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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Instrument settings for 1H and 13C LF- 
NMR signals acquisition were 
optimised.

• Taguchi experimental designs were 
performed to optimise a robust system.

• A novel proposal to a priori assess the 
information quality of an analytical 
signal is presented.

• Information theory was applied to select 
the most informative fingerprint.
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A B S T R A C T

Background: Developing a new spectrometric analytical method based on a fingerprinting approach requires 
optimisation of the experimental stage, particularly with novel instruments like benchtop low-field NMR spec-
trometers. To ensure high-quality LF-NMR spectra before developing the multivariate model, an experimental 
design to optimise instrument conditions is essential. However, difficult-to-control factors may be critical for 
optimisation. Taguchi methodology addresses these factors to obtain a system robust to variation. This study uses 
the Taguchi methodology to optimise instrument settings for acquiring high-quality 1H and 13C LF-NMR signals 
in a short time from virgin olive oil (VOO).
Results: Two experimental trials (for 1H and 13C signals, respectively) were carried out and analysed to find an 
optimal and robust combination of instrument settings against changes in two difficult-to-control factors: 
ambient temperature and small deviations of the NMR tube volume (700 ± 50 μL). The responses to be 

* Corresponding author.
** Corresponding author.

E-mail addresses: arroyoc@ugr.es (A. Arroyo-Cerezo), amariajc@ugr.es (A.M. Jiménez-Carvelo). 
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optimised, run time and spectral information quality, were analysed separately and jointly, as some factors 
showed opposite behaviour in the effect on the responses. Multiple response analysis based on suitable desir-
ability functions yielded a combination of factors resulting in desirability values above 0.8 for 1H LF-NMR signals 
and almost 1.0 for 13C LF-NMR signals.
In addition, a novel approach to assess the information quality of an analytical signal was proposed, addressing a 
major challenge in analytical chemistry. By applying information theory and calculating information entropy, 
this approach demonstrated its potential for selecting the highest quality (i.e. most informative) analytical 
signals.
Significance: The acquisition instrument conditions of LF-NMR were successfully optimised using Taguchi 
methodology to acquire highly informative 1H and 13C spectra in a minimum run time. The importance lies in the 
future development of non-targeted analytical applications for VOO quality control. In addition, the innovative 
use of information entropy to a priori assess the signal quality represents a significant advance and proposes a 
solution to a long-standing challenge in analytical chemistry.

1. Introduction

Spectrometric techniques are currently the leading candidates for 
developing new rapid, less expensive, environmentally friendly, non- 
invasive and/or non-destructive analytical methods based on a finger-
printing approach for food quality control. Among them, nuclear mag-
netic resonance spectrometry (NMR) stands out as a powerful technique 
in terms of analytical performance. The information provided by these 
spectra is more complete than that of other spectrometric techniques 
[1]. NMR enables the detection, characterisation and quantitation of 
substances present in the material even at low concentrations. In the 
field of food analysis, it has shown great potential for structural char-
acterisation of substances, and for authentication purposes in a variety 
of foods such as beef, coffee, cheese, fish, honey, vegetable oils, spices, 
tomato and several beverages (beer, wine, juices, milk) [2,3].

Two types of NMR spectrometers can be distinguished according to 
the applied field frequency: high frequency and high-resolution spec-
trometers (>250 MHz); and low frequency and high-resolution spec-
trometers (40–100 MHz), known as HF-NMR and LF-NMR respectively. 
The first, HF-NMR, is the one conventionally used in research studies 
and is the one providing the great advantages mentioned above in terms 
of analytical performance. However, it entails certain drawbacks and is 
the main reason for the lack of application in food industries. These are 
(i) the high economic investment involved, (ii) the requirements of large 
spaces and specialised infrastructure, (iii) the maintenance required and 
(iv) the experienced technical personnel demanded. The main reason of 
these disadvantages lies in the cryogenically cooled superconducting 
magnets they incorporate to generate the high magnetic field. In 
contrast, LF-NMR spectrometers use permanent magnets, usually made 
of rare earth elements, which are more stable and do not require costly 
maintenance. Moreover, the use of these magnets allows for the devel-
opment of more compact and accessible instruments (benchtop) and 
provides a higher and more homogeneous magnetic field compared 
NMR relaxometers (20–40 MHz), the pioneering low-field NMR in-
struments, which are limited to determine relaxation or diffusion pa-
rameters due to the low resolution and the poor magnet homogeneity [4,
5].

At the beginning of the present decade, technological advances made 
it possible to launch benchtop LF-NMR spectrometers improving the 
sensitivity and therefore the resolution of the data acquired [6]. NMR 
spectral data provide a wealth of chemical information of the measured 
material. It is one of the most powerful techniques for food analysis [4]. 
However, due to the compositional complexity of foods, even using 
HF-NMR it is not possible to separate all compounds present in a food 
product unless a targeted approach to specific compounds of interest is 
applied at the data analysis stage [7]. Whereas, when the aim is to study 
the material in its entire compositional set, e.g., for food authentication 
purposes, a non-targeted approach should be applied in these cases [8]. 
The application of this approach involves considering the NMR spec-
trum as a non-specific instrumental fingerprint of the measured material 
that contains all the useful information characterising it. By appropriate 

data processing and analysis using chemometrics it is possible to develop 
multi-parametric analytical methods, in line with the principles of green 
analytical chemistry (GAC) [9].

