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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

- Marie Curie



Summary

Cancer, especially lung cancer—the leading cause of deaths related to this dis-
ease—highlights the limitations of traditional tissue biopsies which are invasive
and cannot continuously monitor tumour evolution. This emphasises the need for
less invasive and more dynamic diagnostic methods. Liquid biopsy, using bodily
fluids to detect molecular changes, offers a less invasive alternative, enabling the
exploration of diverse biosources for early detection, diagnosis, and disease mon-
itoring. While advances in gene expression technologies like Second and Third
Generation Sequencing and NanoString have enhanced our understanding of tu-
mour biology, the full potential of liquid biopsy has yet to be realised. Further
development in bioinformatics and machine learning is necessary to harness liq-
uid biopsy’s capabilities for personalised cancer management, bridging the gap
between innovative gene expression technologies and clinical application.

As part of the European Liquid Biopsy Academy (ELBA) Innovative Training
Network consortium, this thesis contributes to the collective mission of enhancing
cancer diagnostics. Various projects within ELBA employ diverse technologies
with the shared goal of improving cancer diagnosis through liquid or tissue biopsy.
Specifically, this thesis aims to thoroughly address three primary goals: first, de-
veloping a novel method called Ensemble Learning for Liquid Biopsy Analysis
(ELLBA) for analysing liquid biopsy RNA sequencing data; second, using Ox-
ford Nanopore Technologies’ direct RNA sequencing for tissue biopsy of non-small
cell lung cancer to identify prognostic biomarkers, by means of a new pipeline
named ‘DRseeker’; and third, creating ‘NanoInsights’, a comprehensive solution
for NanoString nCounter technology that integrates advanced bioinformatics and
machine learning to improve data analysis.
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In pursuit of our first aim to advance liquid biopsy-based transcriptomics, we
introduced a new methodology called Ensemble Learning for Liquid Biopsy Anal-
ysis (ELLBA). Our hypothesis posited that extracting discriminative molecular
features from Second Generation Sequencing liquid biopsy-based RNA-Seq data
could improve cancer predictions. ELLBA integrates six biofeature types—gene
expression, isoform expression, Fraction of Canonical Transcript, gene fusion, RNA
editing, and Single Nucleotide Variants—enabling comprehensive molecular char-
acteristic capture in cancer diagnostics. Utilising intra-sample CPM normalisation
and standard ensemble classification methods, ELLBA outperforms traditional
gene expression analysis in predictive accuracy. Rigorously assessed across di-
verse datasets and biosources, ELLBA consistently showed superior performance
through integrated biofeature data analysis via ensemble classification.

Regarding the second aim, the emergence of Third Generation Sequencing, par-
ticularly Oxford Nanopore Technologies’ direct RNA sequencing (DRS) protocol,
presents notable strides in cancer transcriptomics. DRS facilitates the capture
of complete transcript lengths in their native state, offering insights into various
aspects of the transcriptome. To fully harness the potential of DRS research, a
tailored bioinformatics pipeline named ‘DRseeker’ was created for comprehensive
transcriptomic analysis. In its application to a lung cancer dataset, DRseeker facil-
itated the identification of significant shifts in transcript expression, the discovery
of novel transcripts, and the detection of alterations in crucial genes. Moreover,
the examination of polyadenylation variations and epitranscriptomic changes, such
as methylation, illuminated intricate regulatory mechanisms within cancer cells.

Finally, the NanoString nCounter system represents a significant technological
advancement in transcriptomics, particularly useful in translational research and
clinical applications. This system offers numerous advantages and can play an
important role in various applications, including liquid biopsy. However, it intro-
duces new challenges in data analysis, such as normalisation and interpretation.
To tackle these challenges, the ‘NanoInsights’ web service was developed, inte-
grating bioinformatics and machine learning to enhance NanoString data analysis.
Featuring a user-friendly interface, extensive quality control, multiple normalisa-
tion methods, gene enrichment analysis, and diverse machine learning approaches,
NanoInsights caters to researchers of all expertise levels, offering a comprehensive
solution for interpreting complex datasets.



The integration of liquid biopsy, cutting-edge gene expression technologies, inno-
vative bioinformatics, and state-of-the-art machine learning algorithms represents
a transformative leap in cancer diagnostics. This convergence not only enriches
our comprehension of cancer’s molecular intricacies but also lays the groundwork
for early detection and diagnosis. Ultimately, it opens new avenues for person-
alised medicine and targeted therapies, promising more effective treatments and
improved patient outcomes.

Key Words: bioinformatics, machine learning, lung cancer, liquid biopsy, tran-
scriptomics, liquid biopsy-based RNA-Seq, direct RNA sequencing, NanoString
nCounter



Resumen

El cáncer, especialmente el cáncer de pulmón, que es la principal causa de muertes
relacionadas con esta enfermedad, resalta las limitaciones de las biopsias de tejido
tradicionales, pues resultan invasivas y no pueden monitorear continuamente la
evolución del tumor. Así, es evidente la necesidad de métodos diagnósticos menos
invasivos y más dinámicos. La biopsia líquida, que utiliza fluidos corporales para
detectar cambios moleculares, ofrece una alternativa que incluye las características
anteriores, permitiendo la exploración de diversas fuentes biológicas para la detec-
ción temprana, diagnóstico y seguimiento de la enfermedad. Aunque los avances en
tecnologías de expresión génica, como la Secuenciación de Segunda y Tercera Gen-
eración y NanoString, han mejorado nuestra comprensión de la biología tumoral,
aún no hemos alcanzado el potencial completo de la biopsia líquida. Se requiere
un mayor desarrollo en bioinformática y aprendizaje automático para aprovechar
plenamente las capacidades de la biopsia líquida en la gestión personalizada del
cáncer, cerrando la brecha entre las tecnologías innovadoras de expresión génica y
su aplicación clínica.

Como parte del consorcio de la Academia Europea de Biopsia Líquida (en inglés
European Liquid Biopsy Academy o ELBA), esta tesis contribuye a la misión
colectiva de mejorar el diagnóstico del cáncer. Varios proyectos dentro de ELBA
emplean diversas tecnologías con el objetivo compartido de mejorar el diagnóstico
del cáncer mediante biopsias líquidas o de tejido. Específicamente, esta tesis tiene
como objetivo abordar de manera exhaustiva tres metas principales: primero,
desarrollar un nuevo método llamado Aprendizaje del Conjunto para el Análisis
de Biopsias Líquidas de Biopsias Líquidas para analizar datos de secuenciación de
ARN de biopsias líquidas; segundo, utilizar la secuenciación directa de ARN de
Oxford Nanopore Technologies para la biopsia de tejido del cáncer de pulmón de
células no pequeñas para identificar biomarcadores pronósticos, mediante un nuevo
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pipeline llamado ’DRseeker’; y tercero, crear ’NanoInsights’, una solución integral
para la tecnología NanoString nCounter que integra bioinformática avanzada y
aprendizaje automático para mejorar el análisis de datos.

En busca de nuestro primer objetivo de avanzar en la transcriptómica basada
en biopsia líquida, introdujimos una nueva metodología denominada Aprendizaje
del Conjunto para el Análisis de Biopsias Líquidas de Biopsia Líquida (Ensemble
Learning for Liquid Biopsy Analysis o ELLBA, por sus siglas en inglés). Nuestra
hipótesis postulaba que la extracción de características moleculares discriminati-
vas de los datos de RNA-Seq de biopsia líquida de secuenciación de segunda gen-
eración podría mejorar las predicciones de cáncer. ELLBA integra seis tipos de
biomarcadores: expresión génica, expresión de isoformas, Fracción de Transcrito
Canónico, fusión de genes, edición de ARN y Variantes de Nucleótido Único, per-
mitiendo la captura integral de características moleculares en el diagnóstico del
cáncer. Utilizando la normalización CPM intra-muestra y métodos estándar de
clasificación de conjuntos, ELLBA supera el análisis tradicional de expresión génica
en precisión predictiva. Evaluado rigurosamente en diversos conjuntos de datos
y biofuentes, ELLBA mostró un rendimiento consistentemente superior a través
del análisis integrado de datos de biomarcadores mediante clasificación combinada
(tipo ensemble).

En cuanto al segundo objetivo, la aparición de la secuenciación de tercera gen-
eración, en particular el protocolo de secuenciación directa de ARN (en inglés
direct RNA sequencing o DRS) de Oxford Nanopore Technologies, representa
avances notables en la transcriptómica del cáncer. El DRS facilita la captura de
longitudes completas de transcriptos en su estado nativo, ofreciendo información
sobre diversos aspectos del transcriptoma. Para aprovechar al máximo el poten-
cial de los avances que permite el uso de DRS, se creó una pipeline bioinformática
específica denominada "DRseeker" para el análisis transcriptómico integral. En su
aplicación a un conjunto de datos de cáncer de pulmón, DRseeker facilitó la identi-
ficación de cambios significativos en la expresión de transcriptos, el descubrimiento
de nuevos transcriptos y la detección de alteraciones en genes cruciales. Además,
el examen de las variaciones de poliadenilación y los cambios eptranscriptómicos,
como la metilación, permitió elucidar mecanismos regulatorios intrincados dentro
de las células cancerosas.

Finalmente, el sistema NanoString nCounter representa un avance tecnológico sig-
nificativo en transcriptómica, particularmente útil en la investigación traslacional



y las aplicaciones clínicas. Este sistema ofrece numerosas ventajas y puede desem-
peñar un papel importante en diversas aplicaciones, incluida la biopsia líquida.
Sin embargo, introduce nuevos desafíos en el análisis de datos, como la normal-
ización e interpretación. Para abordar estos desafíos, se desarrolló el servicio web
"NanoInsights", que integra bioinformática y aprendizaje automático para mejo-
rar el análisis de datos de NanoString. Con una interfaz de usuario amigable,
control de calidad exhaustivo, múltiples métodos de normalización, análisis de
enriquecimiento de genes y diversos enfoques de aprendizaje automático, NanoIn-
sights atiende a investigadores de todos los niveles de experiencia, ofreciendo una
solución integral para interpretar conjuntos de datos complejos.

La integración de la biopsia líquida, las tecnologías de expresión génica de van-
guardia, la bioinformática innovadora y los algoritmos de aprendizaje automático
de última generación representa un salto transformador en el diagnóstico del
cáncer. Esta convergencia no solo enriquece nuestra comprensión de las compleji-
dades moleculares del cáncer, sino que también sienta las bases para la detección y
el diagnóstico tempranos. En última instancia, abre nuevas vías para la medicina
personalizada y las terapias dirigidas, lo que promete tratamientos más efectivos
y mejores resultados para los pacientes.

Palabras clave: bioinformática, aprendizaje automático, cáncer de pulmón, biop-
sia líquida, transcriptómica, secuenciación de ARN basada en biopsia líquida, se-
cuenciación directa de ARN, NanoString nCounter
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sues, noting the percentage of variance explained by the first prin-
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5.9 Comparative Heatmap of Methylation Rates in Cancer vs
Non-Transformed samples. This heatmap displays varying methy-
lation rates across a spectrum of tumour-suppressive and onco-
genic genes related to lung cancer, comparing cancerous to non-
transformed samples. Each horizontal band represents a sample,
with upper bands for cancer and lower for non-transformed sam-
ples; vertical bands correspond to different genes. Colour gradients
from dark green to bright orange reflect methylation rates, with
darker tones indicating higher methylation. Genes marked with
asterisks below the heatmap show significant methylation differences.119



List of Figures xxi

6.1 Detailed Flowchart of the NanoInsights Analytical Process.
The figure presents an eight-stage progression through NanoInsights’
analytical platform. The initial phase (Stage 1) involves the collec-
tion of .RCC files and the associated clinical data. In Stage 2, this
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ated, with an option to customise or utilise default parameters. Pre-
processing, quality control, and exploratory analysis define Stage 3,
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gene or sample filters based on earlier parameter settings. Normal-
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to explore the analysis findings and facilitating the download of the
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lected features. (F) A ROC plot provides a comparative overview of
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1 ELBA Methodology Integration into Clinical Screening.
This schematic illustrates the integration of the ELBA method-
ology into the route clinical screening process. When an individual
undergoes regular screening at a healthcare facility, a blood sam-
ple is collected, and one of the blood-based biosources is extracted.
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script models; Incomplete splice match (ISM) transcripts (green)
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5 Transcript Type Composition Across Samples. The bar plot
summarises the transcript composition for non-transformed and
cancer samples based on the reference genome annotation and TALON
analysis. It displays the proportion of reads categorised as protein-
coding, non-coding RNAs (ncRNAs), long non-coding RNAs (lncR-
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Chapter 1

Introduction

This Chapter sets the groundwork for the thesis by underscoring the critical neces-
sity of progressing in cancer diagnostic techniques, emphasising lung cancer due
to its high mortality rate. It navigates the reader from the existing diagnostic
methodologies to the emergent realms of biopsy and the integration of sequencing
technologies into oncological research. Additionally, it acquaints the reader with
key concepts in bioinformatics and machine learning, essential for understanding
the forthcoming content of the thesis. Concluding the chapter is a synopsis of each
subsequent chapter.

1.1 The Global Cancer Landscape

Cancer presents a significant health challenge, manifesting as a complex disease
with a diverse array of pathologies that disrupt the normal function of cells. In
2020 alone, an estimated 19.3 million new cases were diagnosed globally, marking
a 2.9% increase from 2018 and underscoring the persistent and escalating burden
of cancer. The Global Cancer Observatory (GCO) further reports a distressing
10.0 million cancer-related deaths in 2020, reflecting a somber 10.6% mortality
rate [1].

As per the Global Cancer Statistics (GLOBOCAN 2020) estimates, female breast
cancer has surpassed lung cancer and now holds the top position as the most
commonly diagnosed cancer, accounting for an estimated 2.3 million new cases
(11.7%). Lung cancer closely follows with 11.4%, while colorectal, prostate, and

1
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stomach cancers constitute 10.0%, 7.3%, and 5.6%, respectively (Figure 1.1). De-
spite this shift, lung cancer maintains its unfortunate status as the leading cause
of cancer-related deaths, claiming approximately 1.8 million lives (18%). Colorec-
tal, liver, stomach, and female breast cancers follow, with mortality rates of 9.4%,
8.3%, 7.7%, and 6.9%, respectively [2].

Figure 1.1: Worldwide Cancer Case Estimates in 2020 by Globocan.
Estimated global cancer occurrences for 2020, covering individuals of every gen-

der and age group across all continents.

Globally, it is anticipated that there will be approximately 28.4 million new cases
of cancer in 2040, marking a substantial 47% surge compared to the recorded
19.3 million cases in 2020 [1]. Addressing these imbalances and enhancing cancer
outcomes necessitates substantial research efforts. There is a crucial requirement
for the advancement of methodologies focusing on early diagnosis, prevention, and
treatment.
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1.1.1 Understanding Cancer

Cancer, a diverse and complex group of diseases, manifests in various forms, im-
pacting nearly every organ and tissue in the human body. It is a genetic disease
and arises from the uncontrolled growth and division of cells, resulting in the for-
mation of tumours that can invade surrounding tissues and metastasise to other
parts of the body [3]. This intricate process involves a disruption in the nor-
mal regulatory mechanisms governing cell growth and apoptosis (programmed cell
death) [4].

Despite considerable progress in cancer research, the exact causes of many cancers
are still not fully understood. Factors such as genetic predisposition, exposure
to environmental carcinogens, and lifestyle choices collectively influence cancer
development, highlighting the disease’s complexity [5]. This intricate interplay
of factors poses significant challenges to both the understanding and treatment
of cancer. These diverse elements interfere with the cellular signalling pathways
essential for maintaining cellular balance, further complicating cancer’s nature [6].

Tumour outcomes exhibit significant variation, ranging from benign growths to
aggressive and life-threatening malignancies. Precancerous and early-stage le-
sions also demonstrate diverse biological features, spanning from favourable to
unfavourable outcomes, with potential for malignant transformation. Conversely,
advanced cancers often present with unfavourable (sub)clones, posing greater chal-
lenges for treatment. Early detection plays a crucial role in improving outcomes by
enabling timely intervention. Nevertheless, certain cancers may progress silently,
underscoring the importance of regular screenings and heightened awareness [7].

The complexity of cancer stems not only from diverse origins involving different cell
types, but also from distinct molecular and cellular processes driving its progres-
sion [8]. Different cancer types exhibit unique characteristics, response patterns,
and diagnostic and treatment challenges [9], [10]. This intricate understanding
sets the stage for exploring the subsequent aspect of cancer care, delving into the
classification and description of cancer stages, a crucial step in guiding treatment
decisions and predicting patient prognosis [11].
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1.1.2 Cancer MicroEnvironment

The tumour microenvironment (TME) is a dynamic and intricate ecosystem sur-
rounding cancer cells, comprising cellular and non-cellular components (Figure
1.2). This intricate network not only supports tumour growth and invasion but
also facilitates immune evasion, angiogenesis, and resistance to treatments, con-
tributing to a poor prognosis. The TME’s complexity is further amplified by
the ongoing interactions within it; cancer cells manipulate the microenvironment
to promote angiogenesis and immune tolerance, while immune cells can influence
the tumour’s growth dynamics [12]–[15]. This constant evolution underscores the
challenges and opportunities in targeting the TME for cancer therapy [16].

Figure 1.2: Illustration of the Tumour Microenvironment. The figure
provides a comprehensive depiction of the TME, capturing both the transformed
tumour cells and the non-transformed cells that constitute the intricate tumour
landscape. Adapted from the work of Belli, Antonarelli, Repetto, et al. 2022,

originally published in Cancers [17].

At the core of the tumour microenvironment lies the transformed tissue, where
cancer cells undergo uncontrolled proliferation and evade the normal regulatory
mechanisms that govern cellular behaviour. Genetic mutations and epigenetic
changes drive the transformation, leading to the hallmark characteristics of can-
cer, such as sustained angiogenesis, resistance to cell death, and the ability to
invade surrounding tissues. The transformed tissue becomes a nexus for intricate
signalling pathways and interactions that shape the TME [13]. Moreover, the
development of the tumour entails sophisticated interactions with various compo-
nents of the blood microenvironment.

Surrounding the transformed tissue, non-transformed stromal cells, including fi-
broblasts, immune cells, and endothelial cells, actively participate in the tumour
microenvironment. Fibroblasts contribute to the formation of the extracellular
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matrix (ECM) and facilitate tumour cell invasion [18]. Immune cells, both infil-
trating immune cells and those residing in lymphoid organs, engage in a dynamic
interplay with cancer cells, impacting the balance between tumour promotion and
suppression [19]. Endothelial cells play a crucial role in angiogenesis, ensuring the
tumour receives a sufficient blood supply for sustained growth [20].

1.1.3 Overview of Lung Cancer

Lung cancer is marked by uncontrolled cell growth in the lungs, making it the
primary contributor to global cancer-related deaths. The histological examina-
tion’s morphological subclassification of lung cancer historically recognised two
distinct subtypes: small cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC), each exhibiting markedly different clinical characteristics [21]. NSCLC
further undergoes subdivision based on pathological criteria, encompassing broad
categories such as adenocarcinoma, squamous cell carcinoma, and other histolog-
ical subtypes like large cell carcinoma (Figure 1.3). According to the American
Cancer Society, NSCLC is the predominant type, constituting approximately 80%
to 85% of all lung cancers. In contrast, SCLC, although less common, tends to
be more aggressive and has a higher likelihood of metastasis to other parts of the
body [22].

Figure 1.3: Lung Cancer Subtypes. Overview of lung cancer’s main his-
tological types: SCLC and NSCLC. SCLC includes small cell carcinoma and
mixed small cell/large cell cancer, typically associated with rapid growth and
strong correlation with cigarette smoking. NSCLC encompasses adenocarcinoma
(predominantly found in the lung’s outer regions), squamous cell carcinoma (typ-
ically located near bronchial tubes), and large cell carcinoma (with a tendency

for rapid growth).

The risk factors for lung cancer include smoking, exposure to secondhand smoke,
radon gas, asbestos, and certain occupations, such as mining and construction.
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People who have a family history of lung cancer are also at increased risk of
developing the disease [23].

The diagnosis of lung cancer is made through a variety of tests, including a chest
X-ray, computed tomography (CT) scan, positron emission tomography (PET)
scan, magnetic resonance imaging (MRI), bronchoscopy, and biopsy [24].

The treatment for lung cancer depends on the type, stage, and patient’s over-
all health. Treatment options include surgery, chemotherapy, radiation therapy,
immunotherapy, and targeted therapies [25]–[27].

1.1.4 Diagnostic Challenges of Lung Cancer

Navigating the intricate landscape of lung cancer diagnosis, from its silent incep-
tion to diverse histological variations, necessitates a comprehensive approach [28],
[29]. This involves leveraging advanced imaging technologies, molecular profiling,
and a nuanced understanding of clinical presentations [24].

Lung cancer poses a formidable challenge in early detection due to its asymp-
tomatic nature during the initial stages. Patients may remain oblivious to the
disease until it advances to a less manageable state [30], underscoring the need for
innovative screening strategies and increased awareness among healthcare profes-
sionals and the general populace.

The emergence of symptoms, when they do occur, often mirrors those of other
respiratory conditions, such as chronic obstructive pulmonary disease (COPD) or
pneumonia [31], [32]. Persistent cough [33], shortness of breath [34], and chest
pain [35], while indicative, overlap with various respiratory ailments, complicating
the identification of lung cancer without thorough diagnostic scrutiny.

Even though current diagnostic tools are crucial, they come with their own set of
challenges. Chest X-rays [36], once primary, lack sensitivity in early-stage lung
cancer, while CT scans, though more sensitive, present radiation exposure and a
risk of false positives [37]. PET scans, providing functional insights, are limited
by cost and availability [38].

Although tissue biopsy is still considered the gold standard, it comes with several
limitations. Transbronchial biopsies (TBLB) entail the risk of sampling error,
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along with significant inconsistencies or disagreement among various pathologists.
This variability can result in false negatives, compromising the reliability of the
diagnostic process [39]. Moreover, thoracoscopic biopsies, while yielding larger
samples, are more invasive with increased risks [40].

Innovations in diagnostics are addressing these challenges. Emerging imaging
modalities, like low-dose CT scans and AI-driven analysis, enhance sensitivity
in early detection [41]. Evolving biopsy techniques, including minimally invasive
bronchoscopic procedures [42] offer less invasive approaches for obtaining cancer
cells from the bloodstream [43].

In the realm of novel diagnostic approaches, biomarkers, and liquid biopsies stand
out. Analysing blood-based biomarkers offers non-invasive avenues for detect-
ing genetic alterations associated with lung cancer, promising early detection and
treatment response monitoring. Ongoing research focuses on standardisation, sen-
sitivity, and specificity of these techniques [43].

1.2 Tissue Biopsy: Unraveling its Process and Chal-

lenges

Tissue biopsy plays a pivotal role in the diagnosis and characterisation of can-
cer, providing essential information for treatment planning and prognosis. While
imaging tests, such as CT scans or MRIs, are valuable in identifying masses or
irregular tissue, they fall short in distinguishing between cancerous cells and non-
cancerous ones. In cancer diagnosis, a tissue biopsy involves the removal of a small
sample of abnormal tissue or cells from the body, typically from a tumour or a
suspicious lesion. This procedure allows pathologists to examine the tissue under
a microscope, identifying cellular abnormalities, and determining the cancer type,
grade, and extent of spread.

Tissue biopsy in cancer is differentiating between benign and malignant tumours,
and understanding the specific genetic and molecular characteristics of the tumour.
Additionally, tissue biopsy aids in the assessment of the tumour’s aggressiveness,
guiding oncologists in tailoring treatment strategies. Through techniques such
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as immunohistochemistry and molecular profiling, tissue biopsy enables the iden-
tification of specific biomarkers, paving the way for targeted therapies that can
address the unique features of an individual’s cancer [44].

However, the application of tissue biopsy is not without challenges. In their work,
Ilié and Hofman [45] have highlighted some key points:

• Invasiveness of the Procedure: Tissue biopsy is inherently invasive, car-
rying potential risks for patients, especially when tumours are located in
sensitive or challenging anatomical areas. The invasiveness of the procedure
can lead to complications, discomfort, or additional health risks for indi-
viduals undergoing biopsy, making it a critical consideration in the overall
diagnostic process.

• Difficulty in Obtaining Adequate Tissue Samples: Obtaining a suffi-
ciently large and representative tissue sample is essential for accurate diagno-
sis. However, challenges arise, particularly in cases where tumours are small
or exhibit heterogeneity. The heterogeneous nature of tumours, where dif-
ferent parts show distinct genetic features, complicates the sampling process
and may result in an incomplete representation of the cancer’s characteris-
tics. This limitation underscores the need for precision in sample collection.

• Tumour Heterogeneity: Tumour heterogeneity adds a layer of complexity
to the analysis of biopsy samples. Different regions within a tumour may
display diverse genetic features, making it challenging to capture the full
spectrum of the cancer’s genetic makeup in a single biopsy. This diversity
can impact treatment decisions, as a biopsy from one part of the tumour may
not accurately represent the entire disease, potentially leading to suboptimal
therapeutic strategies.

• Evolution of Tumour Characteristics Over Time: Studies have re-
vealed the dynamic nature of tumour characteristics, demonstrating the
emergence of treatment-resistant subclones. These subclones, present at a
minimal frequency in the primary tumour, may become more predominant
over time. This evolving nature underscores the importance of considering
temporal changes in tumour features, emphasising the need for timely and
repeated biopsies to inform treatment decisions effectively.



Introduction 9

• Timing and Impact on Treatment Decisions: The timing of tissue
biopsy is crucial, and delays in obtaining results can have a significant impact
on treatment decisions. In some cases, patients may need repeat biopsies to
capture changes in the tumour over time or in response to treatment. This
iterative process can be physically and emotionally challenging for individ-
uals, highlighting the importance of streamlining the diagnostic timeline to
minimise the burden on patients facing a cancer diagnosis.

1.3 Liquid Biopsy: Unveiling New Frontiers

In the expansive domain of diagnostics and treatment, a groundbreaking innova-
tion has surfaced – liquid biopsy. Departing from the invasive nature of traditional
tissue biopsies, liquid biopsy leverages various bodily fluids to unlock critical in-
sights into a spectrum of health conditions, notably cancer. Liquid biopsy seek to
complement traditional tissue biopsy methods, providing clinicians with a broader
toolkit for comprehensive cancer care while minimising the burden on patients.

This technique signifies a paradigm shift, offering a minimally-invasive, and some-
times non-invasive method for detecting molecular alterations associated with di-
verse diseases. Unlike its conventional counterpart, liquid biopsy presents an in-
novative approach that aligns with the principles of precision medicine.

Several biofluids exhibit potential utility for liquid biopsy, including saliva [46],
urine [47], peritoneal fluid [48], cerebrospinal fluid (CSF) [49], seminal fluid [50],
and more. However, among these options, blood stands out as the most commonly
used biofluid for liquid biopsies. Its prevalence stems from the ease of collection
and the abundance of biosources within its dynamic composition.

Liquid biopsy emerges as a valuable and versatile tool, holding the promise of
transforming diagnostic landscapes and overcome the limitations of tissue biopsy.
Its applications extend beyond traditional boundaries, offering unprecedented op-
portunities for early cancer detection [51], tailoring personalised treatment options
[52], assessment of treatment response and resistance [53], [54], and monitoring
cancer progression [55].
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Figure 1.4: Circulating Biomarkers Revealed Through Blood-Based
Liquid Biopsy. It highlights circulating components in plasma or serum (top),
including EVs like Exosomes, Proteins, circulating cell-free RNA (encompassing
both noncoding and messenger RNA), ctDNA, and TEPs. Simultaneously, the
cellular fraction (bottom) unveils: i. tumour cells (CTCs, either singular or
clustered), and ii. the non-tumour cell fraction, such as immune cells, CECs,

and Cancer-Associated Fibroblasts.

1.3.1 Circulatory Biomarkers in Blood-Based Liquid Biopsy

A key aspect of blood-based liquid biopsy is the analysis of genetic materials circu-
lating in the bloodstream to detect cancer. These biomarkers include whole cells,
cellular fragments, and tumour-released molecules. Figure 1.4, published in Cancer
Discovery by Alix-Panabières and Pantel in 2021 [56], showcases these circulat-
ing biomarkers, encompassing cells from both primary and metastatic tumours,
as well as molecules and metabolites emitted by tumour cells. Such biomarkers
yield insights into tumour heterogeneity, mechanisms of metastasis, and resistance
to treatments [57], [58], and they mirror the tumour’s genomic and proteomic
profiles. Analysing these markers provides a real-time snapshot of the tumour’s
genetic makeup, unveiling crucial genomic alterations and deepening our under-
standing of cancer’s biology, including its progression, behaviour, and the dynamics
of cellular communication within the tumour microenvironment [59]. This com-
prehensive insight facilitates the development of targeted therapies, significantly
advancing cancer treatment strategies [60].

Since the inception of liquid biopsy development, a multitude of biosources has
been harnessed, falling within the categories mentioned earlier. Among these,
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the most prevalent include circulating tumour DNA (ctDNA), circulating tu-
mour RNA (ctRNA), circulating tumour cells (CTCs), extracellular vesicles (EVs),
Tumour-Educated Platelets (TEPs), Circulating Epithelial Cells (CECs), and oth-
ers [56], [61]. However, this thesis will revolve around biosources endowed with a
transcriptome, specifically TEPs, EVs, and CECs.

1.3.2 Tumour-Educated Platelets

In recent years, the quest for innovative biomarkers in cancer diagnosis and mon-
itoring has spotlighted a promising entity: platelets (Figure 1.5). These minute
anucleate cells originate from megakaryocytes (MKs) within the bone marrow and
lung niches [62].

Platelets, the second most abundant anucleate cells in circulation, after red blood
cells, boasting an average lifespan of merely 7 days [63]. Beyond their primary
role in homeostasis, platelets assume significance in tumourigenesis and tumour
progression [64]. They orchestrate tumour angiogenesis and vascular remodelling,
shield CTCs from shear forces, elude immune surveillance, and orchestrate the
recruitment of stromal cells to foster the establishment of metastatic niches and
advance metastasis. Conversely, tumours can also influence platelets, triggering
their activation, aggregation, and release of platelet-derived substances into cir-
culation. This bidirectional interaction between tumours and platelets results in
the systematic and local responses of platelets to cancer. Simultaneously, platelets
absorb free proteins, nucleic acids, vesicles, and particles [65]–[68], leading to al-
terations in their RNA, DNA (comprising genomic DNA fragments [69]) and pro-
teomic expression profiles [70]–[74]. This phenomenon is termed "tumour-educated
platelets" [64].

The alterations in the profile of TEPs constitute a concentrated biorepository
abundant with tumour-derived and bioactive molecules, suggesting the potential
of TEPs as cancer-specific biomarkers. Consequently, their content mirrors the
tumour’s current state and bioactivity, making TEPs crucial for detecting and
tracking cancer progression across various types, including colorectal carcinoma,
glioblastoma, and NSCLC [75].
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Figure 1.5: Reciprocal Influences Between Cancer and Platelets. This
illustration, based on research by Ding, Dong, and Song 2023 published in Can-
cer Cell International [75], shows the complex interactions between cancer and
platelets. It focuses on how tumours educate platelets, leading to their acti-
vation, aggregation, and release of substances, which promotes thrombocytosis
by affecting bone marrow megakaryopoiesis. In turn, platelets support tumour
growth and spread through angiogenesis, vascular remodelling, protecting CTCs,
evading immune detection, and recruiting stromal cells. Critical elements in
these processes are megakaryocyte progenitor, MKs, and hematopoietic stem

cells.

Utilising TEPs in liquid biopsies promises advancements in early cancer detec-
tion and subtyping, offering a window into tumour heterogeneity for a more pre-
cise disease characterisation [74], [76]. As non-invasive biomarkers, TEPs could
significantly improve cancer diagnosis, especially when traditional biopsies pose
challenges.

Moreover, TEPs serve as a dynamic tool for monitoring treatment responses and
forecasting prognosis. Changes in TEP profiles during treatment reveal insights
into therapeutic success and potential resistance [77], supporting personalised
treatment adjustments for better patient outcomes.

1.3.3 Extracellular Vesicles

Extracellular Vesicles (EVs) have emerged as significant players in liquid biopsy,
offering a wealth of information for cancer diagnosis and monitoring. EVs encom-
pass a diverse array of membranous structures, including exosomes, microvesicles,
and apoptotic bodies (Figure 1.6), released by various cells into the extracellular
space. These minute particles, enclosed by a lipid bilayer, have been identified in
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numerous biological fluids, with blood being particularly abundant in these entities
[78].

Figure 1.6: Representation of distinct extracellular vesicles subtypes.
Modified from the work of Fox, Kim, Le, et al. 2015, originally published in the
Journal of Controlled Release [79]. The figure highlights exosomes, microvesicles,

and apoptotic bodies, each presenting distinct characteristics and roles.

One of the remarkable features of EVs is their stability, both in terms of morphol-
ogy and chemical properties. The lipid bilayer enveloping EVs provides protection
for their cargo, shielding it from extracellular proteases and enzymes. This sta-
bility ensures that the molecules trapped within EVs remain intact, making them
reliable carriers of biomarkers indicative of the originating cells’ health or disease
condition [80].

EVs play pivotal roles in intercellular communication, acting as messengers that
transport a diverse cargo, including proteins, lipids, nucleic acids (RNA and DNA),
and various bioactive molecules. Originating from different cellular sources, in-
cluding tumour cells, EVs can sensitively reflect an individual’s health status.
Notably, tumour cells release EVs, and accumulating evidence suggests that these
tumour-derived EVs contribute to processes such as metastasis, angiogenesis, and
chemotherapy resistance [81].

The contents carried by EVs, spanning proteins, microRNAs (miRNAs), messen-
ger RNAs (mRNAs), circular RNAs (circRNAs), DNA, and lipids, offer a com-
prehensive range of biomolecules for assessing the health or disease state of the
originating cells. Nucleic acids and proteins encapsulated within EVs provide a
snapshot of the genetic and proteomic signatures of cells, contributing to a deeper
understanding of underlying biological processes [80].

