fig. 2. An illustration of the two-layer hierarchical structure.
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𝜆 ∼ Gamma
(

𝑟,
1 − 𝑝
𝑝

)

,

where Gamma(𝛼 , 𝛽) denotes a Gamma distribution with scale 𝛼 and
shape 𝛽. Then, the random variable 𝑋 is marginally distributed as per
a negative binomial distribution 𝑋 ∼ NB(𝑟, 𝑝) (Hilbe, 2011), with the
robability mass function given by

𝑃 (𝑥 ∣ 𝑟, 𝑝) = 𝛤 (𝑟 + 𝑥)
𝛤 (𝑟)𝛤 (𝑥 + 1) 𝑝

𝑟(1 − 𝑝)𝑥.

We can view the negative binomial distribution as an extension of the
Poisson distribution. The relationship between the mean and variance
of the negative binomial random variable, and the parameters 𝑟 and 𝑝,
is

𝑝 =
E [𝑋]
V [𝑋]

and 𝑟 = E [𝑋]
(

𝑝
1 − 𝑝

)

. (3)

Since 0 ≤ 𝑝 ≤ 1, the variance of the negative binomial distribution is
greater than its mean; this is known as over-dispersion. To produce a
istributional forecast for observation 𝑡 in series 𝑗 at the aggregate level
i.e., 𝐴𝑡,𝑗), we substitute the sample variance of sales over the series
𝑗 (i.e., V̂

[

𝐴𝑗
]

), and mean forecast for observation 𝐴𝑡,𝑗 (i.e., �̂�𝑡,𝑗) for
he population variance and mean in (3), respectively, i.e., we use the

method-of-moments estimator to obtain parameter estimates:

�̂�𝐴𝑡,𝑗
=

�̂�𝑡,𝑗

V̂
[

𝐴𝑗
]

and �̂�𝐴𝑡,𝑗
= �̂�𝑡,𝑗

(

�̂�𝐴𝑡,𝑗

1 − �̂�𝐴𝑡,𝑗

)

. (4)

We can then produce distributional forecasts for 𝐴𝑡,𝑗 using the esti-
mated negative binomial distribution

𝐴𝑡,𝑗 ∼ NB
(

�̂�𝐴𝑡,𝑗
, ̂𝑟𝐴𝑡,𝑗

)

in the usual fashion.

3.2.2. Disaggregation
The disaggregation process is performed by weighting the sales

forecasts by the historical proportion-of-contribution to the aggregate
series 𝐴𝑗 . This proportion 𝜌𝑗 ,𝑖 is calculated by

𝜌𝑗 ,𝑖 =
∑𝑇

𝑡=1 𝐿𝑡,𝑗 ,𝑖
∑𝑇

𝑡=1 𝐴𝑡,𝑗
, 𝑖 = 1,… , 𝑛𝑗 , (5)

where 𝑇 is the timestamp of the last observation in the training set for
aggregate series 𝐴𝑗 . The point forecasts at the lower levels, �̂�𝑡,𝑗 ,𝑖, are
then given by
̂ 𝑡,𝑗 ,𝑖 = 𝜌𝑗 ,𝑖�̂�𝑡,𝑗 , (6)

i.e., the proportion of the aggregate point-forecast attributed to series
.

3.2.3. Parameter estimation for lower level series
Poisson forecasts. Poisson random variables are infinitely divisible,

that is, they can be decomposed into a sum of arbitrary many inde-
endent Poisson random variables (Steutel and Van Harn, 2003). We
se this assumption to obtain the probabilistic forecasts for level 𝐿, as

they are assumed to come from the same distributional family as the
corresponding aggregated level series. Despite the fact that the lower
level series could potentially be cross-related in reality, we decompose
the aggregated forecasts under a simplifying independence assumption.
Under the Poisson assumption, the lower-level observation 𝐿 follows
𝑡,𝑗 ,𝑖

5 
𝐿𝑡,𝑗 ,𝑖 ∼ Poisson(�̂�𝐿𝑡,𝑗 ,𝑖 ),

where �̂�𝐿𝑡,𝑗 ,𝑖 = �̂�𝑡,𝑗 ,𝑖, and �̂�𝑡,𝑗 ,𝑖 is the conditional mean for observation
𝐿𝑡,𝑗 ,𝑖, given by (6).

Negative-binomial forecasts. Negative binomial random variables also
possess the same property of infinite divisibility; however, for this to
be the case it is required that the parameter 𝑝 must be the same across
all series in the hierarchy. That is, 𝑝𝐴𝑡,𝑗

= 𝑝𝐿𝑡,𝑗 ,𝑖 for all 𝑖 = 1,… , 𝑛𝑗 .
One could adhere to this restriction and use the estimated �̂� from the
aggregated level, �̂�𝐴𝑡,𝑗

, as an estimate of 𝑝𝐿𝑡,𝑗 ,𝑖 for the lower level series.
However, in our preliminary experiments (not reported), this procedure
did not yield satisfactory results, and we do not pursue this approach
further. Instead, we estimate 𝑝𝐿𝑡,𝑗 ,𝑖 individually for each of the lower
level series. We estimate the variance of lower level series 𝐿𝑗 ,𝑖 by
the sample variance, denoted as V̂

[

𝐿𝑗 ,𝑖
]

. Then, the estimation of the
arameters of negative binomial distribution at the lower level can be
erformed using the method-of-moments technique in a similar fashion
o Section 3.2.1, i.e.,

�̂�𝐿𝑡,𝑗 ,𝑖 =
�̂�𝑡,𝑗

V̂
[

𝐿𝑗 ,𝑖
]

and �̂�𝐿𝑡,𝑗 ,𝑖 = �̂�𝑡,𝑗

(

�̂�𝐿𝑡,𝑗 ,𝑖
1 − �̂�𝐿𝑡,𝑗 ,𝑖

)

. (7)

Once we have estimated the relevant parameters we can produce
distributional forecasts for the lower-level observation 𝐿𝑡,𝑗 ,𝑖 based on

𝐿𝑡,𝑗 ,𝑖 ∼ NB
(

�̂�𝐿𝑡,𝑗 ,𝑖 , ̂𝑟𝐿𝑡,𝑗 ,𝑖
)

.

It is worth noting that when series are highly intermittent, the large
umber of zero entries in the series could potentially lead to a sample
ariance smaller than the mean, resulting in an under-dispersed model,
.e., �̂�𝐿𝑡,𝑗 ,𝑖 ≥ 1. In principle, a Conway–Maxwell–Poisson distribution
ould be used in these situations; however, in practice, as the negative
inomial distribution reduces to the Poisson distribution when 𝑟 →

(Hilbe, 2011), we use probabilistic forecasts based on the Poisson
odel in these cases.