Developing a new analytical method complying with the premises of 
(i) being fast and (ii) applying a non-targeted approach, undoubtedly 
requires the optimisation of the experimental stage, particularly the 
acquisition conditions of fingerprints. This need becomes even more 
critical when using novel instruments such as LF-NMR benchtop spec-
trometers, and particularly in the field of food analysis, where there is a 
certain lack of experience in the use of NMR [2]. For this situation, 
performing an experimental design to optimise the acquisition instru-
ment conditions would be a convenient solution to ensure that the ac-
quired LF-NMR spectral data are sufficiently meaningful for the 
proposed objective prior to analytical method development. Design of 
experiments (DoE) is widely applied in analytical chemistry for pro-
cesses and reactions optimisation [10]. Using this field of chemometrics, 
it is possible to study and understand how and how much certain factors 
affect the analytical response(s). Besides, with a proper DoE it is possible 
to minimise the number of runs to optimise the process, generating a 
design space where there is a higher probability to find the optimal 
values of the factors affecting the process. Thus, DoE should be 
considered part of the GAC [11].

Numerous types of methodologies can be followed to perform a DoE, 
being the most common and usual screening designs based of 2-level 
factorial designs, among others. However, there is a methodology not 
widely explored in analytical chemistry that is named as its developer: 
Taguchi designs [10]. Through its methodology, Taguchi considers the 
existence of factors which are difficult-to-control, referred to as noise 
factors. Aware of this, Taguchi methodology seeks to generate a robust 
system and to optimise the response(s) by minimising the variability of 
the concerned responses due to slight modifications in the nominal value 
of difficult-to-control factors. The objective of this methodology is to 
optimise the system for implementation in an off-line total quality 
control. For that purpose, it is necessary being able to control the 
difficult-to-control factors while the experiment is being carried out in 
the laboratory [10,12].

In addition to the aforementioned points, there is a challenge to be 
addressed in the field of analytical chemistry: determining which 
analytical signal is most informative. This challenge could be overcome 
by applying information theory. The information theory was born in the 
1940s with the aim of evaluate the quantity of information and the 
uncertainly in a message [13]. More information transmitted is associ-
ated with increased knowledge and reduced uncertainty. The greater the 
uncertainty, the less the useful information [14]. Following this prin-
ciple, Shannon proposed the calculation of entropy as a metric of the 
amount of information, considering that the lower its value, the more 
information is present in the message. This theory, Shannon’s entropy 
calculation and all its successive extensions, modifications and new 
proposals, are widely used in disciplines such as computer sciences, 
telecommunications, cryptography, and statistics, and in some experi-
mental disciplines, particular in ecology.
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Analytical chemistry, often referred to as the science of chemical 
information, was no stranger to the advent of information theory, and at 
the end of the 20th century there was a growing interest that culminated 
in the publication of a valuable review [15] and specialised textbook 
[16], both authored by Eckschlager and Danzer, the pioneers in the 
application of this subject in analytical chemistry. However, the pro-
posals, clearly ahead of its time, did not have an impact on the analytical 
community and interest waned, with the result that publications 
devoted to information theory have been residual throughout the 21st 
century. Among them, perhaps a chapter in a new handbook focusing on 
the metrological foundations of analytical chemistry deserves to be 
highlighted [17]. In this regard, as far as the evaluation of analytical 
signals is concerned, the application of information theory has been 
underused in the past. Some examples can be found for use as a simi-
larity index between two signals [18–20]. Even specifically for the NMR 
spectrometry technique, the use of entropy has been proposed as a 
measure of the spectrum information but applied to the comparison 
(again, similarity analysis) [21], or as an alternative to the use of the 
Fourier transform for the reconstruction of spectra [14], which is known 
as Maximum Entropy Method [22]. Thus, none of them applied this 
metric as a way of assessing the quality of an analytical signal, which in 
the end is merely knowing how much information the signal provides.

In this regard, the present study aims to optimise the LF-NMR 
acquisition instrument settings employing Taguchi methodology to 
obtain high informative one-dimensional 1H and 13C LF-NMR spectra in 
the lowest possible run time. For this purpose, the case of study was the 
virgin olive oil (VOO), since the further purpose is to develop qualitative 
and quantitative multivariate analytical methods for non-targeted ap-
plications using fingerprinting methodology, focused on the quality and 
authenticity control of VOO by using LF-NMR. Additionally, a proposal 
based on information entropy is presented to a priori evaluate the in-
formation quality of an analytical signal, i.e. before the development of 
the analytical multivariate model/method from instrumental finger-
prints. It should be noted that this approach could be applied to different 
food matrices following the same steps that those presented in this 
study.

2. Measuring the spectral information: the entropy as a suitable 
information metric

When comparing two different signals acquired with the same 
analytical technique, it can be an easy task to decide visually which one 
has higher information quality. Consider, for example, two NMR spectra 
of the same sample, but acquired with different field (low and high). 
Undoubtedly, the spectrum acquired with HF-NMR will have a higher 
quality, as it provides more chemical information, simply because the 
signals are better resolved and therefore there is less overlap than in an 
LF-NMR spectrum (see Fig. S1a in supplementary material). However, 
this becomes a more difficult task if similar signals are compared, such 
as two signals acquired with the same instrument where only some in-
strument settings were changed. In such a situation, it would not be 
possible to decide visually the best analytical signal quality, as can be 
seen in Fig. S1b (supplementary material). All in all, it is a matter of 
answering the question: which analytical signal provides more infor-
mation? Therefore, the solution to this challenge could only be to find a 
way for measuring the amount of useful information available in an 
analytical signal.