In the context of liquid biopsy, EV-based approaches present a promising avenue
for gaining valuable insights into tumour progression and the characteristics of
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the tumour itself. By analysing the molecular cargo carried by EVs in bodily
fluids, such as blood, researchers and clinicians can potentially detect cancer at
early stages, tailor personalised treatment options, monitor treatment response,
and track cancer progression with a level of precision previously unimaginable [82].

Moreover, EVs’ involvement in various biological cancer processes, including cell
growth, proliferation, and migration, through the transfer of cargos between dif-
ferent cells, underscores their significance in cancer research and diagnostics [83].
Leveraging EVs for liquid biopsy holds great potential for advancing precision
medicine and transforming the landscape of cancer diagnostics and monitoring.
As research in this field progresses, the integration of EV-based liquid biopsy into
clinical practice could usher in a new era of non-invasive and highly informative
cancer diagnostics.

1.3.4 Circulating Epithelial Cells

Circulating epithelial cells (CECs) have emerged as a compelling focus within the
realm of liquid biopsy, offering a unique opportunity to study the dynamic aspects
of cancer biology.

CECs refer to epithelial cells that circulate in the bloodstream. Epithelial cells are
abundant cells that line the skin, body cavities, and blood vessels. CECs can orig-
inate from various parts of the body, with the intestines and lungs being common
sources. Unlike white blood cells and other circulating components, CECs carry
unique molecular signatures that reflect their tissue of origin. This characteristic
makes them valuable for studying the genetic and phenotypic diversity of associ-
ated tumours [84]. Understanding the biology of CECs is essential for harnessing
their potential as informative biomarkers.

The molecular cargo carried by CECs includes DNA, RNA, and proteins, offering
an opportunity to study the genetic and proteomic makeup of tumours through
a non-invasive approach [85]. The analysis of CECs allows for the identification
of key mutations, gene expression patterns, and alterations reflective of tumour
heterogeneity. This biomarker potential positions CECs as valuable targets for
liquid biopsy applications.

Isolating CECs from the peripheral blood poses technical challenges due to their
rarity and the presence of other blood components. Various isolation methods,
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including immunomagnetic separation, microfluidic technologies, and density gra-
dient centrifugation, have been developed to enrich and capture CECs [86]–[88].
These methods aim to maximise purity and viability while minimising contami-
nation from other blood cells.

CECs hold significant promise in the field of cancer diagnosis and monitoring. The
detection and molecular characterisation of CECs provide valuable information
for early cancer diagnosis, stratification of patients, and monitoring treatment
response. CEC-based liquid biopsy offers a real-time and non-invasive approach
to understanding the evolving genetic landscape of tumours, enabling clinicians to
tailor treatment strategies for optimal outcomes.

In various cancer types, including liver, breast, lung, and colorectal cancers, the
presence and characteristics of CECs have been correlated with disease progression,
metastasis, and overall survival [89]–[91]. The clinical significance of CECs extends
beyond diagnostics to include prognostication, guiding treatment decisions, and
assessing the risk of recurrence.

1.4 Sequencing Technologies

The advent of sequencing technologies has precipitated a paradigm shift in the
landscape of oncological research. Initially, the field witnessed the emergence of
first-generation sequencing modalities, also known as Sanger sequencing, which
marked the inception of high-throughput methodologies. This was succeeded
by the evolution to second-generation sequencing (SGS), also known as next-
generation sequencing (NGS). NGS, particularly epitomised by Illumina’s sequenc-
ing technology, marked a revolutionary stride, delivering unprecedented through-
put and accuracy. This facilitated a granular exploration of cancer genomics,
unveiling critical mutations and genomic variations integral to oncogenesis [92].

NGS has been indispensable in the realm of cancer transcriptomics, facilitating the
simultaneous analysis of a multitude of RNA molecules in a cost-effective and effi-
cient manner. This technology has unraveled the convoluted gene expression pat-
terns intrinsic to tumourigenesis, progression, and therapeutic response. A notable
aspect of NGS in the study of cancer transcriptomics is its ability to simultaneously
profile coding and non-coding RNA species. This enabled researchers to explore
and define the functions of various RNA types, including mRNAs, microRNAs
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and long non-coding RNAs, in the context of cancer biology. This holistic exami-
nation of the transcriptome enables scientists to decipher the complex regulatory
networks that govern gene expression in cancer cells. The heightened sensitivity
and resolution of NGS are pivotal in detecting rare and low-abundance transcripts,
thereby illuminating hitherto obscured facets of cancer transcriptomics [93], [94].

The contemporary era is witnessing the ascendance of third-generation sequencing
(TGS), a technology that is poised to further revolutionise our understanding of
cancer genomics. TGS introduces long-read sequencing capabilities, with innova-
tions led by entities such as Oxford Nanopore Technologies. This advancement
enables the exploration of intricate genomic structures, encompassing repetitive
regions, structural variations, and epigenetic markers, which were previously elu-
sive due to the limitations of earlier sequencing technologies [95].

In the context of cancer transcriptomics, TGS is anticipated to provide a profound
impact. Such technology allows for the comprehensive examination of extended
RNA molecules, thereby enhancing our understanding of transcriptional regula-
tion, RNA modifications, and the interplay among various RNA species. This
ability to capture longer RNA sequences is instrumental in elucidating complex
aspects of gene expression, alternative splicing, post-transcriptional processing
steps, such as polyadenylation, and non-coding RNA dynamics, which are crucial
in the pathogenesis of cancer. Consequently, TGS is set to unveil novel layers of
genomic information, thereby enriching our understanding of the molecular land-
scape of cancer and paving the way for more targeted and effective therapeutic
interventions [95], [96].

Complementing these sequencing technologies, platforms such as NanoString pro-
vide an additional dimension to cancer research by extending their application
to clinical settings. NanoString’s capability for direct quantification of RNA
molecules without amplification offers a precise and robust method for gene expres-
sion profiling. This is particularly valuable in validating sequencing results and
advancing translational research, thereby contributing significantly to the person-
alised medicine paradigm in oncology. The integration of NanoString technology
alongside advanced sequencing methods represents a significant stride in the quest
to decode the complexities of cancer at a molecular level [97].
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1.4.1 Second Generation Sequencing

Illumina’s technology, known for its innovative sequencing by synthesis (SBS)
method, has become a pivotal technology in genomic research. This method has
not only transformed the way genomics, transcriptomics, epigenomics, and epi-
transcriptomics are approached, but also established Illumina’s technology as a
powerful and widely recognised tool in the scientific community. This innovative
method combines the amplification and sequencing of DNA fragments on a solid
surface, starting with the preparation of a DNA library. Here, genomic DNA is
fragmented, and adapters are ligated to each end, serving both as primers for the
sequencing process and facilitators for the subsequent clonal amplification of DNA
fragments.

The library is then bound to a flow cell surface where bridge amplification leads to
the formation of clusters of identical DNA molecules. In the sequencing phase, flu-
orescently labeled nucleotides are incorporated into the growing DNA strands. A
camera captures the emitted fluorescent signals upon each nucleotide’s incorpora-
tion, enabling the precise identification of each base and thus, the determination of
the DNA sequence. This high-throughput sequencing process, capable of handling
millions of fragments simultaneously, significantly enhances the speed, efficiency,
and accuracy of the sequencing data [98], [99].

Illumina NGS stands out for its high throughput, allowing the parallel sequencing
of many DNA strands, which markedly reduces time and cost per sequence. It is
known for its high accuracy, particularly in detecting single-nucleotide polymor-
phisms (SNPs). This technology is also versatile and scalable, suitable for a broad
spectrum of applications, ranging from whole-genome sequencing to targeted re-
sequencing [100].

In the realm of transcriptomics, Illumina’s RNA sequencing (RNA-Seq) technology
is of particular note. It begins with the extraction of RNA from a sample, followed
by its conversion into a complementary DNA (cDNA) library. This cDNA is then
sequenced using Illumina’s SBS method, as shown in Figure 1.7. RNA-Seq is
instrumental in unraveling transcriptomic landscapes, uncovering gene expression
patterns, splicing variants, and post-transcriptional modifications. The process
not only provides insights into gene regulation and function in various biological
contexts, but also in disease states [101]–[103].
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Figure 1.7: Overview of the RNA Sequencing Workflow. This schematic
depicts RNA sequencing via NGS technology in six steps: 1) RNA isolation
from samples; 2) fragmentation into short pieces; 3) conversion into cDNA; 4)
ligation of sequencing adapters and amplification; 5) sequencing of amplified
cDNA fragments; and 6) mapping reads to the genome or transcriptome to
identify exon and intron regions. Adapted from Prashant Dahal’s work on RNA

sequencing [104].

Although Illumina’s NGS offers numerous benefits, it is not without its challenges.
One significant limitation is the generation of short reads, usually between 100
to 300 base pairs, which can complicate the reconstruction of complex genomic
regions such as repetitive regions [105]. Moreover, it can exhibit GC bias, leading
to the underrepresentation of regions with high or low GC content [106]. While
it is more cost-effective compared to earlier technologies, the initial setup and
operational expenses of Illumina sequencing are still substantial, especially for
large-scale projects.

Nevertheless, Illumina’s NGS technology, despite its drawbacks, remains a vital
tool in genomic research. Its contributions to understanding the genetic and tran-
scriptomic make-up of organisms are vast, with a broad application range that
continues to evolve, significantly impacting both research and clinical fields.

1.4.2 Third Generation Sequencing

TGS technologies, exemplified by Oxford Nanopore Technologies (ONT), also
known as nanopore sequencing, represent a significant advancement in genomics,
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offering unique advantages compared to previous sequencing generations. Nanopore
sequencing operates on the principle of passing a DNA or RNA molecule through
a nanoscale pore, allowing real-time, single-molecule sequencing with long read
lengths.

In nanopore sequencing, a biological sample is prepared into a library, and a volt-
age is applied across the nanopore. As the DNA or RNA molecule traverses the
pore, the changes in electrical current are recorded. Each nucleotide induces a
characteristic disruption in the current, enabling base identification [107], [108].
Nevertheless, ONT systems do not recognise single nucleotides, as the measured
current reflects the properties of short nucleotide sequences. These sequences, typ-
ically consisting of about five bases known as k-mers, result in a diverse array of
signals – with over 1000 distinct signals corresponding to each unique micropoly-
mer (k-mer) [109]. This real-time, single-molecule approach provides long reads,
facilitating the sequencing of complex genomic regions [110], detection of struc-
tural variations [111], detection of epigenetic modifications [112], attain complete
chromosome assemblies from one telomere end to the other [113], and direct RNA
sequencing for comprehensive transcriptomic analysis [108].

The impact of nanopore sequencing in the field of transcriptomics is constantly
growing, with ONT’s Direct RNA Sequencing (DRS) emerging as a key player.
This method directly sequences RNA molecules, eliminating the need for reverse
transcription into cDNA (Figure 1.8). DRS maintains the integrity of RNA mod-
ifications and captures the complete structure of transcript isoforms. Its effec-
tiveness in simultaneously identifying new transcripts, isoforms, and various RNA
modifications at a single-molecule level significantly enhances our understanding
of alternative splicing mechanisms [114]. Additionally, DRS excels in accurately
quantifying isoforms, and identifying polyadenylation sites [115], promoters, and
splice sites [116], offering a more true-to-nature view of the transcriptome by avoid-
ing biases inherent in cDNA synthesis.
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Figure 1.8: RNA sequencing using nanopore technology. This illustra-
tion, edited by ONT [117], outlines the direct RNA Sequencing Workflow: a)
Library Preparation details full-length poly-A RNA preparation for nanopore
sequencing, beginning with ligation of an reverse transcription splint (red) to
RNA (blue), followed by sequencing adapter attachment (blue with brown tips)
for nanopore entry. b) Ionic Current Trace shows the ionic current changes
as the RNA-transcript passes through the nanopore, highlighting the baseline
open-pore current, adapter and poly-A tail disruptions, a longer disruption for

the 1,500 nt transcript, and a return to baseline after transcript passage.

This approach paves the way for major breakthroughs in diverse areas such as
personalised medicine, gene therapy, pharmacogenomics, medical sequencing for
viruses and microbes, as well as in epigenetics and cancer research. DRS’s poten-
tial to reshape RNA research is further enhanced by its capacity to probe the dy-
namic world of RNA modifications, thereby shedding light on post-transcriptional
regulation.

In the process of nanopore sequencing, RNA is converted into a sequenceable li-
brary and analysed using the nanopore platform. Bioinformatics tools are then
used for data analysis, including mapping reads to a reference genome and quanti-
fying transcript and gene expression. The longer read lengths of nanopore sequenc-
ing improve the resolution of complex transcript structures and aid in identifying
isoforms and alternative splicing events.

While nanopore sequencing brings several benefits, it also faces challenges such
as higher error rates compared to short-read sequencing technologies. The direct
RNA method requires a substantial initial amount of poly A+ RNA and typically
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yields less output than direct cDNA and PCR-cDNA methods. Ongoing enhance-
ments in base-calling algorithms are aimed at improving the accuracy of nanopore
sequencing [95]. Moreover, comprehensive bioinformatics solutions to fully exploit
this technology’s data layers are still developing. The scalability and portability
of this technology make it versatile for a wide range of applications, from in-lab
research to field studies.

1.4.3 NanoString nCounter Technology

NanoString Technologies has become a prominent player in the realms of genomics,
proteomics, and especially in quantifying transcriptomes, thanks to its nCounter
Analysis System. This system, known for its high precision and sensitivity, pro-
vides unique benefits for gene expression profiling among other applications. It
has been extensively used in various research areas, including the discovery of
gene expression signatures, biomarker identification, and the molecular profiling
of diseases. Specifically, in cancer research, the nCounter System has played a
pivotal role in delineating gene expression patterns that correlate with tumour
subtypes, prognosis, and response to treatment, as evidenced by numerous studies
[118]–[121].

The nCounter System operates on a barcode technology that utilises colour-coded
molecular barcodes to quantify target molecules, such as RNA transcripts or mi-
croRNAs, in a highly multiplexed manner. The workflow begins with the hybridi-
sation of target nucleic acids to specific capture and reporter probes. Each probe
set consists of a pair of oligonucleotides, with one end attached to a solid support
(capture probe) and the other carrying a unique colour-coded molecular barcode
(reporter probe). After hybridisation, the samples are loaded into the nCounter
cartridge, where they undergo a series of purification steps. The cartridge is then
placed into the nCounter Digital Analyser, where the colour-coded barcodes are
counted and tabulated for each target. This digital counting approach provides
a direct and quantitative measure of the target molecules without the need for
amplification, preserving the integrity of the input RNA (Figure 1.9) [123].

The nCounter System is capable of analysing as many as 800 targets in a single
reaction, which positions it as a medium-throughput, multiplexed tool. This sys-
tem is distinguished by its sensitivity, detecting even low-abundance transcripts
within complex biological samples efficiently, such as rare transcripts in liquid
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Figure 1.9: nCounter Digital Nucleic Acid Counting. Overview of the
nCounter Digital Nucleic Acid Counting system workflow, illustrating a three-
step process: 1) hybridisation of mRNA with CodeSet probes, 2) purification of
the hybridised complexes, and 3) counting and identification of target nucleic
acids using the Digital Analyser for high-multiplex quantification of nucleic acid

molecules without cDNA synthesis or amplification [122].

biopsy-derived material. Its direct digital detection approach circumvents the bi-
ases and inconsistencies often seen with PCR-based techniques. Known for user-
friendliness, the nCounter System is suitable for a broad range of researchers,
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regardless of their technical background. By forgoing the need for cDNA synthe-
sis and PCR amplification, it simplifies the experimental process and reduces the
amount of active laboratory time required [124].

Within clinical and translational research, the nCounter System has become highly
valued across various domains, notably in oncology, immunology, and infectious
diseases. This broad applicability is partly due to its proficiency in analysing
both limited and degraded RNA samples, including those derived from formalin-
fixed, paraffin-embedded (FFPE) tissues. This feature significantly enhances its
utility in clinical environments where obtaining ample, high-quality samples can
often be challenging [125], [126]. For instance, in the realm of cancer diagnostics,
the platform’s ability to reliably assess RNA from years-old FFPE tissue sections
opens doors to retrospective analyses, enabling researchers to uncover potential
biomarkers from stored samples. Additionally, the system’s efficiency in processing
samples of minimal quantity makes it particularly suited for liquid biopsies, offering
comprehensive molecular insights even from limited sample volumes.

1.5 Sequencing Technology: Paving the Way for

Liquid Biopsy

The use of sequencing technologies has become a cornerstone in the realm of
precision medicine, especially their application in liquid biopsies, which shows
immense promise. NGS has greatly enhanced the capabilities of liquid biopsies
by providing sensitive and specific analysis of various biological sources in the
bloodstream, such as TEPs, EVs, CECs, and CTCs. This innovation is reshaping
cancer care by enabling minimally invasive tumour analysis, real-time monitoring
of disease progression, and pinpointing therapeutic targets and mechanisms of
drug resistance, which are crucial for crafting individualised treatment plans.

NGS provides the benefit of simultaneously analysing the expression of thousands
of genes [127] and transcripts, as well as scrutinising numerous genes for mutations
[128]. This comprehensive examination reveals the distinct molecular profile of a
patient’s cancer, encompassing the identification of gene fusions and epitranscrip-
tomic markers, like RNA editing events [129].
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Yet, adopting sequencing technologies for liquid biopsy comes with its set of obsta-
cles. The often-dilute nature of these biological sources in the blood, particularly
in the early stages of cancer, calls for sequencing approaches that are both highly
sensitive and accurate. The task is further complicated by the fragmented state of
nucleic acids and the genetic noise created by the normal apoptosis of cells, which
can obscure the analysis [130].

The demand for high-quality sequencing to accurately pinpoint and quantify rare
genetic variants at low frequencies is critical. This demands advanced bioinfor-
matics tools that are adept at navigating the complexities of the data, distinguish-
ing genuine signals from potential sequencing errors. As sequencing technologies
progress, they amplify the utility of liquid biopsies, enabling more profound in-
sights into tumour genetics. However, this also complicates the data analysis
and interpretation process. Bioinformatics becomes indispensable in this context,
transforming intricate genetic data into meaningful, actionable insights for clinical
application. By addressing these analytical challenges, bioinformatics not only fa-
cilitates a more nuanced understanding of cancer but also guides the shift towards
more individualised diagnosis and treatment strategies.

1.6 Bioinformatics Data Analysis

Bioinformatics, a rapidly progressing discipline, merges computer science with bi-
ology to tackle the complex task of analysing and interpreting biological data.
This interdisciplinary field is especially pivotal in genomics, where the creation
of large-scale datasets is routine. This field becomes increasingly indispensable
as sequencing technologies advance, producing larger and more complex datasets
[131], [132]. The surge in data necessitates bioinformatics to not only manage
and analyse these datasets but also to interpret them meaningfully. The expan-
sion of sequencing capabilities has propelled bioinformatics forward, fuelled by
improvements in computational hardware and the development of sophisticated
algorithms and software. This enables researchers to perform a wide range of
tasks, from initial data processing to advanced analysis for clinical applications.

The rapid evolution of bioinformatics is essential for navigating the complexities
of genomic data, playing a key role in modern biology. It employs state-of-the-art
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computational strategies to translate vast genomic datasets into valuable scien-
tific knowledge, aiding in the discovery of disease mechanisms, identification of
therapeutic targets, and unraveling the complex processes of life.

Despite varying research objectives, bioinformatics analyses of sequencing data
share a foundational workflow, standardised across diverse platforms despite their
unique challenges and requirements [133]. This structured workflow is delineated
into three essential stages, integral for deciphering the complex data generated
by sequencing technologies. The process initiates with raw data preprocessing,
where data is refined to ensure the highest possible quality. Subsequent align-
ment of sequences to a reference genome pinpointing their origins. The workflow
culminates in a tailored analysis and interpretation phase, directly addressing the
research question and yielding insights that enrich our comprehension of genetics
and molecular biology. This efficient approach facilitates the methodical examina-
tion of sequencing data, driving significant advances in the field. The four stages
integral to the bioinformatics analysis of sequencing data are:

1. Preprocessing: Sequencing processes are prone to errors, which are re-
flected in the quality scores attached to sequence reads within the raw fastq
files. These files are pivotal for initial quality assessments, as they contain
all raw sequencing reads along with their corresponding quality scores and
identifiers. Two essential preprocessing tasks are filtering reads based on
their quality scores and trimming adapters. Filtering removes reads (or part
of reads) that fall below a certain quality threshold, ensuring that only high-
quality, reliable data proceeds to further analysis stages. Adapter trimming
involves removing residual adapter sequences from the ends of reads. This
step is crucial, as leftover adapter sequences can disrupt subsequent map-
ping. By filtering out low-quality reads and trimming adapters, researchers
can enhance the accuracy of sequence alignment and the overall reliability
of the analysis [134].

2. Sequence Alignment: After preprocessing, the subsequent pivotal phase
involves aligning sequencing reads with a reference genome. This alignment
is crucial for identifying the specific genomic origins of each read within
the genetic context provided by the reference sequence. This process is
a foundational element of bioinformatics, illuminating the functions, struc-
tural characteristics, and evolutionary paths of the sequences. Through such
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comparative analysis, a base is established for examining genetic variations
among sequences, thereby deepening our understanding of the intricate con-
nections and evolutionary journeys of these genetic sequences [135].

3. Downstream Analysis and Interpretation: The final stage of tran-
scriptomic analysis, a pivotal component of bioinformatics, unfolds through
a comprehensive suite of analytical techniques, each crafted to dissect dif-
ferent facets of transcriptomic data. Gene Expression Profiling measures
the concurrent expression levels of numerous genes, offering a comprehen-
sive view of cellular activity under differing conditions or within distinct cell
types [136]. Differential Gene Expression Analysis contrasts these expres-
sion levels between samples, identifying genes with significant changes to
highlight potential biological pathways affected by a condition or treatment
[137]. The Discovery of Novel Transcripts seeks out previously unknown
RNA sequences, expanding our understanding of the genome’s complexity
[138]. Alternative Splicing Analysis reveals the process by which a single
gene can give rise to multiple mRNA variants, shedding light on the intri-
cate regulation of gene expression [139]. Gene Fusion Detection focuses on
identifying hybrid genes from the fusion of two separate genes, crucial in
cancer research for diagnostic and therapeutic implications [140]. Quantifi-
cation of Isoform Expression measures the expression levels of different gene
variants produced through alternative splicing, providing insights into their
distinct functional roles [141]. Identification of Single Nucleotide Polymor-
phisms (SNPs) within RNA sequences can indicate genetic variations affect-
ing gene function or disease susceptibility [142]. Lastly, the Examination
of Post-transcriptional Modifications, such as RNA editing or methylation,
investigates alterations made to RNA after synthesis, which can significantly
influence RNA function and stability, showcasing the dynamic complexity of
gene regulation [143].

Each of these components plays a pivotal role in providing a comprehensive
understanding of the genome’s function, structure, and evolution. This phase
is where the data begin to reveal insights into genetic function and regulation,
disease mechanisms, and potential therapeutic targets.

The evolution of bioinformatics in response to the deluge of data from sequencing
platforms underscores a dynamic field that continuously adapts and innovates.
Through its multifaceted analysis pipelines, bioinformatics not only manages the
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technical challenges of massive data volumes but also unlocks the potential for
groundbreaking discoveries in genetics, medicine, and beyond.

1.7 The Emergence of Liquid Biopsy in Bioinfor-

matics Research

The transformative integration of sequencing technologies with liquid biopsy repre-
sents a significant advancement in cancer research and diagnostics. In this context,
the role of bioinformatics emerges as crucial. It serves to bridge the gap between
the innovative capabilities of sequencing technologies and the practical application
of liquid biopsy. By analysing sequencing data, bioinformatics facilitates early can-
cer detection, monitoring, and informed treatment decision-making. Employing
advanced tools and methodologies, bioinformatics navigates the challenges posed
by the small quantities of DNA and RNA in body fluids. It enables the detection
and quantification of genetic mutations, epigenetic alterations, and expression pat-
terns that serve as biomarkers for cancer. The synergy between bioinformatics and
liquid biopsy technologies is pivotal, enhancing the sensitivity and specificity of
biomarker identification and paving the way for the discovery of novel therapeutic
targets [144].

Moreover, bioinformatics tools are indispensable for identifying low-frequency vari-
ants, copy number alterations, and structural rearrangements critical for under-
standing the complex nature of tumours [145]. The continuous monitoring capabil-
ity of liquid biopsies, powered by bioinformatics, opens new avenues for real-time
disease monitoring and assessing treatment efficacy [146]. This integration under-
scores the potential of liquid biopsy to transform cancer care into a more precise,
minimally invasive, and individualised approach.

The necessity for bioinformatics extends beyond handling technical challenges; it is
fundamental in developing predictive models and identifying novel biomarkers. As
sequencing technologies evolve with higher resolution and throughput, the demand
for sophisticated bioinformatics expertise in liquid biopsy research escalates. This
demands a profound understanding of both biological and computational aspects of
liquid biopsy analysis and the development of algorithms capable of differentiating
between tumour-derived and normal DNA/RNA amidst high genetic noise.
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At the frontier of this convergence between bioinformatics and liquid biopsy is
the exploration of machine learning (ML) and artificial intelligence (AI). Lever-
aging ML and AI promises to refine data analysis significantly, enhancing the
accuracy and efficiency of identifying actionable insights from complex and large-
scale datasets [147]. These sophisticated computational methods for data mining,
pattern recognition, and multi-omic data integration highlight the critical role of
bioinformatics in translating the wealth of data generated by sequencing technolo-
gies into actionable clinical insights.

As we stand on the brink of a paradigm shift in cancer diagnosis and treatment,
the integration of bioinformatics and liquid biopsy research symbolises a crucial
confluence of disciplines. It not only advances liquid biopsy as a tool for preci-
sion oncology but also demonstrates the broader role of bioinformatics in utilising
large-scale datasets to revolutionise healthcare. The necessity of bioinformatics in
bridging the innovative leap in sequencing technologies to clinical practice empha-
sises its pivotal role in the era of precision oncology. The exploration of methodolo-
gies, computational challenges, and future directions of bioinformatics will further
enhance the utility of liquid biopsy, underscoring its significance in the ongoing
quest to understand and combat cancer.

1.8 Machine Learning in Genomics Research

The burgeoning field of bioinformatics has been instrumental in managing, process-
ing, and analysing the immense volumes of data produced by modern sequencing
technologies. However, the increasing complexity and scale of this data have be-
gun to stretch the capabilities of traditional bioinformatics approaches. ML, a
dynamic branch of AI, steps in at this juncture, enhancing the predictive capa-
bilities, classification problems, and pattern recognition necessary to navigate the
complexities of large-scale datasets in bioinformatics [148].

ML refers to a collection of algorithms that allow computers to learn from data
without explicit programming. In contrast to traditional programming, where
every step is predefined, ML algorithms can identify patterns and relationships
in data, and then use those insights to make predictions on new, unseen data
[149]. This makes them particularly well-suited for analysing the massive datasets
generated by sequencing technologies.
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Types of ML commonly Used in Genomics Data Analysis:

• Supervised Learning: This approach trains an algorithm on a dataset
where each entry is clearly labeled, presenting both the input variables and
their anticipated outcomes. In this structured training process, the algo-
rithm learns to associate inputs with outputs, constructing a model from
existing data to identify patterns that can accurately predict outcomes for
new, unseen data. The ultimate goal is for the algorithm to generalise from
its training, enabling it to offer reliable forecasts for unencountered data. In
the realm of genomics, supervised learning is especially critical for prognosis
and customising treatment plans. For example, it is often used to assess dis-
ease risks associated with specific genes or genetic variants that the model
has been trained to recognise, which are linked to particular health condi-
tions [150]. This application of supervised learning is essential in advancing
personalised medicine strategies, allowing for treatments that are tailored to
the genetic makeup of individual patients.

• Unsupervised Learning: Unlike supervised learning, unsupervised learn-
ing offers a distinct advantage by analysing data without pre-labeled out-
comes, uncovering hidden patterns and structures within genetic information
that may not be immediately apparent. This type of ML algorithm is par-
ticularly useful for clustering genetic data based on similarities, identifying
novel genetic markers without prior knowledge, and discovering new sub-
types of diseases. By grouping genes or variants with similar expression
profiles or mutations, unsupervised learning facilitates a deeper understand-
ing of genetic relationships and their implications for health and disease.
Such insights are invaluable for segmenting patient populations into more
precise categories, enhancing the specificity of research studies, and paving
the way for more targeted therapeutic approaches [151].

Data preparation is a fundamental stage in the ML pipeline and is crucial for
the successful training and performance of ML models. This stage involves clean-
ing and filtering the data (handling missing values, removing outliers, eliminating
non-informative data), transforming variables (normalisation, scaling), and fea-
ture selection or extraction to best represent the problem at hand. Proper data
preparation ensures that the ML model has the highest quality and most relevant
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information available, free from skew or bias that could adversely affect its ability
to learn and generalise.

Effective data preparation reflects a deep understanding of the problem domain
and directly influences the accuracy and efficiency of the resulting model. For in-
stance, in a healthcare setting, properly prepared data helps in accurately predict-
ing patient outcomes or diagnosing diseases, thereby directly impacting treatment
decisions and health outcomes.

ML’s predictive modelling capability, which integrates genomic data with clinical
and environmental factors, offers a comprehensive approach to healthcare. It can
predict an individual’s disease susceptibility, treatment response, and potential
side effects, underscoring ML’s potential to revolutionise personalised medicine.

1.9 Machine Learning and Liquid Biopsy

The integration of ML with liquid biopsy represents a groundbreaking novelty
in the early detection, prognosis, and ongoing monitoring of several diseases in-
cluding cancers. ML has emerged as a transformative technology in this domain,
significantly enhancing the precision, efficiency, and predictive capabilities of liq-
uid biopsy analyses [152]. This synergy between ML and liquid biopsy improves
the detection, analysis, and tracking of diverse cancer biomarkers in bodily fluids,
offering new avenues for personalised cancer care.

ML is particularly effective in addressing key oncological challenges such as the
precise detection and quantification of rare biomarkers, which are often present
only in minute quantities against a complex background of normal cellular mate-
rial. ML algorithms excel in analysing large datasets to identify disease-specific
patterns and markers that are too subtle for traditional methods due to the com-
plexity and volume of the data.

In practical terms, ML algorithms facilitate nuanced distinctions in cancer diag-
nostics. For example, with ctDNA, these algorithms can differentiate between
cancerous and healthy genetic profiles, pinpointing mutations linked to cancer
[153]. When evaluating CTCs, machine learning plays a vital role in distinguishing
cancerous from non-cancerous cells, which is essential for correct disease staging
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and prognosis. Additionally, for exosomes and other vesicles laden with molecu-
lar data, machine learning is instrumental in unlocking their payload, offering a
glimpse into the tumours condition and activity [154].

Implementing ML in liquid biopsy entails several key stages: Initially, data pre-
processing and filtering refine and standardise the data. Feature selection follows,
identifying significant indicators that inform subsequent analyses. Model training
is conducted to recognise and learn patterns within the data. Optionally, more
advanced machine learning techniques, such as ensemble learning which combines
predictions from multiple models, can be applied to enhance predictive accuracy.
The process concludes with rigorous testing and validation to verify the model’s
reliability and effectiveness. These steps are essential to ensure the successful
application of machine learning in liquid biopsy analyses.

1.10 Thesis Overview

Chapter 1 lays the essential groundwork of this thesis, offering a foundational
overview that is crucial for understanding the key components utilised throughout
the study. Its goal is to offer an in-depth explanation of the topics covered within
the thesis. More than setting the thematic stage, the introduction ensures that
readers are equipped with the fundamental concepts, theories, and terminology
necessary to grasp the nuances of the study. This approach facilitates a clear
understanding of the research’s significance and the analytical findings discussed
in subsequent sections, catering to both experts and those new to the topic.

Chapter 2 meticulously outlines the aims and objectives guiding the research. This
chapter introduces the specific goals the thesis aims to achieve, offering a clear
roadmap for the investigation. It details the research questions to be addressed,
the hypotheses to be tested, and the contributions it seeks to make to the existing
body of knowledge.

Chapter 3 is dedicated to a comprehensive exposition of the methodologies em-
ployed across the entirety of this thesis. Within this chapter, an extensive dive into
the analytical tools and statistical techniques utilised in the research is undertaken.
It details the selection and application of specific materials, the experimental se-
tups, and the procedural approaches adopted throughout the following chapters.
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Furthermore, it provides an in-depth explanation of the software tools and sta-
tistical frameworks that underpin the data analysis, ensuring the reader has a
thorough understanding of how the research findings were derived.

Chapter 4 unveils "ELLBA", a novel methodology designed for the analysis of
RNA sequencing data derived from liquid biopsies (lbRNA-seq) in the context of
cancer diagnostics. ELLBA addresses existing challenges by establishing an exten-
sive Machine Learning-based Ensemble Classification framework that assimilates
a wide array of molecular data and employs effective normalisation techniques
for clinical application. The methodology has undergone validation across sev-
eral independent datasets, affirming its efficacy and dependability. The proposed
workflow of the study demonstrates improved predictive accuracy, indicating its
suitability for clinical implementation owing to its bespoke approach. Related
publications include: [155].

Chapter 5 introduces "DRseeker," a pipeline for analysing DRS protocol sequenced
samples from ONT. It supports comprehensive downstream analysis, extracting
multiple information layers. Key functionalities include Differential Gene Expres-
sion and Isoform Expression analysis for insights into gene regulation and expres-
sion patterns, alongside novel isoform detection to explore genetic novelties. It
assesses polyA tail lengths and conducts Alternative Polyadenylation Analysis,
crucial for mRNA stability and translation insights. The pipeline also facilitates
Differential Polyadenylation Analysis and Differential Transcript Usage, illumi-
nating post-transcriptional regulation intricacies. DRseeker serves as a pivotal
resource for deciphering gene expression and regulation via nanopore sequencing.
This project stands out as a robust resource for researchers seeking to unravel
the intricate details of gene expression and regulation via nanopore sequencing
technology.