Fig. 3 provides a visual example to illustrate our proposed top–
down forecasting framework. We consider a randomly chosen series
𝑗 at level 𝐴 with a hierarchy that consists of three series at level
. We first produce point forecasts for series 𝐴𝑗 with an off-the-

helf global forecasting model, in this case a LightGBM model. We
ay then choose an appropriate distributional model (i.e., Poisson or
egative binomial) and estimate the relevant distributional parameters
or the forecast observations using the procedures in Section 3.2.1. The

historical proportion-of-contribution of each of the series 𝐿𝑗 ,𝑖 at level
𝐿 to the aggregate 𝐴𝑗 is calculated using (5) (shown in Fig. 3). These
re then used to disaggregate the point forecasts from level 𝐴 to level
. Parameter estimation for the distributional models is performed at

evel 𝐿 following the procedures in Section 3.2.3. Finally, using these
estimated distributional models, a probabilistic forecast, for example a
0% prediction interval, is produced for each series 𝐿𝑗 ,𝑖 at level 𝐿.

4. Experimental framework

This section describes the datasets, benchmarks, and error measure-
ments used in our experimental study.
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Fig. 3. An illustration of the proposed top–down forecasting framework with a toy example.
Table 1
Summary of the percentage of series and percentage of zeros out of the days since the first sale across all
series, in each category on the lower level of the three datasets analysed in this paper (in percent).

Dataset Smooth Erratic Lumpy Intermittent

Percentage of series
E-commerce 0.10 0.53 42.00 57.37
Corporación Favorita 20.51 19.58 33.62 26.29
M5 6.23 2.83 18.38 72.56

Percentage of zeros
E-commerce 14.06 16.04 83.00 91.57
Corporación Favorita 9.50 12.80 52.65 59.48
M5 14.13 16.77 54.03 67.13
d
p

t
f

4.1. Datasets

We are aware of two openly available large retail datasets, namely
he M5 dataset (Makridakis et al., 2022a) and the Corporación Favorita

dataset (Kaggle, 2018). Both of these represent traditional brick-and-
ortar sales datasets. We use these datasets in addition to a proprietary

-commerce dataset. Based on demand classification (see Section 3.1),
we can categorise the lower level series into four classes, and the per-
centage of series that fall into each class is summarised in Table 1. We
ind that in the examined e-commerce dataset, lumpy and intermittent
eries are the biggest subgroups. The Corporación Favorita dataset con-
ains series which are more evenly distributed over the four categories,
hile the intermittent series form a large part of the M5 dataset as
ell. We further calculate the percentage of zeros out of the days since

he first sale in each category of the three datasets. From Table 1, the
proprietary e-commerce series are more intermittent compared with the
brick-and-mortar datasets we also use in the experiments. We describe
the datasets in more details in the following.

4.1.1. The examined proprietary e-commerce dataset
This dataset consists of 211,765 series of daily unit sales across all

regions of Indonesia from May 7th of 2019 to May 8th of 2021 from one
particular department of the company. In the dataset, similar products
are grouped and regarded as a ‘Catalogue’, and products in a catalogue
have a high level of similarity in price. For example, an iPhone 11 could
be one item of the catalogue, which contains different specific models
such as green iPhone 11. We use the catalogue level as level 𝐴, 101,944
series, and the specific models level as level 𝐿 in the experiments.
Around half of the categories have only 1 or 2 products. We are able
to scale the methods to this large dataset by training them on a much
smaller dataset and then adapting their forecasts to the original dataset.

Forecasts at different quantile levels are often required to determine
the optimal inventory level. While businesses generally strive for a
igh service level, such as 90%, constraints like limited warehouse
apacity and working capital may necessitate a lower optimal service
evel. Consequently, forecasts at various quantile levels are needed for
6 
service level optimisation, which is beyond the scope of this study. For
emonstration purposes, we use the 10th percentile to illustrate the
erformance of the proposed model at a lower quantile level. Thus,

to evaluate the top–down approach, we forecast 28 days ahead with
he catalogue level series and evaluate the 10th and 90th percentile
orecasts at level 𝐿.

4.1.2. The Corporación Favorita dataset
The Corporación Favorita dataset (Kaggle, 2018) provides daily unit

sales data in brick-and-mortar grocery stores from January 1st of 2013
to August 15th of 2017. The original data contains negative values
which denote the number of returns for a certain product, and these
negative values are set to zero in our experiments as we are only
interested in sales forecasting. A natural way of constructing a two-
layer hierarchy is to use the original data as the lower level, and sum
up unit sales by item as an aggregated level, i.e., add up the volumes
in different stores for each item. In this way, level 𝐴 contains 3998
series, whereas level 𝐿 consists of 172,906 series. The tasks performed
are similar: we evaluate the 10th and 90th percentiles of the future 28
days ahead at level 𝐿 with models trained with the item-level series.

4.1.3. The M5 dataset
With data available for over 5 years in the M5 dataset (Makridakis

et al., 2022a), participants were required in the original competition to
submit 9 quantile forecasts for each series. The provided sales data is
hierarchically structured and can be aggregated to 12 different levels.
To provide further insights of the proposed methods, we evaluate
the performance of the proposed top–down probabilistic forecasting
framework in line with the competition settings, i.e., we evaluate the
0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, and 0.995
quantiles. We utilise the hierarchy between level 10 (product unit sales
aggregated by stores, 3049 series) and level 12 (product unit sales,
30,490 series, the lowest level). Models are trained with data from
level 10 and forecasts are disaggregated proportionally to level 12,
and quantile forecasts are then generated according to distributional
assumptions.
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4.2. Compared settings

The proposed top–down forecasting framework is implemented with
ightGBM model variants and linear model variants. Models are trained
ith 100 lags as input features to capture possible weekly, monthly,
nd quarterly seasonality while being not too computationally expen-
ive and complex. Fourier terms are also introduced to model yearly
nd weekly seasonality. The LightGBM models are named by the cor-
esponding loss functions and parameter settings, and linear models
re named by specific regression settings. In the following, we list the
echniques used in this work. The models below are trained on level 𝐴
nd a top–down disaggregation is then applied to obtain forecasts on
evel 𝐿.