In the field of analytical chemistry, when applying the fingerprinting 
approach, the common practice is to develop a multivariable model 
from the obtained analytical signals and then evaluate whether the 
model is fit-for-purpose. If the model is not valid for its purpose, it is due 
to the fact that the analytical signal is not sufficiently informative about 
the concerned target feature in the material under study (i.e., it is not a 
high-informative signal). Consequently, a different acquisition mode or 
type of signal must be considered, and the model must be redeveloped 
and revalidated. Ultimately, this is a tedious and time-consuming 

process. Therefore, the present study proposes to evaluate a priori the 
information quality of the signal and address this issue. This approach is 
applied for the first time to optimise an analytical signal.

2.1. Assessment of the information quality of the spectra: entropy

The information theory was adopted in the present study. Based on 
this theory, Shannon and Rényi entropies were proposed [13,23], and 
the calculation was adapted in this study to apply them to continuous 
signals. Thus, the information metrics were calculated following equa-
tions (1) and (2). 

HS(Y)= −
∑

i
pi ⋅log2pi (1) 

HR(Y)= − log2

(
∑

i
pi

2

)

(2) 

where HS and HR are the Shannon and Rényi entropies, respectively, of 
the analytical signal embedded in the vector of signal intensities (Y) 
constituted for n elements (or variables), each one symbolised by yi, and 
pi symbolises each intensity value constituting the vector Y after scaling 
by total sum normalisation (TSN) [24], i.e., pi values are calculated as 
follows: 

pi =
yi∑

i
yi

(3) 

Both strategies to calculate the information entropy were used in this 
study to compare the results. The values found for each signal (spec-
trum) obtained will be used as the response variable in the optimisation 
process. Note that the objective will be to minimise the entropy of the 
signal, which is equivalent to concluding that the signal has less un-
certainty, and therefore contains more useful information.

In order to make it easier for the reader understanding the usefulness 
of entropy as a metric of Information, let us show a basic example using a 
very simple signal which is shown in Fig. 1, where HS and HR calcula-
tions were applied (equations (1) and (2)). Note that in the top row of 
the figure the raw signals are shown and in the bottom row the 
respective signal after scaling by TSN. The most informative of the three 
signals is (c), which shows the lowest entropy values, both HS and HR. 
Signal (a) implies that the instrument responds continuously, regardless 
of the features or properties of the material under measurement. It is the 
one that shows the highest entropy, and therefore the lowest informa-
tion quality. This could be considered as the maximum entropy for a 
signal of n = 5 variables which does not provide useful information. 
While signal (b) provides information but lower than (c), and therefore 
results in an in-between entropy value.

The same calculation was applied to the NMR signals shown in 
Fig. S1a, acquired with low and high field. The HS values were 12.06 and 
10.62, and the HR values were 10.88 and 9.66, respectively for low and 
high field. With this it was proven that effectively for the signal with 
higher quality (HF-NMR) a lower entropy value is obtained, also ac-
cording with Belton [21].

3. Material and methods

3.1. Chemicals and samples

One marketed sample of virgin olive oil (VOO) was the material 
chosen to prepare the test portions and carried out the spectra 
acquisitions.

Non-deuterated bromoform 98 % provided by Panreac Quimica SLU 
(Barcelona, Spain) was used as the internal standard (IS). It should be 
noted that non-deuterated bromoform was used as IS instead of the 
common deuterated chloroform for several reasons. On the one hand, in 
order to develop a more economical analytical method based on LF- 
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NMR, non-deuterated solvents are preferred. On the other hand, bro-
moform is much less volatile than chloroform, so the material system to 
be measured becomes more stable than using chloroform. Another 
important issue when selecting a suitable IS for use in NMR is that it 
should provide a unique and very well-defined signal, and outside the 
spectral region due to the concerned material in study, in this case VOO. 
This had to be satisfied in the present study for both 1H and 13C NMR, 
and the non-deuterated bromoform met all these requirements, thus it 
was selected as the IS.

3.2. Experimental design: Taguchi methodology

Two experimental trials were performed to optimise the acquisition 
instrument conditions for 1H LF-NMR and for 13C LF-NMR spectra 
acquisition. Among all the instrument settings, 5 were selected as con-
trol factors for both trials due to their relevance in the responses to be 
optimised. These were: number of scans, scan delay, pulse angle, num-
ber of points and pre-scans (the last is known as dummy scans in NMR 
terminology, however, to avoid confusion with dummy factors in DoE, 
this term was avoided and replaced by pre-scans). The scan delay is also 
known as relaxation time or recovery delay. Note that, the number of 
points setting should not be confused with the number of variables 
contained in each acquired spectrum.