Chapter 6 introduces "NanoInsights," a versatile web service for analysing NanoS-
tring nCounter data, crucial in genomics and clinical applications. The platform
features eight unique normalisation methods, enabling customised data process-
ing for diverse research requirements. NanoInsights employs machine learning
algorithms for sample classification, offering insights to support clinical decisions
and genomics advancements. This service simplifies data analysis, enhancing ac-
cessibility and usability for both researchers and clinicians. Related publications
include: [156]–[160].
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Chapter 7 offers an in-depth analysis of the insights and outcomes presented in
Chapters 4, 6, and 5. It underscores the pivotal discoveries and contributions of
each segment, examining the broader impact of these findings and their implica-
tions for the field. The chapter also identifies key areas ripe for further exploration,
proposing targeted research directions that promise to enrich understanding and
foster advancements. Moreover, it recommends strategic enhancements and inno-
vative methodologies to bolster the effectiveness and breadth of subsequent stud-
ies. Through this discourse, the chapter lays the foundation for future endeavours,
building on the solid base established by this research to propel the discipline for-
ward.

Chapters 8 and 9 provide summaries of the tools developed and the research find-
ings discussed in Chapters 4, 6, and 5, with conclusions offered in both English
and Spanish. From these outcomes, recommendations are made for researchers,
bioinformaticians, and research organisations. The thesis concludes by identifying
potential directions for future research as recognised by the author.



Chapter 2

Objectives

This thesis was guided by key hypotheses aimed at advancing cancer diagnostics
through the integration of innovative bioinformatics and ML techniques applied
to various gene expression technologies within the ELBA consortium. Focusing
particularly on lung cancer, which often remains asymptomatic in its early stages,
this research emphasised improving detection methods using blood-based liquid
biopsies and tissue biopsies. While holding significant promise, they also face
considerable challenges, especially in bioinformatics processing, which must be
addressed to fully realise their potential.

The initial hypothesis posited that by enhancing well-established high-throughput
technologies such as NGS and RNA-Seq with previously underutilised layers of
information through advanced ML, significant improvements could be achieved in
cancer detection and diagnosis. A secondary hypothesis suggested that exploring
emerging gene expression technologies would allow for a deeper understanding of
cancer’s molecular mechanisms, potentially leading to the development of more
effective diagnostic tools. These hypotheses stem from the recognition of liquid
biopsies’ potential alongside existing challenges in bioinformatics processing that
limit their efficacy.

Ultimately, the overarching goal was to develop more accurate and accessible di-
agnostic tools that would not only advance technological progress but also provide
real-world benefits in clinical settings, thereby improving patient care and treat-
ment outcomes. To achieve this goal, the hypotheses outlined above guided the
formulation of the following focused objectives:

34
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1. Develop a clinical-ready methodology for lbRNA-Seq analysis

• Quantify Molecular Properties of Coding Transcripts: Develop
a method that quantifies different molecular properties (biofeatures) of
coding transcripts from lbRNA-Seq data, such as RNA editing events
and SNVs. Each biofeature may contain unique information that, when
considered in conjunction with others, could improve the discriminative
power for identifying various disease states.

• Optimise Feature Outputs: Enhance the values of the quantified
molecular biofeatures to increase their analytical accuracy. Specifically,
improve data processing by implementing inter-sample and intra-sample
normalisation techniques where applicable, as these are crucial for en-
suring data consistency. These optimisations are vital for clinical ap-
plications that require precise and standardised methods.

• Combine Biofeatures with ML: Leverage advanced ML and classi-
fication techniques, such as Ensemble Classification, to create a single
ML classifier that integrates all the extracted biofeatures from the data.
This approach aims to improve the analysis process by allowing the ML
model to identify complex patterns within the combined data, poten-
tially leading to higher prediction accuracy.

• Develop a User-Friendly Pipeline: Construct a user-friendly pipeline
that is designed for straightforward adoption by the broader scientific
community. This pipeline will facilitate access to advanced bioinfor-
matics tools, ensuring that users can easily implement and benefit from
the developed methodology.

2. Design and create a methodology for DRS data processing

• Enhanced Analysis of Sequencing Data: Integrate a range of anal-
yses to maximise the use of sequencing output, ensuring a comprehen-
sive extraction of all potential biological insights unique to DRS technol-
ogy. This includes studying gene expression at the transcriptome level
and exploring consequential features such as Differential Isoform Us-
age. Additionally, simultaneously investigate complementary features
like polyA tail length and post-transcriptional modifications, which can
all be extracted in a single run without the need for supplementary tech-
niques.
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• Developing an Optimised DRS Data Analysis Pipeline: Con-
struct a comprehensive and easy-to-use pipeline tailored for DRS data
from ONT. Ensure the software is continuously updated and optimised
for real-world data to consistently deliver the best results, keeping pace
with rapid advancements in technology and bioinformatics tools.

3. Develop a web-based platform for NanoString nCounter analysis

• Creating an Application for Data Analysis: Design a pipeline
specifically for analysing NanoString nCounter data, demystifying bioin-
formatics and ML complexities for users across varying levels of exper-
tise.

• Streamlined NanoString Analysis with a Web Platform: In-
corporate the pipeline into a user-friendly web-based platform designed
specifically for individuals with limited expertise in bioinformatics. This
platform streamlines the analysis process while maintaining depth and
quality. This includes intuitive interfaces, guided workflows, and com-
prehensive tutorials, making advanced analytical tools accessible to a
broader scientific community.

• Enhancing NanoString Data Analysis: Develop a robust, easy-
to-navigate platform for conducting complex analyses of NanoString
nCounter data. Features should include diverse normalisation tech-
niques, real-time interactive data visualisation, automated reporting
for streamlined workflows, and the ability to download high-resolution
figures for easy data presentation.
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Methods

3.1 Molecular Methods and Sequencing

3.1.1 Lung Tissue Collection and RNA Isolation in NSCLC

Patients

In our second study, we focused on a cohort of three non-small cell lung cancer
(NSCLC) patients, with an average age of 57.3 years, each diagnosed with KRAS-
mutant adenocarcinomas. The collection of tissue samples occurred during tumour
resection surgeries, where we obtained both the malignant tissues and the adjacent
non-transformed lung tissues for each patient. Immediate snap-freezing of these
samples in liquid nitrogen followed, securing their preservation at -80°C for future
analyses.

Preparatory steps for histological evaluation included the creation of cryosections
from both peripheral and central tissue regions, which were then subjected to
hematoxylin and eosin staining. Microscopic examination of these stained sections
verified the samples’ minimal necrotic content, deeming them suitable for RNA
isolation. To mitigate RNA degradation, we implemented stringent protocols,
including the use of RNase-free water and thorough decontamination of equipment
with RNA zap. Tissue sections designated for RNA isolation were processed with
a lysis buffer from the MirVana kit, immediately stored at -20°C, continuously kept
on ice during processing, and then placed at -80°C until RNA isolation commenced.

37
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3.1.2 RNA Isolation from Lung Tissue Samples

The isolation of RNA from the collected tissue samples was conducted utilising
the MirVana Total RNA Isolation Kit, adhering to the provided manufacturer’s
guidelines. The integrity and quantity of the extracted RNA were meticulously
assessed using the Agilent Bioanalyzer RNA 6000 Picochip and quantified with the
NanoDrop 2000 spectrometer by Thermo Scientific, ensuring a precise evaluation
of the RNA samples.

3.1.3 MinION Nanopore Direct RNA sequencing

The sequencing project focused on six samples, including two matched pairs of
NSCLC adenocarcinoma tissues alongside their non-cancerous counterparts. How-
ever, due to insufficient reads from the non-cancerous sample of the third pair, a
non-transformed sample from an additional fourth subject was sequenced instead.
Direct RNA sequencing of each sample involved the use of 500 ng of Poly-A RNA,
enriched via magnetic beads in accordance with the Direct RNA Sequencing Kit
(RNA Kit SQK-RNA002) instructions from Oxford Nanopore Technologies Ltd.
A pivotal step in our protocol was the integration of 0.25 µl of the RNA Calibra-
tion Strand (RCS) for Enolase II (ENO2), serving as a calibration standard. The
sequencing workflow began with the priming of the MinION flow cell using the
Flow Cell Priming Kit (EXP-FLP002) from the same company. Subsequent to this
priming stage, 75 µl of the RNA library was loaded into the SpotON sample port
of the MinION device, facilitating the commencement of the sequencing process.

3.2 Bioinformatics Methods

The computational analyses presented in this thesis primarily utilised Python for
the development of the majority of scripts, supplemented by additional scripts
written in R for specific tasks. The complete suite of projects, which will be ac-
cessible post-publication, is hosted on the GitHub repository at https://github.
com/sgiannouk.
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The research detailed in Chapter 4 and Chapter 6 within the thesis was based on
datasets publicly available through the National Center for Biotechnology Infor-
mation (NCBI). For ease of reference and reproducibility, each of these chapters
meticulously lists the accession numbers associated with the datasets employed in
our analyses.

This section also serves to introduce a concise overview of the key bioinformatics
methodologies and resources that were employed across the various segments of
this thesis. These methodologies encompass a range of computational tools and
analytical techniques pivotal for the data processing and analysis undertaken in
our research. For a detailed exploration of the specific materials and methods
utilised in individual chapters, where these aspects are further elaborated upon.

3.2.1 Preprocessing and Quality Control Workflow for NGS

Data

The preprocessing of initial raw fastq files from Illumina sequencing (NGS) be-
gins with FastQC [161], which facilitates the automated identification of potential
adapter sequences within the data. Upon detecting these adapters, the BBDuk
[162] tool is then utilised to carry out adapter removal, alongside quality trim-
ming and filtering processes. These steps involve trimming of poly-A or poly-T
sequences longer than 20 nucleotides, removal of reads containing ‘N’ bases after
trimming, cutting off read ends to remove bases scoring below 20 on the Phred
scale, discarding reads shortened to less than 40 nucleotides after trimming, and
eliminating reads whose average post-trim quality score falls below 20 Phred. Fol-
lowing the completion of these preprocessing measures, FastQC performs a Quality
Control check and an initial statistical analysis of the data. To provide a compre-
hensive overview of the dataset, MultiQC [163] compiles a final report, offering an
aggregated view of the data.

3.2.2 Mapping and Quality Assessment for NGS Data

The STAR aligner [164] is employed for mapping the high-quality sequencing
reads to the human reference genome GRCh38.p13 primary assembly, alongside
the GENCODE v35 reference gene annotation [165]. This precise alignment pro-
cess utilises the ‘GeneCounts’ and ‘TranscriptomeSAM’ parameters to accurately
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quantify both gene and transcript levels. Moreover, STAR is fine-tuned to work
in synergy with the Arriba software [166], significantly boosting its capacity to
identify fusion genes, while also performing gene and transcriptome quantification.
Quality metrics for the alignment are derived using RSeQC and Picard tools [167],
[168], essential for assessing the alignment process and further evaluate the quality
of the data. The entire post-alignment review process is streamlined through the
use of MultiQC, resulting in a detailed report that encapsulates the results. This
final document provides a thorough overview of the data quality ensuring a solid
foundation for further genomic analysis.

3.2.3 Transcriptome Quantification for NGS Data

Utilising the ‘TranscriptomeSAM’ output from STAR aligner, the Salmon software
[169] operates in an alignment-based mode to process this data. Default settings
are applied, with the enhancement of specific options such as ‘seqBias’ and ‘gcBias’
for the correction of sequence and GC content biases, respectively. The ‘libType
U’ setting is chosen to accommodate unstranded data, and the analysis includes
100 bootstrap iterations to ensure accurate and robust quantification. The final
transcript-level expression matrix is derived by amalgamating the quantification
results through Salmon’s ‘quantmerge’ script, focusing on the ‘numreads’ column
to construct the expression matrix.

3.2.4 Identification of RNA Editing and SNVs in NGS Data

De-duplication of the genome-aligned BAM files was conducted using samtools
[170] through its rmdup function. To adjust the base quality scores, the GATK4
BaseRecalibrator tool [171] was applied. For variant calling preparations, the
BAM files underwent further processing with BCFtools mpileup [172], applying
parameters such as minimum mapping quality (min-MQ) and base quality (min-
BQ) both set to 15, alongside other adjustments for improved accuracy. Variant
calling was executed with BCFtools call, setting specific conditions for ploidy,
variant selection, and calling methods, while excluding common variants listed in
the dbSNP database [173] to refine the dataset.

For the identification of RNA editing events, the REDItools software [174] was
configured to recognise edits with stringent quality and frequency criteria. These
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identified events were then consolidated into a comprehensive matrix, applying
filters to only include events with more than 20% occurrence across the dataset.

Following a similar initial approach for SNP analysis, the protocol diverged post
common variant filtering to exclude low-quality positions (SNPs with quality
greater than Phred score of 20, depth greater than 5 reads and mapping qual-
ity greater than 20 Phred score) and previously noted RNA editing sites. The
consolidation of variant files was performed using BCFtools merge, leading to the
creation of a unified variant matrix.

3.2.5 Re-Basecalling and Initial Filtering Workflow for TGS

Data

Basecalling of the MinION output fast5 files was executed locally using ONT’s
Guppy software [175], version 6.3.7, to ensure high-quality read inclusion based
on a minimum Phred score of 7, as recommended by ONT. We customised the
basecalling process by converting U bases to T and producing reads in reverse
orientation, with settings adjusted to specific flowcell and kit types, calibration
detection, RNA trimming strategies, sequence reversal, quality score filtering, and
enabling U substitution.

For a thorough assessment of our sequencing data’s quality and the overall success
of the sequencing effort, we employed NanoPlot [176]. This dedicated tool provides
detailed statistical analyses and a range of quality control graphics showcasing
read length and quality variability across the sequencing timeline. Bivariate plots
helped explore the correlation between read length and quality scores for a deeper
insight into the data’s fidelity.

In the subsequent stages, we excluded reads shorter than 50 nucleotides and under-
took meticulous error correction with IsONcorrect [177]. This approach capitalised
on the diverse gene isoform information to correct errors efficiently, proving par-
ticularly beneficial for enhancing read accuracy, even with minimal sequencing
coverage.
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3.2.6 Mapping and Quality Assessment for TGS Data

The fastq files, designated as ‘pass’ (with a minimum Phred score of 7), were
mapped to the GRCh38 primary assembly of the human genome using the Min-
imap2 aligner [178] in a configuration that supported splice-aware alignment. The
alignment process utilised 14-mer k-mers excluding secondary alignments.

To organise and condense the resulting SAM files, and to generate detailed metrics
for assessing the quality of the sequencing experiment, we employed a suite of
tools including Samtools [170] for file sorting and compression, PycoQC [179] for
quality control analysis, and RSeQC [180] for comprehensive evaluation of read
mapping and alignment quality. These tools facilitated a thorough examination of
the sequencing output, ensuring a high standard of data integrity and alignment
accuracy.

3.2.7 Gene and Transcript Identification and Quantification

Using TALON for TGS Data

For the purpose of identifying existing and predicting new genes and transcripts
within long-read transcriptomic data, we utilised the TALON software [181]. As
a preliminary step, and following the guidance provided by the developers, we
applied TranscriptClean [182] to enhance the quality of aligned reads. This step
focused on correcting any deviations from canonical splice junctions. The prepro-
cessed BAM files from our six samples, in conjunction with the GENCODE v35
human reference annotation, served as the input for our analyses with TALON.

TALON’s workflow facilitated the quantification of transcript abundance across
our samples, yielding two separate matrices. The first matrix offered a detailed
view of expression levels for both known and newly discovered transcripts, mapped
to established genomic locations, without imposing any filtering based on counts
or other criteria. The second matrix applied a more rigorous approach, focusing
on newly identified transcripts, necessitating their presence in at least one sample
group with a minimum of five counts for inclusion.

An additional custom script was implemented to refine our selection of novel tran-
scripts further. This script mandated that all novel transcripts demonstrate a
significant polyA tail length across a minimum of ten transcripts. Furthermore,
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we set a criteria of at least 20 counts per isoform for novel transcripts to be included
under the ISM Prefix, Suffix, None, and Both categories. For transcripts classified
under the novel ISM Suffix category, we ensured their completeness through an
exhaustive comparison of their 5’ ends against CAGE assay data, as elaborated in
a later section. Lastly, we merged the ISM None and Both categories into a con-
solidated ISM Both category, streamlining our categorisation of novel transcript
types.

3.2.8 CAGE Analysis for TSS Verification for TGS Data

Utilising human CAGE peak data from FANTOM5 database [183], updated to
hg38 using the LiftOver tool, we identified transcription start sites (TSS) for our
transcript models, checking for CAGE peaks within a 100 bp range of these TSS
locations with Bedtools.

3.3 Statistical Analysis

3.3.1 Exploratory Analysis for NGS Data

Before delving into statistical analysis, it’s crucial to undertake an exploratory
analysis to uncover essential insights such as batch effects and the presence of
lowly expressed data. To this end, multiple preliminary analyses are performed
to ensure the data’s readiness for further examination. One of the primary steps
involves conducting a Principal Component Analysis (PCA) using the DESeq2 R
package [184], which serves to evaluate the similarities among samples within a
dataset. PCA enables us to assess the clustering of similar samples and verify that
the experimental conditions are the primary source of variation. This technique
is instrumental in identifying outlier samples, which can be scrutinised to decide
whether their exclusion is necessary before proceeding with differential expression
analysis. Additionally, PCA may reveal the presence of batch effects that require
correction.

To facilitate PCA, we apply the Variance-Stabilising Transformation (VST) func-
tion from the DESeq2 package, preparing the data for analysis. The PCA plot
is generated twice to distinguish variations by conditions and by batch, providing
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a clearer understanding of the data’s structure. Following the transformation, an
interquartile range (IQR) analysis is conducted on the data. The IQR is utilised
to examine data variability and pinpoint potential outliers for possible exclusion.
This analysis adheres to the standard 1.5 threshold for identifying outliers.

3.3.2 Normalisation of the NGS Data

The further processing of NGS data critically involves filtering out lowly expressed
genes, a task efficiently handled by the ‘filterByExpr’ function within the edgeR
package [185]. After filtering, we apply normalisation using Counts Per Million
(CPM) to adjust for variances in sequencing depth across samples. To further
investigate the impact of this normalisation, we proceed with a new PCA. Creat-
ing a new PCA plot affords us the opportunity for a visual assessment of sample
distribution and clustering post-normalisation. This identical process is also rig-
orously applied to the Isoform Expression data, ensuring consistency across our
data analysis approach.

3.3.3 Gene Set Enrichment Analysis for the NGS Data

Our analysis includes a Gene Set Enrichment Analysis (GSEA) when necessary, a
powerful method aiming at uncovering groups of genes that show significant over-
representation within a broad gene set and may be linked to distinct phenotypes.
To facilitate this analysis, we utilise g:Profiler along with its g:GOSt tool [186],
a publicly accessible web server designed for gene mapping against recognised
databases of functional information. This tool enables us to identify and assess
statistically significant enriched terms, providing insights into the biological signif-
icance of our gene sets in relation to various phenotypes. Through this approach,
we can explore the potential functional implications of our data, shedding light on
how certain gene groups may influence or correlate with specific biological traits
or conditions. To streamline this process, we use the R package gprofiler2 [187],
which provides programmatic access to g:Profiler’s resources through a REST API,
ensuring efficient preparation and submission of gene lists for analysis. This pro-
cess culminates in the generation of a direct link to the g:Profiler web application,
enabling immediate execution of GSEA and facilitating user access to the analysis
results.
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3.3.4 Exploratory Analysis for TGS Data

Following a similar approach detailed in Section 3.3.1, the nanopore sequencing
data also undergo an extensive exploratory analysis. This process begins with the
manipulation of the unfiltered data, adhering to TALON’s guidelines, to generate
a gene-level expression matrix. This involves aggregating transcript counts to their
respective originating genes. Subsequently, genes with a total count of fewer than
10 reads are excluded from further analysis to ensure data quality.

The exploratory phase encompasses several analytical techniques to assess data
quality and structure. A PCA plot, similar to the one described in Section 3.3.1,
is created to visualise the variance within the data and identify potential clusters
or outliers based on gene expression profiles. Additionally, we construct a Sample-
to-Sample correlation heatmap. This heatmap, derived from Pearson correlation
coefficients, visually represents the gene expression similarities between samples.
Hierarchical clustering is applied to this heatmap, organising samples into groups
within a dendrogram, where the branch lengths indicate the level of similarity
between sample gene expressions.

Furthermore, to assess the distribution of gene expression across the samples, we
perform a boxplot analysis on the log2-transformed counts of the raw expression
matrix. This visualisation helps identifying any disparities in expression levels,
potential outliers, or systematic biases within the dataset, providing a compre-
hensive overview of the data’s characteristics before proceeding to more targeted
analyses.

3.3.5 Differential Expression and Usage Analysis for TGS

Data

Utilising R, we conducted analyses for Differential Gene Expression (DGE), Differ-
ential Transcript Expression (DTE), and Differential Transcript Usage (DTU). For
DGE analysis, transcript counts were aggregated to their respective genes to form
a gene-level expression matrix. This matrix was subsequently refined by removing
genes with low expression using the ‘filterByExpr’ function from the edgeR pack-
age. Following this filtration, the Trimmed Mean of M-values (TMM) method, also
from the edgeR package, was applied to calculate scaling factors among samples.
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These factors were then incorporated into the statistical tests to identify genes
that are differentially expressed across the samples. Following the identification of
differentially expressed genes, we embarked on Functional Enrichment Analysis to
delve deeper into the biological significance behind these expression patterns. For
this purpose, we employed the clusterProfiler R package [188], a comprehensive
tool designed for systematic analysis and visualisation of functional profiles for
genes and gene clusters. By utilising clusterProfiler, we can uncover the biological
processes, cellular components, and molecular functions most associated with our
set of differentially expressed genes, providing valuable insights into the underlying
mechanisms of the studied condition or phenotype.

For DTE analysis, we proceed with the filtered expression matrix, specifically
omitting transcripts labeled as ‘Genomic’ by TALON, following their recommen-
dations. The approach for DTE mirrors that of the DGE analysis, employing
identical filtering techniques and statistical testing methods to discern variations
in transcript expression across the dataset.

In our DTU analysis, we applied the IsoformSwitchAnalyzeR package [189] using
the pre-filtered abundance matrix as our starting point. To enrich our analysis,
we integrated external transcript data from multiple databases: Pfam [190] for the
identification of protein families and domains, IUPred2A [191] for the prediction
of disordered protein regions, SignalP [192] for the detection of signal peptides,
and CPC2 [193] for evaluating the coding potential of transcripts.

3.3.6 Novel Transcript Characterisation for TGS Data

Newly identified isoforms were subject to an in-depth functional characterisation
and annotation process, leveraging the capabilities of the Trinotate framework
[194]. Trinotate, a comprehensive annotation suite, was employed to systemati-
cally analyse these novel isoforms for a wide range of functional attributes. This
process included the identification of protein families, prediction of protein do-
mains, assessment of gene ontology terms, and evaluation of potential metabolic
pathways.
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3.3.7 PolyA-Tail Length, DPA, and APA Analysis for TGS

Data

Polyadenylation tail lengths were quantified utilising the Nanopolish tool [195]
[196], a methodology supported by its robust algorithms for accurate measure-
ment of polyA tail lengths within our dataset. To explore significant variations in
polyadenylation across different samples, we implemented a custom script designed
to conduct the Mann-Whitney U statistical test, a non-parametric method chosen
for its effectiveness in detecting differences between two independent groups. This
was complemented by subsequent analysis using the LAPA tool [197] for a focused
examination of Alternative Polyadenylation Analysis (APA). LAPA facilitated the
identification of sites exhibiting differential APA, enabling us to pinpoint specific
regions where alternative polyadenylation patterns may play a crucial role in gene
expression regulation.

3.3.8 Methylation Detection for TGS Data

The process of methylation analysis began by aligning the corrected fastq files to a
reference transcriptome provided by TALON, utilising Minimap2 as the alignment
tool. Following alignment, Nanopolish Eventalign was employed to segment the
sequencing signals, a critical step for identifying specific regions of interest within
the data. Finally, the identification of sites exhibiting differential methylation
across the dataset was performed using the xPore tool [198]. xPore specialises
in analysing and quantifying differential RNA modifications, leveraging the align-
ment and signal segmentation data to pinpoint variations in methylation that may
signify regulatory modifications or changes associated with different biological con-
ditions.

3.3.9 Initial Quality Control and Exploratory Analysis for

NanoString nCounter Data

The NanoString nCounter technology, which relies on direct digital detection to
quantify gene expression, produces not only raw data, but also a suite of quality
metrics designed to assess the fidelity of the detection process. These metrics pro-
vide valuable insights into the quality of the experiment and include Imaging QC,
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which evaluates the clarity and integrity of the images captured during detection;
Binding Density QC, which measures the efficiency of probe-target binding; Pos-
itive Control Linearity QC, assessing the linear response of the system across a
range of known concentrations; and Limit of Detection QC, determining the lowest
concentration at which targets can be reliably detected.

To ensure the reliability of our data, we generate several boxplots focusing on
these metrics to pinpoint any samples that deviate significantly from the norm,
potentially indicating issues with sample preparation, handling, or instrument
performance.

Following this initial QC phase, we delve into a comprehensive exploratory anal-
ysis of the data. This includes examining the rlog-transformed expression matrix
to better normalise the data distribution and mitigate the impact of large expres-
sion differences. A detailed boxplot analysis highlights the overall distribution of
expression levels across samples, aiding in the visualisation of data spread and
central tendencies.

Further, an IQR analysis is employed to identify samples that significantly deviate
from the collective behaviour of the dataset, flagging potential outliers for further
scrutiny. PCA and Multi-Dimensional Scaling (MDS) plots are then generated,
akin to PCA in their goal to reduce data dimensionality and visually represent
sample similarities and dissimilarities in a lower-dimensional space. These plots
are instrumental in revealing underlying patterns, batch effects, or groups within
the data, providing a visual summary of how samples relate to each other based
on their gene expression profiles.

3.3.10 Normalisation and Differential Expression for NanoS-

tring nCounter Data

In our analysis of NanoString nCounter data, we employed a comprehensive suite
of eight distinct normalisation methods, each tailored to address various aspects
of technical and biological variability inherent in gene expression studies.

1. Standard nSolver Normalisation: This foundational approach combines
Positive Control Normalisation, leveraging synthetic positive control targets,
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with CodeSet Content Normalisation, which utilises housekeeping genes. To-
gether, they adjust for technical variabilities across samples by applying a
sample-specific correction factor to target probes.

2. Housekeeping Scaling: This normalisation technique transforms gene ex-
pression counts using a scaling factor derived from the geometric mean of
the housekeeping genes within each sample. Housekeeping genes, selected
for their stable expression across various conditions, act as a reliable base-
line for normalisation. The pivotal aspect of this method is the division of
the geometric mean of housekeeping gene expressions for each sample by
the aggregate arithmetic mean of these geometric means across all samples.
This procedure adeptly balances out inter-sample variability, curtailing the
impact of technical variances ensuring the resultant data accurately mirrors
true biological expression variations.

3. Housekeeping with geNorm: This approach employs the geNorm algo-
rithm [199] to meticulously select housekeeping genes known for their stable
expression across various conditions. By focusing on these genes, the method
establishes a robust normalisation factor, calculated as the geometric mean
of the expression levels of the chosen housekeeping genes. This calculated
factor serves to standardise gene expression data across samples, providing a
reliable basis for comparison. The strength of this method lies in its ability
to minimise variability introduced by experimental conditions thereby en-
hancing the accuracy and consistency of expression level assessments across
the dataset.

4. Endogenous and Housekeeping Scaling: This normalisation strategy
integrates a holistic approach by utilising scaling factors derived from the
geometric mean of counts from both endogenous genes and selected house-
keeping genes within each sample. These scaling factors are then calibrated
against the overall arithmetic mean of these geometric means across all sam-
ples. This method provides a balanced and comprehensive normalisation
technique, ensuring that the variability due to technical factors is minimised
while maintaining the biological integrity of the data. By incorporating both
endogenous and housekeeping genes, this approach allows for a more nuanced
adjustment of expression levels, reflecting a true representation of gene ex-
pression across the dataset. This dual consideration effectively addresses the



Methods 50

complexities of gene expression normalisation, offering a robust framework
for accurate and reliable comparative analyses.

5. Quantile Normalisation: This method standardises the distribution of
gene expression data across all samples within a dataset, achieving unifor-
mity and comparability. Quantile normalisation operates by aligning each
sample to a common distribution, utilising the average quantiles across the
dataset to recalibrate individual data points. This technique effectively har-
monises gene expression levels, ensuring that differences observed are due
to biological variance rather than technical discrepancies. By aligning the
expression profiles to a shared distribution curve, quantile normalisation
mitigates the impact of outliers and batch effects, facilitating more accurate
cross-sample comparisons and analyses.

6. Cyclic Loess: This method represents an advanced non-linear local re-
gression technique designed to rectify variances among samples by apply-
ing pairwise normalisation. Cyclic Loess specifically targets the log-ratio of
expression levels (M) and the mean average (A) of expression across sam-
ples, meticulously correcting for any non-linear distortions present within
the dataset [200]. By iteratively adjusting these values, the method ensures
a more accurate alignment of gene expression profiles between pairs of sam-
ples, effectively normalising the data across the entire study. This approach
is particularly valuable in scenarios where the relationship between expres-
sion intensity and measurement error is complex and cannot be adequately
addressed by simpler linear models. Cyclic Loess’s capacity to fine-tune and
harmonise the dataset underpins its utility in preparing nCounter data for
subsequent analyses, ensuring that observed differences in gene expression
are reflective of biological reality rather than artifactual variations.

7. Variance Stabilisation Normalisation (VSN): The VSN technique stands
out for its sophisticated approach to data normalisation through a para-
metric transformation process. This method specifically targets the inher-
ent variance-mean dependence observed in gene expression data, aiming to
achieve a consistent variance across all levels of mean expression values [184].
By methodically modelling this relationship, VSN effectively stabilises the
variance, ensuring that the data across the spectrum of mean values are ren-
dered more comparable and analytically reliable. This stabilisation is crucial
for enhancing the accuracy of downstream analyses, as it mitigates the effects
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of heteroscedasticity—where the variability in gene expression data changes
with the level of expression. Consequently, VSN facilitates a more robust
and meaningful comparison of gene expression levels across different samples
or experimental conditions, providing a solid foundation for the identification
of genuine biological differences in gene expression studies.

8. RUVSeq: The RUVSeq package introduces a sophisticated approach to
data normalisation through its RUVg function, specifically designed to mit-
igate technical biases in gene expression data [201]. This method hinges on
the strategic use of reference genes to align the dataset, ensuring that tech-
nical variations do not overshadow biological signals. A key feature of this
technique is the ability to select a subset of target genes, with the selection
process augmented by geNorm’s algorithm to pinpoint the most stable genes.
These stable genes serve as a reliable baseline for normalisation, effectively
calibrating the dataset and enhancing the comparability of gene expression
across samples. By focusing on these stable reference genes, RUVSeq ad-
dresses and corrects for unwanted variation, thereby improving the integrity
and interpretability of the results. This approach is particularly valuable in
NanoString nCounter-based studies, where unwanted variations can impact
downstream analysis.

After the completion of the normalisation process, the analysis progresses to iden-
tifying differentially expressed genes, a task performed using the limma package in
R [200]. Limma utilises an empirical Bayesian methodology to effectively identify
genes that exhibit significant variations in expression across different experimental
conditions. This approach is particularly adept at increasing the statistical power
and reliability of the analysis, especially in studies with limited sample sizes, by
borrowing strength across genes to stabilise variance estimates.

3.4 Machine Learning Methods

Throughout this thesis, ML techniques have been pivotal, serving as a foundational
methodology across a variety of projects. The deployment of ML has spanned a
range of essential processes: from the initial data preprocessing, which includes
filtering to enhance dataset quality, to the meticulous selection of features and
classifiers aimed at optimising model performance. Additionally, the adoption of
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ensemble learning strategies has been crucial in improving predictive accuracy,
while the employment of comprehensive evaluation metrics has facilitated a thor-
ough assessment of each model’s effectiveness. This holistic ML approach has
formed the backbone of the analytical strategies employed, enabling a detailed
and sophisticated exploration of complex datasets. In the ensuing sections, we
will explore each of these fundamental ML aspects in greater depth, shedding
light on their practical application and significance in the research presented.

3.4.1 Filtering Process

The filtering stage in our ML workflows involves two crucial steps aimed at refining
the quality of the input datasets for more effective analysis. Firstly, the issue of
multicollinearity is addressed by identifying and eliminating features that exhibit a
high degree of correlation with one another. Specifically, any features demonstrat-
ing a Pearson correlation coefficient greater than 0.80 are excluded from further
analysis. This threshold is selected to ensure that the remaining features provide
unique information, enhancing the predictive power of our models while avoiding
redundancy that could skew the results.

Secondly, we eliminate quasi-constant features from the analysed datasets. Quasi-
constant features are those where a single value overwhelmingly dominates the
observations, to the extent that the same value accounts for more than 99% of
the data points for that feature. These features are considered to offer minimal
variability and, by extension, limited predictive value for our models. By removing
such features, we streamline our dataset, focusing on variables that contribute
meaningfully to the variation in our data and thereby improving the efficiency
and interpretability of subsequent analyses.

3.4.2 Feature Selection Techniques

Feature selection stands as a pivotal component in the ML pipelines across the
projects detailed in this thesis, playing a vital role in improving model perfor-
mance. By removing redundant or irrelevant instances (features), it simplifies
model complexity and improves interpretability. Additionally, the practice of
cross-validation, an essential technique in feature selection, is employed to ensure
the robustness and generalisability of the model. Cross-validation systematically
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partitions the data to validate the model on different subsets, providing a com-
prehensive assessment of its predictive power. Below, we delve into the specific
feature selection methods employed, each chosen for its unique advantages in op-
timising our ML models.

Genetic Algorithm (GA)

The GA is a search heuristic inspired by the process of natural selection. This
method is particularly effective for feature selection due to its ability to explore
a vast search space and identify optimal feature subsets for model training. GA
operates by generating a population of candidate solutions (feature sets) and iter-
atively improving them through operations such as selection, crossover, and mu-
tation. By evaluating the fitness of each feature set based on model performance,
GA selectively evolves towards the most promising feature combinations. This
approach has been invaluable in our projects for tackling high-dimensional data,
allowing us to navigate through thousands of potential features to uncover those
that significantly contribute to predictive accuracy.