LightGBM LightGBM models are trained in a top–down fashion under
different loss functions and parameter settings. The LightGBM
package provides L1, L2, Poisson, Huber, and Tweedie loss
functions for regression problems (Shi et al., 2022). Following
the literature, the negative binomial loss is the most adequate
loss function to use as it takes over-dispersion into considera-
tion (Kolassa, 2016), however, no off-the-shelf implementation
of the negative binomial loss function is available. We im-
plement it with the custom loss and evaluation function in
Python (refer to Appendix). It is not straightforward to imple-
ment such a loss function where two parameters are considered,
in a common machine learning framework which only supports
a single output. Thus the implementation is integrated with an
iterative optimisation step for updating the 𝑟 parameter. We are
exploring three different sets of parameters. We consider default
regression parameters, and a preset parameter setting (Bandara
et al., 2021) that has shown to perform well for the M5 com-
petition, but on the decision level (Level 12), which is not
the level on which we forecast. They are named as default
and preset in the models, respectively. Instead of modelling
with a constant, piecewise linear trees use linear functions to
produce the outcomes, and have demonstrated accurate per-
formance in forecasting (Godahewa et al., 2022). So we also
include the piecewise linear GBTs, which can be selected with
the linear_tree parameter in LightGBM.

Linear models Linear models, or Pooled Regression (PR, Gelman and
Hill, 2006) models linear relationships between predictors and
target values fitted via ordinary least squares. Penalised lin-
ear regression, specifically Lasso regression models (Tibshirani,
1996) are also trained in the experiments. We implement pooled
regression with ordinary least squares and penalised models
with the R glmnet package (Simon et al., 2011) under default
settings with cross-validation. Moreover, apart from using the
100 lags and Fourier terms as stated previously, it is intuitive to
consider quadratic terms in the regression models. We trained
models with Lasso penalty and extra 100 quadratic lag terms,
but they did not show improvements in accuracy so results are
not reported here.

In terms of benchmarks, we consider the following baselines of
orecasts directly performed on level 𝐿, namely direct quantile mod-
lling with LightGBM models, DeepAR, traditional univariate forecast-
ng models, and some relatively simple methods tailored to count data
s used by Kolassa (2022). An input window of 100 lags and Fourier

terms is used for the former two approaches, similarly to the proposed
methods. The details are as follows.

Direct LightGBM Direct quantile models are trained on the lower
level 𝐿 to get the lower level prediction. This approach requires
training a model for each quantile of interest. We use LightGBM
with the preset parameters from Bandara et al. (2021) as those
authors report promising accuracy of this parameterisation on
the M5 decision level (level 12). Quantile forecasts are generated
with the quantile loss function.
7 
DeepAR The autoregressive neural network forecasting framework de-
veloped by Salinas et al. (2020) is another competitive standard
benchmark nowadays. We trained DeepAR models globally with
the Python GluonTS package (Alexandrov et al., 2020) on the
lower level 𝐿 with default parameters and a negative binomial
output. Considering the massive computational costs, we use
DeepAR as a prototype for other deep-learning methods.

Local statistical methods Five classic statistical methods, namely Au-
toregressive Integrated Moving Average model (ARIMA, Box
et al., 2015), ExponenTial Smoothing model (ETS, Hyndman
et al., 2008), Mean, Naïve, Drift, and Seasonal Naïve (SNaïve,
with weekly seasonality) are considered in the experiments.
Models are fitted using the R fable package (O’Hara-Wild
et al., 2021) under their default configurations, and probabilistic
forecasts are produced by specifying the level parameter.

The following five per-series methods analysed by Kolassa (2022) are
considered in this work as strong benchmarks for count data.

In-sample quantiles If we take the distribution of the in-sample data
as an estimate of the true marginal distribution, quantile fore-
casts in the future horizon can be then obtained according to
this distribution, denoted as in-sample quantiles. The in-sample
quantile forecasts on the lower level can be thought of as the
probabilistic variant of a mean forecast for point forecasts.

Empirical weekday (Emp-Wd) In-sample quantiles are calculated for
each day of the week separately.

Empirical Poisson (Pois) A Poisson distribution is fitted to each se-
ries with moment matching using the R fitdistrplus pack-
age (Delignette-Muller and Dutang, 2015). Quantiles are then
generated from the empirical Poisson distribution.

Empirical negative binomial/Conway–Maxwell–Poisson (NB-CMP)
Either a negative binomial distribution, when the series is over-
dispersed, or a Conway–Maxwell–Poisson distribution, when the
series is equi- or under-dispersed, is fitted to the series where
quantiles are generated from. A negative binomial distribution
with moment matching using the R fitdistrplus package
and a Conway–Maxwell–Poisson distribution is fitted through
the glm.cmp() function provided in the R COMPoissonReg
package (Sellers et al., 2023).

Zero-inflated Poisson (ZIP) Quantiles are generated through a
Zero-Inflated Poisson distribution fitted to each series. The
zeroinfl() function is used from the R pscl package
(Jackman, 2024; Zeileis et al., 2008).

Zero-inflated negative binomial (ZINB) Quantiles are generated
through a Zero-Inflated negative binomial distribution fitted to
each series. The zeroinfl() function is used from the R pscl
package (Jackman, 2024; Zeileis et al., 2008). A ZIP model is
fitted if a numerical singularity error occurs when fitting a ZINB
model.

4.3. Evaluation metrics

Following the setup of the M5 competition, we evaluate the proba-
ilistic forecasts using the Weighted Scaled Pinball Loss
WSPL, Makridakis et al., 2021). We denote 𝑞[𝑢]𝑡 as the predicted value
or quantile 𝑢 at time 𝑡, and 𝑦𝑡 as the corresponding ground truth.

Then, for a series 𝑖, the Scaled Pinball Loss (SPL) is calculated for each
uantile as follows,

SPL [𝑢]
𝑖
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= 1
ℎ

∑𝑇+ℎ
𝑡=𝑇+1(𝑢(𝑦𝑡 − 𝑞[𝑢]𝑡 )𝟏{𝑞[𝑢]𝑡 ≤ 𝑦𝑡} + (1 − 𝑢)(𝑞[𝑢]𝑡 − 𝑦𝑡)𝟏{𝑞

[𝑢]
𝑡 > 𝑦𝑡})

1
𝑛−1

∑𝑇
𝑡=2 |𝑦𝑡 − 𝑦𝑡−1|

, (8)

where the pinball loss (Gneiting, 2011) over the forecast horizon ℎ is
caled by the average absolute error of the one-step-ahead in-sample
aïve forecast within the period between the first non-zero sales to
ime 𝑇 . 𝟏 is the indicator function. For example, for the 10th and 90th
ercentile forecast evaluation, 𝑢 ∈ {0.1, 0.9}, and 𝑞 = 2 corresponds
o the number of quantiles of interest. The WSPL is computed by the

weighted average of the average SPL for all the quantiles per series with
weights 𝑤𝑖,

WSPL =
𝑛
∑

𝑖=1
𝑤𝑖 ×

1
𝑞

𝑞
∑

𝑗=1
SPL𝑖[𝑢𝑗 ].