Taguchi methodology was chosen because two critical yet difficult- 
to-control factors during routine analysis were identified. In addition, 
as stated in the introduction, this methodology allows to generate a 
robust testing procedure to small variations on difficult-to-control fac-
tors and minimising at the same time the number of experimental runs to 
be performed, thus providing simplicity when performing an optimising 
study. On the one hand, the LF-NMR spectrometer to be used in the study 
is highly sensitive to temperature changes, and the allowable room 
temperature range is narrow, between 20 and 25 ◦C. Maintaining an 
accurate temperature in a research laboratory is already a difficult task. 
But it is even more difficult in a routine control laboratory, due to the 
continuous input and output of analysts and the availability of other 
instrumentation inside the room. On the other hand, the volumes to be 
introduced into standard NMR tubes are very small, usually around 700 
μL. Slight deviations in the sample volumes introduced into the tube 
results in variations in the height of the liquid inside the tube. This could 
affect the analytical signal intensity, since the magnetic field must be 
adjusted with a particular tube liquid height before starting the mea-
surements. Therefore, the possibility of generating a system robust to 
variations in these two factors was explored.

Hence, the difficult-to-control factors for both designs were the room 
temperature and the volume introduced into the tube. The experimental 
designs were performed at two levels. Table 1 shows the levels for each 
of the control factors and difficult-to-control factors for both trials (1H 
and 13C).

Taguchi methodology divides the experimental layout into two ar-
rays: an internal array for control factors and an external array for 
difficult-to-control factors. The combination of both gives rise to the 
crossed array [10]. Due to the number of control factors proposed for the 
experimental designs, an L16 design was chosen for the internal array 
and L4 for the external array following Taguchi’s terminology. These 
Taguchi designs correspond to 25− 1 and 22 factorial designs, respec-
tively. This experimental design is outlined in Fig. 2. The reader may 
refer to [12,25] for further information on this terminology and the 
designs proposed by Taguchi.

The analysis of the response(s) in the Taguchi methodology is per-
formed only on the internal array, while the external array is the one 
providing robustness (i.e., stability of the response against small changes 
in the process value of the difficult-to-control factors). That is, the 
external array consists of 4 replicates for each of the 16 runs of the in-
ternal array, and the combination of both internal and external arrays 
results in the 64 runs. For each replicate run only the levels of the 
difficult-to-control factors change. Table 2 shows the experimental 
layout for a Taguchi L16+L4 design from coded levels of the factors (1 
and 2) and two spectral responses: run time, t, and information entropy, 
H; this last used as a metric of the useful information in the spectrum.

Fig. 1. Calculation of the Shannon information entropy (HS) and Rényi information entropy (HR) of three simple signals (n = 5). Note that the figures below, i.e., 
signals represented in orange, correspond to the signals above (in blue) after applying the total sum normalisation. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article). TSN = Total sum normalisation; HS = Shannon entropy; HR = Rényi entropy.

Table 1 
Levels adopted by each one of the control factors and difficult-to-control factors 
for the optimisation of 1H and13C LF-NMR spectra acquisition settings applying 
the Taguchi methodology.

Level

Factors 1H LF-NMR DoE 13C LF-NMR DoE

Min Max Min Max

Control No scans 2 20 30 300
Scan delay (s) 2 20 2 20
Pulse angle (◦) 30 90 30 90
No points 1024 16384 1024 16384
Pre-scans 0 2 0 2

Difficult-to-control Room temp (◦C) 20 25 20 25
Sample vol (μL) 650 750 650 750

No: number; temp: temperature; vol: volume.
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The 4 responses from each replicate run are converted into a single 
response value, referred to in this study as robust response (RR). Several 
ways of calculating this value were proposed by Taguchi, being the 
signal-to-noise ratio (SNR) the best known, since it is the one that seeks 
robustness by minimising the variability caused by the difficult-to- 
control factors in the system [25].

Two robust responses were considered. Firstly, the variability 
defined by the 4 replicates from each run of the 16 internal array trials 
was calculated from the standard deviation (RRS). This robust response 
is aimed at verifying if the difficult-to-control factors affect to the 
pseudo-repeatability of each internal array run. The following step in-
volves the search for the optimal acquisition instrument conditions, 
being in this case to minimise the run time and information entropy. For 
this purpose, the Taguchi’s signal-to-noise ratio (RRSNR) (smaller the 
better) was used. Equations (4) and (5) show the calculation of each of 
these two ways of estimating the RR values for one response. 

RRS =

∑

i
(yi − y)2

n − 1
(4) 

RRSNR = − 10⋅log

⎛

⎝

∑

i
yi

2

n

⎞

⎠ (5) 

where yi is the value of the response of the i-th replicate of each run, y is 
the mean of the replicates per run, and n is the total number of replicates 
per run (in this study, n = 4).

3.3. LF-NMR measurements

3.3.1. Sample preparation
An aliquot of the VOO sample was mixed with non-deuterated bro-

moform in a 1:2 ratio (VOO:bromoform) within a 1.5 mL cylindrical 
plastic vial with a conical bottom (an Eppendorf tube). Since the volume 
to be introduced into the NMR tube is one of the difficult-to-control 
factors in this study, two 5-mm standard NMR tubes were carefully fil-
led with 650 μL and 750 μL, respectively, of the prepared VOO:bromo-
form solution.

3.3.2. LF-NMR spectra acquisition
LF-NMR spectra were acquired using a Nanalysis Benchtop 100PRO 

NMR Spectrometer (Nanalysis Corp., Calgary, Canada), which was 
equipped with an autosampler with a capacity of 25 tubes, operating at 
100 MHz 1H-frequency and 25.6 MHz 13C-frequency.

The runs to be carried out for each experimental trial were divided in 
two groups depending on the temperature to be set in the laboratory: 

Fig. 2. Taguchi L16+L4 design layout, which corresponds to a 25− 1 + 22 factorial designs, for the internal and external arrays respectively. Note that each cube is 
constructed for three factors, e.g., A, B and C. The inner and outer cubes denote the levels of the fourth factor (D), while each set of two cubes, left and right, is 
intended to identify the two levels of the fifth factor (E).