Recursive Feature Elimination with Cross-Validation (RFECV)

RFECV is a robust feature selection method that integrates the recursive fea-
ture elimination (RFE) process with cross-validated selection to find the optimal
number of features. When used in conjunction with the Random Forest classifier,
RFECV systematically removes the least important features (as determined by
the classifier), while assessing model performance across multiple cross-validation
folds. This ensures that the selected features are not only important, but also con-
tribute to a stable and generalisable model. The Random Forest classifier, known
for its excellent performance and feature importance measures, provides a solid
basis for RFECV, allowing for the identification of a compact yet powerful subset
of features that drive accurate predictions.

Permutation Feature Importance (PFI)

PFI is a model inspection technique that measures the increase in prediction error
after shuffling each feature independently, thus breaking the relationship between
the feature and the true outcome. When applied using the Gradient Boosting
classifier, a powerful ensemble method that builds models sequentially to correct
errors of the predecessors, PFI can accurately assess the value of each feature.
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This method is particularly effective for identifying features that have a signifi-
cant impact on model predictions, distinguishing between features that genuinely
improve model performance and those that may contribute to noise.

Differentially Expressed (DE) Genes

In the context of biological data analysis, identifying DE genes is a critical feature
selection strategy. DE genes are those that show significant differences in expres-
sion levels across different conditions or classes and are likely to be biologically
informative. By focusing on DE genes as features, we can direct our ML models to
concentrate on the most relevant biological signals, enhancing the relevance and
specificity of our analyses to the underlying biological questions.

3.4.3 Classification Algorithms

In the diverse range of projects detailed within this thesis, a variety of classifica-
tion algorithms have been employed, each selected for its specific strengths and
suitability to the data at hand. These classifiers, central to the ML models devel-
oped, include AdaBoost Classifier, Logistic Regression, RandomForest Classifier,
ExtraTrees Classifier, GradientBoosting Classifier, and KNeighbors Classifier. The
choice of classifier was influenced by the characteristics of the biofeature matrices.
Here, we delve into the specifics and advantages of each classifier used.

AdaBoostClassifier (AdaBoost)

The AdaBoost (Adaptive Boosting) Classifier is an ensemble technique that com-
bines multiple weak classifiers to form a strong classifier. AdaBoost focuses on
instances that are hard to predict, assigning higher weights to them in subsequent
training rounds. This process creates a series of models that, when combined, im-
prove the overall model’s accuracy. AdaBoost’s adaptability and ease of use have
made it a valuable tool for classification tasks where the goal is to enhance model
performance iteratively.

LogisticRegression (LR)

LR is a statistical method for analysing datasets in which there are one or more
independent variables that determine an outcome. The outcome is measured with
a dichotomous variable (where there are only two possible outcomes). LR calcu-
lates the odds ratio in favour of the occurrence of an event, providing a powerful
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framework for modelling binary outcomes with one or more explanatory variables.
Moreover, it is used extensively in scenarios where the goal is to predict the pres-
ence or absence of a characteristic or outcome based on values of a set of predictor
variables.

RandomForestClassifier (RF)

The RF classifier is a powerful estimator that operates by constructing a multitude
of decision trees at training time and outputting the class that is the mode of the
classes of the individual trees. It is particularly well-suited to biofeature matrices
due to its ability to handle high-dimensional data and its robustness to overfitting,
making it a popular choice for complex classification tasks.

ExtraTreesClassifier (ET)

ET classifier is fundamentally similar to the RF Classifier, but introduces randomi-
sation in the way splits are chosen at each node, making the trees more random.
This method is often faster than its RandomForest counterpart and can achieve
similar or sometimes better performance, especially in the presence of noisy fea-
tures.

GradientBoostingClassifier (GB)

The GB classifier builds an additive model in a forward stage-wise fashion; it allows
for the optimisation of arbitrary differentiable loss functions, making it a flexible
choice for classification. Each new model incrementally reduces the loss function,
making the overall model increasingly predictive. Its strength lies in its ability to
capture complex interactions between features, offering precise predictions.

KNeighborsClassifier (KNN)

KNN implements the K-Nearest Neighbours vote, a type of instance-based learning
or non-generalising learning. It does not attempt to construct a general internal
model, but stores instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbours of each point. This method is
highly intuitive and flexible, making it suitable for datasets where the decision
boundary is irregular.



Methods 56

3.4.4 Ensemble Learning Techniques

Ensemble learning techniques have played a critical role in synthesising insights
from complex datasets. These techniques, by combining the predictions from mul-
tiple models, have enhanced the predictive performance and reliability of our ML
endeavours. Notably, we have leveraged majority voting, soft voting, and stacking
approaches, each chosen for its ability to integrate and amplify the strengths of
individual classifiers. Below is an elaboration on how these techniques were ap-
plied and their impact on the projects.

Majority Voting

Majority voting (or hard voting) is one of the simplest yet most effective ensemble
methods. In this approach, each model in the ensemble votes for a single class,
and the class receiving the majority of votes is chosen as the final prediction. This
technique is particularly powerful when the models are diverse, as it can signifi-
cantly reduce the variance and likelihood of overfitting, leading to more stable and
reliable predictions. By aggregating the decisions of multiple classifiers, majority
voting can often outperform even the best individual model in the ensemble.

Soft Voting

Soft voting refines the principle of majority voting through the integration of
probability distributions for each class prediction made by models within the en-
semble. Rather than each model contributing a singular vote towards a class, soft
voting assigns weights to these votes based on the confidence or probability linked
to each prediction. This technique enables a more sophisticated combination of
predictions, factoring in the precision of each model’s forecasts. In our applica-
tion of soft voting for determining final label predictions, we discovered it offered
greater adaptability and frequently improved accuracy over hard voting. This ad-
vantage was particularly pronounced in scenarios where predictions were tightly
competitive, illustrating soft voting’s capacity to harness the predictive strengths
of individual models effectively.

Stacking

Stacking (stacked generalisation) involves layering models to use the predictions
made by one layer of models as input for the next layer. Typically, the first layer
consists of a diverse set of base models, and the final layer is a meta-model that
learns how to best combine the predictions of the base models. In our projects,
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we used a Random Forest classifier as the meta-classifier, due to its robust per-
formance and ability to handle the feature importance variability of the base es-
timators’ predictions effectively. The stacking classifier was built with estimators
tailored to the specific requirements of the project, with the Random Forest meta-
classifier trained to optimally integrate these base predictions. This stacking ap-
proach not only captured the strengths of individual models, but also learned the
most effective way to combine0 these predictions for superior performance.

3.4.5 Evaluation Metrics

The assessment of ML models across various projects in this thesis was conducted
using a comprehensive set of evaluation metrics. These metrics provide insight
into different aspects of model performance, from overall accuracy to the balance
between sensitivity and specificity. Below is a brief explanation of each metric and
its significance:

Confusion Matrix (TN, FP, FN, TP)

The confusion matrix is a foundational tool in evaluating classification models,
displaying the counts of true negatives (TN), false positives (FP), false negatives
(FN), and true positives (TP). This matrix is crucial for calculating many other
metrics and offers a detailed view of model performance.

Recall

Recall (or Sensitivity or True Positive Rate) measures the model’s ability to iden-
tify all relevant instances, calculated as the number of true positives divided by
the actual positives (true positives plus false negatives). It is critical in contexts
where missing a positive instance has serious implications.

False Positive Rate

The False Positive Rate calculates the proportion of negative instances incorrectly
classified as positive, emphasising the model’s propensity to incorrectly signal a
condition.

ROC AUC Score

The Receiver Operating Characteristic (ROC) curve visualises a model’s capa-
bility to discriminate between positive and negative classes at various thresholds
(different points at which the criteria for classifying observations into positive or
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negative outcomes are set). The Area Under the ROC Curve (AUC) quantifies
this discriminative power, with a score of 1 indicating perfect classification and
0.5 suggesting performance no better than random chance.

Accuracy

Accuracy measures the proportion of correct predictions (both true positives and
true negatives) out of the total number of cases. It provides a straightforward
metric of overall model performance, but may not fully reflect effectiveness in
imbalanced datasets.

Balanced Accuracy

Balanced Accuracy amends the traditional accuracy metric by equally weighing the
performance on each class. It calculates the average of the recall (or sensitivity) for
each class, ensuring fair evaluation in datasets where class distribution is uneven.

Precision

Precision (or Positive Predictive Value) indicates the accuracy of positive predic-
tions, calculated as the number of true positives divided by the total number of
positive predictions (true positives plus false positives). It’s especially relevant in
situations where the cost of a false positive is high.

Average Precision Score

The average precision score summarises the precision-recall curve as the weighted
mean of precision achieved at each threshold, reflecting the model’s ability to
identify positive instances with confidence across all levels of recall.

F1 Score

The F1 Score combines precision and recall into a single metric by taking their
harmonic mean, offering a balance between the two. It’s particularly useful when
the costs of false positives and false negatives are similar.

F2 Score

The F2 Score places more emphasis on recall than precision, weighting false neg-
atives more heavily than false positives. It is useful in scenarios where failing to
detect a positive is more problematic than incorrectly identifying a negative as a
positive.

False Negative Rate

The False Negative Rate measures the proportion of positives that were incorrectly
classified as negatives, highlighting cases where the model misses a condition.
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True Negative Rate

True Negative Rate (or Specificity) measures the proportion of actual negatives
that are correctly identified, indicating the model’s ability to recognise negative
instances accurately.

Negative Predictive Value

This metric reflects the proportion of negative identifications that were actually
correct, indicating the model’s accuracy in predicting negative outcomes.

False Discovery Rate

The False Discovery Rate is the proportion of positive predictions that were false,
providing insight into the model’s error rate in falsely diagnosing conditions.

Cohen Kappa Metric

The Cohen Kappa Metric quantifies the agreement between two raters (or models)
by adjusting for agreement that could occur by chance, offering a normalised
measure of reliability beyond simple accuracy.

Matthews Correlation Coefficient

The Matthews Correlation Coefficient is a robust measure for binary classification,
offering insight into the quality of predictions by considering all four quadrants of
the confusion matrix. It’s particularly effective for imbalanced datasets.

Log Loss

Log Loss, or logistic loss, measures the uncertainty of probability estimates by
penalising false classifications, with a focus on the predicted probability’s deviation
from the actual label.

Brier Score

The Brier Score evaluates the accuracy of probabilistic predictions, penalising the
squared difference between the predicted probability and the actual outcome, with
lower scores indicating better predictions.

Likelihood Ratios

Likelihood Ratios (LRs) are pivotal in the medical field for interpreting diagnostic
test results, offering insights into the test’s ability to correctly identify those with
and without a specific condition. They are particularly useful in assessing how
likely a patient has a condition given a positive or negative test result. LRs come
in two forms: Negative Likelihood Ratio (LR-) and Positive Likelihood Ratio
(LR+), each providing specific insights into the test’s diagnostic performance.
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The Positive Likelihood Ratio (LR+) measures the extent to which the odds of
having the condition increase when a test result is positive. It is calculated as the
ratio of the test’s sensitivity (true positive rate) to 1 minus its specificity (false
positive rate). A LR+ greater than 1 indicates that a test result is more likely
to be seen in a person with the condition than in one without, with higher values
suggesting greater diagnostic accuracy.

Conversely, the Negative Likelihood Ratio (LR-) quantifies how much the odds of
the condition decrease when a test result is negative. It is calculated as the ratio
of 1 minus the test’s sensitivity to its specificity. A LR- less than 1 suggests that
a negative test result is less likely in individuals with the condition than those
without, indicating the test’s utility in ruling out the disease. The closer the LR-
is to 0, the more effective the test is at correctly identifying those without the
condition.

Diagnostic Odds Ratio

The Diagnostic Odds Ratio (DOR) is a comprehensive metric used to evaluate the
effectiveness of a diagnostic test. It provides a single indicator that quantifies the
test’s discriminative power, essentially measuring how well the test can distinguish
between individuals with and without the condition in question. The DOR is
calculated by taking the ratio of the odds of a positive test result in individuals
with the condition to the odds of a positive test result in individuals without
the condition. This metric is particularly useful because it combines the test’s
sensitivity (True Positive Rate) and specificity (True Negative Rate) into a single
number. A DOR of 1 indicates that a test does not discriminate between patients
with and without the condition any better than random chance. A DOR greater
than 1 suggests the test has discriminative power, with higher values indicating
better discriminatory performance. Conversely, a DOR less than 1 would indicate
poor test performance, where the test might incorrectly identify more individuals
without the condition as having it, and vice versa.



Chapter 4

Assessing the complementary

information of biologically relevant

features in lbRNA-Seq data

“A thinker sees his own actions as experiments

and questions–as attempts to find out

something. Success and failure are for him

answers above all.”

— Friedrich Nietzsche

This Chapter introduces the Ensemble Learning for Liquid Biopsy Analysis (ELLBA)
methodology, a novel and comprehensive approach for analysing liquid biopsy
RNA sequencing (lbRNA-Seq) data in cancer diagnostics. ELLBA leverages six
distinct biofeature types to capture diverse molecular characteristics of cancer.
Employing robust intra-sample normalisation and ensemble classification meth-
ods, ELLBA surpasses traditional gene expression analysis in predictive accuracy.
The methodology was evaluated across six datasets and four independent vali-
dation sets, covering a variety of cancer types and biosources. This approach
marks a significant advancement in lbRNA-Seq analysis, offering a more holistic
understanding of cancer biomarkers and paving the way for personalised cancer
care.

61
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4.1 Introduction

Human body biofluids, such as blood, urine, and saliva, have proven to be a rich
and valuable source of information about an individual’s health status [202]. The
burgeoning field of liquid biopsy (LB) research has been actively exploring these
resources with the aim of unlocking their full potential for diagnosis, monitoring,
prognosis, and treatment response assessment in various diseases, including cancer
[203], [204]. LB’s most effective assets lie in its repeatability, cost-effectiveness,
and minimal invasiveness.

Advancements in technology and computer science have propelled LB research.
The advent of Next Generation Sequencing (NGS) technology, combined with con-
tinuous improvements in bioinformatics have deepened our understanding of the
molecular landscapes in LB samples, revealing insights into disease mechanisms
and the discovery of potential biomarkers [205]–[208]. Several studies investigat-
ing blood-based biosources like Tumour-Educated Platelets (TEPs), Extracellu-
lar Vesicles (EVs), Circulating Epithelial Cells (CECs), and Circulating Tumour
Cells (CTCs) have notably unveiled a range of diagnostic signatures that hold
promise for the early detection of prominent cancers, harnessing the power of
mRNA sequencing (mRNA-Seq) [89], [209], [210]. For instance, Antunes-Ferreira,
D’Ambrosi, Arkani, et al. [211], report an Area Under the ROC Curve (AUC) of
0.88 through an 881 RNA biomarker panel to predict outcomes in Non-small Cell
Lung Carcinoma patients.

Despite the great promise and certain advancements in the field, the current fo-
cus on LB-based transcriptomics has predominantly been centred around gene
expression profiling, partly due to the lack of comprehensive pipelines tailored for
laboratories with limited bioinformatics resources. Consequently, biofeatures such
as isoform expression, fraction of canonical transcript (FoCT), gene fusion, RNA
editing, and single nucleotide variants (SNVs) have remained largely uncharted,
representing untapped sources of valuable insights. Specifically, the simultaneous
usage of these biofeatures has not been explored in previous research, promising
substantial potential for enhancing our understanding of LB data.

Moreover, the predominant application of cross-sample normalisation methods,
while beneficial for prediction accuracy in enclosed, frequently single lab study de-
signs, fosters challenges for clinical applications where intra-sample normalisation
is mandatory to classify individual clinical samples applying a fixed prediction
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model. Additionally, the lack of independent test sets in many studies raises con-
cerns about the reproducibility and generalisability of reported results, rendering
metrics like AUCs potentially misleading.

The untapped wealth of information within LB-derived RNA-Seq (lbRNA-Seq)
data presents an opportunity for more comprehensive and clinically relevant in-
sights. To fully unlock the potential of LB data, a comprehensive exploration of
complementary biological information available in a lbRNA-seq sample is imper-
ative in order to gain an encircled understanding of such biosources. However,
integrating this high amount of heterogeneous data into a single prediction model
is challenging. Moreover, due to the high-dimensional nature of lbRNA-seq data,
machine learning (ML) approaches have become indispensable for detecting pat-
terns and gaining a deeper understanding of the underlying biological conditions
[212].

In this study, we introduce ELLBA (Ensemble Learning for Liquid Biopsy Anal-
ysis), a methodology designed to tackle the complexities of LB data and en-
hance the predictive modelling of patient, with applicability to clinical settings.
ELLBA encompasses six biologically motivated feature types: gene expression,
isoform expression captures alternative splicing, FoCT quantifies predominant
transcript shifts, gene fusion detects structural changes, RNA editing indicates
post-transcriptional modifications, and SNVs unveil potential mutations. Each
biofeature type addresses different molecular properties that can be altered in
pathologies like cancer, offering therefore diagnostic and prognostic value. In the
context of existing literature, it is noteworthy that virtually all published LB-
based studies are based on Gene Expression or, at most, SNVs. No comparable
study or methodology exists harnessing the complementary information contained
in 6 different biofeatures providing a unified decision output and applicability to
clinical data. This innovative strategy distinguishes our approach, marking a sig-
nificant advancement in the field of lbRNA-Seq analysis. Given the absence of a
comparable workflow, our methodology focuses on comparing the final ensemble
output to the standard Gene Expression results. Finally, the modelling part of the
methodology utilises Ensemble Classification Methods to combine complementary
information from these features.

ELLBA was rigorously evaluated across six datasets and four independent valida-
tion sets, encompassing around 2,500 samples, covering various cancer types and
biosources. Our work highlights the utility of the rather simple intra-sample Count
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Per Million (CPM) normalisation in clinical settings. We show that while the best
normalisation method depends both on the data type and employed ML model, in
general, CPM performs equally well compared to more sophisticated cross-sample
methods. Moreover, our study demonstrates that Ensemble Learning is effectively
leveraging the complementary information contained in the different biofeature
types, always improving the prediction power over the best individual biofeature
type. Interestingly, the improvement seems to be especially pronounced when
evaluating independent test sets, which might indicate the robustness and repro-
ducibility of the discriminative biofeatures detected by ELLBA. In summary, our
workflow improves prediction accuracy and streamlines clinical decision-making,
contributing to personalised cancer care (Figure 1).

4.2 Materials and Methods

4.2.1 Workflow and Implementation

The ELLBA workflow can be easily installed using a Docker image. The source
code and exact installation instructions are available on GitHub. The workflow
integrates established bioinformatics tools with novel algorithms for data process-
ing, biofeature generation, and ML analysis. ELLBA was primarily developed
using Python (v3.8) with supplemental R (v3.6.3) scripts. ML analysis relies on
the scikit-learn (v1.2.0) Python package [213]. Table 1 presents a comprehensive
summary of all the software and packages utilised in the workflow, along with their
corresponding versions.

We employed data from 10 different LB studies, encompassing a total of 2,479
publicly available samples from the SRA repository [214]. The studies span dif-
ferent types of LB data, including TEPs, EVs, and CECs. To initiate the ELLBA
workflow, in addition to the raw fastq files, a sample sheet specifying at least
the sample name and group label (e.g., control, cancer) is required. Although we
conducted rigorous benchmarking in terms of normalisation and ML, this section
outlines the final workflow configuration.
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4.2.2 Data Preprocessing and Biofeature Extraction

Artificial adapter sequences and low-quality reads (average Q below 20 or shorter
than 40nt) are automatically detected and removed by the BBDuk (v38.18) tool
[162]. Furthermore, the workflow provides multi-sample quality reports through
multiQC (v1.13) [163].

Genome mapping was performed by the STAR (v2.7.6a) aligner [164] using the hu-
man reference genome GRCh38.p13 primary assembly as well as the GENCODE
v35 reference gene annotation [165]. STAR was employed with ‘GeneCounts’ and
‘TranscriptomeSAM’ parameters to obtain count matrices at both gene and tran-
script levels. Alignment quality metrics were extracted using RSeQC (v3.0.0) and
Picard tools (v2.23.3) [167], [168] to evaluate the alignment process and a final
summarised report is being generated.

Based on the STAR-generated BAM files, we generate a total of six biologically
motivated feature types: (1) Gene expression, (2) Isoform expression, (3) FoCT,
(4) Gene fusion, (5) RNA editing and, (6) SNV. A detailed overview of each
biofeature type can be found in Table 4.1.

4.2.3 Gene Expression

To quantify gene expression, we collected read abundances from the GeneCounts-
based generated files and created a single expression matrix that encompassed
the quantification results for all samples. Subsequently, we performed a principal
component analysis (PCA) on the gene expression matrix to identify potential
batch effects in the data. Furthermore, an Interquartile Range (IQR) analysis was
employed to identify any potential outlier samples.

Following the exploratory analysis, we utilised the ‘filterByExpr’ function from the
edgeR (v3.28.1) package [185] to remove genes with low expression levels across
samples. Subsequently, we applied the standard CPM normalisation followed by
the MinMaxScaler function, from the sklearn package, to further transform the
gene expression data ensuring that all feature values are on a comparable scale.
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Table 4.1: Implementation details on the six biofeature types utilised in this
study.

Biofeature type Biological rationale

Gene expression Gene-level expression profiles provide information on the
transcriptional activity of each gene in the sample. It is a
measure of how active a gene is and determines the abun-
dance of RNA molecules produced from that gene. Gene
expression plays a crucial role in determining an organ-
ism’s traits and functions. Consequently, perturbations
in gene expression, driven by diseases, can lead to sub-
stantial alterations.

Isoform expression Isoform expression is the measurement of different splice
variants or isoforms of a gene’s RNA transcripts. Alter-
native splicing allows genes to produce multiple isoforms
with sometimes different functional characteristics. Iso-
form expression profiling reveals gene product diversity
and potential disease associations.

FoCT FoCT is designed to assess the predominant canoni-
cal transcript shift in each gene using a default group.
Changes in the frequency of alternative splicing events are
quantified by means of the fraction of the canonical tran-
script. The rationale behind this metric is that in cancer,
frequently the splicing pathway is affected, increasing the
transcriptional variation for at least certain genes. Un-
der this scenario, it might be less important to correctly
identify the different isoforms, but to robustly quantify
the existence of a differential amount of alternative tran-
scripts.

Gene fusion Gene fusion detection involves identifying abnormal fu-
sion events between two genes, which can arise from chro-
mosomal rearrangements or translocations. Fusion events
can create chimeric RNA transcripts or fusion proteins
that are often associated with disease.

RNA editing RNA editing is a post-transcriptional modification pro-
cess that alters the nucleotide sequence of RNA molecules,
leading to changes in the encoded protein or functional
non-coding RNA. This process is crucial for expanding
the functional diversity of the transcriptome and can im-
pact gene regulation, protein structure, and function.

SNV Single Nucleotide Variants (SNVs) can alter protein struc-
ture, function, or gene regulation based on their location
in the coding or regulatory sequences. SNV analysis aids
in discovering disease-associated (driver) mutations.
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4.2.4 Isoform Expression

For quantification at a transcript level, we employed Salmon (v1.9.0) software
[169] in alignment-based mode, using STAR TranscriptomeSAM output. Default
parameters were employed, along with additional settings including seqBias and
gcBias enabled for sequence and GC content biases correction, libType U

for unstranded data, and 100 bootstrap iterations for robust quantification. The
resulting transcript-level expression matrix was obtained by merging quantification
outputs using Salmon’s quantmerge script, selecting the numreads column for the
final matrix.

Similar to gene expression analysis, we performed exploratory analysis, normali-
sation, and transformation on the transcript-level expression matrix. These steps
followed the same approach as described in Section 4.2.3 for gene expression anal-
ysis.

4.2.5 Fraction of Canonical Transcript

We randomly selected 20 control individuals and extracted the most abundant
transcript of each gene (canonical transcript) based on the isoform expression lev-
els in these samples. This list of transcripts was used to convert the transcript
expression matrix into a canonical transcript matrix. The transformed matrix
considered only the most abundant transcripts, dividing their expression levels by
the total counts of all transcripts originating from the same gene. This yielded the
FoCT for each sample, which was then combined into a single matrix. Any fea-
tures with missing values (NA) were entirely removed. Finally, the StandardScaler
function was applied to transform the frequency feature matrix.

4.2.6 Gene Fusion

Gene fusions were identified using the Arriba (v2.1.0) software [166], [215], with
specific parameters adjusted within the STAR aligner for fusion gene detection.
The Arriba software was utilised with default parameters. Following detection,
gene fusions were sorted alphabetically, and gene IDs were appropriately adjusted.
Specifically, the first gene ID within the fusion nomenclature was retained, while
the second part was omitted. Furthermore, instances of the same first gene ID
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were merged into a unified entry, resulting in a count matrix. This matrix was
subsequently transformed into a binary format, featuring exclusively 0 or 1 values.
In this binary configuration, a value of 0 denotes the absence of fusion detection
within a sample, while a value of 1 signifies its presence.

4.2.7 RNA Editing Events

The genome-aligned BAM files were subjected to de-duplication using the rmdup
function of samtools (v1.7) [170]. Additionally, GATK BaseRecalibrator (v4.1.9.0)
[171] was employed to recalibrate the base quality scores. Subsequently, BCFtools
mpileup (v1.7) [172] was utilised on the pre-processed BAM files with the follow-
ing parameters: min-MQ 15, min-BQ 15, redo-BAQ, per-sample-mF, and
min-ireads 2. Variant calling was performed using BCFtools call with the pa-
rameters ploidy GRCh38, variants-only, and multiallelic-caller.
Known common variants from the dbSNP [173] database (common_all_20180418)
were excluded from the analysis.

RNA editing events were detected using REDItools (v2.0) software [174]. The
software was configured with the following parameters: min-edits 2,
min-read-quality 18, and min-base-quality 15. RNA editing events
were filtered at the sample level based on a minimum depth per site of 10, a mean
quality score per site of at least 20, and a minimum substitution frequency of 0.3.
All RNA editing events that passed the quality filters were merged into an overall
feature matrix and further filtered to include only events that were present in at
least 20% of the samples. The resulting RNA editing event matrix was transformed
into a binary format, where 0 indicated the absence of an event and 1 indicated
its presence.

4.2.8 Single Nucleotide Variants

Up to the common variant (SNP) filtering step, an identical protocol to RNA
editing analysis was followed. After this stage, positions with quality scores below
20 and a minimum depth of 2, along with previously identified RNA editing sites,
were filtered out. BCFtools merge was then employed to consolidate the filtered
VCF files, producing a unified matrix across all samples. Subsequently, GATK
VariantsToTable (v4.1.9.0) [216] extracted the genotype field for each variant from
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the filtered VCF file, converting the data into a tab-delimited table format. SNV
values were discretised as follows: 0 for no alternative allele, 0.5 for heterozygous
calls, and 1 for homozygous positions. Lastly, variants occurring in less than 20%
of samples were filtered out.

4.2.9 Machine Learning and Ensemble Learning Implemen-

tation

To be able to generate a robust model that may classify each input sample within
the datasets, ML techniques were employed on each of the six distinct biofeature
spaces extracted from the data. Each dataset was initially split into training and
test sets. For datasets with an independent external validation dataset, this was
designated as the test set, while the main dataset served as the training set. In the
absence of an external validation set, a random 70-30 split was performed, with
70% of the data used for training and the remaining 30% as an approximation to
an independent test set.

Feature selection and model training were conducted on the training set, followed
by final validation on the test set. Initially, highly correlated features (Pearson’s
correlation above 0.8) and quasi-constant features (with 99% similarity) were re-
moved from further analysis.

The filtered training biofeature matrices underwent feature selection using the
GeneticSelectionCV function, a Python implementation of the genetic algorithm
(GA) [217]. The GA operates in a wrapper-like mode, systematically search-
ing for the optimal set of features for the classification task. The choice to
utilise the GA for feature selection stems from its efficiency in managing well
vast high-dimensional biofeature spaces within a relatively short timeframe. As
a population-based metaheuristic algorithm, the GA employs multiple candidate
solutions during the search process. It excels in exploring diverse biofeature com-
binations comprehensively, proving notably faster and less computationally ex-
pensive—ideal for large-scale datasets. In contrast to standard methods like Re-
cursive Feature Elimination (RFE) or Univariate methods, the GA offers unique
advantages. RFE, while effective, can be computationally demanding and time-
intensive, especially with high-dimensional data, such as Isoform Expression with
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nearly 34,000 features. Univariate methods, on the other hand, may overlook in-
tricate feature interactions, limiting their ability to capture nuanced patterns in
the data. The GA, with its capacity to consider feature interactions and navigate
vast feature spaces efficiently, provides a more robust and holistic approach to
feature selection in the context of LB-based datasets.

The GA was utilised with stratified 5-fold cross-validation (CV), employing empir-
ical parameters including n_population = 130, n_generations = 130,
scoring = “accuracy", and max_features = 50, a choice justified by
balancing model complexity and prediction performance. For each training biofea-
ture type matrix used in GA-based feature selection, an appropriate base estimator
was selected. It’s worth noting that the GeneticSelectionCV function employs the
selected base estimator to evaluate the fitness of different feature subsets during
the GA process. Specifically, the Random Forest classifier was selected as the base
estimator for Gene Expression, the SVM classifier for Isoform Expression, and the
Logistic Regression classifier for the remaining biofeatures (Table 2).

Kindly take note that, going forward, when we refer to selecting or utilising an
appropriate base estimator, we specifically mean choosing or using the underlying
method that is employed by algorithms like GeneticSelectionCV or AdaBoost.
This subtle yet crucial distinction is pivotal for comprehending how ensemble
learning harnesses the unique strengths of distinct base estimators to enhance
overall predictive accuracy.

In particular, for both feature selection and modelling, we explored a range of
standard and diverse classifiers to identify the most suitable ones. This set in-
cluded classifiers such as AdaBoost, K-Nearest Neighbours (KNN), support vector
machine with a linear kernel (LinearSV), Logistic Regression, Naive Bayes, and
Random Forest. Model training was conducted using stratified 5-fold CV. Table
2 provides a detailed overview of the final feature selection and classifier combina-
tions.

Ensemble learning was employed to combine the individual information from all six
distinct biofeature types and enhance the predictive performance of each sample.
To ensure the inclusion of reliable features, a minimum mean accuracy score of 0.65
during CV in the training process was set as an empirical eligibility criterion. The
soft voting strategy was then applied to make the final label prediction, averaging
the aggregating predictions based on the probability distribution of class labels.
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4.2.10 Functional Enrichment Analysis

To perform functional enrichment analysis, we utilised the online GOst tool pro-
vided by the gProfiler [186] web service. This tool facilitated the Gene Ontology
(GO) and pathway enrichment analyses on the genes selected through the GA
for each biofeature type. Additionally, we conducted enrichment analysis on the
combined biofeature set, incorporating all selected features.

4.3 Results

4.3.1 Data Collection and Description

Our study design comprises data from ten different LB-based studies encompass-
ing a total of 2,479 samples [74], [76], [89], [127], [210], [218]–[222]. The data
were obtained from publicly available sources and consisted of short-read RNA
sequencing (RNA-Seq) data.

Various sequencing protocols, including mRNA-Seq, Extracellular Vesicles Long
RNA Sequencing (exLR-Seq), single-cell RNA sequencing (scRNA-Seq), read lengths
(100, 150, and 250), read types (single and paired-end), and sequencing methods
(bulk and single-cell) were included into the analysis.

The collected data were derived from three distinct blood-extracted biosources:
TEPs, EVs, and CECs. TEP-derived data comprise the majority accounting for
over 1900 samples, while approximately 450 samples were derived from EVs, and
the remaining samples originated from CECs (Figure 4.1).

Furthermore, our study was particularly focused on six different cancer types,
each represented by a unique acronym: Non-small Cell Lung Carcinoma (NSCLC)
for lung cancer, Glioblastoma Multiforme (GBM) for brain cancer, Colorectal
Cancer (CRC) for colon cancer, Esophageal Squamous-Cell Carcinoma (ESCC)
for esophageal cancer, Pancreatic Ductal Adenocarcinoma (PDAC) for pancreatic
cancer, and Hepatocellular carcinoma (HCC) for liver cancer. These well-defined
cancer types serve as the foundation for our analyses, and we refer to each of
the six datasets by their respective cancer type acronyms: NSCLC, GBM, CRC,
ESCC, PDAC, and HCC.



Assessing the complementary information of biologically relevant features in
lbRNA-Seq data 72

Figure 4.1: Comprehensive Overview of Datasets in the Study. A
detailed overview of the datasets employed in this study, showcasing six distinct
datasets: NSCLC, GBM, CRC, ESCC, PDAC, and HCC, as depicted in the
outer donut plot. Light blue colouring (NSCLC, CRC, and PDAC) signifies
datasets with independent external validation sets, while grey shading (GBM,
ESCC, HCC) represents datasets without external validation. The inner circle
categorises the biosource origin of each dataset: dark yellow for TEPs in NSCLC,
GBM, CRC, and ESCC; cinnamon red for EVs in PDAC; and brown for CECs

in HCC.

To ensure the robustness of our analysis, we divided the collected studies into two
main subsets: a training set and an independent external validation testing set,
when available. The training set comprised samples from six of the ten studies,
totalling approximately 2000 samples. The remaining four studies were exclusively
used for the external validation testing set. To be more precise, within the set of
six datasets, three (NSCLC, CRC, and PDAC) are accompanied by independent
external validation datasets. For instance, in the NSCLC dataset, which encom-
passes 779 samples comparing NSCLC to non-cancer TEP samples, sequenced
using an SE100 mRNA-Seq protocol, we identified an external validation dataset
that perfectly aligns with the same sequencing protocol and cancer type. Similarly,
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the CRC dataset, comprising 322 samples, employed PE100 mRNA-Seq sequenc-
ing to distinguish between Colorectal Cancer and Non-Cancer samples. Its corre-
sponding external validation set maintained the cancer type and utilised an SE100
mRNA-Seq protocol. In the context of PDAC, featuring 401 samples focused on
Pancreatic Ductal Adenocarcinoma versus Healthy Controls, the sequencing fol-
lowed a PE150 exLR-Seq protocol. The matching external validation set, derived
from two publications, also maintained consistency in terms of cancer type and
sequencing protocol. Table 3 provides a detailed overview of the datasets, in-
cluding their configuration, utilisation, and accession information. Kindly consult
the Supplementary Materials Section A.1.1 for a detailed account of the specific
procedures and analyses applied to individual biofeatures in the utilised datasets.