When evaluating the proposed methods on the M5 dataset, we follow
he M5 competition setup and use the same weighting for a direct
omparison with other participants, where dollar sales in the last 28
ays are calculated as weights. In the examined proprietary dataset
nd in the Corporación Favorita dataset, such information on dollar
ales is not available. While one can still possibly propose a weighting
rocess with certain assumptions, we opt for weighting series equally
uring evaluation. A lower WSPL indicates a better estimate of the
orecast intervals. The SPL uses the in-sample naïve forecast as the
enominator, a procedure that was first proposed by Hyndman and
oehler (2006) for the MASE and is nowadays standard practice in

forecasting. However, this process has the problem that a division
by zero can occur if the series is constant. Due to the procedure of
trimming leading zeros, series can be very short and this situation can
happen in our experiments. However, such cases are rare, for example,
only 8 series with such property are present in the Corporación Favorita
dataset, so that we omit such series during the evaluation process.

5. Results and discussion

In the following, we present an evaluation on the three different
datasets separately. The proposed top–down forecasting framework is
irst evaluated on the e-commerce dataset. Based on the results, we aim
t transferring the findings to the brick-and-mortar datasets. Therefore,
e use the most competitive models for further experiments on the Cor-
oración Favorita dataset and the M5 dataset. For the M5 dataset, we
re able to directly compare the performance of the proposed top–down
orecasting framework with the results of the original competition
articipants.

5.1. Evaluation with the e-commerce dataset

In this section, we present detailed performance evaluations on the
proprietary e-commerce dataset. Models are globally trained on level 𝐴
and a top–down approach is then applied to get forecasts for level 𝐿.

Table 2 presents the WSPL results on level 𝐿, based on the demand
classification category of the respective level 𝐿 series. The benchmarks
are placed at the top of the table, and models trained in a top–down
fashion are arranged by distribution assumptions. Noticeably, the direct
LightGBM model outperforms all other models in all categories except
being in third place for lumpy data. DeepAR models beat other methods
for lumpy data, and have consistently accurate performance in other
categories. It is somewhat surprising to find that simply using the
in-sample quantiles can lead to a competitive forecasting accuracy,
especially for the intermittent series. This is in line with findings in the
literature that empirical models can be able to outperform sophisticated
ones, as shown by Kolassa (2016) and Spiliotis et al. (2021). In addi-
tion, the Emp-Wd model, which treats each day of the week separately
ields accurate forecasts. The zero-inflated models are competitive on
his dataset. No consistently good performance can be found for the

local statistical methods.
For the proposed top–down method, the LightGBM models have

achieved competitive accuracy especially under a negative binomial
8 
assumption. More sophisticated hyperparameter settings such as the
reset parameters do not show an advantage over the default param-

eters, which can even lead to better accuracy. Interestingly, linear
models fitted via least squares have demonstrated even more com-
etitive accuracy as PR models and Lasso models present satisfactory
esults across all data categories. The PR even beats the Direct Light-
BM on the lumpy series, and is slightly better than DeepAR on the

ntermittent series. With regard to different distribution assumptions,
e can find that models with negative binomial assumptions out-
erform those with Poisson assumptions, indicating that the data is
ver-dispersed.

Table 3 compares the total training time of the forecasting models.
odels were trained on a server machine (16 vCPUs, 64 GB RAM) using
 4.1. The proposed top–down methods are much faster than the direct
ightGBM models. Specifically, the top–down LightGBM methods under
efault parameterisation can be trained within 10 min, whereas the
irect LightGBM approach takes around 5 h. The training process of the
op–down PR model is efficient, and the Lasso model is relatively slower
s it fits additional regularisation parameters. Among the LightGBM
odel variants, those using user-defined negative binomial loss take

he longest time. This is due to the iterative search of parameter
of the negative binomial distribution (see Appendix). Such a loss

unction does not demonstrate the promised accuracy within a practical
imeframe. With competitive accuracy discussed previously, the in-
ample quantile is also superior in terms of computational efficiency.

Other local benchmarks such as zero-inflated models, ETS and ARIMA
can take a long time to train. Finally, the DeepAR model appears to be
fast and computationally efficient.

5.2. Evaluation with the Corporación Favorita dataset

Based on the previous experiments, we limit our experiments on this
dataset on a selection of the best-performing methods from the previous
experiments, from the different categories of methods, to run with
the Corporación Favorita dataset, namely LightGBM with Poisson loss,

weedie loss and negative binomial loss functions, pooled regression,
nd Lasso. Again, we use 100 lags and Fourier terms as input, and
ightGBM models are trained under default parameter settings. In the
op–down probabilistic experiments, we assume sales data to follow
 Poisson distribution or a negative binomial distribution across the
ierarchy. From the results on the e-commerce dataset, we utilise Direct
ightGBM models, DeepAR and the five local count data models as
he comparison methods on level 𝐿, with the same parameter setting
iscussed in Section 4.2. In the case of direct training, the lag matrix

is over 230 GB, which hinders the implementation on our available
computing resources. In addition, the series are much less intermittent
compared to the e-commerce dataset which leads to a much denser
input matrix. The limit on the size of input sparse matrices restricts
the amount of series and the number of lags that can be trained at the
ame time. Therefore, we need to make compromises and the direct
ightGBM model is trained as follows. As the partitioning technique
ntroduced in Section 3.1 can also be used as a pre-processing step to
ender the methods more scalable when a single global model cannot fit
nto memory. We first partition the lower level series into the smooth,
rratic, lumpy and intermittent categories and train four LighGBM
odels separately. Due to the restriction of the size on the input matrix,
e intend to use as many lags as possible for a fair comparison. With

he Fourier terms to capture seasonality, we use 20 lags for the lumpy
ategory and 30 lags for the other three categories. Another option
s to remove the Fourier terms and give more importance to the lags

as input. This approach leads to another Direct LightGBM (max lags)
odel where we use 50 lags for the smooth and erratic series, and 35

and 45 for lumpy and intermittent series, respectively.
Table 4 reports the WSPL errors that are calculated on the lower

level. From the second column, we can compare the top–down ap-
proach against the strong direct methods. We observe that our methods
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Table 2
The WSPL on level 𝐿 of the examined proprietary dataset, categorised based on the demand class. The WSPL for all series on level 𝐿 are
provided in the last column. The amount of series in each category is provided in parenthesis. The top–down forecasting methods are sorted
by distribution assumptions.