Table 2 
Experimental layout of the Taguchi design applied to LF-NMR signals acquisition.

Run Control factors Difficult-to-control factors Responses (Y)

A B C D E Temperature 1 2 1 2 Robust responses (RRY)

Volume 1 1 2 2

1 1 1 1 1 1  t1,1 H1,1 t1,2 H1,2 t1,3 H1,3 t1,4 H1,4 RRt1 RRH1

2 1 1 1 2 2  t2,1 H2,1 t2,2 H2,2 t2,3 H2,3 t2,4 H2,4 RRt2 RRH2

3 1 1 2 1 2  t3,1 H3,1 t3,2 H3,2 t3,3 H3,3 t3,4 H3,4 RRt3 RRH3

4 1 1 2 2 1  t4,1 H4,1 t4,2 H4,2 t4,3 H4,3 t4,4 H4,4 RRt4 RRH4

5 1 2 1 1 2  t5,1 H5,1 t5,2 H5,2 t5,3 H5,3 t5,4 H5,4 RRt5 RRH5

6 1 2 1 2 1  t6,1 H6,1 t6,2 H6,2 t6,3 H6,3 t6,4 H6,4 RRt6 RRH6

7 1 2 2 1 1  t7,1 H7,1 t7,2 H7,2 t7,3 H7,3 t7,4 H7,4 RRt7 RRH7

8 1 2 2 2 2  t8,1 H8,1 t8,2 H8,2 t8,3 H8,3 t8,4 H8,4 RRt8 RRH8

9 2 1 1 1 2  t9,1 H9,1 t9,2 H9,2 t9,3 H9,3 t9,4 H9,4 RRt9 RRH9

10 2 1 1 2 1  t10,1 H10,1 t10,2 H10,2 t10,3 H10,3 t10,4 H10,4 RRt10 RRH10

11 2 1 2 1 1  t11,1 H11,1 t11,2 H11,2 t11,3 H11,3 t11,4 H11,4 RRt11 RRH11

12 2 1 2 2 2  t12,1 H12,1 t12,2 H12,2 t12,3 H12,3 t12,4 H12,4 RRt12 RRH12

13 2 2 1 1 1  t13,1 H13,1 t13,2 H13,2 t13,3 H13,3 t13,4 H13,4 RRt13 RRH13

14 2 2 1 2 2  t14,1 H14,1 t14,2 H14,2 t14,3 H14,3 t14,4 H14,4 RRt14 RRH14

15 2 2 2 1 2  t15,1 H15,1 t15,2 H15,2 t15,3 H15,3 t15,4 H15,4 RRt15 RRH15

16 2 2 2 2 1  t16,1 H16,1 t16,2 H16,2 t16,3 H16,3 t16,4 H16,4 RRt16 RRH16

Control factors are: A = number of scans, B = scan delay, C = pulse angle, D = pre-scans, E = number of points.
Responses are: t = run time; H = information entropy; RR = robust response.
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20 ◦C and 25 ◦C, in order to have enough time to temper the room to the 
target temperature without disturbing the instrument stability.

For the 1H NMR spectra, the acquisition instrument settings that 
were not critical to be included as control factors in the experimental 
trials were set to: 20 ppm spectral width, 6 ppm spectral center and 
automatic receiver gain. While for the 13C NMR, the instrument settings 
were set to 240 ppm spectral width, 100 ppm spectral center, automatic 
receiver gain and decoupling mode active for 1H nucleus.

3.4. Data processing

Spectral data were exported in.dx format from the instrument, pro-
cessed in MestReNova (v14.2.0–26256, Mestrelab Research S.L., San-
tiago de Compostela, Spain) in order to carry out the phase and baseline 
correction, followed of a zero-filling to reach an spectral size of 2048 
variables for all the spectra. Then, these were exported as.csv file. The 
information entropy was estimated with an in-house function pro-
grammed in MATLAB (R2022a version, Mathworks Inc., Natick, MA, 
USA). Statgraphics Centurion XVIII software package (version 18.1.12, 
Statgraphics Technologies, Inc., Virginia, USA) was used for the data 
treatment and interpretation of the obtained responses from each 
experimental trial.

As stated in 3.2 section, the considered responses were run time and 
information entropy. The first one is provided by the instrument and was 
directly introduced in Statgraphics. While the information entropy, as 
stated, has been estimated from the application of information theory by 
applying equations (1) and (2) presented in section 2.1.

4. Results and discussion

4.1. Acquired 1H and 13C LF-NMR spectra

An example of the acquired 1H and 13C LF-NMR spectra is shown in 
Fig. 3. The highest peak in both spectra corresponds to the peak of the 
non-deuterated bromoform (IS), while the rest of the peaks correspond 
to the VOO fingerprint. The IS signal is found at approximately 6.9 ppm 
in the 1H NMR spectrum and approximately 11 ppm in the 13C NMR 
spectrum. It should be noted that non-deuterated bromoform is usually 
stabilised in ethanol. Therefore, it is possible to see the ethanol 
quadruplet signal in the 1H NMR spectrum at approximately 3.8 ppm. 
However, as this signature will be present in all acquired spectra, this 
will not be significant when chemometrics is applied to develop a 
multivariate model of classification or quantification from instrumental 
fingerprints.