4.3.2 Overview of the ELLBA Methodology

The ELLBA methodology is organised into two core components: bioinformatics
and ML. It consists a total of seven distinct modules. The initial four modules,
namely Input, Mapping, Biofeature Extraction, and Biofeature Processing, con-
stitute the bioinformatics phase of the analysis. The subsequent three modules,
Feature Selection, Classification, and Decision Output, are focused on ML. The
entire workflow is depicted in Figure 4.2. Each module within this framework
performs a specific set of tasks, which can be summarised as follows:

Input module: Adapter trimming and quality control (Figure 4.2A).

Mapping module: Genome alignment and gene profiling, including alignment
quality controls (Figure 4.2B).

Biofeature extraction module: Six distinct biological features are extracted
(Table 4.1): (i) gene-level expression profiles, (ii) isoform-level expression profiles,
(iii) FoCT, (iv) gene fusion quantification, (v) RNA editing, and (vi) putative
somatic SNV (Figure 4.2C). Table 4 provides a numerical overview of the extracted
biofeatures before any filtering.

Biofeature processing module: Normalisations and discretisation techniques
are applied prior to filtering low-quality and non-discriminative biological features
like lowly expressed genes or common germline variants (SNPs) (Figure 4.2D).
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Figure 4.2: Overview of the ELLBA Workflow. ELLBA methodology features two main
components: bioinformatics analysis (light green) and ML (light blue). The workflow includes seven
modules. Bioinformatics analysis involves Input, Mapping, Biofeature Extraction, and Biofeature
Processing. ML includes Feature Selection, Classification, and Decision Output. The process starts
with data Input and progresses through Mapping, Biofeature Extraction, and Biofeature Processing
for bioinformatics analysis. Then, Feature Selection, Classification, and Decision Output handle ML
analysis. Biofeatures are individually processed in Biofeature Processing, involving data cleaning
and normalisation or discretisation. In ML, Feature Selection and Classification are applied to each
biofeature. The Decision Output combines individual classification outputs using ensemble learning

(soft voting) for the final decision.
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Feature selection: For each specific biological feature type, feature selection is
performed using the GA in conjunction with a designated base estimator (Table
2 and Table 5) tailored to that particular biofeature type (Figure 4.2E).

Classification module: Following feature selection, each biofeature classification
using standard ML models. The class confidences generated are then retained for
subsequent use in the final Decision Output module (Figure 4.2F).

Decision Output module: To leverage the complementary information offered
from each biofeature type, by default ensemble soft voting classification is applied.
This method combines the predicted probabilities from all biofeature matrices,
aggregating them into a single, consolidated average prediction. In this context
(Figure 4.2G), each predictive model generates a label (either "Non-cancer", high-
lighted in blue, or "Cancer", highlighted in red) along with an associated probabil-
ity displayed beneath the respective label. During the soft voting process, all these
output predictive probabilities are consolidated through averaging, culminating in
the ultimate decision (as demonstrated by "Cancer" in the figure). Additional
details about soft voting can be accessed in the Supplementary Materials Section
A.1.2.

4.3.3 Comparative Analysis of Normalisation Methods for

Gene and Isoform Expression Data

Normalisation of gene and transcript expression data is a crucial step in analysing
raw-count matrices. While the remaining biofeature types (FoCT, Gene fusion,
RNA editing, and SNV) are inherently normalised as ratios or discrete values,
count matrices require normalisation to account for variations in read yield and
technical artefacts. Several methods with different assumptions have been imple-
mented for this purpose [223], and their performance varies depending on whether
these assumptions are met [224]. Most commonly, cross-sample normalisation
methods are applied. Examples of such approaches include TMM and TMMwsp
from the edgeR package, RLE from DESeq2, RUV from the RUVseq package
(which can also address and rectify batch effects), as well as quantile-based meth-
ods like Full Quantile (FQ) and Upper Quartile (UQ) normalisation. While these
cross-sample methods often exhibit superior performance in benchmark studies,
they have a notable drawback: the normalisation outcome for a specific gene and
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sample is influenced by the values of other samples. This characteristic hampers
their utility in clinical settings, where the objective is the normalisation of indi-
vidual samples and its application to fixed prediction models.

To address this limitation, we evaluated the performance of two intra-sample nor-
malisation methods, CPM and Reads Per Kilobase per Million mapped reads
(RPKM), and the aforementioned six cross-sample normalisation methods for all
six datasets. This evaluation was carried out by incorporating these normalisation
methods into the "Biofeature processing module" step of the pipeline and assessing
their impact on the results. To mitigate the influence of specific ML models, our
analysis encompassed six diverse algorithms: AdaBoost, KNN, LinearSV, Logistic
Regression, Naive Bayes, and Random Forest.

Performance assessment was conducted on all six training datasets applying a
5-fold CV approach with exactly the same folds for each biofeature type.For an
in-depth examination, refer to Section A.1.3 in the Supplementary Materials. The
average AUC is then used as the principal quality measure. The results of the
gene expression normalisation, presented in Figure 4.3, consistently demonstrated
that CPM normalisation, despite variations between datasets and ML models, per-
formed comparably to the more sophisticated cross-sample methods. Specifically,
CPM normalisation yielded the highest collective mean AUC of 0.81 across all
datasets, while RPKM exhibited the lowest performance with 0.58. RLE normali-
sation ranked second highest with a collective mean AUC of 0.79. On an individual
dataset basis, CPM normalisation consistently exceeded other methods, except in
the CRC dataset, where FQ normalisation achieved a slightly higher mean AUC
(0.73) compared to CPM (0.70). It is worth noting that, despite employing RU-
VSeq normalisation to account for batch effect, our results showed that CPM nor-
malisation outperformed RUVSeq. This observation, indicating that batch effect
correction did not significantly impact the ML analysis, highlights the robustness
of CPM normalisation in combination with ML downstream analysis.

Similar trends were observed in the analysis of isoform expression normalisation
(Figure 2), following the same evaluation protocol as the gene expression analy-
sis. More specifically, CPM normalisation demonstrated favourable performance,
achieving the highest score with a collective mean AUC of 0.80 across all datasets,
while RPKM displayed the lowest performance with 0.60. FQ normalisation was
rated second, with a collective mean AUC of 0.78. Notably, when evaluating
each dataset individually, CPM normalisation consistently outperformed the other
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Figure 4.3: Summary of Various Normalisation Methods. A total of eight nor-
malisation techniques were assessed across all six datasets. Each column corresponds to
a distinct normalisation method, while each row represents a different dataset employed.
The x-axis illustrates the various models utilised within each normalisation. and the v-
axis depicts the mean AUC score achieved through 5-fold CV. Each model is represented
by dots indicating the AUC for each CV fold. Additionally, a dashed line indicates the
mean AUC across the 5 folds. while a solid line represents the mean AUC across all

models.

methods, with the exception of the GBM and CRC datasets. In the GBM dataset,
RLE normalisation achieved a slightly higher mean AUC of 0.72, compared to
CPM’s 0.70. Similarly, in the CRC dataset, TMMwsp exhibited a mean AUC of
0.66, while CPM achieved 0.65. Notably, CPM normalisation not only provided
very robust results, but also exhibited significant clinical value. Unlike other meth-
ods, CPM normalisation can normalise a single sample independently, making it
more time-efficient for clinical applications.

4.3.4 Optimal Classification Models for the Different Biofea-

ture Types

Having established CPM as the default normalisation method for expression-based
features, we extensively explored the performance of six diverse classifiers: Ad-
aBoost, KNN, LinearSV, Logistic Regression, Naïve Bayes, and Random Forest,
using all six biofeature types and datasets. These six classifiers were meticulously
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selected based on their algorithmic diversity, computational efficiency, and their
capacity to provide a balanced approach to classification, incorporating both linear
and non-linear techniques. Their selection also took into account the specific char-
acteristics of our dataset and the nature of the features extracted. Emphasising
diversity was crucial, as these classifiers comprise different modelling paradigms,
extracting the most appropriate patterns and discrimination functions regarding
the distinct feature spaces of the problems involved. Moreover, we have opted for
the use of standard libraries and well-validated classification methods, ensuring
the robustness and reliability of our software implementation. Furthermore, we
acknowledge the need for diversity not only in individual classifier performance,
but also in the success and good behaviour of the multi-classification approach,
i.e., ensemble combination. Recognising that the joint use of different methods
ensures a good trade-off among their potentially different predictions, we have
placed a strong emphasis on diversity to enhance the effectiveness of the ensemble
method. This approach aligns with the need for a comprehensive and well-balanced
strategy, considering the varying strengths of each classifier within the ensemble
framework. Additionally, their widespread use in similar bioinformatics contexts
enhances comparability with existing literature. The performance of each classi-
fier was evaluated using the same stratified 5-fold CV approach on each dataset,
and the average AUC was reported (Figure 4.4). To determine the most suitable
classifier for each biofeature type, we calculated the average mean AUC across
all datasets for that biofeature type. Our findings revealed that expression-based
feature matrices yielded the highest performance when paired with the AdaBoost
classifier using the ExtraTrees as base estimator. Specifically, AdaBoost achieved
the highest mean AUC of 0.86 for gene expression, while KNN exhibited the low-
est mean AUC of 0.78. LinearSV, Random Forest, and AdaBoost demonstrated
similar performance for isoform expression with a collective mean AUC of 0.83,
while KNN yielded the lowest mean AUC of 0.77. Consequently, we selected the
AdaBoost classifier with the ExtraTrees base estimator as the optimal choice for
both gene and isoform expression analyses.

Conversely, Logistic Regression emerged as the most suitable classifier for the
remaining biofeature matrices, including FoCT, fusion genes, RNA editing, and
SNVs. More specifically, Logistic Regression achieved the highest collective mean
AUC of 0.83 for FoCT, while Naïve Bayes exhibited the lowest mean AUC of 0.72.
In the case of fusion genes, both Logistic Regression and Naïve Bayes performed
equally, yielding a collective mean AUC of 0.54, while LinearSV demonstrated
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Figure 4.4: Classifier Selection Overview. Each column in the plot repre-
sents a different feature type, while each row corresponds to a different dataset.
On the x-axis, six classifiers are evaluated, and the y-axis displays the mean
AUC score achieved through 5-fold CV. The dashed lines represent the average
AUC score from the 5-fold CV evaluation. For the first two feature types (gene
and isoform expression), AdaBoost with ExtraTrees, is highlighted in red, as it
is better suited for these feature types. For the remaining feature types, Logistic
Regression, is highlighted in blue, as it is better suited for these types of features.

the lowest performance with a collective AUC of 0.52. Regarding RNA editing
and SNVs, Logistic Regression outperformed other classifiers, obtaining a collec-
tive mean AUC of 0.82 and 0.77, respectively, whereas KNN exhibited the lowest
performance with a collective AUC of 0.70 and 0.72, respectively.

4.3.5 Enhancing Predictive Output through Ensemble Learn-

ing

Having thoroughly assessed the performance of each of the six biofeature types in
isolation, we delved into the potential benefits of combining these diverse, high-
dimensional biofeature spaces, each characterised by different scales and distribu-
tions. To do so, we adopted three ensemble combination techniques: soft voting,
majority voting, and stacking, each with its unique approach to integrating predic-
tions from multiple models. Soft voting relies on averaging probabilities, majority
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Figure 4.5: Performance Overview of Feature Types and Ensemble
Learning Methods Across Datasets. Each column in this figure corresponds
to a specific dataset, with dataset information and the presence of an indepen-
dent validation set indicated above. (A) The plot displays AUC scores for the
test sets across all feature types. (B) Dot plots illustrate the percentage of
misclassifications for each feature type across different datasets. The colourful
squares and dots in both figures A and B represent the ensemble learning tech-
niques, while the grey squares and dots represent the remaining feature types.

voting on majority decisions, and stacking employs a meta-model to optimise the
fusion of predictions (see Supplementary Materials Section A.1.4).

Our comprehensive evaluation spanned six datasets, assessing performance using
key metrics: AUC and the percentage of misclassified samples (Figure 4.5A-B and
Supplementary Materials Section A.1.5). While AUC offers a broad measure of
model performance, its limitation in discerning specific error types prompted us
to incorporate misclassification rates for a more nuanced evaluation. Strikingly,
ensemble learning consistently outshone individual models across all datasets. The
selection of the most suitable ensemble technique varied depending on the dataset
and the metric considered. For AUC, soft voting excelled in NSCLC, CRC, and
ESCC, whereas stacking proved superior in GBM, PDAC, and HCC. Conversely,
when evaluating the percentage of misclassified samples, NSCLC, CRC, PDAC,
and HCC demonstrated the best outcomes. In GBM and ESCC, majority voting
slightly outperformed soft voting. In some instances, multiple ensemble techniques
performed equally well, such as majority voting and stacking in GBM and CRC,
and soft voting and stacking in PDAC and HCC.
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A deeper dive into specific datasets revealed intriguing findings. In NSCLC, soft
voting achieved an impressive low misclassification rate of 12.1%, outperforming
gene expression at 15.5%. In GBM, majority and stacking techniques led with a
17.8% misclassification rate, surpassing soft voting at 20% and gene expression at
21.1%. For CRC, both soft and majority voting achieved a low misclassification
rate of 13.4%, while gene expression yielded a higher rate of 23.7%. In ESCC,
majority voting reached 17.2%, while soft voting and other ensemble techniques, as
well as gene and isoform expression, hovered around 20.7%. In PDAC, all ensemble
techniques achieved a comparable rate of 21.7%, while gene expression exhibited
a higher rate of 26.1%. Lastly, in HCC, soft voting and stacking were equally
successful, both at 8.6%, while gene expression performed the worst at 22.6%.
For a detailed overview of the computed misclassification rates and comprehensive
data, please refer to the Supplementary Materials and Figure 3. Additionally,
various evaluation metrics are provided in Table 6.

To reach a broader consensus on which ensemble learning technique consistently
outperforms the others, we aggregated the misclassification rates across all datasets
and calculated their average. The same analysis was extended to the individual
models for a comprehensive comparison. Figure 4.6 presents our final findings,
illustrating the overall performance of each model. As previously noted, all en-
semble learning techniques demonstrated superiority over individual models. Soft
voting, with an average rate of 16.08, emerged as the frontrunner, followed by
majority voting at 16.35, and stacking at 16.53.

o further reinforce our findings, we conducted a similar analysis, but limited it to
datasets that possessed an independent external validation set. Once again, soft
voting demonstrated superior performance with an average rate of 15.73, while
majority voting and stacking followed with rates of 16.27 and 17.37, respectively.

It’s important to emphasise that even the top-performing results achieved by in-
dividual biofeatures fall short, or at the very least, are on par with the ensemble
learning’s average performance. In light of these discoveries, it becomes evident
that ensemble techniques significantly enhance model performance by capitalising
on the diverse nature of biofeature spaces and adeptly managing their inherent
heterogeneity.
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Figure 4.6: Average Misclassification Percentage Across All Datasets.
This graph displays the percentage of average misclassifications for each feature
type on the x-axis, with feature types arranged from the least to the most mis-
classifications from left to right. Each dot represents the percentage of average
misclassifications, providing an overview of the classification performance across

all datasets.

4.3.6 Biological Feature Selected Interpretation

Genes detected as discriminative biofeatures should ideally have a causal relation
to the analysed phenotype. For gene-expression based features putative relations
can usually be shown by means of functional enrichment analyses, however for the
other biofeature types explored in this study, this kind of analysis was not per-
formed before. For example, genes showing RNA editing events with significant
differences between control and cancer samples should act in relevant cancer path-
ways. To test this hypothesis, we analysed the 216 genes selected as features from
the NSCLC dataset by means of the gProfiler. Figure 4.7 and Supplementary Ma-
terials Section A.1.6 shows the overrepresented functional annotations among these
genes. Selected genes are mainly related to immune system functions, signal trans-
duction and regulation of vesicle-mediated transport, which might indeed indicate
that biologically meaningful features were extracted by means of our workflow.

The analysis of overrepresented functional annotations was specifically conducted
for the NSCLC dataset alone, but we examined which genes are selected in more
than one dataset (see Table 7 for complete list). Interestingly, many genes, mainly
related to immune system functions, are selected from several studies and could
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Figure 4.7: Enrichment Analysis results. Presented is a Manhattan plot
illustrating the results of an enrichment analysis performed on the genes se-
lected for ensemble learning within the NSCLC dataset. The x-axis is dedicated
to functional terms, which have been meticulously organised and colour-coded
based on their respective data sources. Simultaneously, the y-axis represents the
adjusted enrichment p-values, thoughtfully presented in a logarithmic negative
scale. Terms of lesser significance are discreetly depicted as faint circles, while
encircled numbers within the figure denote statistically significant enriched GO

terms.

Table 4.2: Concise summary of genes recurring in more than three, up to six
out of six datasets. The table includes the following attributes: GeneID, Gene
Name, Gene Type, Occurrence (indicating in how many datasets the gene was

selected as a feature), and a brief description of each gene’s function.

GeneID Gene Name Gene Type Occurrence Description

ENSG00000234745.11 HLA-B protein coding 6/6 major histocompatibility complex, class I, B
ENSG00000206503.13 HLA-A protein coding 5/6 major histocompatibility complex, class I, A
ENSG00000213492.2 NT5C3AP1 transcribed processed pseudogene 3/6 NT5C3A pseudogene 1
ENSG00000166710.20 B2M protein coding 3/6 beta-2-microglobulin
ENSG00000160014.17 CALM3 protein coding 3/6 calmodulin 3
ENSG00000162852.14 CNST protein coding 3/6 consortin, connexin sorting protein
ENSG00000115956.10 PLEK protein coding 3/6 pleckstrin
ENSG00000196126.11 HLA-DRB1 protein coding 3/6 major histocompatibility complex, class II, DR beta 1
ENSG00000117640.18 MTFR1L protein coding 3/6 mitochondrial fission regulator 1 like
ENSG00000149781.12 FERMT3 protein coding 3/6 FERM domain containing kindlin 3
ENSG00000115310.18 RTN4 protein coding 3/6 reticulon 4
ENSG00000150867.14 PIP4K2A protein coding 3/6 phosphatidylinositol-5-phosphate 4-kinase type 2 alpha

therefore serve as pan-cancer markers. Table 4.2 offers a concise summary of genes
recurring in more than three, up to six out of six datasets.
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4.4 Discussion

In this study, we introduced the ELLBA methodology, a robust and comprehen-
sive multi-level bioinformatics approach tailored for analysing lbRNA-Seq data to
predict patient outcomes. ELLBA’s core framework centres on the extraction of
six distinct biofeature types: gene expression, isoform expression, FoCT, gene fu-
sion, RNA editing, and somatic SNVs. These diverse biofeatures aim to capture
distinct molecular and functional characteristics. Our study design encompassed
different cancer types and blood-based biosources, employing multi-condition sam-
ples from six datasets, followed by comprehensive evaluation across four indepen-
dent validation sets. A crucial aspect of our study was to explore the feasibility
of intra-sample normalisation methods for the count-based biofeature types to im-
prove the clinical applicability of the pipeline. Through the assessment of eight
diverse normalisation methods, CPM normalisation emerged as a robust method
for both gene and isoform expression analyses, performing comparably to the more
sophisticated cross-sample normalisation techniques like TMM or RUVSeq, which
additionally corrects for batch effects. Notably, the clinical utility of intra-sample
normalisation, such as CPM, deserves highlighting, as it enables rapid individual
sample normalisation and seamless integration with instant predictions using pre-
trained ML models. This property renders it highly suitable and time-efficient for
clinical applications.

Further, we extensively benchmarked the choice of optimal classifiers for each
biofeature type. Gene and isoform expression with continuous values demon-
strated a strong compatibility with the AdaBoost classifier using the ExtraTrees
as base estimator. Conversely, Logistic Regression exhibited superior performance
for biofeature types with ratios (FoCT) or discrete values (remaining biofeatures).
While most evaluated models performed comparably across each biofeature type,
Naive Bayes and KNN consistently ranked lower. However, it is important to note
that fluctuations in individual biofeature type performance might occur depending
on the dataset, with no one biofeature type universally excelling. We believe that
the variations in classifier performance across the different biofeature types in our
benchmarking experiment can be attributed to several factors. Gene and isoform
expression data might perform well with Adaboost due to their complexity and
non-linear separability. On the other hand, Logistic Regression might excel with
biofeatures like FoCT, gene fusion, RNA editing events, and SNVs because of their
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simpler, more linear relationships. Data size, feature importance, noise levels, and
the presence of interaction effects could also contribute to these variations.

Our core finding underscores the superiority of combining information from several
biofeatures over relying solely on standard Gene Expression. To mitigate fluctu-
ations originating from individual biofeature space limitations and harness their
complementary information, we introduced three distinct ensemble classification
approaches within the ELLBA methodology. These ensemble methods, namely
soft voting, majority voting, and stacking, integrate predictions derived from all
six biofeature types, employing diverse strategies. Our findings showed, initially,
that ensemble classification always improved predictive accuracy compared to gene
expression alone. Furthermore, these ensemble learning techniques effectively re-
duce misclassification rates and enhance overall prediction accuracy, underscoring
the value of multi-view analysis for LB data. It is important to note that the
choice of ensemble classification technique may vary depending on the dataset. In
general, our findings suggest that soft voting is a robust and versatile ensemble
learning method, a conclusion substantiated by datasets featuring an external val-
idation set. This observation underscores the pivotal role of ensemble learning in
enhancing the reproducibility and reliability of our results, further solidifying its
importance in the context of LB data analysis. Moreover, we believe that this
superiority arises from several key advantages of ensemble methods. Firstly, they
leverage the complementary information inherent in each biofeature type, captur-
ing distinct aspects of the data and thus improving prediction accuracy. Secondly,
ensemble methods reduce the impact of noise in individual models by combin-
ing multiple predictions, enhancing robustness. Additionally, ensemble techniques
improve generalisation, reduce variance, and handle imbalanced data more effec-
tively. Overall, ensemble learning emerged as a powerful strategy for harnessing
the full potential of multi-feature data in cancer diagnostics.

Upon consideration of additional complementary metrics, including balanced ac-
curacy, F1 score, and average Precision score, and comparing them with the corre-
sponding metrics from the standard Gene Expression, as well as other biofeatures,
we consistently observed unaltered results. It is crucial to emphasise that the anal-
ysis remains invariant due to the globally robust behaviour of the methodology.
Our approach is dedicated to enhancing performance across diverse scenarios, ir-
respective of class distribution, with particular attention to cancer precision. This
steadfast commitment to robustness underscores the methodology’s reliability.
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To gain deeper insights into the biological significance of our selected features, we
conducted a functional enrichment analysis, focusing on features that consistently
recurred across datasets. The results highlighted that the genes identified as dis-
criminative features, particularly those associated with immune system functions
may hold significant relevance in cancer pathways. Furthermore, the recognition
of genes recurring across multiple studies underscores their potential as valuable
pan-cancer markers, underscoring the strength and applicability of our workflow
in uncovering biologically meaningful features.

Several important considerations emerge from our study. Firstly, the restricted
availability of gene fusion data may have affected the results, possibly due to the
limited depth of sequencing in certain datasets or the use of single-end sequencing
in cases such as NSCLC, GBM, and CRC datasets. While our fusion detection cri-
teria were not overly stringent, the challenge of accurately capturing fusion events
with high confidence warrants future exploration, particularly with the potential
benefit of paired-end deep sequencing for enhancing the identification of these
putatively important biomarkers. It is worth noting, that despite the depth of
the CRC and the switching from PE to SE, we noticed that the Accuracy in the
training is 0.60 by selecting 3 features out of the initial filtered ones which were
12. Secondly, the robust performance of our workflow on independent validation
sets underscores the significance of maintaining uniform handling and sequencing
protocols for validation data. This is exemplified by the closely aligned accuracy
observed in the NSCLC dataset and its validation set, both managed by the same
group, reinforcing the imperative for standardised procedures even across diverse
laboratory settings. Finally, despite our comprehensive investigation of normali-
sation techniques, ML algorithms, and ensemble learning, there remains potential
for enhancing our ensemble learning classifier’s performance. This might involve
exploring newer algorithms, adapting existing ones, exhaustive hyperparameter
exploration, evolutionary-based feature selection, or integration of additional ge-
nomic data types. Through ongoing refinement of our ML pipeline, we anticipate
continued progress in the precision and reliability of cancer predictions across di-
verse datasets.
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4.5 Conclusion

The ELLBA workflow offers a significant contribution to LB data bioinformat-
ics analysis. Through multi-feature integration and ensemble learning, ELLBA
presents a comprehensive avenue for patient outcome prediction in LB-based can-
cer research. Its flexibility aligns well with upcoming LB advancements, facilitating
analysis across diverse cancer types and biosources. As LB gains traction in can-
cer diagnostics, ELLBA holds promise for advancing precision oncology. Rigorous
validation in even larger, diverse cohorts, complemented by experimental confir-
mation, will be pivotal to establishing ELLBA’s clinical utility and reliability in
LB data analysis. With ongoing strides in LB technologies and ML, ELLBA’s
continued evolution holds potential as an indispensable tool in LB-based cancer
research and clinical applications.



Chapter 5

Expanding the landscape of cancer

transcriptome by native RNA

sequencing of NSCLC tissue samples

“Science knows no country, because knowledge

belongs to humanity, and is the torch which

illuminates the world.”

— Louis Pasteur

This Chapter introduces a pilot project that utilises the Nanopore Direct RNA
Sequencing protocol for the transcriptomic profiling of NSCLC adenocarcinoma.
This relatively new approach has not been widely applied in cancer research stud-
ies. Recognising the need for specialised bioinformatics tools due to the innovative
nature of this method, we developed "DRseeker", a pipeline specifically designed
to harness the theoretical advantages of Nanopore technology in capturing com-
plex transcriptomic data. The study compares transcriptome profiles between lung
cancer tissues and adjacent non-transformed tissues, revealing significant findings
such as novel transcripts, alterations in the AGER and MEST genes, and vari-
ations in polyadenylation patterns. Insights into deviations in epitranscriptomic
modification patterns, identified by DRseeker, underscore the pipeline’s effective-
ness and point to promising directions for future lung cancer research to enhance
our understanding and treatment of the disease.
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5.1 Introduction

Lung cancer stands as one of the most prevalent and deadly cancers worldwide,
representing a critical challenge in both clinical and research settings. Despite
significant advancements in our understanding and treatment of the disease, lung
cancer continues to have a high mortality rate, primarily due to late diagnosis
and the complex nature of its pathogenesis [1]. This complexity is underscored
by the diverse genetic and environmental factors contributing to its development
and progression [225], [226]. The imperative to delve deeper into the molecular
mechanisms of lung cancer is clear, as it holds the key to unlocking more effective
diagnostic and therapeutic strategies.

Transcriptome analysis occupies a prominent position in advancing our compre-
hension of lung cancer at the molecular level. By providing a holistic perspective of
gene expression within cancerous tissues, it illuminates the specific pathways and
mechanisms that underlie cancer’s development and progression. This analytical
approach is indispensable for the discovery of novel biomarkers and potential ther-
apeutic targets, significantly enriching our insights into the intricate mechanisms
at play in cancer [227]–[229].

The transcriptome’s intricate and multi-layered nature extends beyond mere gene
expression, encompassing a spectrum of factors, including alternative splicing,
polyadenylation, fusion transcripts, and the burgeoning field of epitranscriptomics.
This complexity unveils the remarkable variability inherent in lung cancer sub-
types. Scrutinising this variability not only furthers our grasp of cancer’s molec-
ular basis, but also is pivotal for the implementation of personalised medicine,
underscoring the importance of adapting treatment strategies to align with each
patient’s distinctive genetic landscape.

Emerging technologies in transcriptome analysis, particularly through advanced
sequencing methods, have opened new avenues for understanding the disease at
a molecular level. The field of sequencing technologies has witnessed remarkable
advancements in recent years, revolutionising the way researchers understand ge-
netic and molecular structures in various diseases, including lung cancer. These
advancements are characterised by significant improvements in accuracy, speed,
and cost-effectiveness. High-throughput sequencing technologies, such as Next-
Generation Sequencing (NGS), have enabled the analysis of genetic material at
an unprecedented scale and resolution. However, the recent advent of Nanopore
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Direct RNA Sequencing represents a significant leap forward. This technology
offers real-time sequencing, providing a rapid and detailed view of the transcrip-
tome. Its ability to read long sequences of RNA in their native form, without
prior amplification or conversion to DNA, is a major advancement, allowing for
a more accurate and comprehensive understanding of RNA molecules, including
their modifications [230].

This study aims to contribute to this evolving landscape by exploring the tran-
scriptome profile of lung cancer tissues. Our work represents a pioneering effort in
harnessing the advanced capabilities of Nanopore Direct RNA Sequencing to con-
duct an unprecedentedly detailed comparative analysis of the transcriptome pro-
files of lung cancer tissues and adjacent non-transformed lung tissues. It stands
as the first of its kind to delve into the transcriptome of lung cancer (NSCLC
adenocarcinoma) with such resolution, comprehensively surveying all the layers of
information that this technology offers. The primary goal is to uncover unique
transcriptomic changes in NSCLC adenocarcinoma, enhancing our understanding
of the disease and potentially uncovering new biomarkers and therapeutic targets.
Initially, an advanced bioinformatics pipeline was developed, called DRseeker, to
simultaneously analyse multiple layers of the transcriptomic data, ensuring a com-
prehensive and holistic view of the transcriptome. Alongside, we validated our
gene-level analysis findings by comparing it with similar short-read sequencing
studies, confirming the reliability of our data. Our approach included examining
differential transcript expression and usage, particularly focusing on cancer-related
genes like AGER and MEST. We also explored variations in the polyA tail of
transcripts, a key area in genetic research. This method enabled us to analyse
the behaviour of the TXNRD1 gene in different forms. Finally, we delved into
epitranscriptomics, assessing the modifications in genetic transcripts to better un-
derstand their role in the progression of lung cancer. Through this comprehensive
study, we aim to provide a deeper insight into the molecular mechanisms of lung
cancer and open new avenues for early detection and treatment.
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5.2 Materials and Methods

5.2.1 Methodology for Lung Tissue Collection and RNA

Isolation in NSCLC Patients

In this study, we focused on three patients (average age of 57.3 years), all diag-
nosed with NSCLC, specifically categorised as KRAS-mutant adenocarcinomas.
The patients underwent tumour resection surgery, during which we meticulously
collected both tumour tissues and corresponding adjacent non-transformed (con-
trol) lung tissues from each participant. To preserve the integrity of the samples,
we immediately snap-froze the tissues in liquid nitrogen, ensuring their long-term
preservation at -80ºC.

For histological examination and to ascertain the viability of the samples for sub-
sequent RNA extraction, we prepared cryosections from both the peripheral and
central regions of each tissue sample. These sections underwent hematoxylin and
eosin staining, followed by detailed microscopic analysis. This step was crucial
in confirming the minimal presence of necrosis in the collected samples, thereby
validating them for RNA isolation.

Throughout the tissue processing stages, stringent measures were taken to prevent
RNA degradation. This involved the use of RNAse-free water and thoroughly
cleansing all equipment with RNA zap. For the actual collection of tissue sections
for RNA isolation, we utilised a lysis buffer from the MirVana kit [231]. The
sections were immediately placed at -20ºC, kept on ice during the entire processing
phase, and subsequently stored at -80ºC overnight or until the RNA isolation
procedure was initiated.

5.2.2 RNA Isolation from Lung Tissue Samples

RNA isolation from the tissue samples was executed using the MirVana Total
RNA Isolation Kit, strictly following the manufacturer’s protocol. To evaluate the
quality of the extracted RNA, we utilised the Bioanalyzer RNA 6000 Picochip from
Agilent Technologies. For quantifying the RNA, the NanoDrop 2000 spectrometer
by Thermo Scientific was employed. These techniques ensured precise assessment
of the RNA’s quality and quantity.
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5.2.3 Direct RNA Sequencing of NSCLC Samples Using

Oxford Nanopore MinION Technology

Direct RNA sequencing was performed using 500 ng of Poly-A RNA, which was
enriched with magnetic beads to construct our RNA libraries. The process com-
plied with the Direct RNA Sequencing Kit (RNA Kit SQK-RNA002) instructions
from Oxford Nanopore Technologies Ltd. As part of this protocol, we incorporated
0.25 µl of the RNA Calibration Strand (RCS) for Enolase II (ENO2).

The sequencing process involved priming the MinION flow cell from Oxford Nanopore
Technologies Ltd. using the Flow Cell Priming Kit (EXP-FLP002) from the same
company. Following the priming, 75 µl of the RNA library was loaded into the
SpotON sample port of the MinION device.

Subsequently, we initiated the sequencing run with the MinKNOW software (v3.2.6),
which controlled and monitored the sequencing process. This method enabled us to
perform direct RNA sequencing effectively, utilising the capabilities of the Oxford
Nanopore MinION technology. Among the three samples analysed, two produced
an adequate number of reads. However, the matching non-transformed sample
from the third set generated a low quantity of reads, prompting us to replicate the
process using a non-transformed sample from a fourth subject with comparable
characteristics.

5.2.4 Re-Basecalling and Initial Filtering Process

We processed the MinION fast5 files for basecalling on a local setup using the
ONT Guppy v6.3.7 software [175]. Our configuration of Guppy ensured that only
reads meeting the ONT-recommended minimum Phred quality score of 7 were in-
cluded, thus enhancing the quality of the data. The basecalling parameters were
tailored to replace U bases with T in the sequence output and to deliver reads in
the reverse orientation. Specifically, our Guppy parameters included -flowcell
FLO-MIN106, -kit SQK-RNA002, -calib_detect, -trim_strategy rna,
-reverse_sequence true, -qscore_filtering, and
-u_substitution false
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5.2.5 Initial Quality Control and Preprocessing

To ascertain the integrity of our sequencing data and the efficacy of the sequencing
process, we utilised the capabilities of NanoPlot (v1.40.0) [176]. This software
provided a comprehensive statistical summary alongside a suite of quality control
visuals. Included in the output were histograms charting read lengths, graphs
showing the cumulative yield, and violin plots that illustrated variations in read
length and quality over the duration of sequencing. Additionally, bivariate plots
were used to examine the relationships between read lengths and quality scores
in the context of reference identity and mapping quality. NanoPlot also furnished
several supplementary quality metrics that were instrumental in further evaluating
the sequence data’s quality.