Model Smooth (209) Erratic (1,126) Lumpy (88,933) Intermittent (121,497) All

ARIMA 0.2187 0.2336 0.3088 0.1853 0.2374
Drift 0.3002 0.4161 0.8530 0.7287 0.7788
ETS 0.2165 0.2348 0.3081 0.1813 0.2350
Mean 0.2313 0.2507 0.2947 0.1836 0.2307
Naïve 0.2964 0.4114 0.8434 0.7187 0.7690
SNaïve 0.2460 0.3107 0.5033 0.3573 0.4183
In-sample quantiles 0.2229 0.2545 0.2204 0.1712 0.1923
Emp-Wd 0.2254 0.2556 0.2208 0.1718 0.1929
Pois 0.3322 0.3359 0.2344 0.1727 0.1997
NB-CMP 0.2558 0.2671 0.2215 0.1711 0.1929
ZIP 0.2212 0.2504 0.2235 0.1712 0.1937
ZINB 0.2229 0.2549 0.2211 0.1712 0.1926
DeepAR 0.1976 0.2200 0.2093 0.1660 0.1845
Direct LightGBM 0.1931 0.2078 0.2139 0.1634 0.1849

Negative binomial distribution assumption

Lasso 0.2095 0.2446 0.2240 0.1736 0.1952
Pooled Regression 0.2015 0.2327 0.2132 0.1659 0.1861
LightGBM Huber loss default 0.2689 0.2607 0.2160 0.1690 0.1893
LightGBM Huber loss linear leaf 0.2974 0.2769 0.2171 0.1696 0.1902
LightGBM Huber preset 0.2005 0.2269 0.2145 0.1681 0.1879
LightGBM L1 loss default 0.3208 0.2973 0.2235 0.1733 0.1952
LightGBM L1 loss linear leaf 0.2207 0.2483 0.2200 0.1711 0.1921
LightGBM L1 loss preset 0.2318 0.2463 0.2200 0.1718 0.1925
LightGBM L2 loss default 0.2076 0.2323 0.2171 0.1734 0.1921
LightGBM L2 loss linear leaf 0.2042 0.2329 0.2188 0.1748 0.1936
LightGBM L2 loss preset 0.2173 0.2413 0.2262 0.1810 0.2003
LightGBM Neg. Bin. loss default 0.2144 0.2466 0.2362 0.1946 0.2124
LightGBM Poisson loss default 0.2057 0.2348 0.2192 0.1748 0.1938
LightGBM Poisson loss linear leaf 0.2284 0.2568 0.2255 0.1786 0.1988
LightGBM Poisson loss preset 0.2175 0.2466 0.7572 0.2231 0.4476
LightGBM Tweedie loss default 0.2108 0.2359 0.2185 0.1747 0.1935
LightGBM Tweedie loss linear leaf 0.2145 0.2440 0.2225 0.1782 0.1972
LightGBM Tweedie preset 0.2192 0.2477 0.2323 0.1879 0.2070

Poisson distribution assumption

Lasso 0.2522 0.3225 0.2436 0.1763 0.2055
Pooled Regression 0.2343 0.2870 0.2214 0.1662 0.1901
LightGBM Huber loss default 0.3080 0.3371 0.2223 0.1689 0.1923
LightGBM Huber loss linear leaf 0.3369 0.3595 0.2246 0.1696 0.1939
LightGBM Huber preset 0.2329 0.2790 0.2178 0.1676 0.1894
LightGBM L1 loss default 0.3630 0.3868 0.2263 0.1727 0.1965
LightGBM L1 loss linear leaf 0.2675 0.3299 0.2283 0.1716 0.1964
LightGBM L1 loss preset 0.2655 0.3108 0.2218 0.1711 0.1932
LightGBM L2 loss default 0.2417 0.2947 0.2369 0.1756 0.2021
LightGBM L2 loss linear leaf 0.2390 0.2937 0.2389 0.1770 0.2037
LightGBM L2 loss preset 0.2522 0.3105 0.2480 0.1831 0.2111
LightGBM Neg. Bin. loss default 0.2463 0.3161 0.2527 0.1959 0.2205
LightGBM Poisson loss default 0.2394 0.3053 0.2414 0.1774 0.2051
LightGBM Poisson loss linear leaf 0.2618 0.3353 0.2494 0.1812 0.2108
LightGBM Poisson loss preset 0.2504 0.3232 0.7813 0.2254 0.4595
LightGBM Tweedie loss default 0.2435 0.3032 0.2388 0.1769 0.2037
LightGBM Tweedie loss linear leaf 0.2471 0.3112 0.2439 0.1803 0.2078
LightGBM Tweedie preset 0.2532 0.3218 0.2546 0.1900 0.2179
t
t
e

are competitive, and the linear models again have remarkably out-
erformed the LightGBM variants. The negative binomial distribution
till seems to be more appropriate on this dataset compared with a
oisson assumption. The DeepAR model has the best accuracy on this
ataset. As we have to make compromises when training the direct
ightGBM models, we observe that the model that uses more lags seems
o perform better than the one with Fourier terms. The simple in-
ample quantile is still a strong benchmark, as well as the Emp-Wd
ethod. At the same time, we can find more top–down methods that

re competitive against them, with a wider gap compared to the results
ound on the e-commerce dataset. Table 5 reports the training time

for each method. Overall, the top–down approach incorporated with
linear models and LightGBM models can be trained very efficiently,
even compared to the in-sample quantile method. They are much faster
than the direct LightGBM models and DeepAR. As the hierarchy on the
Corporación Favorita dataset contains more bottom level series, we can
9 
find a more significant scalability of the proposed top–down methods,
without losing much of the accuracy. The Emp-Wd method takes more
ime as each day in the week needs to be considered separately. Also,
he LightGBM model with negative binomial loss requires more training
ffort, as is to be expected.

5.3. The M5 competition revisit

We conduct experiments on the M5 dataset similar to Section 5.2
with selected models and parameter settings, and probabilistic fore-
casts are generated based on Poisson distribution or negative binomial
distribution. We use the same type of result plot as the competition
summary in Makridakis et al. (2021). Instead of separating by distri-
bution assumptions as in the previous tables, we put the name of the
specific distribution, i.e., Poisson, Neg. Bin., at the beginning of the
names of the proposed methods. Fig. 4 compares the WSPL values on
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Table 3
Training time on the examined proprietary dataset for the benchmark methods (top
part) on level 𝐿, and LightGBM models and linear models on level 𝐴.