The main characteristic peaks of the VOO can be seen in the 1H LF- 
NMR spectrum (Fig. 3a), such as the highest one at around 1.2 ppm 
related to acyl chains. Despite the lower resolution compared to the 
conventional HF-NMR spectra, it is possible to assign small signals to 
other compounds, such as the peak around 0.85 ppm to fatty acids 

present in olive oil except linolenic, peaks between 2 and 2.8 ppm to 
unsaturated fatty acids such us linolenic and linoleic, or the small peaks 
around 4.2 and 5.15 ppm usually attributed to glycerol skeleton from 
triacylglycerols [26,27].

Regarding the VOO 13C LF-NMR spectrum, all the characteristic 
peaks usually found in conventional HF-NMR, regarding those reported 
in the literature, can be observed in Fig. 3b. The first isolated peak 
appearing around almost 180 ppm, and those peaks at 70 and 75 ppm 
can be attributed to triacylglycerols, while those between 130 and 140 
ppm to unsaturated fatty acids. The rest of the peaks located between 10 
and 40 ppm use to be assigned to carbons forming acyl chains [26,28].

4.2. Optimisation of acquisition instrument settings for 1H NMR spectra

Upon completing the experimental part of the study, 64 1H LF-NMR 
spectra were acquired. Fig. S2a (supplementary material) shows 16 raw 
spectra, which were acquired with the different combinations of the 5 
control factors shown in Table 2. As explained, these 16 runs were 
performed in quadruplicate by changing the levels of the two difficult- 
to-control factors, room temperature and tube volume. It is worth 
mentioning the results of runs 4 and 11 where shifted spectra are 
observed in comparison with the others (see Fig. 4, where runs 3 and 12 
are also shown for visual comparison). Probably, bromoform did not 
have enough time to relax after the pulse and the signal collected from 
the IS had a lower intensity than the highest peak of the VOO. This led 
the instrument to recognise the latter signal as that of bromoform, 
completely shifting the entire spectrum, since the highest peak of VOO is 
usually at about 1.5 ppm and the instrument placed it at 6.9 ppm, which 
is the usual chemical shift of bromoform. This occurred in all four rep-
licates of both runs. Since the purpose is to obtain high informative 
signals, using bromoform as the IS (hence as the highest peak of the 
spectrum), these spectra were considered to be of very low quality for 
the intended purpose.

As some spectra were acquired with 1024 points and others with 
16384 points, they were processed in MestReNova so that all spectra had 
the same number of variables (2048). This was necessary to evaluate the 
amount of information present by calculating the information entropy, 
since a lower or higher number of variables affects this result [21]. 
However, this is already part of one of the factors to be controlled 
(number of points) and it would be redundant to study this variable as 
part of the response and that is why the number of variables of all the 
spectra has been equalised.

After signal processing, the spectra were trimmed to include only the 
instrumental fingerprint of the VOO for the calculation of the informa-
tion entropy. Finally, signals of 513 variables in the range 0.5–5.5 ppm 
were obtained. After that, the spectra were TSN scaled, and the infor-
mation entropies were calculated. The values of the HS and HR are 
shown in Table S1 (supplementary material). The maximum information 
entropy was assigned to the low-quality spectra (runs 4 and 11), 

Fig. 3. Acquired (a) 1H and (b) 13C LF-NMR spectra of the VOO:bromoform test solutions.

A. Arroyo-Cerezo et al.                                                                                                                                                                                                                        Analytica Chimica Acta 1332 (2024) 343350 

6 



calculated as the logarithm of the number of variables [15]. Meanwhile, 
for the response run time, the minimum value was 10.3 s, and the 
maximum value was 11 min and 20 s.

Next, the variability (RRS) and SNR (RRSNR) robust responses were 
studied individually. A 2nd grade polynomial model was fitted which 
included the interaction and linear terms, and after excluding the non- 
significant interactions (P-value <0.05), the Pareto charts shown in 
Fig. S3 (supplementary material) were obtained.

If only the RRS robust responses are examined, all five control factors 
seem to produce variability in the Shannon entropy response. On the 
contrary, only number of points and number of scans factors had sig-
nificant effect on the Rényi entropy, together with the same interactions 
that were significant for Shannon entropy. However, only two factors 
(number of scans and pulse angle) have such a significant effect over run 
time response.

On the other hand, analysing the results from RRSNR, it was observed 
that the control factors generated opposite behaviours in the responses. 
That is, for example, as expected, increasing the scan delay and the 
number of points increased the run times and decreased the information 
entropies, resulting in an increase of signal information quality. Note 
that by using the RRSNR, the optimisation goal (minimising, in this case) 
is already implicit. Therefore, the higher the value of RRSNR, the closer 
the response (time or entropy) is to the minimum. This means that the 
optimal value of each factor will be opposite for each response. This 
made it necessary to perform a second step: a multiple response analysis 
based on the desirability function [29], to find the optimal value of each 
factor that satisfies the optimality of both responses.

The RRSNR Pareto charts for the information entropy response show 
that the most significant effect is caused by the interactions rather than 
by the individual factors. But even more striking is that one of the in-
teractions includes the pre-scans factor whose effect was not found to be 
significant. This uncommon outcome in experimental design analysis 
could be justified by looking at the results of 2 of the 16 runs. These are 
those already discussed above (see the spectra of runs 4 and 11 in Fig. 4), 
which were given the maximum information entropy value (Table S1 in 

supplementary material). This reveals that a combination of 2 s scan 
delay, 90◦ pulse angle and 1024 number of points is not adequate to 
provide 1H LF-NMR VOO sufficiently informative signals for the inten-
ded purpose.