Subsequently, we filtered out reads under 50 nucleotides in length and applied
a conservative error correction using IsONcorrect (v0.0.6.1) [177]. This software
uniquely leverages the full spectrum of gene isoforms for error correction, which is
particularly effective for correcting reads even at low sequencing coverage.

5.2.6 Genome Alignment and Post-Alignment Quality Con-

trol

We aligned the ‘pass’ marked compressed fastq files to the reference human genome
(GRCh38, primary assembly) using Minimap2 (v2.17) aligner [178]. The alignment
was executed in splice-aware mode with k-mers set to a length of 14, and the soft-
ware was configured to only consider the forward transcript strand without report-
ing any secondary alignments. The specific parameters used were -ax splice,
-k 14, -uf, and -secondary = no. For sorting and compressing the output
sam files, along with exporting various mapping quality metrics for further eval-
uation of the sequencing experiment, we utilised Samtools (v1.12) [170], PycoQC
(v2.5.2) [179], and RSeQC (v4.0.0) [180].
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5.2.7 Gene and Transcript Identification and Abundance

Estimation

TALON (v5.0) [181], a Python package tailored for long-read transcriptomes, was
utilised for identifying known and novel genes/transcripts. Initially, following the
developers’ recommendation, we employed TranscriptClean (v2.0.2) [182] with de-
fault settings to further correct the aligned reads, aiming to rectify non-canonical
splice junctions. The corrected aligned bam files from all six samples, along with
the GENCODE v35 human reference annotation [165], were input into TALON.

Within TALON’s analytical process, transcript abundance was quantified for each
sample, resulting in the generation of two distinct matrices. The initial matrix
presented a comprehensive record of transcript expression levels, both for estab-
lished and novel transcripts, all aligned to recognised loci and presented without
the application of any count-based or additional filters. The subsequent matrix
refined the original by incorporating more stringent criteria, particularly for novel
transcripts. For inclusion in this refined matrix, a novel transcript was required
to be present in at least one group with a minimum presence of 5 counts.

A tailored script was also employed to further refine the selection of novel tran-
scripts. Initially, we required that all transcripts, regardless of their novel clas-
sification, exhibit a measurable polyA tail length in at least 10 transcripts. In
addition, a minimum threshold of 20 counts per isoform was established for novel
transcripts within the ISM Prefix, Suffix, None, and Both categories to qualify for
inclusion. For the novel ISM Suffix category, to ensure transcript completeness,
we conducted a comprehensive analysis by comparing the 5’ of these transcript
models against CAGE assay data, as detailed in Section 5.2.12. Ultimately, we
consolidated the ISM None and Both categories into a single category, which we
designated as ISM Both.

5.2.8 Exploratory Analysis

We commenced our study with an exploratory analysis using R (v4.0.5). This ini-
tial phase of investigation was grounded in gene expression data, which we derived
by summing up the transcript counts corresponding to their originating genes.
Various analytical techniques were applied to this gene expression data, includ-
ing Principal Component Analysis and heatmap analysis for visualising pairwise
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correlation values of rlog-transformed counts. Additionally, we explored the distri-
bution of raw counts by creating boxplots of log2-transformed Counts Per Million
(log2CPM). Further to these analyses, we generated a Multi-Dimensional Scaling
(MDS) plot and also constructed a heatmap to display the top 100 genes with the
highest variability.

5.2.9 DGE, DTE, and DTU

For our analyses involving Differential Gene Expression (DGE), Differential Tran-
script Expression (DTE), and Differential Transcript Usage (DTU), we once again
utilised R. The base data for gene expression calculations originated from the un-
filtered abundance matrix generated by TALON. In these calculations, isoform
abundances were cumulatively assigned to their respective genes, with any tran-
scripts classified as "Genomic" being omitted. Initially, we applied the ‘filterBy-
Expr’ function from the edgeR package (v3.32.1) [185] to filter out genes with
low expression. Subsequently, edgeR was used in the Trimmed Mean of M-values
(TMM) mode for normalisation and differential expression analysis within a quasi-
likelihood framework. Various plots, including MA and Volcano plots, along with
enriched MA plots highlighting DE genes with at least one novel transcript, were
produced from this analysis.

The methodology for DTE mirrored that of DGE, but relied on the filtered TALON
abundance matrix, and similar plots were generated for this analysis as well. For
the purpose of visualising the array of isoforms identified through DRS, the En-
sembl Genome Browser was employed [232]. The Ensembl Genome Browser is
a comprehensive resource offering access to a wealth of sequence data, including
gene annotations and predictions.

In conducting DTU analysis, we utilised the IsoformSwitchAnalyzeR package
(v1.12.0) [189], again based on the filtered abundance matrix. To enhance our
analysis, we incorporated external transcript data from several sources: Pfam
[190] for protein family and domain identification, IUPred2A [191] for predicting
disordered protein regions, SignalP [192] for detecting signal peptides, and CPC2
[193] for assessing coding potential of transcripts. We ran IsoformSwitchAnalyzeR
in its default mode for this analysis.
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5.2.10 Gene Functional Enrichment Analysis

For the gene-level functional enrichment analysis, we utilised R and implemented
various packages, specifically clusterProfiler (v3.18.1) [233] and enrichplot (v1.11.2)
[234]. These packages were used to identify enriched GO categories following the
DGE analysis.

5.2.11 Transcript Functional Annotation and Functional En-

richment Analysis

The functional characterisation and annotation of novel isoforms were carried out
using the Trinotate suite (v3.2.1) [194]. This suite employs multiple features for
annotation, including prediction of putative coding regions, homology searches
against known sequences, identification of protein domains, and prediction of pro-
tein signal peptides and transmembrane domains, to functionally annotate the
query transcripts.

In conducting the functional enrichment analysis of the novel DE transcripts, we
took advantage of the GOst tool available through the gProfiler web service [186].
This utility enabled us to perform Gene Ontology (GO) and pathway enrichment
analyses on the cohort of genes from which the chosen novel transcripts are de-
rived. The analysis was carried out separately for each group: once for the novel
transcripts that were up-regulated and once for those that were down-regulated.

5.2.12 CAGE Analysis

We acquired well-defined CAGE (Cap Analysis Gene Expression) peak data for
humans from the FANTOM5 database [183], formatted as BED files. These coor-
dinates, initially based on the hg19 human genome reference, were updated to the
hg38 version using the LiftOver tool from the UCSC Genome Browser [235]. For
each long-read transcript model in our GTF-based transcriptomes, we identified
the transcription start site (TSS). Utilising Bedtools (v2.26.0) [236], we then in-
vestigated the presence of any CAGE peaks within a 100 bp range both upstream
and downstream of these TSS locations.



Expanding the landscape of cancer transcriptome by native RNA sequencing of
NSCLC tissue samples 97

5.2.13 PolyA-Tail Length Estimation, DPA and APA Anal-

ysis

PolyA-tail length estimation was conducted for each sequenced read. We utilised
the raw fast5 files and the aligned 1am files as inputs for the Nanopolish polyA
(v0.14.0) software [195], [196]. From the output of this software, we only retained
the polyA length estimations for isoforms that matched those in the TALON
filtered abundance matrix for further analysis.

Additionally, we employed a customised version of the ONT polyA_diff.py

script [237] for Differential Polyadenylation Analysis (DPA). To begin with, tran-
scripts exhibiting fewer than 10 counts were filtered out from the DPA process.
This analysis involved using the Mann-Whitney U nonparametric test to statisti-
cally examine the variations in polyA tail lengths among different samples. The
evaluation was conducted in two distinct stages. Initially, a global analysis was
performed to compare the two groups as a whole, contrasting the cancer samples
against the non-transformed samples. Subsequently, the analysis culminated in a
more detailed, transcript-by-transcript comparison between the two groups.

Alternative Polyadenylation Analysis (APA) was conducted using the LAPA soft-
ware [197], which identifies and clusters reads with poly(A) tails and performs
peak-calling to pinpoint poly(A) sites. LAPA annotates these peaks with genomic
features and regulatory elements, including the poly(A) signal. It also conducts
statistical tests with multiple testing correction to detect differential APA. We
ran LAPA using its default settings and employed a custom script to represent the
differential APA results in a Volcano plot.

5.2.14 Methylation Detection

For the detection and analysis of methylation, we initially processed the corrected
fastq files by realigning them against a reference transcriptome. This reference
was obtained using the TALON software, accompanied by its exported TALON
annotation gtf file. The alignment was performed utilising Minimap2 software,
employing specific parameters including -ax map-ont, -k 14, -secondary
= no, and -MD.
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Following the alignment, the output BAM files were sorted with the aid of Samtools
(v1.12). The next step involved the use of Nanopolish Eventalign (v0.14.0), which
was employed for effective signal segmentation.

Both aligned reads and event data, in conjunction with the reference files, were
processed using xPore [198] to determine differential modification sites.

5.3 Results

5.3.1 Comprehensive Analytical Pipeline for Direct Long-

Read RNA-Seq Data Investigation

To fully harness the capabilities of direct long-read RNA sequencing (DRS), we
formulated a detailed computational workflow. This workflow was designed to
methodically identify, quantify, and analyse several transcriptome features, as il-
lustrated in Figure 5.1. Our pipeline is structured into four primary modules: 1)
data preprocessing; 2) alignment; 3) core analyses; 4) complementary analyses.

Figure 5.1: Schematic representation of the data analysis workflow.
This figure presents a structured overview of the data analysis workflow di-
vided into four main stages: Data Preprocessing, Alignment, Core Analyses, and
Complementary Analyses. Each stage outlines the key steps taken, from initial
raw data re-basecalling and QC, through genomic alignment and genes/isoforms
quantification, to the core examination of transcriptomic features including dif-
ferential expression and alternative splicing, and the complementary analyses
such as polyadenylation assessment, functional annotation, and methylation de-

tection.

The initial data preprocessing stage of our analysis pipeline is meticulously
designed to refine the sequencing data, initiating with the re-basecalling of raw
sequencing signals. This stage incorporates the elimination of shorter reads and
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culminates with a thorough quality control (QC) evaluation to verify the data’s
integrity and the sequencing process’s accuracy.

Proceeding to the alignment module, our efforts are centred on the precise map-
ping of transcriptomic data against the reference genome. This essential step forms
the foundation for subsequent analytical procedures and involves a comprehensive
QC process to ensure the accuracy and quality of the alignment. We generate a
detailed report encompassing crucial quality metrics for each sample, such as the
rates of aligned and duplicate reads, the genomic distribution of reads, and gene
body coverage.

The workflow then transitions to leveraging the strengths of the TALON pipeline
for robust identification and quantification of both known and novel isoforms.
Within this segment, we have integrated strict filtering methods aimed at signifi-
cantly minimising the potential for artefacts. This filtering approach is thoroughly
documented in the Materials and Methods Section 5.2.7.

Additionally, we employed TALON’s nomenclature to organise transcripts into
categories based on their distinctive characteristics. This taxonomy is visually
represented in Figure 4, with further details available in the Supplementary Ma-
terials section A.2.1.

The third component of our workflow, designated as the core analyses , begins
with an extensive exploratory phase. This phase employs analytical methods such
as PCA and MDS to uncover patterns and relationships in the data. The piv-
otal aspect of this module is the differential expression (DE) analysis, which is
conducted on both gene (DGE) and transcript (DTE) levels under various ex-
perimental conditions. This is essential for identifying genes and transcripts that
are crucial to specific phenotypic traits. The analysis extends to DTU, which re-
veals variations in the expression of isoforms within a gene that may not affect the
gene’s overall expression level [238]. The final piece of the module is an Alternative
Splicing Analysis, which provides insights into the diversity of transcript isoforms
generated from the same genetic sequences, highlighting the complexity of gene
expression [239].

The concluding module, termed complementary analyses , integrates advanced
tools for a detailed examination of various transcriptome features and character-
istics. This involves estimating the polyadenylated tail length of each transcript,
which is critical to mRNA stability and its subsequent translation. The analysis
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of APA delves into variations in polyadenylation that affect post-transcriptional
regulation, while DPA probes the regulatory significance of these variations [240].

This module also includes an evaluation of the capacity for novel transcripts to
produce functional proteins. Functional enrichment analysis is another key compo-
nent, complementing the DGE findings by identifying associated biological path-
ways and processes.

In addition, the module encompasses the detection of fusion transcripts, which
result from the merging of two separate transcripts and can be significant in the
development of diseases like cancer. Lastly, an analysis of methylation patterns
across the transcriptome is conducted, providing an overview of epigenetic modi-
fications and their impact on gene expression [241].

5.3.2 Transcriptome Profiling of Lung Cancer Tissue and

Adjacent Non-Transformed Lung Tissue Using ONT

Direct RNA Sequencing Protocol

The transcriptomic landscape of cancer is marked by a myriad of alterations mir-
roring the underlying cellular transformations within tumours. Deciphering this
intricate RNA signature is pivotal for uncovering novel biomarkers and therapeutic
targets. Consequently, we employed our bespoke workflow to thoroughly scrutinise
the transcriptomes from lung cancer patients.

In our study, we used the DRS technique to construct sequencing libraries from
polyadenylated RNA isolated from three lung cancer tissues and an equal number
of non-cancerous lung tissues (referred to as non-transformed) (see Figure 5.2A).
Tissue origins were verified via Immunohistochemistry (IHC) staining.

Sequencing produced between 844,000 and 1.67 million reads per sample, amount-
ing to a total of roughly 7.72 million reads, as outlined in Table 5.1. From this
total, cancerous tissues contributed 4.26 million reads, and non-transformed tissues
provided 3.45 million reads. Furthermore, approximately 1.1 million CSRs were
excluded from the analysis (refer to Materials and Methods Section 5.2.3). The
reads that remained were then processed through the first stage of our analytical
pipeline.
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Figure 5.2: Overview of RNA sequencing workflow and data charac-
teristics. (A) Illustrating the process flow from tissue collection in NSCLC
patients, including tumour and non-transformed tissue, through RNA extrac-
tion, library preparation, and sequencing using the MinION platform. The inset
graph shows a representative sample of sequencing current over time. (B) Dis-
playing a histogram of read lengths for the combined set of raw, mapped, and
assigned reads from both tumour and non-transformed samples. (C) Depicting

the gene body coverage profiles of all six samples.

Among the 5.96 million high-quality reads obtained (with a Q-score above 7), a
substantial 95% were classified as primary alignments, boasting an average read
length of approximately 1100 bases. Out of the total mapped reads, 78.7% were ac-
curately mapped to the human genome with an average read length of 1127 bases.
We managed to identify 35,220 genes, representing about 60% of the genes identi-
fied in the GENCODE v35 database, covering a substantial portion of the human
genome. The median read length was 1202 nucleotides (illustrated in Figure 5.2B),
with the longest transcript being from the AHNAK gene (ENST00000378024.9),
measuring 18,761 nucleotides. This gene encodes a protein implicated in vari-
ous cellular functions, including structural integrity, cell migration, and tumour
metastasis [242], [243].
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Analysis of gene body coverage revealed a characteristic pattern of high read den-
sity at the 3’-end, diminishing towards the 5’-end (Figure 5.2C), consistent with
previous findings [244]–[246]. This pattern can be partly attributed to the di-
rect RNA library preparation method, which selects for transcripts with intact 3’
poly-A tails, necessary for adapter ligation, potentially leading to a selection bias
towards transcripts with better-preserved 3’ ends. Given this bias, we incorpo-
rated rigorous filtering criteria to ensure the selection of full-length transcripts for
subsequent analyses.

Table 5.1: Direct RNA sequencing general overview.

Attributes Non-transformed1 Cancer1 Non-transformed2 Cancer2 Non-transformed3 Cancer3*

Number of raw reads 1,162,330 924,243 1,447,544 1,662,661 844,464 1,674,937

Mean read length (nt) 984.0 1,081.9 1,085.6 1,018 1,265.7 1,155.1

Mean read quality 10.0 9.7 10.0 10.0 9.5 9.8

Calibration reads 406,499 22,469 547,933 48,605 30,322 61,782

-

Number of reads above Q7 1,057,135 (90.9%) 841,308 (91.0%) 1,341,554 (92.7%) 1,518,181 (91.3%) 774,141 (91.7%) 1,532,611 (91.5%)

Number of useful reads above Q7 655,531 818,924 799,004 1,469,763 744,026 1,471,477

Reads aligned to genome** 548,616 (83.6%) 809,030 (98.7%) 693,785 (86.8%) 1,454,216 (98.9%) 736,127 (98.9%) 1,456,822 (99.0%)

Number of assigned reads** 453,410 (82.6%) 685,854 (84.7%) 569,851 (82.1%) 1,217,954 (83.7%) 631,574 (85.7%) 1,244,762 (85.4%)

Longest assigned read length (nt) 10,129 16,235 12,385 18,329 18,578 17,099

* Sample Cancer3 and Non-transformed3 are mismatched, originating from different patients.
** The calculation was based on the percentage of "useful reads above Q7".

5.3.3 TALON: Detecting and Measuring Both Known and

Novel Transcripts

Long-read sequencing technology presents the significant benefit of capturing entire
transcript sequences, enabling the resolution of intricate RNA isoform structures
and the discovery of previously unidentified transcripts unattainable with short-
read sequencing [247].

For the task of detecting and quantifying known and novel RNAs, we utilised
the TALON pipeline. This software differentiates unannotated transcripts by the
unique aspects of their sequences, such as previously undetected splice donor and
acceptor connections. The taxonomy adopted by TALON for these classifications
is detailed in Figure 4.

Our analysis identified 391,234 transcripts originating from 35,220 distinct genes
(Figure 5.3A). These transcripts encompassed a diverse array of RNA types,
including protein-coding genes, pseudogenes, long non-coding RNA, non-coding
RNA, among other categories, as shown in Figure 5. Given the relevance of all
RNA types in cancer research, we nonetheless narrowed our focus to solely the
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mRNA transcriptome for these samples. In the initial count table, a dominant
91% of the detected transcripts were deemed novel, many of which appeared only
in a single sample and typically at low counts. We instituted stringent filtering
criteria to eliminate low-abundance transcripts and potential sequencing artefacts,
as elaborated in the Materials and Methods Section 5.2.7. Moreover, we subjected
the ISM category to additional scrutiny, employing even stricter filters.

Figure 5.3: Overview of RNA sequencing workflow and data charac-
teristics. (A) Depicting the overall filtering statistics, contrasting prefiltered
(light green) and filtered (dark blue) counts for unique genes, unique transcripts,
known genes, known transcripts, novel genes, and novel transcripts. (B) Illus-
trating the overall gene-level novelty, depicting counts for known genes, inter-
genic regions, and antisense transcripts. (C) Presenting the overall transcript-
level novelty, with counts for known transcripts, ISMs, NICs, NNCs, Intergenic
and Antisense transcripts. Please note that both gene and transcript level figures

are based on the filtered data.

The filtered expression matrix featured a total of 48,303 distinct transcripts, with
41,320 known annotations and 6,983 novel ones. The lion’s share of these novel
transcripts was ascribed to the ISM category (90.83%), succeeded by NIC (5.32%),
NNC (3.09%), Intergenic (0.47%), and Antisense (0.25%). There were no marked
differences in the distribution of these categories across the samples, as illustrated
in Figure 6.
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5.3.4 Exploratory and DGE Analysis in NSCLC and Ad-

jacent Non-Transformed Tissues via Long-Read Se-

quencing

Short-read sequencing is renowned for its precise gene expression analysis capabili-
ties. Recent literature has validated that DGE analysis using long-read sequencing
data is reliable and consistent with results from short-read sequencing [244], [248]–
[250]. In our study, edgeR was employed to pinpoint and scrutinise genes expressed
differently between tumour and non-transformed tissue samples.

Figure 5.4: Composite Overview of Gene-Level Analysis in cancer
versus non-transformed samples. (A) Shows a PCA at the gene level that
distinguishes cancerous samples from non-transformed tissues, noting the per-
centage of variance explained by the first principal component. (B) Displays
a Volcano Plot illustrating differences in gene expression between the two sam-
ple types, with genes categorised as up-regulated (in green), down-regulated (in
red), or unchanged (in grey), based on a log2 fold-change threshold of 2 and an
adjusted p-value cutoff of 0.05. (C) Details a Gene Ontology Enrichment Anal-
ysis, with bars representing the frequency of genes involved in various biological
processes, coloured by significance of enrichment. (D) Presents a comparative
Venn diagram that quantifies and contrasts genes identified in this study with
those found in prior research by Bang et al. in 2017, emphasising the unique

and overlapping findings relevant to NSCLC genomics.
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Multivariate analysis techniques like PCA and hierarchical clustering (referenced
in Figure 5.4A and supplementary Figure 7) delineated tissue-specific clusters
grounded on gene expression profiles. Notably, non-transformed tissues demon-
strated greater sample-to-sample expression consistency in comparison to the tu-
mour tissues, likely reflective of the latter’s intrinsic heterogeneity.

Our criteria for identifying differentially expressed genes included an absolute log2
fold-change threshold greater than two and an adjusted p-value of less than 0.05.
Our analysis revealed 400 genes with differential expression; of these, 103 were
up-regulated and 297 down-regulated in cancer tissues (as shown in Figure 5.4B).
Gene ontology analysis indicated these differentially expressed genes participate
in pathways related to extracellular matrix composition, structural organisation,
and cellular adhesion and migration (presented in Figure 5.4C).

In assessing the efficacy of DRS with ONT for DGE analysis, we drew compar-
isons with short-read sequencing studies, such as the one by Bang, Kang, Lee,
et al. (2017) [251]. They conducted similar DGE analysis on NSCLC samples
and corroborated their findings with data from additional datasets, including 71
paired samples from Gene Expression Omnibus (GSE40419) and 58 paired samples
from The Cancer Genome Atlas Program. In our dataset, a significant proportion
(51.9%) of genes overlapped with those identified by Bang, Kang, Lee, et al. (refer-
enced in Figure 5.4D). Furthermore, the GO analysis from both studies showed a
high concordance in the significantly altered pathways (illustrated in Figure 5.4C
and supplementary Figure 8). Bang, Kang, Lee, et al. identified 10 genes as po-
tential NSCLC biomarkers, with specific genes such as MFAP4, AGER, GPX3,
SPTPC, and A2M being associated with poor prognosis when down-regulated, and
SPP1 when up-regulated. Our data mirrored these expression patterns, reinforc-
ing the notion that DGE analysis via long-read sequencing is a robust alternative
to traditional short-read sequencing approaches.

5.3.5 Assessment of Differential Transcript Expression in

NSCLC Using Long-Read Sequencing

Contrary to gene expression analysis, estimating transcript expression is notably
more complex with short-read sequencing due to the difficulty in uniquely assigning
similar isoforms or those with repetitive sequences [252], [253]. ONT and other
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long-read sequencing methods offer a solution by capturing the entire transcript
length, thus facilitating precise isoform identification. The DRS approach also
provides an accurate transcript quantification, free from biases typically introduced
by retro-transcription or amplification processes [244]–[246], [249], [254].

Utilising TALON to detect and quantify both know and novel transcripts, our
subsequent DTE analysis with edgeR highlighted 369 transcripts exhibiting sig-
nificant differential expression between cancer and non-transformed samples, as
depicted in Figure 5.5A). These transcripts, selected based on an absolute log2
fold change exceeding 2 and an adjusted p-value under 0.05, represent a fraction
of the total 6376 filtered transcripts that were examined for DE. Similar to our
gene expression results, the majority of these transcripts (287 out of 369) were
found to be down-regulated in the cancer samples, while a smaller portion (82 out
of 369) were up-regulated. Notably, a significant portion (49.6%) of these signifi-
cantly expressed transcripts constituted isoforms that had not been characterised
before. In particular, our analysis identified 157 novel transcripts that were down-
regulated and 26 that were up-regulated in the NSCLC samples, as presented in
Figure 5.5B).

Figure 5.5: Transcriptomic Landscape of Differential Expression in
Cancer. (A) MA plot illustrating the log2 fold change against log Counts Per
Million, distinguishing between known and novel transcripts. The significant
differentially expressed transcripts are marked as up-regulated (green) and down-
regulated (red), with novel transcripts denoted by triangles. (B) Bar graph
summarising the number of known and novel transcripts that are up-regulated
and down-regulated, providing a clear distribution of expression changes in the

cancer samples.
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The gene ontology analysis revealed that these novel isoforms with altered ex-
pression are implicated in essential biological functions. For the up-regulated
novel transcripts, terms like extracellular matrix structural constituent and cell
adhesion molecule binding were markedly enriched, indicating a significant role
for these transcripts in the maintenance of cellular architecture and interactions
(Figure 9A). In contrast, the down-regulated novel transcripts are associated with
fundamental biological processes, including cell motility, maintenance of organ-
ismal homeostasis at the multicellular level, and protein metabolism regulation.
These associations suggest that the reduction in expression of these transcripts
may contribute to the disruption of standard cellular operations and homeostasis
within the cancerous environment (Figure 9B).

A gene of particular interest due to its significant DTE is AGER, also known as the
Advanced Glycosylation End Product-Specific Receptor, or RAGE. AGER is part
of the immunoglobulin superfamily and functions as a multi-ligand cell surface
molecule. It interacts with a variety of ligands, including advanced glycation end-
products (AGEs), which accumulate in various tissues and organs over time [255].
The engagement of AGER with AGEs is implicated in the modulation of several
chronic diseases, most notably diabetes [256], and Alzheimer’s disease [257].

In the context of cancer, AGER is known for its involvement in cancer progression,
exhibiting a dual expression pattern: it is naturally up-regulated in normal lung
tissue, but down-regulated in lung cancer [258]–[260]. This observation aligns
with our data. Chen, Chen, Chang, et al. (2020) in their study published in
Cell Death and Disease, found that overexpression of RAGE, the product of the
AGER gene, slows the proliferation of lung cancer cells and leads to cell cycle
arrest. Furthermore, loss of RAGE during the initial stages of tumour development
interrupts these regulatory mechanisms, leading to unregulated cell division and
the emergence of lung tumours. Interestingly, increased RAGE expression was
observed in cell lines with greater invasiveness. Moreover, the research noted
that the interaction between the RAGE protein and certain immune cells could
speed up tumour growth, thus indicating a complex role in both suppressing and
promoting lung cancer development [261].

Figure 5.6 presents a comparison of the AGER gene’s expression in non-transformed
and cancerous tissues. The left-side bar chart reveals a pronounced decrease in
AGER’s overall gene expression in cancer samples compared to non-transformed
ones, as highlighted by the significance markers. Specifically, non-transformed
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samples exhibit an average normalised expression of 2018.7, which significantly
reduces to 28.2 in cancer samples, with a log2 fold change of -6.1 and an adjusted
p-value of 0.0107. Such down-regulation of AGER in cancerous tissues aligns
with findings from other studies, implying a potentially intricate regulation pro-
cess. Notably, this down-regulation is even more pronounced at the isoform level,
adding another layer to the gene’s complex expression dynamics in cancer.

Figure 5.6: Differential Expression Analysis of AGER in non-
transformed and cancer States. This composite bar chart illustrates the
gene and isoform expression levels of AGER between non-transformed and can-
cer conditions. The bars indicate the mean expression levels, and the error bars
represent the variability within the sample conditions, reflecting the standard
deviation of the measurements. The condition of the samples is colour-coded for
clarity. The left panel shows the aggregated gene expression, indicating a statis-
tically significant decrease (* p < 0.05) in cancer compared to non-transformed
samples. The right panel details the expression of individual isoforms, with
the y-axis representing normalised expression levels. The various isoforms are
distinguished by their transcript types (Known, NNC, ISM Suffix). Notable vari-
ations in expression are marked with significance levels, where a single asterisk

(*) denotes p < 0.05 and double asterisks (**) denote p < 0.01.

Moving to the right side of the figure, we observe a more granular view with the
expression levels of various AGER isoforms. It is worth noting, that DRS captured
12 different isoforms of AGER. Five are known and seven are novel. From these
seven, two belong to the Novel Not in Category and the rest five belong to ISM
Suffix category. The expression patterns of various isoforms of the AGER gene
differ markedly between non-transformed and cancer states, with a notable and
significant reduction observed in cancer samples, as indicated by the asterisks
signifying statistical significance. This pattern suggests that both the AGER gene
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and all its isoforms are consistently suppressed in the cancerous environment,
implying a systematic down-regulation by the cancerous cells.

The presence of different transcript types (Known, NNC, and ISM Suffix) reflects
the diversity in the mRNA splicing patterns leading to the different AGER isoforms
(Figure 10). Known transcripts are those that have been well-characterised and
annotated in genomic databases. In contrast, NNC and ISM indicate novel or
less-characterised transcripts, which might represent alternative splicing events or
variations that are not fully understood yet.

5.3.6 Transcriptomic Diversity in Cancer: Investigating Dif-

ferential Transcript Usage

DTU is a critical aspect of gene expression dynamics, where various isoforms of a
single gene are differentially expressed across distinct biological conditions. DTU
refers to the phenomenon where different versions (transcripts/isoforms) of a single
gene are expressed in varying patterns across different cell types, developmental
stages, or in response to certain conditions. This variation is orchestrated through
mechanisms such as alternative splicing, as well as the use of alternative tran-
scription start and termination sites, giving rise to multiple mRNA variants from
a single pre-mRNA template. The resulting isoforms diversify in function, locali-
sation within the cell, and potential interactions with other biomolecules, thereby
influencing cellular function and organismal homeostasis [262], [263].

Comprehending the nuances of DTU is indispensable for unraveling the complexi-
ties of gene expression regulation and its consequent impact on health and disease.
In our study, we leveraged the detailed transcriptomic data provided by nanopore
technology to compare isoform expression between the non-transformed and can-
cer samples. This technology affords an unprecedented opportunity to quantify
the full length of transcripts, enriching our understanding of DTU which was pre-
viously challenging to capture.

Utilising isoformSwitchAnalyzer, detailed in Materials and Methods Section 5.2.9,
we scrutinised an initial dataset of 48,146 isoforms spanning 18,087 genes. The
software’s stringent filtering process removed any genes expressing a solitary iso-
form or those without detectable expression, thereby refining our analysis to 28,156
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isoforms from 7,378 genes. This curation was pivotal for ensuring an intricate ex-
amination of transcriptomic diversity.

The analysis unveiled striking DTU patterns within a subset of ten genes, notably
including MBD3, MEST, and PRMT1, among others. For an extended overview
of all genes involved, refer to Supplementary Table 10.

Among these, the mesoderm-specific transcript (MEST) gene emerged as an in-
teresting case of DTU between non-transformed and cancer samples. The MEST
gene, a subject of interest within cancer research, has recently been implicated
as a regulator of invasiveness in lung cancer [264]. This gene is typically reg-
ulated through genomic imprinting, where only one allele—either maternal or
paternal—is expressed. However, in various cancers, including lung adenocarci-
nomas, a frequent loss of imprinting occurs. This loss results in the activation of
both alleles, leading to a phenomenon known as promoter switching, particularly
from isoform 1 to isoform 2 of MEST [265], [266].

Our investigation into the MEST gene has uncovered a fascinating instance of DTU
when contrasting non-transformed and cancer cell samples. As depicted in Figure
5.7, a closer inspection reveals no apparent difference in the overall gene expression
levels of MEST between the two sample types. DGE analysis corroborates this,
indicating no significant changes in MEST expression, with a log2 fold change of
0.4205 and an adjusted p-value of 0.6633. These findings suggest that standard
gene-level analyses might overlook crucial variations in MEST activity.

Nevertheless, a significant shift is observed at the isoform level, where isoform
usage between the conditions dramatically differs. In non-transformed samples,
isoform ENST00000223215.10 (MEST-201) is predominantly utilised. Conversely,
cancer samples exhibit a marked preference for isoform ENST00000341441.9 (MEST-
202), which is notably longer and includes a Signal Peptide domain. This domain
is typical of proteins destined for the secretory pathway [267], hinting at the iso-
form’s potential to mediate interactions with a distinct array of molecular partners
in cancerous cells.

Given the complex role of MEST in cancer, where it is expressed in tumours via
promoter switching and is associated with invasive cancer properties, the switch
to the longer MEST-202 isoform could be of particular importance. The presence
of the Signal Peptide domain in MEST-202 raises the hypothesis that this isoform
may facilitate unique interactions within the cancer microenvironment, potentially
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contributing to the mechanisms of tumourigenesis and metastasis. Understanding
these interactions and the signalling pathways they involve is crucial for developing
targeted cancer therapies. Thus, while MEST’s expression level remains consistent
across cell types, the shift in isoform usage signifies a nuanced layer of regulation,
possibly linked to the gene’s regulatory functions in tumourigenic processes.

Figure 5.7: Isoform Usage Shift in MEST Gene between Non-
transformed and Cancer Conditions. The figure depicts the isoform switch
in the MEST gene between conditions. The top panel illustrates exon-intron
structures of three distinct MEST isoforms, with coding regions in grey and
the Abhydrolase_1 domain in orange. The lower panels show quantified gene
and isoform expressions, and isoform usage fractions (IF), contrasting non-
transformed with cancer conditions. Bars represent mean expression levels, and
error bars indicate variability. Significant changes in isoform usage are marked by
asterisks, underscoring the potential regulatory implications of isoform switching

in oncogenesis.

5.3.7 Unraveling the Complexity of NSCLC: Insights from

PolyA Tail Length Variations

In the pursuit to deepen our understanding of NSCLC, the DRS technology allowed
us to delve into the intricacies of polyadenylation among the transcriptomes of both
cancerous and non-transformed samples.