Model Training time (minutes)

ARIMA 741.60
Drift 58.29
ETS 875.75
Mean 45.39
Naïve (fable) 54.96
Snaïve (fable) 85.99
In-sample quantile 0.99
Emp-Wd 13.78
Pois 1.86
NB-CMP 25.04
ZIP 153.52
ZINB 519.42
DeepAR 68.75
Direct LightGBM 284.36

Lasso 56.15
Pooled Regression 28.48
LightGBM Huber loss default 6.32
LightGBM Huber loss linear leaf 9.64
LightGBM Huber loss preset 30.30
LightGBM L1 loss default 11.04
LightGBM L1 loss linear leaf 16.19
LightGBM L1 loss preset 51.95
LightGBM L2 loss default 9.07
LightGBM L2 loss linear leaf 14.46
LightGBM L2 loss preset 24.13
LightGBM Neg. Bin. loss default 1540.08
LightGBM Poisson loss default 6.99
LightGBM Poisson loss linear leaf 8.37
LightGBM Poisson loss preset 22.85
LightGBM Tweedie loss default 5.53
LightGBM Tweedie loss linear leaf 7.12
LightGBM Tweedie loss preset 26.8

level 12 with the top 50 participants in the uncertainty track of the
riginal competition. Remarkably, the proposed top–down forecasting
pproaches all enter the top 50 when compared with the original 892
articipating teams, w.r.t. WSPL, except for the ones with a negative bi-
omial loss function. We also notice that methods which assume future
ales to follow a negative binomial distribution perform better, which
s in line with the previous experiments. Benchmarks on level 12 are
rained in the same fashion as in Section 4.2. Due to the computational

limitations, we are able to train on the whole dataset from level 12
with a single direct LightGBM model with 70 lags. We also include
a max lags version where we intend to include more lags and train
a direct LightGBM model with 100 lags without Fourier terms. From
Fig. 4, we see that the DeepAR model is very competitive on the M5
level 12. The direct LightGBM models are also accurate, where the one
with more lags instead of Fourier terms performs better, ranking 10th
against other competitors. The in-sample quantile and the Emp-Wd are
strong benchmarks on this brick-and-mortar retailer dataset, but rank
lower than the proposed top–down methods. The detailed WSPL results
of each category on series from level 12 are also provided in Table 6 for
onsistency. The proposed models are competitive against the strong
enchmarks on each category, especially the linear models. Table 7

presents the training time of models on level 10 and directly on level
12. Using the top–down approach, the GBTs can be trained with modest
computational effort, as well as the linear models. The simple in-sample
quantile benchmark is still very efficient. The LightGBM model with
negative binomial loss function takes much longer time because of the
iterative numerical optimisation process. In the M5 dataset, it seems
there is a poorer estimate of the parameter 𝑟 through the numerical
search under practical time constraints. DeepAR can be trained at a fast
speed as the M5 dataset is relatively smaller compared to the other two
datasets in our experiments. Although it may provide certain accuracy
gains, training directly on level 12 can take much more computational
time and compromises may have to be made to make the approach
feasible.
10 
5.4. Further discussion

In this section, we provide a discussion on the automatic selection
f the aggregated level to apply the proposed top–down forecasting
ramework, and a suggested workflow for forecasting the e-commerce
atasets.

5.4.1. Selecting the aggregated level
We have explored two types of aggregation in our analysis, namely

he category–product hierarchy on our proprietary dataset, and store–
roduct hierarchy on the Corporación Favorita dataset and the M5
ataset. The top–down forecasting framework works well in both situa-

tions. Ultimately, the way to form a hierarchy is application-dependent,
but there are some heuristics we can follow. To make the most of the
proposed framework, on the one hand, practical considerations should
come first. Data should be aggregated to a level where models can run
without concerning the limitations of memory and computing power.
On the other hand, since the probabilistic forecasts are generated based
on assumptions, the aggregation levels should be chosen in a way that
we would not expect too large changes of data characteristics after
aggregation.

In practice, we can explore the distributions of series on the ag-
gregated level and on the decision level and compare the similarity.
For example, a negative binomial distribution can be fitted for each
series of the decision level and the possible levels to aggregate to,
nd goodness-of-fit results can then be evaluated. We perform such an

example, where we use the glm.nb function from the R MASS pack-
age (Venables and Ripley, 2002) to fit a negative binomial distribution,
nd examine the fitting with the 𝑝-value reported from the poisgof
rom the R epiDisplay package (Chongsuvivatwong, 2022). Table 8

reports the results at a significance level 𝛼 = 0.05. As the series are
ggregated to higher levels, they are less and less similar to the decision
evel. We see that levels 10 and 11 offer similar trade-offs between the
umber of series to forecast and the similarity between the decision
evel and the aggregated level. In our experiments, we decide to aim
or higher scalability and therefore choose level 10 as the aggregated
evel.

5.4.2. A suggested workflow for forecasting on e-commerce datasets
It is an interesting finding that in the intermittent series of the

-commerce data, the largest proportion of the dataset, simple meth-
ds such as the in-sample quantile are competitive against LightGBM
ariants and linear models trained under the top–down forecasting
ramework. In particular, the in-sample quantile method achieves 2nd
lace after the direct LightGBM model which achieves the best accuracy
see Table 2). If we also take training time into account, the in-sample

quantile is unbeatable compared with other methods. In contrast, such
n advantage in accuracy cannot be seen in the Corporación Favorita

dataset (Table 4) and the M5 dataset (Fig. 4), where brick-and-mortar
sales data are considered.

Recall the percentage of zeros calculated in Table 1 on the lower
level of the three datasets experimented in this research. Noticeably,
ver 91% of entries in the intermittent series of the e-commerce data
re zero, implying a high degree of intermittency. This explains why
hese series are relatively unpredictable and no method leads any
enefits over the most simple benchmarks. One may observe that the

lumpy series also present high proportion of zeros. However, from
the empirical results, the proposed methods have shown a better per-
formance on the examined e-commerce dataset. This may be due to
the lumpy series by definition having larger variance compared to the
intermittent series. Taking all the findings into account, we can suggest
as a generic workflow in our e-commerce forecasting use case the
following. For intermittent series, one can simply use in-sample quan-
tiles to produce accurate forecasts. The proposed top–down forecasting
framework, for example, integrated with linear models and LightGBM
models (e.g., with Tweedie loss and Poisson loss functions), is used to

generate probabilistic forecasts for other categories.
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Table 4
The WSPL for lower level series from the Corporación Favorita dataset on each category. The WSPL for all lower level series are provided in
the last column. The number of series in each category is provided in parenthesis.