Two of the five control factors had a significant effect on both re-
sponses (run time and information entropy): the scan delay and the 
number of points. While the other three control factors only showed a 
significant effect on one of the two responses. This led the multiple 
response analysis to focus on optimising the control factors that signif-
icantly affected both responses (scan delay and number of points). The 
rest of the factors were set to the optimum level obtained to optimise the 
response where it was found to be a significant factor. These were as 
follows: pulse angle: 30◦, pre-scans: 0, and number of scans: 2.

The estimated time-HS and time-HR response surfaces were obtained 
(see Fig. 5a and c, respectively). There is a sharp drop in the desirability 
function and a plane where the desirability is 0 as the value of both 
control factors increases. This is mainly because the increase in both 
factors leads to a drastic increase in the run time of the 1H LF-NMR 
spectra. However, this change is not as abrupt on the information en-
tropy. Nevertheless, there is a factor region where the desirability 
function approaches the optimal value (1).

By plotting the surface contours, the model identifies the minimum 
levels of both factors as the optimal point (see Fig. 5b and d): specif-
ically, 2 s of scan delay and 1024 points. This configuration maintains 
the desirability above 0.9 when using HS as the signal information 
metric, and nearly at 1.0 when using HR. However, it is known that 
bromoform (IS) requires sufficient time to relax after receiving the pulse. 
The authors demonstrated that this condition affects the peak intensity, 
as 2 s was an insufficient scan delay time. This is evident in 2 of the 16 
spectra shown in Fig. 4, as previously mentioned. Therefore, it was 
decided to increase the scan delay value to 6 s. This is shown in Fig. 5b 
and d with a red circle, where the desirability remains above 0.8.

Therefore, finally the optimal acquisition settings for 1H LF-NMR 
spectra were: 2 scans, 6 s scan delay, 30◦ pulse angle, 1024 number of 
points and 0 pre-scans. This yielded a run time of 15 s per spectrum.

Fig. 4. 1H LF-NMR acquired spectra from runs 3, 4, 10 and 11 (see the combination of control factors in Table 2). Note that spectra from 4 to 11 are shifted with 
respect to the others.
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4.3. Optimisation of acquisition instrument settings for 13C NMR spectra

The 64 acquired 13C LF-NMR spectra (shown in Fig. S2b) were also 
processed in MestReNova to ensure consistence in the number of vari-
ables (2048). After that, the spectra were trimmed to include only the 
instrumental fingerprint of the VOO, thus removing the IS signal. This 
resulted in spectra in the 18–180 ppm range contained in vectors of 
1348 variables. As in the previous section for 1H LF-NMR, the 13C LF- 
NMR spectra were TSN scaled and the information entropies, HS and 
HR, were calculated. They are shown in Table S2 (supplementary ma-
terial). For these set of spectra, the minimum run time was approxi-
mately 2.5 min, and the maximum was more than 2 h (129 min).

The same data analysis sequence as in the previous section was 
conducted. First, the influence of the control factors on the two re-
sponses was studied separately using RRS and RRSNR again assuming a 
2nd-degree polynomial model, consisting only of the linear terms and 
the 2nd-order interactions. After excluding non-significant interactions, 
the Pareto charts shown in Fig. S4 (supplementary material) were 
obtained.

Regarding RRS study, all the factors affected the between-replicate 
variability of the run time. In the case of the information entropy 
response, different factors were significant when comparing HS and HR. 
Specifically, pulse angle, number of scans, and scan delay were signifi-
cant for HS, while, surprisingly, only the interactions showed a signifi-
cant effect on between-replicate variability for HR. Note that to be 
considered significant effect the P-value should be below 0.05. However, 
it can be considered doubtful up to a P-value limit below 0.20. In the RRS 
results for the study of information entropy using Rényi’s entropy, the 
scan delay, pulse angle and pre-scans factors were found to be below 
0.20 (specifically the P-value was 0.17, 0.08 and 0.16 respectively). 
Therefore, they are within the limit of doubtfulness and could be 
considered significant.

The data analysis from RRSNR yielded similar results to the previous 
1H LF-NMR trial. That is, opposite behaviours were observed in some 
control factors on the responses, such as the number of scans and the 
scan delay. In addition, the effect of the number of scans was significant 

in both cases, which led again to perform the next step: multiple 
response analysis, to find the optimal point that satisfies the optimisa-
tion of both responses.

It should be noted that for the pulse angle, the effect was opposite to 
the one found for 1H LF-NMR trial. The result indicates that the optimum 
level of this instrument setting is the minimum, 30◦, for the acquisition 
of 1H LF-NMR signals and the maximum, 90◦, for 13C LF-NMR. This is in 
some agreement with the scientific literature, as although it is common 
to use a 90◦ pulse for 1H NMR spectra acquisition, occasionally a 30◦

pulse has been applied [1,30].
Next, it was decided to study simultaneously the factors of scan delay 

and number of scans. The other factors were set to the optimum value 
obtained for the response where their effect was significant: pulse angle 
at 90◦, pre-scans at 0 and number of points at 1024. Fig. 6 shows the 
results of the multiple response analysis, both the estimated response 
surfaces and the contours.