Polyadenylation, the process of adding a polyA tail to RNA transcripts, is a critical
post-transcriptional modification that can influence RNA stability, nuclear export,
and translation efficiency. Variations in polyA tail length have been associated
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with diverse cellular states and can have profound implications for gene regulation
and expression [268].

In our analysis, we meticulously estimated the polyA tail length of the transcrip-
tome, uncovering subtle yet significant differences between cancerous and non-
transformed tissues. The DPA analysis revealed a statistically significant disparity
in the polyA tail lengths across the two conditions, pointing to a potential mecha-
nism of post-transcriptional regulation that may contribute to the pathophysiology
of NSCLC.

In a more detailed look, the overall evaluation of the two groups using the DPA
revealed striking outcomes. The application of the Mann-Whitney U test yielded
a statistic of 2,727,598 and a p-value of 2.2e-16 (Figure 5.8A). This result strongly
suggests a substantial and statistically significant difference in polyA tail lengths
at a broader level when comparing cancerous to non-transformed samples. These
striking results strongly suggest that variations in polyA tail length are not merely
incidental, but are systematically associated with the cancerous state.

Further delving into the data, our findings from the DPA illuminated the scale
of polyadenylation heterogeneity within these groups. An astonishing 2254 out of
8821 transcripts, approximately a quarter of the analysed transcriptome, showed
significant variations in polyA tail length (Figure 5.8B). This substantial fraction
of the transcriptome exhibiting alternative polyadenylation events in NSCLC is
indicative of the complex molecular alterations that occur in cancerous cells com-
pared to their non-transformed counterparts.

Additionally, we conducted an APA analysis, which investigates the usage of differ-
ent polyadenylation sites within the same gene, a phenomenon known to generate
transcript diversity. APA is a crucial post-transcriptional regulatory mechanism
that produces transcripts with distinct 3’ ends. The RNA molecules undergo cleav-
age at specific poly(A) sites, followed by the addition of a poly(A) tail at their 3’
ends [269]. By applying the LAPA method (refer to Materials and Methods, Sec-
tion 5.2.13 for details), we conducted a Differential Alternative Polyadenylation
Analysis (DAPA). Out of 1178 filtered transcripts assessed using Fisher’s exact
test, 247 showed evidence of DAPA, meeting criteria of an adjusted p-value of
0.05 and an absolute delta Usage threshold above 0.3. More specifically, 130 tran-
scripts were significantly down-regulated, while a nearly equal number, 117, were
significantly up-regulated, as elaborated in Figure 5.8C.
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Figure 5.8: Comprehensive Analysis of Polyadenylation Variability in
Cancer. (A) Bubble plot displaying the differential polyA tail length (DPA)
across all transcripts, with bubble size corresponding to the median cancer PolyA
length and colour intensity indicating significance level. (B) Boxplot of global
comparison of polyA tail lengths (DPA) between non-transformed and cancer
groups, with median values annotated, showcasing a statistically significant dif-
ference as determined by the Wilcoxon test. (C) Volcano plot highlighting genes
with alternative polyadenylation (APA) patterns, where the vertical axis repre-
sents the negative log10 adjusted p-value and the horizontal axis shows the delta
usage. Points are coloured based on regulatory direction, with labels identifying

notable genes with significant APA events.

The Volcano plot illustrated in Figure 5.8C enables the identification of two dis-
tinct isoforms of the gene TXNRD1, both demonstrating considerable APA. One
isoform, situated to the left (TXNRD1-210), is markedly down-regulated, while
the other, on the right, is significantly up-regulated (likely TXNRD1-204). Thiore-
doxin reductase-1 (TXNRD1) is known for its overexpression in several cancer
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types, including lung cancer, and is believed to be a critical factor in the pro-
liferation and survival of cancer cells [270]. It is essential to delve further into
understanding the role of APA in these TXNRD1 isoforms. Investigating how
the noticeable changes in the length of the polyA tail can substantially influence
these isoforms, particularly in terms of mRNA stability and translation efficiency,
is crucial. These changes may also be linked to the notable up-regulation of the
gene observed in the cancer state, which is characterised by a log2 fold change of
1.969 and an adjusted p-value of 0.0432.

5.3.8 Deciphering RNAMethylation Patterns in the NSCLC

Transcriptome: A New Dimension of Analysis

The study of RNA modifications, particularly methylation, has become a frontier
in understanding the regulatory complexities of the transcriptome. Our investiga-
tion primarily utilised the DRS technology to probe the methylome of the NSCLC
transcriptome. This innovative approach allowed us to directly observe and quan-
tify RNA modifications without the need for reverse transcription, which can often
obscure the detection of such modifications.

Methylation, the addition of a methyl group to the nucleotide bases of RNA,
is a critical post-transcriptional modification that can influence RNA stability,
splicing, localisation, and translation. In healthy cells, methylation plays a crucial
role in the normal functioning of RNA molecules, aiding in the fine-tuning of gene
expression and cellular homeostasis. However, in the context of cancer, aberrant
methylation patterns have been observed. Such alterations can disrupt the normal
regulatory processes and contribute to the onset and progression of malignancy.
In NSCLC, changes in RNA methylation could potentially serve as biomarkers for
diagnosis, prognosis, and therapeutic targets.

In our quest to unravel the complexity of RNA methylation in NSCLC, we per-
formed comprehensive methylation detection and analysis using the software tool
xPore, as detailed in Materials and Methods Section 5.2.14. xPore’s sophisticated
analysis algorithm enabled us to detect differential methylation patterns between
non-transformed and cancerous tissues with high precision. By comparing these
patterns, we aimed to identify specific methylation signatures that are character-
istic of the cancerous state.
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Our analysis with xPore encompassed 1263 distinct transcripts derived from 1192
genes. Notably, xPore identified over 1000 different kmers. To our surprise, of
the total 1024 kmers analysed, only 18 were classified as DRACH kmers, indica-
tive of m6A methylation, while the remainder were associated with various other
modifications.

Focusing on the most significantly modified transcripts, we identified ten key tran-
scripts: GNLY-201, ANGPTL2-202, SMIM26-201, ATXN7L3B-201, TRIM56-201,
C11orf98-201, TALONT000418557, TCEAL4-208, TXNDC17-201, and UBA52-
202. These transcripts represent a diverse array of genes, each potentially playing
a unique role in the biological processes under investigation. We proceeded to
further explore the genes from which these top ten modified transcripts origi-
nate, aiming to better understand their functional implications and potential roles
in disease processes, particularly focusing on their involvement in the complex
molecular landscape of NSCLC. Those top ten most extensively modified tran-
scripts, which are associated with a diverse set of genes: GNLY, ANGPTL2,
SMIM26, ATXN7L3B, TRIM56, C11orf98, FOXP1, TCEAL4, TXNDC17, and
UBA52. These genes represent a broad spectrum of biological functions and im-
plications, highlighting the pervasive influence of RNA modifications in cellular
processes:

1. GNLY (Granulysin): This gene plays a critical role in the immune re-
sponse, known for its involvement in cytotoxic activity against various tu-
mour cells and microbes. RNA modifications in its transcript could impact
how the immune system responds to pathogens and malignant cells [271]–
[273].

2. ANGPTL2 (Angiopoietin-Like 2): This gene plays a crucial role in an-
giogenesis and inflammation, with observational clinical studies highlighting
its significant increase in various chronic inflammatory diseases [274]. Ele-
vated ANGPTL2 levels have been linked to the diagnosis and prognosis of
cardiovascular diseases, diabetes, chronic kidney disease, and various can-
cers, suggesting that alterations in its transcript are vital for understanding
its impact on these diseases. Additionally, ANGPTL2, secreted from cancer
cells, leads to increased tumour cell invasion, motility, and angiogenesis, con-
tributing to tumour metastasis. Notably, high ANGPTL2 expression within
primary tumour sites in lung cancer patients correlates with poorer disease-
free survival outcomes [275].



Expanding the landscape of cancer transcriptome by native RNA sequencing of
NSCLC tissue samples 116

3. SMIM26 (Small Integral Membrane Protein 26): A relatively obscure
gene, may play a role in membrane biology or cellular signalling. Recent
research reveals that SMIM26 is a microprotein encoded by LINC00493,
situated in mitochondria. It is notably down-regulated in clear cell renal cell
carcinoma (ccRCC), with this decreased expression linked to poorer overall
survival rates. Functionally distinct from its encoding lncRNA, SMIM26
curbs the growth and metastasis of ccRCC [276].

4. ATXN7L3B (Ataxin 7-Like 3B): A gene involved in transcriptional reg-
ulation, has functions that are not yet fully understood. However, it has been
implicated in various disorders, including cancer. For instance, research by
Chen, Cha, Yan, et al. (2021) [277] revealed that ATXN7L3B expression
is significantly inversely correlated with survival in liver cancer patients.
Moreover, Leberfarb, Degtyareva, Brusentsov, et al. (2020) also showed its
association with an increased risk of colorectal cancer [278].

5. TRIM56 (Tripartite Motif Containing 56): Belonging to the TRIM
protein family and known for its involvement in antiviral defence mecha-
nisms, TRIM56 has been associated with various cancers such as lung ade-
nocarcinoma, , hepatocellular carcinoma, and multiple myeloma. Research
indicates that TRIM56 is crucial in hindering tumour progression, achieving
this through the modulation of the Wnt and TLR3/TRIF signalling path-
ways [279]–[281].

6. C11orf98 (Chromosome 11 Open Reading Frame 98): While the
specific function of this gene remains largely unclear, it is known to play
a role in regulating the activity of DNA-binding transcription factors, a
function influenced by its range of protein partners including ESR1, ESR2,
FOXA1, JUN, and WWP2 [282].

7. FOXP1 (Forkhead Box Protein P1): Is a highly conserved transcrip-
tion factor within the Forkhead Box P (FOXP) family, playing key roles in
regulating gene transcription in various tissues and cell types throughout de-
velopment and adulthood. It is suspected to function as a tumour suppressor
due to its loss in several cancer types and its location in a chromosomal re-
gion known for housing tumour suppressor genes [283]. In the lung, FOXP1
is known to be a key regulator of epithelial gene transcription [284]. In lung
cancer, reduced expression of FOXP1 has been linked to poorer survival
outcomes [285].
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8. TCEAL4 (Transcription Elongation Factor A Like 4): Is a gene in-
volved in transcriptional regulation, but has an undefined role in cancer.
Research suggests that it often shows decreased expression in various cancer
types, indicating a potential link to oncogenesis [286]–[288].

9. TXNDC17 (Thioredoxin Domain Containing 17): A highly conserved
oxidoreductase protein present in mammalian tissues, plays a key role in
cellular processes. While its specific functions are not yet fully understood,
recent studies have linked TXNDC17 to the TNF signaling pathway, which
is known to stimulate cellular autophagy [289].

10. UBA52 (Ubiquitin A-52 Residue Ribosomal Protein Fusion Prod-

uct 1): Is a key in targeting cellular proteins for degradation and maintain-
ing cellular homeostasis. A recent study highlighted its indirect yet crucial
involvement in the cell cycle progression and proliferation within NSCLC
cell lines, pointing to its potential impact in cancer biology [290].

The extensive modification of transcripts from these genes underlines the com-
plexity and importance of RNA modifications in regulating gene expression and
function across a wide range of biological contexts. This area is ripe for fur-
ther exploration to unravel the intricate mechanisms by which RNA modifications
influence cellular and molecular processes, potentially offering new avenues for
therapeutic interventions.

Furthermore, we conducted an exclusive investigation into known tumour - sup-
pressive and oncogenic genes related to lung cancer. We retrieved a list of 916
genes from the Lung Cancer Gene Literature Database [291] and only 79 were de-
tected by xPore. Notably, four genes – BTG2, IGFBP7, RHOC, and SFN – showed
significant differential modifications between cancerous and non-transformed tis-
sues with p-values: 0.0375, 0.0471, 0.0174, 0.0176 respectively (Figure 5.9). These
genes have crucial roles in lung cancer:

• BTG2 (B-cell Translocation Gene 2): BTG2 is known to play a signifi-
cant role in cell cycle regulation and apoptosis. In the context of lung cancer,
BTG2 acts as a tumour suppressor [292]. Its expression is often found to be
down-regulated in cancerous tissues compared to normal tissues, suggesting
that loss of BTG2 function contributes to tumourigenesis. BTG2’s role in
inhibiting cell proliferation and promoting apoptosis makes it a potential
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target for therapeutic strategies aiming to restore its function in lung cancer
cells [293], [294].

• IGFBP7 (Insulin-like Growth Factor Binding Protein 7): A mem-
ber of the IGFBP superfamily, also known as GFBP-related proteins, is a
widely secreted protein with a complex role in multiple biological functions.
This protein is crucial to the insulin-like growth factor (IGF) system [295]
and is actively involved in regulating key cellular processes such as prolifer-
ation, differentiation, angiogenesis, cell adhesion, and senescence across var-
ious cell types [296]. Its involvement in these diverse mechanisms underlines
its significance in both normal physiological and pathological conditions. In
healthy lung tissues, particularly within small airway bronchial epithelial
cells, IGFBP7 is typically expressed at higher levels, but this expression sig-
nificantly decreases in primary lung cancer tissues [297]. Research indicates
that IGFBP7 plays a vital role in lung cancer, influencing its progression,
response to treatment, and metastasis [298]–[300].

• RHOC (Ras Homolog Family Member C): This protein is part of the
Rho GTPase family, plays a key role in cytoskeletal regulation, impacting
cell morphology and movement [301]. The abnormal activation of Rho GT-
Pases, including RHOC, is associated with increased movement, invasion,
and metastasis of cancer cells [302]. RHOC undergoes post-translational
modifications such as methylation, essential for its localisation and function
[303]. In lung cancer, overexpression of RHOC has been also associated with
increased tumour metastasis. RHOC facilitates the aggressive behaviour of
cancer cells, including enhanced migration and invasion capabilities, which
are key factors in the spread of cancer to other parts of the body. There-
fore, targeting RHOC’s signalling pathways presents a promising therapeutic
approach to manage lung cancer metastasis [304].

• SFN (Stratifin, also known as 14-3-3 sigma): Belongs to the 14-3-3
protein family, is involved in regulating the cell cycle and apoptosis [305].
Often considered a potent oncogene, its elevated expression in lung cancer is
believed to play a significant role in the development and progression of the
disease, highlighting its potential impact as a target in lung cancer therapy
and research [306]–[308].
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Deciphering the RNA modification landscape in NSCLC is pivotal for understand-
ing cancer pathogenesis and developing new therapeutic approaches. Targeting
specific methylation sites or related enzymes could help normalise aberrant gene
expression and slow cancer progression. Integrating methylation data with gene
expression profiles and clinical outcomes promises a more customised cancer treat-
ment approach, tailoring therapies to each patient’s unique molecular tumour pro-
file.

While this research paves the way for innovative diagnostic and therapeutic meth-
ods anchored in RNA modification patterns, potentially enhancing patient out-
comes in NSCLC, it is clear that we have only just begun to scratch the surface of
the NSCLC methylome. There is a pressing need for more extensive and in-depth
research to comprehensively understand the breadth of information uncovered and
to effectively translate these findings into clinical practice.

Figure 5.9: Comparative Heatmap of Methylation Rates in Cancer vs
Non-Transformed samples. This heatmap displays varying methylation rates
across a spectrum of tumour-suppressive and oncogenic genes related to lung
cancer, comparing cancerous to non-transformed samples. Each horizontal band
represents a sample, with upper bands for cancer and lower for non-transformed
samples; vertical bands correspond to different genes. Colour gradients from
dark green to bright orange reflect methylation rates, with darker tones indicat-
ing higher methylation. Genes marked with asterisks below the heatmap show

significant methylation differences.

5.4 Discussion

This study marks an advancement in lung cancer research, particularly focusing
on the transcriptomic profiling of NSCLC adenocarcinoma tissues. Employing the
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advanced Nanopore Direct RNA Sequencing, this research stands as an initiative
in comparing the transcriptome profiles of lung cancer tissues and adjacent non-
transformed lung tissues. This approach enhances our understanding of NSCLC
adenocarcinoma, potentially aiding in identifying subtle changes in the disease’s
pathogenesis.

The creation of a specialised bioinformatics pipeline was a crucial aspect of this
project. This pipeline is unique in its integration of various modules and pipelines
for a simultaneous extraction of multi-layered transcriptomic information. At its
core, the pipeline utilises TALON software for the characterisation and quantifica-
tion of transcripts. The inclusion of multiple steps, such as CAGE analysis for 5’
end verification of novel RNAs and polyA length estimation for 3’ end verification,
ensures robustness and accuracy of data. This comprehensive pipeline enables an
extensive range of analyses including DGE, DTE, and DTU, alternative splicing,
and post-transcriptional modification detection, among others.

Our analysis, focused on KRAS-mutant adenocarcinomas and adjacent non-transformed
lung tissues, yielded rich data. From approximately 7.72 million sequenced reads,
we initially quantified over 35,000 genes and 390,000 transcripts. Post stringent fil-
tering, these numbers refined to about 18,200 genes and 48,300 isoforms, with 15%
of the isoforms classified as novel. This significant discovery of novel transcripts,
categorised into distinct groups by TALON, underscores the depth of our inves-
tigation. Furthermore, the validation of our results through comparison with the
Illumina short-read RNA-Seq data from Bang, Kang, Lee, et al. 2017 reinforced
the reliability of our findings.

One of the most striking discoveries in our study was related to the AGER gene.
Our findings not only confirmed its down-regulation at the gene level in cancer
tissues, but also revealed the down-regulation of all its 14 captured isoforms. This
observation is particularly notable considering the role of AGER in cancer pro-
gression. Additionally, we identified an isoform switch in the MEST gene, which is
linked to tumourigenesis, providing further insights into the molecular mechanisms
underpinning lung cancer.

In our investigation, we encountered an intriguing instance of Differential Tran-
script Usage involving the mesoderm-specific transcript (MEST) gene when com-
paring non-transformed and cancer cell samples. Despite observing no apparent
differences in the overall gene expression levels of MEST between the two sample
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types, a significant shift emerged at the isoform level, revealing marked differences
in isoform usage between the conditions. Non-transformed samples predominantly
expressed isoform MEST-201, while cancer samples displayed a notable preference
for isoform MEST-202, which notably features a longer sequence and includes a
Signal Peptide domain associated with proteins destined for the secretory path-
way. This observation suggests the potential of the MEST-202 isoform to facilitate
distinct interactions within the cancer microenvironment, potentially influencing
tumourigenesis and metastasis mechanisms.

A critical aspect of our research was the analysis of polyadenylation in the tran-
scriptome. We observed significant differences in polyA tail length between can-
cerous and non-transformed tissues, with cancer tissues showing a median polyA
length notably longer than that of non-transformed tissues. This difference in
polyadenylation patterns offers valuable insights into the regulatory mechanisms
at play in cancer cells. Furthermore, our analysis extended to DPA and APA pat-
terns. The examination of these patterns, particularly in the context of genes like
TXNRD1, known for its role in lung cancer, provided a deeper understanding of
the gene expression regulation in NSCLC. Identifying differentially expressed iso-
forms of this gene, with variations in polyadenylation, underscores the complexity
of gene regulation in cancer.

Finally, our study also delved into the realm of epitranscriptomics, revealing that
the most common post-transcriptional modifications in lung cancer did not follow
the typical DRACH motif, suggesting a divergence from established m6A mod-
ification patterns. Moreover, the analysis of the top ten significantly modified
transcripts, many of which are involved in tumourigenesis, and the assessment of
post-transcriptional modification changes in 916 known tumour-suppressive and
oncogenic genes, provided novel insights into the epitranscriptomic landscape of
lung cancer.

As we reflect on the findings of this study, it’s evident that our exploration of the
transcriptome in NSCLC adenocarcinoma has yielded valuable insights. However,
the path to fully understanding this complex disease and translating these insights
into clinical applications is a continuous journey. To enhance the outcomes of our
research and further solidify our findings, several steps can be undertaken in the
future. Firstly, expanding the sample size would be a critical step. A larger cohort
of patients, encompassing diverse demographics and genetic backgrounds, would
provide a more robust data set. This expansion would not only reinforce the
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validity of our findings, but also help in identifying more nuanced transcriptomic
variations that might be present in smaller subgroups of the population. Secondly,
increasing the depth of sequencing could uncover additional layers of complexity
in the NSCLC transcriptome. Deeper sequencing might reveal rare transcripts or
subtle alterations that are not detectable with the current depth. This could be
particularly beneficial for understanding the role of less abundant RNA species and
their contributions to NSCLC pathogenesis and progression. Thirdly, enhancing
the sophistication and efficiency of the existing bioinformatics pipelines represents
a critical area for future improvement. By refining these pipelines, we can achieve
greater accuracy and precision in our analyses. This enhancement will not only
yield better results, but also deepen our understanding of the capabilities and
full potential of this technology. Such advancements in our analytical tools are
essential for extracting richer insights from the data, ultimately leading to a more
comprehensive understanding of NSCLC at the molecular level.

Ultimately, this study lays a solid groundwork for future investigations and stands
as a testament to the continuous evolution of lung cancer research. The insights
gleaned here are expected to contribute to the ongoing efforts in developing more
sophisticated diagnostic methods and treatment strategies for lung cancer, empha-
sising our commitment to tackling this challenging disease with an ever-evolving
scientific approach.

5.5 Conclusion

This study represents a significant advancement in lung cancer research, particu-
larly in understanding NSCLC adenocarcinoma at a molecular level. By employ-
ing Nanopore Direct RNA Sequencing and developing a specialised bioinformatics
pipeline, we have provided valuable insights into the transcriptomic intricacies of
this disease. Our comprehensive analysis, which includes characterising a wide
array of genes and isoforms as well as delving into epitranscriptomics, highlights
the potential of this technology to enhance current research and suggests new
directions for developing improved diagnostic and therapeutic approaches. This
research not only contributes substantially to the existing body of knowledge in
lung cancer, but also stands as a noteworthy step towards more precise and effec-
tive treatment strategies, underlining its importance in guiding future efforts for
better management and treatment of this complex disease.



Chapter 6

NanoInsights: A Web Platform for

Advanced NanoString nCounter

Data Analysis

“In science, we must be interested in things, not

in persons.”

— Marie Curie

This Chapter introduces ‘NanoInsights’, a sophisticated web service designed to
simplify NanoString nCounter data analysis, merging advanced bioinformatics and
machine learning into an accessible platform for both experienced researchers and
novices. It offers a comprehensive QC process, a variety of normalisation methods,
and a unique auto-detection feature to identify the most suitable normalisation
technique for each dataset. The platform also incorporates diverse machine learn-
ing algorithms to uncover complex patterns in the data, aiding in predictive mod-
elling and biomarker discovery. Interactive visualisations enhance user experience,
facilitating the interpretation of results.

6.1 Introduction

In the intricate landscape of molecular biology, the detailed analysis of RNA ex-
pression is critical for distinguishing the molecular basis of health and disease.
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Variations in expression, primarily assessed through RNA abundance, illuminate
the complex regulatory processes that govern cellular functions. Far from being a
mere procedural task, this analytical focus is vital for grasping the molecular shifts
that drive pathological changes [309]. As such, technologies facilitating accurate
RNA expression profiling are indispensable, playing a pivotal role in revealing cel-
lular transcriptional dynamics [310]. Their use extends beyond basic observation,
enabling researchers to intricately dissect the genetic orchestration that defines
cellular behaviour in various physiological and pathological contexts [311].

RNA expression studies have traditionally leaned on three primary technologies:
PCR, microarrays, and the more recent high-throughput sequencing. PCR and
microarrays, while cost-effective and suitable for broad-scale transcriptomic analy-
sis, suffer from limited dynamic range, potentially obscuring subtle gene expression
nuances [312], [313]. In contrast, high-throughput sequencing offers intricate dig-
ital quantification of transcripts, but it comes with the requisites of substantial
laboratory resources, higher associated costs, and computational complexities as-
sociated with data analysis [314], [315].

Amidst this technological landscape, NanoString has emerged as a compelling
medium-throughput alternative for comprehensive RNA analysis. The NanoString
nCounter platform, in particular, offers a targeted approach to RNA expression
quantification, capable of analysing up to 800 targets in a single assay (refer to
Section A.3.1 of the Supplementary for additional information). Distinguished
by its ability to directly quantify RNA or DNA molecules in a single reaction,
the nCounter system offers notable advantages over PCR, microarray, and RNA
sequencing methods.

Primarily, its parallelised design and minimal manual intervention streamline data
acquisition compared to many PCR-based techniques. Additionally, the hybridisa-
tion method directly interrogates target sequences, eliminating the need for poten-
tially biased amplification steps, even for low-abundance transcripts. This feature
makes it particularly effective for applications like liquid biopsy, which typically
involves analysing samples with low quantity. Furthermore, it utilises digital de-
tection of uniquely bar-coded probes, ensuring absolute quantification. In contrast
to RNA sequencing (RNA-Seq) methods, nCounter RNA analysis bypasses cDNA
retrotranscription and library construction, reducing potential bias and enhancing
target quantification precision. With these advantages, the nCounter system has
emerged as a powerful tool, ushering in a new era in RNA expression analysis and
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molecular profiling [316], [317]. It has firmly established itself as a robust and
reliable platform suitable for both research and clinical applications. Importantly,
it has found acceptance in translational research due to its capability to effectively
handle highly degraded, low-quantity samples. Recent studies have expanded its
utility to investigate diverse bioanalytes, including mRNA [157], [159], miRNA
[318], and circRNA [156], [158], [160], among others.

Despite its substantial benefits, the NanoString nCounter platform poses chal-
lenges for researchers, especially in the post-experiment phase. The data it gen-
erates is not readily interpretable and requires compilation, normalisation, and
analysis. While the company offers the nSolver software as a data analysis solu-
tion, user experience and accessibility are critical in fully harnessing the potential
of this groundbreaking technology. At present, NanoTube [319] stands as the sole
platform that has made strides in this direction, offering a limited set of analytical
features. However, a considerable gap persists in delivering a comprehensive and
automated solution tailored to the diverse and evolving needs of researchers.

Acknowledging the necessity for a more user-friendly and intuitive approach to
NanoString nCounter data analysis, this study introduces "NanoInsights", a so-
phisticated web service that seamlessly integrates Bioinformatics and Machine
Learning for enhanced NanoString Data Analysis. This platform is expertly
crafted to simplify the intricacies of data pre-processing and analysis, thereby
broadening the accessibility of RNA expression analysis through NanoString tech-
nology to a diverse range of researchers. NanoInsights distinguishes itself with
a user-centric interface, tailored for ease of use regardless of the user’s level of
expertise. This makes it an ideal tool for both experienced researchers and those
new to the field, democratising the process of complex genomic data analysis. The
platform encompasses a broad array of features, including comprehensive quality
control and exploratory analysis, along with a selection of eight distinct normali-
sation methods. Its standout feature is the auto-detection capability, which intel-
ligently identifies the most suitable normalisation method for each dataset, thus
optimising data handling and minimising the need for specialised analytical skills.
A key strength of NanoInsights is its integration of Machine Learning, capable
of applying various classification techniques. This functionality allows researchers
to uncover subtle, hidden patterns within their data. Particularly transformative,
this capability opens new pathways for predictive modelling and biomarker discov-
ery across multiple disciplines, from oncology to developmental biology, enhancing
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both the interpretability and accuracy of analysis. Additionally, NanoInsights con-
cludes the analytical process with gene enrichment analysis, providing a holistic
suite of tools for researchers to investigate the functional implications of gene ex-
pression data. The platform offers interactive plots for a dynamic and engaging
user experience and enables the downloading of figures in a high-resolution format
that is visually appealing and suitable for publication.

6.2 Materials and Methods

6.2.1 Web-Service Development and Hosting Details

NanoInsights has been developed using a diverse stack of programming languages,
including Django (v4.2.6) for the frontend framework, alongside HTML5 for markup,
Cascading Style Sheets (CSS) for styling, and JavaScript for bespoke interactive
visualisations. At its core, NanoInsights is powered by a backend framework com-
bining Python (v3.11.4) and R (v4.3.1), leveraging the strengths of both languages
for computational tasks. Key Python libraries utilised in the development include
plotly (v5.18.0) for interactive visualisations [320], and sklearn (v1.3.2) for machine
learning [213]. A detailed listing of all the packages employed is systematically pre-
sented in Table12.

6.2.2 Quality Control and Preliminary Data Exploration

NanoInsights executes a standard quality control (QC) procedure, which encom-
passes NanoString’s established general assay performance checks. This thorough
QC stage includes evaluations of Imaging Quality, Binding Density, Positive Con-
trol Linearity, and the Limit of Detection. For each quality metric, a boxplot is
generated in both interactive and static forms, showcasing the entirety of the data
along with NanoString’s recommended ranges. Additionally, a detailed data table
is provided, offering an extensive review of each sample’s performance within the
dataset. Following this, an in-depth exploratory examination is conducted as an
initial assessment of the data. This examination incorporates critical elements
including boxplots of the unprocessed data, Principal Component Analysis (PCA)
plots, Multidimensional Scaling (MDS) plots, and Interquartile Range (IQR) anal-
yses.
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6.2.3 Filtering Process for Genes and Samples

NanoInsights offers a range of both standard and mild gene and sample filters to
refine data analysis. The platform features four primary filters, each of which can
be fine-tuned with ease to improve the integrity of the input dataset:

Filter Lowly Expressed Genes: Utilising the edgeR package’s ‘filterByExpr’
function, this filter identifies and removes genes with low expression levels.

Filter Genes Based on Negative Controls: This filter leverages the Negative
Control (NC) probes within the assay to detect and exclude genes that show
insufficient expression or excessive background noise. It calculates the background
noise threshold by averaging the NC values for each sample, adding twice the
standard deviation to this mean, and then deducting this value from each gene’s
expression level in the sample. Any gene with an adjusted expression level of zero
or less in more than 85% of samples is removed.

Filter Samples Based on the Negative Controls: Similar to the gene filter,
this filter excludes any samples where more than 85% of genes do not surpass the
expression threshold established by the Negative Control-Based Gene Filtering
process.

Remove Outlier Samples: This filter utilises IQR analysis to detect and elim-
inate outlier samples. NanoInsights enables the customisation of the IQR thresh-
old, allowing for the adjustment of the outlier detection stringency to ensure the
dataset’s integrity is tailored to the specific requirements of the analysis.

After the application of any of these filters, NanoInsights automatically compiles
additional documentation that records which genes and/or samples were excluded
in the process. The filtered dataset is then reassessed with various visualisations,
such as PCA plots, MDS plots, and sample correlation heatmaps. These visual aids
are designed to clarify the effects of the applied filters on the dataset, providing a
transparent view of the data’s configuration after the filtering process.

6.2.4 Normalisation and Differential Expression Analysis

NanoInsights provides a selection of eight unique normalisation methods. These
methods are comprehensively detailed in Table6.1, which includes an array of
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Table 6.1: Comprehensive Overview of Normalisation Methods and Their Ex-
planations in Data Analysis

Normalisation Method Explanation

nSolver Employs the standard nSolver normalisation, a conven-
tional method for normalising data.

Housekeeping Scaling Normalises counts by utilising a scaling factor, calculated
by dividing the geometric mean of built-in housekeeping
genes per sample by the arithmetic mean of their geomet-
ric means.

Housekeeping geNorm Normalises counts based on housekeeping genes selected
for their stable expression by the geNorm algorithm [199].
Scaling factors depend on the geometric mean of these
steadfast housekeeping genes, aligning with the approach
used in Housekeeping Scaling.

Endogenous and Housekeeping Scaling Normalises counts using scaling factors generated by the
ratio of the geometric mean of all counts (endogenous and
housekeeping) per sample to the arithmetic mean of their
geometric means.

Quantile Data is normalised by giving each sample in the dataset
the same distribution. The mean quantiles are used to
substitute the value of the data point in the original sam-
ple.

Cyclic Loess Applies cyclic Loess, a non-linear, local regression normal-
isation technique. Pairwise normalisation is performed
based on differences between samples, transforming data
onto log expression (M) and mean average of expression
(A) scales [200].

Variance Stabilising Normalisation (VSN) Data is normalised by parametric transformation based
on a model of variance-versus-mean dependence [184].

RUVSeq Utilising the RUVg function from the RUVSeq package
to account for technical bias [201]. The RUVg method
normalises data based on reference genes. The user can
choose the target genes and geNorm will detective most
stable ones that will be used in the RUVg function.

normalisation techniques ranging from conventional to more advanced approaches.

Additionally, NanoInsights introduces the "Auto-detection" feature. This option
automatically evaluates all available normalisation methods, selecting the most
suitable one based on the lowest mean Relative Log Expression (MRLE) score
[321].

The RUVSeq method is specifically crafted to detect and rectify unintended vari-
ations, employing the RUVg function to estimate these variations accurately.
NanoInsights offers a broad selection of choices for selecting the essential refer-
ence genes required for the function’s operation.
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Following the normalisation process, differential expression (DE) analysis is con-
ducted using the limma (v3.58.1) R package [200]. Limma employs an empirical
Bayesian method to identify differentially expressed genes. The output of this anal-
ysis includes a data table with normalised counts and relevant statistical measures.
Also, several interactive and static visualisations are provided for an in-depth re-
view of the normalisation process and an overview of the DE analysis. These
visualisations, based on the normalised data, encompass a PCA plot, a RLE plot,
a Density plot, Hierarchical Clustering Analysis of the samples, and a Volcano
plot.

6.2.5 Optional Preprocessing and Feature Selection

At the outset of the classification analysis, there is an optional preprocessing step
which includes the elimination of genes that exhibit high correlation or are nearly
constant. This is followed by feature selection that can be optionally conducted.
NanoInsights provides a choice of four feature selection methods: Recursive Fea-
ture Elimination with Cross-Validation (RFECV), Permutation Feature Impor-
tance (PFI), Differentially Expressed genes (DE), or the option to proceed without
any feature selection.

For RFECV, various cross-validation (CV) strategies are available, such as Leave-
One-Out Cross-Validation (LOOCV), 5-fold Cross-Validation (5-fold CV), and
10-fold Cross-Validation (10-fold CV). This method also allows the specification
of the minimum number of features to be selected in RFECV. In the case of PFI,
it is necessary to determine the minimum number of features to be included. The
‘DE’ method selects features based on differentially expressed genes. Opting for
‘no feature selection’ means all features will be used in the subsequent analysis.
However, this approach is generally not recommended as it might lead to overfit-
ting.