Model Smooth (35,458) Erratic (33,851) Lumpy (58,131) Intermittent (45,466) All

In-sample quantiles 0.2618 0.2747 0.3177 0.3259 0.2999
Emp-Wd 0.2559 0.2706 0.3154 0.3233 0.2965
Pois 0.3237 0.3287 0.3343 0.3393 0.3323
NB-CMP 0.2705 0.2853 0.3224 0.3267 0.3056
ZIP 0.2716 0.2787 0.3140 0.3252 0.3013
ZINB 0.2695 0.2749 0.3180 0.3259 0.3017
Direct LightGBM (max lags) 0.1985 0.2192 0.2584 0.2580 0.2383
Direct LightGBM (Fourier terms) 0.2048 0.2239 0.2589 0.2588 0.2409
DeepAR 0.1811 0.2147 0.2539 0.2553 0.2317

Negative binomial distribution assumption

Lasso 0.2262 0.2498 0.2832 0.2783 0.2637
Pooled Regression 0.2196 0.2449 0.2768 0.2709 0.2572
LightGBM Neg. Bin. loss default 0.2339 0.2693 0.2871 0.2763 0.2699
LightGBM Poisson loss default 0.2303 0.2639 0.2851 0.2765 0.2674
LightGBM Tweedie loss default 0.2282 0.2632 0.2829 0.2742 0.2656

Poisson distribution assumption

Lasso 0.2571 0.2863 0.3032 0.2920 0.2875
Pooled Regression 0.2416 0.2740 0.2901 0.2796 0.2744
LightGBM Neg. Bin. loss default 0.2590 0.3000 0.3040 0.2874 0.2896
LightGBM Poisson loss default 0.2553 0.2947 0.3025 0.2878 0.2874
LightGBM Tweedie loss default 0.2520 0.2928 0.2991 0.2845 0.2844
Fig. 4. The performance of the proposed methods and benchmarks on level 12 compared with the top 50 submissions of the M5 uncertainty competition.

v
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6. Conclusion

In this paper, we have proposed a scalable top–down forecast-
ng framework which is capable of generating reliable probabilistic

forecasts at a fast speed. Direct modelling on the lower level and
producing quantile forecasts is accurate, but it can be computationally
expensive while no corresponding large gains of accuracy are observed.
Compromises may also have to be made when training direct quantile
models. In our use cases, and presumably many others in the industry,
the additional computational effort is thus not justified. Our forecasting
approach is feasible to implement in production. The top–down fore-
casting framework has also been evaluated with two public datasets
and has shown good results.

As evaluated in the experiments, we have found that the accuracy
depends largely on the estimation of distributional parameters. In
accordance with the literature, in the three datasets in our experiments
the negative binomial assumption tends to be more adequate than the
 v

11 
Poisson assumption. However, this does not translate into higher ac-
curacies when using a negative binomial loss function. We have shown
that in practice, implementation of this loss function requires additional
numerical search to fit in a common machine learning framework,
which prevents it from beating other built-in loss functions under prac-
tical computational constraints. Somewhat surprisingly, linear models
are competitive with the state-of-the-art LightGBM algorithm in situa-
tions where no external covariates are used (as in our research; external
ariables could regard pricing, promotions, and others). Here, linear
odels offer a simple alternative to GBTs that is fast, robust, and more

nterpretable.
We observe that the e-commerce dataset can be much more in-

ermittent compared to brick-and-mortar retail datasets. In particular,
he intermittent series make up the largest proportion of the dataset
nd they are also more intermittent, i.e., they contain proportionally
ore zeros. Simply using in-sample quantiles on this category can be

ery competitive against other sophisticated methods, with superior
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Table 5
Training time of the top–down methods on aggregated level of the Corporación Favorita
ataset, and the benchmarks executed on level 𝐿.
Model Training time (minutes)

In-sample quantile 0.76
Emp-Wd 13.17
Pois 3.64
NB-CMP 5.81
ZIP 53.29
ZINB 226.76
DeepAR 68.75
Direct LightGBM (max lags) 357.67
Direct LightGBM (Fourier terms) 388.84

Lasso 5.67
Pooled Regression 2.70
LightGBM Neg. Bin. loss default 95.89
LightGBM Poisson loss default 1.14
LightGBM Tweedie loss default 1.19

computational efficiency. In addition, the proposed top–down method
epends on the hierarchical structure of the series and distributional

assumptions to some extent. We have investigated the distributions of
he series on the lower level and on the possible aggregated levels of the
5 dataset. Based on the given hierarchy of the business, it is a trade-

ff between the number of series on the aggregated level to model on
nd the similarity between the two levels when applying the proposed
op–down forecasting framework.

A limitation of the proposed framework that could be addressed
as future work is the static top–down approach where total historical
proportions are used during disaggregation. We assume that using a
disaggregation method which accounts for future changes may improve
forecasting accuracy. Additionally, the proposed top–down forecasting
framework depends on the selection of the aggregated level. We have
provided some preliminary results on how to perform an automatic
evel selection, but a more systematical procedure could be further
nvestigated. Finally, the examined e-commerce data spreads out before

and after the global pandemic lockdown periods. However, the poten-
ial structural breaks of the shopping patterns are not modelled in this
tudy.
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Appendix. Implementation of negative binomial loss function
ith LightGBM

As sales data is usually over-dispersed, i.e., the variance is greater
than its mean, when we use machine learning algorithms to predict
the future mean values, it is a natural choice to consider the negative
12 
binomial loss function for model training. However, the LightGBM
package (Ke et al., 2017) does not provide a built-in negative binomial
loss function, but it provides functionality which supports user-defined
loss functions.

In order to implement any customised loss, there are two functions
e need to specify: an objective function and an evaluation function.

The objective function is defined according to the log likelihood of a
ertain distribution, and the evaluation function returns the first and
econd derivatives w.r.t. model predictions.

For the negative binomial distribution, the probability mass func-
tion is given by

𝑃 (𝑥 ∣ 𝑟, 𝑝) = 𝛤 (𝑟 + 𝑥)
𝛤 (𝑟)𝛤 (𝑥 + 1) 𝑝

𝑟(1 − 𝑝)𝑥.

with a mean value 𝜇 that equals to (1 −𝑝)𝑟∕𝑝. So if we substitute 𝑝 w.r.t.
𝜇, that is, 𝑝 = 𝑟∕(𝜇 + 𝑟), we can get the following,

𝑃 (𝑥 ∣ 𝑟, 𝜇) = 𝛤 (𝑟 + 𝑥)
𝛤 (𝑟)𝛤 (𝑥 + 1)

(

𝑟
𝜇 + 𝑟

)𝑟 ( 𝜇
𝜇 + 𝑟

)𝑥
.