The observed results are very similar to the one found for 1H LF-NMR 
trial. The sharp drop of the desirability function is observed as the values 
of the two factors concerned increase. The experimental region where 
the desirability reaches unity is smaller in this case, and much larger the 
area where the desirability is 0. The optimum point predicted by the 
model (see Fig. 6b and d) is at the minimum level studied for both 
control factors, i.e., 30 scans and 2 s of scan delay. At this point, the 
desirability remains well above 0.9, being 1.0 in the study of signal 
quality by HS (Figs. 6b) and 0.99 by HR (Fig. 6d). On this occasion, 
unlike in the previous section, the decision made was to accept the op-
timum point offered by the model and not to increase the scan delay. 
This is because the 13C LF-NMR signal of the IS is not affected by a lower 
scan delay.

Therefore, the resulting values after optimisation of the instrument 
conditions for 13C LF-NMR signal acquisition were: 30 scans, 2 s of scan 
delay, 90◦ pulse angle, 1024 number of points and 0 pre-scans. This 
combination of instrument settings resulted in a run time per spectrum 
of approximately 2.5 min.

Fig. 5. Response surfaces estimated from multiple response analysis (desirability function) for 1H LF-NMR signal acquisition optimisation for run time and infor-
mation entropies: (a) Shannon entropy and (c) Rényi entropy responses, and their respective contours (b) and (d).
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4.4. Evaluation of the difficult-to-control factors influence

Finally, the effect of difficult-to-control factors on responses was 
independently examined and the experimental design was analysed 
applying the crossed array option which is provided by the software. To 
this end, it is not necessary to calculate the robust responses values, but 
all the runs of the internal and external matrix, i.e., all 64 runs, are 
jointly studied. After excluding non-significant interactions, the Pareto 
charts were obtained (Fig. S5, supplementary material).

Regarding the 1H LF-NMR trial, it is observed that the volume to be 
introduced into the tube had a significant effect (P-value <0.05) on the 
run time response, while the room temperature was not significant, 
although it lies in the doubtfulness interval since the P-value for this 
factor was 0.14. In contrast, temperature did have a significant effect on 
the information entropy response by HS (P-value <0.05) and very close 
to the limit of significance for HR (P-value = 0.06). While the tube 
volume factor was not significant for this response (P-value >0.2).

Different findings were observed for the optimisation of 13C LF-NMR 
signals. In this case, neither of the two difficult-to-control factors caused 
a significant or noticeable effect on the run time response. This indicates 
that slight fluctuations in room temperature and tube volume are not as 
critical for the acquisition of 13C LF-NMR signals (P-values were 0.55 
and 0.71, respectively). In contrast, these two difficult-to-control factors 
had a significant effect on the information quality estimated through the 
HR calculation (P-value <0.05). However, only the volume showed a 
significant effect for information quality through HS (P-value <0.05), 
while for room temperature, the P-value was >0.2. The results from both 
trials confirm the initial hypothesis that the two difficult-to-control 
factors could be critical for the acquisition of high-informative LF- 
NMR signals.

In addition, another noteworthy conclusion is the difference seen in 
the latter stage between the HS and HR results. Generally, throughout 
this study, no other relevant differences were observed between both, 
and similar results and conclusions were drawn. In line with other 

sciences where Rényi entropy is applied, certainly using the latter it is 
possible to see differences related to the probability of an event occur-
ring [23]. In fact, the variability found in the present study between all 
HS with respect to all HR calculated for the same signals, expressed in 
terms of relative standard deviation, was 9.7 % and 17.9 % in HS and HR, 
respectively, for 1H LF-NMR signals, and 4.3 % and 10.1 % for 13C NMR 
signals (as shown in supplementary material, Tables S1 and S2).

5. Final remarks

This study describes how the acquisition instrument conditions of LF- 
NMR signals, both 1H and 13C, can be determined to ensure the highest 
informational quality in the shortest possible run time. By using the 
Taguchi methodology, the acquisition settings have been optimised to 
obtain a robust combination when faced with variations in two factors 
considered critical but difficult-to-control. Therefore, within the ranges 
studied for room temperature and small deviations of volume in the 
NMR-standard tube not exceeding 22.5 ± 2.5 ◦C and 700 ± 50 μL 
respectively, it is possible to effectively acquire 1H and 13C LF-NMR high 
informative spectra of virgin olive oils. Thus, these can be used as 
instrumental fingerprints in the development of new rapid and non- 
destructive analytical methods based on a fingerprinting approach.

In addition, a secondary objective was to propose a way to a priori 
assess the fit-for-purpose of an analytical signal, an unresolved challenge 
in current analytical chemistry that would save considerable experi-
mental time when developing new non-targeted analytical methods 
based on instrumental fingerprints. The proposal based on information 
theory and the calculation of the information entropy, after applying it 
in the present study, has proved to be of great potential for the desired 
purpose: to quantify the information of the analytical signal, and ulti-
mately select which analytical signal is likely to lead to better qualitative 
or quantitative prediction models.

Fig. 6. Response surfaces estimated from multiple response analysis (desirability function) for 13C LF-NMR signal acquisition optimisation for run time and in-
formation entropies: (a) Shannon entropy and (c) Rényi entropy responses, and their respective contours (b) and (d). Note that the abscissa axis of contours (b) and 
(d) have been cropped for better visualisation of the optimum points.
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