So, the negative log likelihood is given by

𝐿(𝑥 ∣ 𝜇 , 𝑟) = − log𝛤 (𝑟 + 𝑥) + log𝛤 (𝑟) + log𝛤 (𝑥 + 1)
− 𝑟 log 𝑟 + 𝑟 log(𝜇 + 𝑟) − 𝑥 log𝜇 + 𝑥 log(𝜇 + 𝑟).

And we denote the predicted mean value from the LightGBM model as
. As the support of the negative binomial distribution is the set of non-
egative integers, we apply a log transformation so that 𝑓 is allowed
o take any real value and 𝑒𝑓 is always non-negative. For data point 𝑥𝑖,
reating 𝑥𝑖 as the true value and plugging in the predicted mean value
fter transformation, i.e., 𝑒𝑓𝑖 , then the negative log likelihood is given
y,

𝐿(𝑥𝑖 ∣ 𝑓𝑖, 𝑟) = − log𝛤 (𝑟 + 𝑥𝑖) + log𝛤 (𝑟) + log𝛤 (𝑥𝑖 + 1)
− 𝑟 log 𝑟 + 𝑟 log(𝑒𝑓𝑖 + 𝑟) − 𝑥𝑖𝑓𝑖 + 𝑥𝑖 log(𝑒𝑓𝑖 + 𝑟).

Consider 𝐱 = (𝑥1,… , 𝑥𝑛) and 𝐟 = (𝑓1,… , 𝑓𝑛); then our objective function
is defined as

𝐿(𝐱 ∣ 𝐟 , 𝑟) =
𝑛
∑

𝑖=1
𝐿(𝑥𝑖; 𝑓𝑖, 𝑟).

And we calculate the gradient and Hessian w.r.t. 𝑓 ,

𝑔(𝐱 ∣ 𝐟 , 𝑟) =
𝑛
∑

𝑖=1

(

𝑒𝑓𝑖 (𝑟 + 𝑥𝑖)
𝑒𝑓𝑖 + 𝑟

− 𝑥𝑖

)

,

ℎ(𝐱 ∣ 𝐟 , 𝑟) =
𝑛
∑

𝑖=1

𝑒𝑓𝑖 𝑟(𝑟 + 𝑥𝑖)
(𝑒𝑓𝑖 + 𝑟)2

.

With this we have defined all the required functions for implemen-
ation, except that the value of 𝑟 has to be obtained for completing
he calculation. Intuitively, we can treat 𝑟 as a model parameter and

optimise it alongside the training process, but the LightGBM pack-
ge does not provide an option for defining custom parameters. A

possible solution, which is the solution we are using, is the coordinate-
ise optimisation, that is, updating the model and 𝑟 iteratively until

onvergence. We initialise the value of 𝑟 by the method of moments
rom the historical data. The optimisation process of each iteration

takes three steps: (1) train a LightGBM model with the custom loss
function and the current value of 𝑟; (2) predict the training set with
the model obtained and then get the predicted mean values; and (3)
get an updated estimate of 𝑟 by minimising the negative log likelihood,
which is also the function 𝐿 defined above. In this case, the LightGBM
models are retrained iteratively through coordinate-wise optimisation
and the optimisation procedure takes longer as the length of series
rows, which in return leads to an overall longer training process.

Data availability

The data that has been used is confidential.
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Table 6
The WSPL for the M5 dataset level 12 series on each category. The WSPL for all level 12 series are provided in the last column. The number
of series in each category is provided in parenthesis.

Model Smooth (1,900) Erratic (863) Lumpy (5,604) Intermittent (22,123) All

In-sample quantiles 0.2797 0.3982 0.4248 0.3314 0.3398
Emp-Wd 0.2734 0.3977 0.4263 0.3314 0.3387
Pois 0.3331 0.5251 0.5006 0.3696 0.3931
NB-CMP 0.2761 0.3981 0.4263 0.3343 0.3409
ZIP 0.2884 0.4752 0.4408 0.3317 0.3494
ZINB 0.3241 0.3965 0.4245 0.3314 0.3492
Direct LightGBM (max lags) 0.2434 0.3055 0.3333 0.2695 0.2766
Direct LightGBM (Fourier terms) 0.2510 0.3162 0.3368 0.2773 0.2839
DeepAR 0.2474 0.3040 0.3298 0.2649 0.2742

Negative binomial distribution assumption

Lasso 0.2585 0.3320 0.3744 0.2820 0.2952
Pooled Regression 0.2628 0.3282 0.3725 0.2822 0.2957
LightGBM Neg. Bin. loss default 0.7434 0.8479 0.6625 0.7189 0.7232
LightGBM Poisson loss default 0.2719 0.3389 0.3843 0.2904 0.3048
LightGBM Tweedie loss default 0.2746 0.3609 0.3879 0.2941 0.3095

Poisson distribution assumption

Lasso 0.3009 0.4049 0.4298 0.2977 0.3268
Pooled Regression 0.3035 0.3871 0.4225 0.2959 0.3239
LightGBM Neg. Bin. loss default 0.8211 0.9336 0.7121 0.7433 0.7670
LightGBM Poisson loss default 0.3126 0.3978 0.4318 0.3028 0.3319
LightGBM Tweedie loss default 0.3153 0.4248 0.4343 0.3065 0.3367
Table 7
Training time on the M5 dataset of the proposed model variants on level 10 and benchmarks
directly modelling on level 12.

Model Training time (minutes)

In-sample quantiles 0.53
Emp-Wd 11.99
Pois 0.61
NB-CMP 0.93
ZIP 18.20
ZINB 91.60
DeepAR 17.07
Direct LightGBM (max lags) 483.72
Direct LightGBM (Fourier terms) 489.47

Lasso 4.56
Pooled Regression 2.05
LightGBM Neg. Bin. loss default 68.90
LightGBM Tweedie loss default 1.09
LightGBM Poisson loss default 1.09
Table 8
Number of series on Level 9 to Level 12, and the percentage of series on the corresponding level that follow
a negative binomial distribution (in percent) of the M5 dataset, as a trade-off to choose an aggregation level.

Level 12 Level 11 Level 10 Level 9
Number of series 30,490 9,147 3,049 70
Series following neg. bin. dist. (%) 83.75 51.11 25.25 17.14
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