6.2.6 Selection of Classification Algorithm

Subsequently, NanoInsights provides a selection of five algorithms for the classifi-
cation task, which includes Random Forest (RF), K-Nearest Neighbours (KNN),
Gradient Boosting (GB), Extra Trees Classifier (ETC), and Logistic Regression
(LR). To thoroughly evaluate the training efficacy, NanoInsights employs CV as



NanoInsights: A Web Platform for Advanced NanoString nCounter Data
Analysis 130

a test method. The training process is assessed based on the average metrics de-
rived from these CV sets. There are three options for CV: 3-fold Cross-Validation
(3-fold CV), 5-fold Cross-Validation (5-fold CV), and 10-fold Cross-Validation (10-
fold CV). Crucially, the chosen model is also put through a rigorous evaluation
using an independent test set, which acts as the conclusive assessment stage for
the classification procedure.

6.2.7 Selection of Test Set for final classifier evaluation

Additionally, the selected trained model undergoes further evaluation using an
independent test set, which is established at the beginning of the data analysis
process. This step is crucial for providing a definitive evaluation of the model’s
classification performance. NanoInsights offers several options for configuring the
test set in the classification modelling process.

The "Split" option divides the input data into two portions, with 80% used for
training and 20% for testing. The "Runs" option allows for the selection of samples
from a specific run or multiple runs (loaded in a single cartridge) to be used as
the test set, while the remaining data forms the training set. Another choice is
the "External Set", which enables the use of additional raw and clinical data as
the test set.

There’s also the ‘Only Normalisation’ option, which is designed for scenarios where
only normalisation analysis is required, bypassing the classification analysis en-
tirely.

It’s important to highlight that NanoInsights treats the training and test sets
independently. This means that normalisation is conducted separately for each
set, and the test set is strictly used for testing purposes without any involvement
in the training phase. This approach ensures the integrity and independence of
the test set in evaluating the model’s performance.

6.2.8 Classification Output

The classification procedure yields various insightful outputs, including a plot
demonstrating the optimal number of features based on RFECV or PI, a table
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of the selected features, and a comprehensive file detailing the filtering, feature
selection, and training processes. Detailed data tables present the classification
outcomes for both the training and test sets. A final table consolidates key metrics
like Balanced Accuracy, F1-score, Precision, Recall, among others. The results are
further elucidated through interactive and static visualisations, including a Class
Probabilities plot, a Confusion Matrix (CM) Heatmap, and Receiver Operating
Characteristic (ROC) plots for both training and testing phases, enhancing the
interpretation and understanding of the classification outcomes.

6.2.9 Analysis of Gene Set Enrichment

Gene set enrichment analysis (GSEA) is carried out in two distinct stages. Initially,
it focuses on genes that show differential expression. This step is followed by a
repeated analysis on features identified through RFECV or PI feature selection
methods. To conduct these analyses, the capabilities of gProfiler and g:GOSt
are employed [186]. These tools are crucial for functional enrichment analysis, a
process key to revealing biological insights from gene lists.

6.3 Results

6.3.1 Overview of the NanoInsights Platform Workflow

The NanoInsights workflow is an intricate and comprehensive process, methodi-
cally designed to facilitate in-depth RNA analysis through a series of eight distinct
stages 6.1:

• Stage 1: Data Collection

The workflow begins with the collection of the necessary .RCC files and the
associated clinical table file. This stage is essential as it lays the foundation
for the entire analysis, ensuring a robust and relevant dataset for processing.

• Stage 2: Data Upload and Pipeline Initiation

In this stage, the collected data is uploaded to the NanoInsights platform.
Here, the analytical pipeline is initiated. Researchers are provided the option
to either customise various parameters according to their specific research
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needs or to proceed with default settings, striking a balance between cus-
tomisation and user-friendliness.

• Stage 3: Preprocessing, Quality Control, and Exploratory Analy-

sis

This stage involves preprocessing the data, conducting thorough quality con-
trol, and undertaking an in-depth exploratory analysis. These steps are key
to assessing data quality, exploring relationships among samples, identifying
potential outliers, and detecting any batch effects. This stage is vital for set-
ting the groundwork for the data analysis, as it ensures the data integrity and
lays out preliminary insights that guide the direction of the further analysis.

• Stage 4: Selective Filtering

Moving forward, the workflow incorporates selective filtering of genes or
samples, based on the parameters set in the second stage. This process
allows for a more concentrated analysis pertinent to the specific research
and data quality objectives.

• Stage 5: Normalisation and Differential Expression

In this stage, the emphasis is on data normalisation. Users have the option
to choose from a diverse range of normalisation algorithms, or they can rely
on the platform’s automated algorithm selection feature. Ensuring the data
is accurately normalised during this phase is vital for the precision of the
subsequent analysis. After the normalisation process, the data undergoes
DE analysis to pinpoint genes that exhibit differential expression.

• Stage 6: Machine Learning

The sixth stage of the workflow focuses on implementing Machine Learning,
with an emphasis on supervised learning and classification. In this stage, a
chosen model undergoes training using a predefined dataset. Once trained,
the model’s accuracy and effectiveness are then assessed using a separate
test dataset. The final step involves the model making predictions on new,
unseen data, referred to as the validation set. In this phase, normalised data
is used for both training and testing the selected classifier. The ultimate
aim is to utilise the trained classifier for making definitive predictions on the
validation set (unseen data), which is predefined in Stage 2. Machine learn-
ing introduces an advanced level of analytical sophistication to our process,
essential for developing models that not only analyse the dataset effectively,
but also deliver accurate predictions.
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• Stage 7: Integration for Gene Set Enrichment Analysis

In this stage, the workflow utilises the results obtained from DE analysis and
the ML processes to perform gene set enrichment analysis. This stage allows
for a deeper understanding of the gene sets and their biological significance,
providing valuable insights into the data.

• Stage 8: Data Visualisation and Insight Extraction

The final stage is dedicated to data visualisation and the extraction of in-
sights. This phase equips users with interactive tools to delve into the find-
ings of the analysis in a user-friendly and comprehensive manner. It also
allows for the download of the fully processed results for further utilisation.

This detailed overview of the NanoInsights workflow showcases its methodical and
thorough process, encompassing every aspect from the initial data intake to the
final extraction of insightful conclusions, ensuring a comprehensive approach to
RNA analysis.
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Figure 6.1: Detailed Flowchart of the NanoInsights Analytical Pro-
cess. The figure presents an eight-stage progression through NanoInsights’ an-
alytical platform. The initial phase (Stage 1) involves the collection of .RCC
files and the associated clinical data. In Stage 2, this data is uploaded for pro-
cessing, and the analysis pipeline is initiated, with an option to customise or
utilise default parameters. Preprocessing, quality control, and exploratory anal-
ysis define Stage 3, setting the groundwork for data analysis. Stage 4 applies
selective gene or sample filters based on earlier parameter settings. Normalisa-
tion is the focus of Stage 5, where users can select from a suite of algorithms
or rely on the system’s automatic algorithm selection. Machine Learning takes
centre stage in Stage 6, employing data to train and evaluate a selected classifier.
Stage 7 integrates the outcomes of differential expression and Machine Learning
for gene set enrichment analysis. The final phase, Stage 8, offers data visuali-
sation and insight extraction, providing users with interactive tools to explore
the analysis findings and facilitating the download of the fully processed results.
This overview encapsulates NanoInsights’ methodical process for thorough RNA
analysis, spanning from data intake to the derivation of insightful conclusions.

6.3.2 User Interface Overview

The NanoInsights web platform is crafted to be exceptionally user-centric and
straightforward, ensuring that even those new to bioinformatics analysis can nav-
igate it with ease (Figure 6.2). Upon arriving at the "Getting Started" interface,
users are warmly invited to commence their analytical journey by uploading their
data. The interface is deliberately designed to offer users the autonomy to either
fine-tune a multitude of analysis parameters to suit their individual project needs
or to employ the preset default parameters for a more streamlined experience.
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Figure 6.2: Screenshot of the NanoInsights Platform Interface. Screen-
shot of the NanoInsights web service main page interface, providing an overview

of the user experience upon entering the website.

The user interface is equipped with interactive features that provide on-demand
explanations for each parameter. For instance, a simple hover over a parameter
title triggers a pop-up with detailed information, enhancing user understanding
effortlessly. This helpful feature is exemplified in the interface concerning the
"Select nCounter Analysis System instrument" option in Figure 6.2.

At the heart of the initial interface is the "Upload your data" panel. Here, users are
prompted to provide the RCC files and associated clinical data table pertinent to
their study. The platform supports a range of upload techniques, from traditional
file selection dialogs to drag-and-drop interfaces, and accepts both individual and
compressed file uploads in .zip or .tar.gz formats.

Following the data upload, users are asked to define the Control and Condition
Group labels in sync with the clinical data file, select the nCounter system utilised
for their study, and determine the Classification Validation Type. This latter
step is critical as it delineates the methodology for the final evaluation of the
classification process, and thus, how the test set will be segmented. This parameter
is a compulsory field, and users are guided to refer to the Materials and Methods
Section 6.2.7 for comprehensive information.
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The platform’s left-hand panel is home to further analytical parameters that cover
DE, Filters, and Advanced Options pertaining to the Machine Learning compo-
nent of the analysis. It is noteworthy that the user retains full control over the
parameters, dictating the course of normalisation, filtering, and classification pro-
cesses that the data will undergo. The flexibility extends to the point where a user
can elect to bypass the machine learning and classification stages entirely if their
analysis calls for it.

For detailed instructions on navigating the platform, the "How to use?" tab (Fig-
ure 11) presents an exhaustive analysis of each processing step, encompassing
each parameter and its function, the requirements for input files, and a granular
breakdown of the output visualisations. This section is replete with hyperlinks to
external documentation for an expanded explanation of the processes in use. To
further aid users, NanoInsights has curated a video tutorial that visually demon-
strates navigating the website.

Additionally, for users who do not yet have their own data to analyse or who simply
wish to practice using the platform, NanoInsights offers a test dataset consisting
of 144 Colorectal Cancer samples, originally studied by Low, Blöcker, McPherson,
et al. in 2017 [322]. This dataset serves as a practical tool for users to familiarise
themselves with the platform’s analysis process and to explore its comprehensive
functionalities while they prepare for their personal data analyses.

After the data analysis is finalised, users are directed to the "My Analysis" tab,
where they can interact with the visualisations and download the comprehensive
analysis of their data.

Each user’s analysis is uniquely encrypted with a fourteen-character project iden-
tifier comprising both numbers and letters. Projects executed on NanoInsights are
securely archived on our servers, and users can access their results anytime using
their unique alphanumeric code through the "Find my project" tab.

The platform extends its resources through the "Our repository" tab, which leads
to the GitHub repository containing all the source code of the website, including
the test set. Should users encounter any technical issues or wish to offer feedback,
they can utilise the "Report an issue" function or engage with the NanoInsights
team via the "Contact us" tab. For those who leverage our web service in their
research and wish to acknowledge it, the "Cite us" tab provides all the necessary
citation information to facilitate proper referencing in scientific discourse.
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6.3.3 Case Study

In order to illustrate the practicality and effectiveness of NanoInsights, we con-
ducted a re-analysis of a dataset originally published by Park, Yu, Mustafa, et al.
in the year 2020, featured in the journal ‘Cancers’. This particular study included
a cohort of 60 patients diagnosed with Locally Advanced Rectal Cancer (LARC).
These patients were classified into two distinct response categories based on their
reaction to Preoperative Chemoradiotherapy: those who were good responders
and those who were non-responders. A distinctive feature of this dataset is the
inclusion of an independent test set, which contains an additional 96 samples.
Detailed information regarding the clinical data from this study is meticulously
outlined in Table 6.2.

Table 6.2: Detailed Clinical Information of Patients in Training and Test Co-
horts from the Study.

Variable Training Cohort Test Cohort

General Info

Males 27 (45.0%) 53 (55.2%)
Females 33 (55.0%) 43 (44.8%)

Total Samples 60 96

Clinical T-stage

TI 0 (0.0%) 0 (0.0%)
TII 4 (6.7%) 9 (9.4%)
TIII 53 (88.3%) 78 (81.3%)
TIV 3 (5.0%) 4 (9.0%)

Clinical N-stage

N0 2 (3.3%) 10 (10.4%)
N1 24 (40.0%) 40 (41.7%)
N2 34 (56.7%) 46 (47.9%)

Clinical M-stage

M0 58 (96.7%) 94 (97.9%)
M1 2 (3.3%) 2 (2.1%)

Assigned Class

Good Responders 27 (45.0%) 62 (64.6%)
Non Responders 33 (55.0%) 34 (35.4%)

In our re-analysis using NanoInsights, we imported the raw RCC files, provided
in a zipped file format, as well as the accompanying clinical data, which was up-
loaded in a text file format. The clinical file included essential details such as
the Filename and the assigned Condition category for each sample, distinguishing
between Good-Response and Non-Response groups. For the purpose of classifica-
tion validation, we selected the ‘Run’ option. This involved choosing eight specific
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runs (‘run2845’, ‘hsm-20160622’, ‘run2854’, ‘cancerpathwayHSM1’, ‘cancerpath-
wayHSM2’, ‘20161018AsanKMJ1’, ‘20161018AsanKMJ2’, ‘20161019AsanKMJ3’),
which pertained to the 96 samples in the test dataset. The remaining samples,
sourced from the remaining runs, were utilised to form the training set comprising
60 samples.

Regarding the analytical parameters within NanoInsights, we opted to use the
default settings for several aspects of the analysis. This included selecting ‘Auto-
Detection’ for the normalisation process of the data and choosing RFECV for the
feature selection phase. To enhance the depth and breadth of our classification
analysis, we expanded our choice of classifiers. Alongside the default Random
Forest classifier, we also incorporated two additional classifiers: Extra Trees and
Logistic Regression.

The re-evaluation of our dataset commenced with a primary QC check utilising
NanoString’s established metrics, as visualised in Figure 12A-D. This initial QC
revealed that all samples conformed to the expected standards, with no samples
flagged as potential outliers. However, during the exploratory data analysis, cer-
tain samples, specifically those from CartridgeID 20171020CBStest05 (depicted in
brown), were noted to have expression levels lower than the average (the average
denoted by the red horizontal line in Figure 6.3A). Although the IQR analysis,
set with a threshold of 2, did not classify any samples as outliers (Figure 6.3B), a
subsequent PCA revealed a distinct grouping of samples in the upper left quadrant
of Figure 13, suggesting they could be outliers, which interestingly all originated
from the same batch.

These four samples, identified as T136_01, T155_05, T164_07, and T177_11,
were subsequently excluded in the sample-based filtering step that considers NCs.
For an in-depth explanation of this process, please refer to Section 6.2.3 in the
Materials and Methods. Furthermore, the gene-based filter, also based on NC,
eliminated 105 genes that exhibited very low expression levels. The process of
normalisation was addressed next, with the auto-detection feature suggesting Loess
Normalisation as the optimal method for this dataset, indicated by a mRLE value
of 0.01 (Figure 6.3C). This was corroborated by the RLE plot, which showed all
medians closely aligned around the zero mark.

The differential expression analysis then identified five genes as differentially ex-
pressed, with CD40 and STAT1 being down-regulated, while MAPK8IP1, CACNA1,
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and ID1 were found to be up-regulated, as detailed in Figure 6.3D. These findings
were determined using an adjusted p-value threshold of 0.05 and an absolute log2
Fold Change threshold of 0.5.

Figure 6.3: Visual Analytics of RNA Expression Data in Response to
Chemoradiotherapy. This compilation of visualisations showcases the data
analysis conducted with NanoInsights for patients with LARC, segmented by
their response to Preoperative Chemoradiotherapy. (A) A box plot visualises
the unnormalised data, delineating expression levels across the samples, with
colours corresponding to the CartridgeIDs denoting different Runs. (B) A box
plot derived from IQR analysis contrasts the expression profiles between good
responders and non-responders. (C) Post-Loess normalisation, this box plot
depicts RLE levels, with good responders in blue and non-responders in red. (D)
A volcano plot captures DE genes post-Loess normalisation; red points indicate
significantly down-regulated genes, and green points represent up-regulated ones,
based on an adjusted p-value of 0.05 and an absolute log2 fold change of 0.5. (E)
The feature selection process is illustrated using RFECV with a Random Forest
Classifier; it plots cross-validated scores against the number of features, using
‘balanced accuracy’ as the scoring metric. The red point marks the optimal
number of selected features. (F) A ROC plot provides a comparative overview
of different classifiers’ abilities to differentiate between good and non-responders,
with varying colours representing the different classifiers and datasets, such as

the training or test sets.
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As we advanced to machine learning analysis, RFECV was employed, utilising
LOOCV to identify a subset of 28 genes that offered a balanced accuracy of 0.72,
as shown in Figure 6.3E and detailed in Table 13.

The ROC curve analysis, depicted in Figure 6.3F, compared the performance be-
tween Random Forest and Logistic Regression classifiers. It is noteworthy that
although all classifiers demonstrated exemplary performance in the training set,
with Area Under the Curve (AUC) values exceeding 0.90, they exhibited reduced
effectiveness in the test set, with AUC values at or below 0.70. A closer ex-
amination of the classifiers revealed Random Forest as the more capable model,
evidencing a higher True Positive Rate (TPR) at 0.74 compared to 0.54 for Logis-
tic Regression. Furthermore, Random Forest achieved higher F1 and F2 scores of
0.62 and 0.68, respectively, outperforming Logistic Regression, which scored 0.58
on both accounts. Table 14 furnishes a comprehensive list of the metrics evaluated.

6.4 Discussion

NanoInsights emerges as a sophisticated web service designed to streamline the
intricate process of NanoString nCounter data. Its interface and workflow are
meticulously crafted to make advanced bioinformatics tools accessible to both
seasoned researchers and newcomers to the field. The service integrates a variety
of analytical methods and machine learning techniques into a single, cohesive
platform, ensuring that users can navigate from data upload to in-depth analysis
with relative ease.

The analytical journey begins with a thorough QC assessment, employing standard
NanoString metrics to establish a solid foundation for the accuracy and reliabil-
ity of further analysis. The platform enhances user engagement through its ex-
ploratory data analysis tools, featuring various methods like PCA, IQR, and MDS.
These tools are instrumental in identifying potential batch effects or outliers, com-
mon issues in high-throughput data analyses, which could otherwise compromise
the validity of the results. Not only do these features underpin quality assurance,
but they also shed light on the underlying structure of the data, revealing technical
variations that might influence the final outcomes.

As the analysis progresses, NanoInsights guides users through the critical step
of data normalisation, offering an array of eight distinct normalisation methods,



NanoInsights: A Web Platform for Advanced NanoString nCounter Data
Analysis 141

ranging from standard NanoString normalisation to more sophisticated options
like RUVSeq. The platform’s auto-detection functionality stands out, identifying
the most suitable normalisation method for each dataset. This feature ensures
the highest standard of data processing, simultaneously alleviating the need for
in-depth analytical expertise.

After normalisation and differential expression analysis, NanoInsights introduces
its machine learning module. This module employs standard algorithms to delve
deeper into the NanoString data, uncovering intricate patterns and relationships
that might elude conventional statistical approaches. This step could provide
more profound biological understanding, thereby refining the accuracy of gene
expression profiling. The platform offers various preprocessing options, including
feature selection methods such as RFECV, Permutation Feature Importance, and
utilising the differentially expressed genes, enabling users to refine their models
and potentially boost their predictive accuracy.

The diversity of machine learning algorithms available on NanoInsights, includ-
ing Random Forest, Extra Trees, Gradient Boosting, K-Nearest Neighbours, and
Logistic Regression, allows for the development and rigorous evaluation of ro-
bust models. The platform’s detailed approach to cross-validation and model
assessment is indicative of its commitment to providing reliable results. Impor-
tantly, models are evaluated using unseen data, ensuring their robustness and
reproducibility in real-world scenarios.

In addition to its robust analytical capabilities, NanoInsights greatly enhances
the user experience with its array of interactive visualisations. These visual tools
play a pivotal role in making the journey through data analysis both intuitive and
user-friendly. This interactive element is particularly beneficial in simplifying the
understanding of intricate patterns and trends within the data, making it easier
for researchers to draw meaningful conclusions.

Furthermore, NanoInsights recognises the importance of sharing and publishing
research findings. To facilitate this, the platform enables users to download all
analyses and results in high-resolution formats. This feature is particularly ad-
vantageous for researchers looking to include their findings in publications or pre-
sentations. The ability to export ready-to-use, publication-quality figures ensures
that the output from NanoInsights not only meets, but exceeds the standards
expected in scientific communication. This focus on both the analytical depth
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and the practical utility of the output underscores NanoInsights’ commitment to
supporting researchers throughout their investigative journey, from initial data
exploration to the final stages of dissemination.

While NanoInsights offers a robust platform for NanoString nCounter data analy-
sis, it does have its limitations. One notable constraint is its processing capacity,
particularly with larger datasets containing several hundreds of samples, which
may result in longer times to yield results. Steps like feature selection and model
training become more computationally demanding with increased sample sizes.
Additionally, while the platform currently offers three feature selection methods,
there might be a need for more advanced techniques tailored to the specific nature
of this data. Fine-tuning of hyperparameters could also be an area for future de-
velopment. Another challenge arises when applying machine learning to smaller
datasets. In such cases, there is a risk of overfitting, where the model becomes
overly adapted to the training data, failing to generalise well to new data. This
issue, coupled with the potential unrepresentativeness of small datasets, can lead
to models that are less effective or biased.

Looking ahead, the future of NanoInsights is bright with opportunities for expan-
sion and enhancement. Future updates could focus on increasing computational
efficiency for large datasets, integrating more sophisticated feature selection meth-
ods, and refining machine learning algorithms to better handle datasets of varying
sizes. These enhancements will further cement NanoInsights as a versatile and
powerful tool in the realm of RNA analysis, adapting to the evolving needs of
researchers in this dynamic field.

6.5 Conclusion

NanoInsights stands as a groundbreaking web service, skilfully bridging the gap
between complex NanoString nCounter data analysis and user accessibility. Its
integration of comprehensive quality control, diverse normalisation methods, and
advanced machine learning techniques within an intuitive platform revolutionises
the way researchers approach RNA data analysis. While acknowledging its current
limitations, particularly in handling large datasets and potential overfitting with
smaller ones, NanoInsights is poised for future advancements. Anticipated en-
hancements aimed at improving computational efficiency and incorporating more



NanoInsights: A Web Platform for Advanced NanoString nCounter Data
Analysis 143

sophisticated analysis tools are expected to solidify its position as an indispensable
asset in RNA research. As NanoInsights continues to evolve, it promises to not
only meet, but exceed the ever-growing demands and intricacies of bioinformatics,
charting a path towards more insightful and impactful scientific discoveries.



Chapter 7

Brief Discussion and Future

Perspectives

Our progress in cancer diagnostics has been significant, driven by our develop-
ment and application of various methodologies in liquid and tissue biopsy-based
transcriptomics and sequencing. A key advancement is the Ensemble Learning
for Liquid Biopsy Analysis (ELLBA), which has significantly improved the pre-
cision and reliability of cancer diagnostics. ELLBA uniquely combines a diverse
array of biofeatures using ensemble learning techniques, providing a detailed view
of cancer’s molecular complexity. This methodology has been extensively tested
and validated across a wide range of datasets, demonstrating its effectiveness and
robustness.

Looking to the horizon, there are many ways to further amplify the capabilities
of ELLBA. Laboratory advancements beckon, with potential optimisations in the
protocols for RNA library preparations derived from liquid biopsies and the adop-
tion of paired-end deep sequencing technologies. These refinements are poised to
enhance our detection capabilities, particularly for identifying intricate molecular
features such as gene fusions, RNA editing, and SNVs, thereby unveiling even the
rarest mutations. This evolution in our laboratory practices, especially the strate-
gic shift from polyA enrichment to ribosomal RNA depletion, is expected to widen
our biomarker discovery net, incorporating novel entities like circular RNAs into
our analytical purview.

On the computational front, ELLBA’s framework is ripe for enhancement. This
includes delving into more sophisticated feature selection methods and classifiers,

144



Brief Discussion and Future Perspectives 145

coupled with a comprehensive approach to hyperparameter optimisation. A fo-
cused effort on addressing the challenges presented by unbalanced datasets will be
critical in significantly lifting ELLBA’s predictive performance. These computa-
tional advancements are designed to not only refine our diagnostic tools, but also
to deepen our insights, thereby enabling more nuanced and accurate predictions in
the ongoing battle against cancer. Additionally, incorporating elements of Trust-
worthy AI—focusing on transparency, fairness, and security—through methods
like Federated Learning could further enhance ELLBA’s applicability in clinical
settings by ensuring robust, unbiased, and secure data analysis.

Our engagement with Third Generation Sequencing, especially through the lens of
Oxford Nanopore Technologies’ direct RNA sequencing, has been transformative,
bridging critical gaps in our understanding of the cancer transcriptome. The devel-
opment of the ‘DRseeker’ bioinformatics pipeline is a testament to our unwavering
commitment to exploring and harnessing new frontiers in cancer research. By pro-
viding an intricate analysis of the lung cancer transcriptome, we have unearthed
pivotal shifts in transcript expression and post-transcriptional modifications, sig-
nificantly advancing our grasp of the molecular underpinnings of cancer.

The path forward for DRseeker involves the incorporation of a broader and more
diversified dataset, which will not only refine the pipeline, but also deepen our in-
sights into the NSCLC transcriptome. The advent of newer sequencing chemistries,
like the promising R10, and the potential utilisation of higher-output sequencers
such as PromethION, herald a new era of transcriptomic analysis characterised by
unprecedented depth and precision. Moreover, the proposed upgrades to DRseeker,
including the integration of new analytical features and the enhancement of data
visualisation techniques, aim to streamline the exploration of the vast datasets we
generate. By melding machine learning with TALON, the core analytical engine of
DRseeker, we anticipate a significant leap in the accuracy of isoform classification.

Moving forward, our ‘NanoInsights’ platform underscores our commitment to
democratising access to advanced bioinformatics tools. By simplifying the analysis
of NanoString nCounter data, we aim to empower researchers to unravel complex
gene expression patterns, propelling forward the frontiers of cancer research and
diagnostics. Future iterations of NanoInsights will focus on incorporating more
normalisation methods tailored for nCounter data, enhancing interactive visual-
isation features for on-the-fly analysis, and broadening the platform’s capability
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to encompass a wider array of NanoString data types, including spatial genomics
and proteomics.

As we forge ahead, the seamless integration of these avant-garde technologies and
methodologies is set to revolutionise the landscape of personalised medicine, prog-
nostics, and targeted therapy. The insights derived from our research not only
deepen our comprehension of cancer biology, but also pave the way for novel di-
agnostic and therapeutic strategies. Our continued endeavours will focus on har-
nessing these innovations to refine diagnostic accuracy, enhance patient outcomes,
and inject new hope into the global fight against cancer, thereby cementing our
role in shaping the future of cancer diagnostics.



Chapter 8

Conclusions

Throughout this doctoral thesis, several bioinformatics applications have been
conceived and transformed into user-friendly tools. The primary objective was to
facilitate the analysis of transcriptomics data, making it more accessible, depend-
able, and reproducible. The resulting tools encompass: 1. ELLBA: This method-
ology and pipeline were designed for the analysis of lbRNA-Seq data, providing
a novel approach to liquid biopsy analysis; 2. DRseeker: A dedicated pipeline
specialising in the analysis of Nanopore DRS data. It peels back multiple lay-
ers of information embedded in RNA, allowing for a comprehensive examination;
3. NanoInsights: An intuitive web-based application that combines bioinformat-
ics and machine learning for in-depth analysis of NanoString nCounter data. A
detailed summary of these contributions includes:

1. The ELLBA methodology was developed to bridge the gap in liquid biopsy-
based transcriptomics by utilising key discriminative features. This approach
leverages gene and isoform expression, FoCT, gene fusion, RNA editing, and
SNVs to capture essential molecular characteristics for cancer diagnosis.

2. The intra-sample CPM normalisation method proved effective, competing
well with more complex approaches. Its simplicity adds convenience for
clinical settings, allowing individual samples to be tested and significantly
reducing run time—an important factor in clinical environments.

3. The application of Ensemble Classification to integrate diverse biofeatures
significantly improved predictive accuracy, especially in external validation
sets.
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4. The "DRseeker" software was developed to analyse data derived from the
newly introduced DRS technology. This software offers comprehensive func-
tionalities enabling in-depth insights into the genetic underpinnings of dis-
ease.

5. Using DRseeker to analyse NSCLC adenocarcinoma tissues and adjacent
non-cancerous tissues enabled the identification of significant transcriptomic
alterations. Our focused analysis on genes like AGER and MEST revealed
differential expression and isoform switching, helping to identify potential
new biomarkers and therapeutic targets.

6. Additionally, DRseeker facilitated the exploration of differential transcript
usage, polyA-tail analysis, and the examination of post-transcriptional mod-
ifications. Significant findings included variations in polyadenylation, specif-
ically polyA tail lengths, and distinct post-transcriptional modification pat-
terns that were unique to lung cancer.

7. We developed ‘NanoInsights’, a user-friendly web application to improve the
analysis of data from NanoString’s nCounter system. This tool tackles the
challenges of analysing nCounter data, making clinical transcriptomics more
accessible.

8. NanoInsights combines bioinformatics analysis with standard machine learn-
ing classification methods. This integration allows users to leverage advanced
analytical techniques seamlessly within the platform.

9. The application offers multiple features, including eight unique normalisation
techniques with an auto-detection option that selects the best method based
on the input data. It also supports dynamic visualisations and produces
high-resolution figures suitable for publication.



Chapter 9

Conclusiones

A lo largo de esta tesis doctoral, se han concebido y transformado varias aplica-
ciones bioinformáticas en herramientas amigables para el usuario. El objetivo prin-
cipal fue facilitar el análisis de datos transcriptómicos, haciéndolos más accesibles,
fiables y reproducibles. Las herramientas resultantes incluyen: 1. ELLBA: Esta
metodología y su pipeline se diseñaron para el análisis de datos de lbRNA-Seq, ofre-
ciendo un enfoque novedoso para el análisis de biopsias líquidas; 2. DRseeker: Un
pipeline dedicado a la especialización en el análisis de datos de DRS de Nanopore.
Revela múltiples capas de información incrustadas en el RNA, permitiendo un
examen exhaustivo; 3. NanoInsights: Una aplicación web intuitiva que combina
bioinformática y aprendizaje automático para un análisis profundo de datos de
NanoString nCounter. Un resumen detallado de estas contribuciones incluye:

1. La metodología ELLBA se desarrolló para cerrar la brecha en la transcrip-
tómica basada en biopsias líquidas, utilizando características discriminati-
vas clave. Este enfoque aprovecha la expresión de genes e isoformas, FoCT,
fusión de genes, edición de RNA y SNVs para capturar características molec-
ulares esenciales para el diagnóstico del cáncer.

2. El método de normalización intra-muestra CPM demostró ser efectivo, com-
pitiendo bien con enfoques más complejos. Su simplicidad resulta conve-
niente en entornos clínicos, permitiendo que se analicen muestras individ-
uales y reduciendo significativamente el tiempo de ejecución, un factor im-
portante en los entornos clínicos.
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3. La aplicación de la Clasificación Combinada (ensemble) para integrar di-
versas bio-características mejoró significativamente la precisión predictiva,
especialmente en conjuntos de validación externos.

4. El software ‘DRseeker’ fue desarrollado para analizar datos derivados de la
nueva tecnología DRS. Este software ofrece funcionalidades completas que
permiten obtener percepciones profundas sobre las bases genéticas de las
enfermedades.

5. Utilizando DRseeker para analizar tejidos de adenocarcinoma de NSCLC y
tejidos no cancerosos adyacentes, se logró identificar alteraciones transcrip-
tómicas significativas. Nuestro análisis enfocado en genes como AGER y
MEST reveló expresión diferencial y cambio de isoforma, ayudando a iden-
tificar posibles nuevos biomarcadores y objetivos terapéuticos.

6. Además, DRseeker facilitó la exploración del uso diferencial de transcritos,
análisis de colas de poliA y la examinación de modificaciones postranscrip-
cionales. Los hallazgos importantes incluyeron variaciones en la poliadeni-
lación, específicamente longitudes de colas de poliA, y patrones de modi-
ficaciones postranscripcionales distintos que eran únicos para el cáncer de
pulmón.

7. Desarrollamos ‘NanoInsights’, una aplicación web amigable para mejorar el
análisis de datos del sistema nCounter de NanoString. Esta herramienta
aborda los desafíos de analizar datos de nCounter, haciendo la transcrip-
tómica clínica más accesible.

8. NanoInsights combina análisis bioinformáticos con métodos estándar de clasi-
ficación de aprendizaje automático. Esta integración permite a los usuar-
ios aprovechar técnicas analíticas avanzadas de manera fluida dentro de la
plataforma.

9. La aplicación ofrece múltiples características, incluyendo ocho técnicas de
normalización únicas con una opción de autodetección que selecciona el mejor
método basado en los datos de entrada. También soporta visualizaciones
dinámicas y produce figuras de alta resolución adecuadas para publicación.
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Appendix

This appendix provides the additional content that supplements the main body of
the thesis. It includes detailed figures, tables, and other relevant material pertinent
to each chapter.

A.1 Assessing the complementary information of

biologically relevant features in lbRNA-Seq data

(Supplementary Materials)

A.1.1 Detailed analysis applied to the individual datasets

All datasets adhered to standardised principles of analysis as detailed in the Ma-
terials and Methods Section. While we fine-tuned specific ML parameters for each
biofeature type, we consistently applied these parameters across all datasets shar-
ing the same biofeature. This approach aimed to create a versatile yet biofeature-
specific prediction model suitable for application to diverse datasets.

Each of the six datasets followed identical bioinformatics principles and analyses,
outlined in Figure 4.2 A-G and detailed in Materials and Methods Sections 4.2.1
- 4.2.8. In the ML analysis for each dataset, a uniform scheme was applied, illus-
trated in Figure 4.2 E-G and described in Materials and Methods Section 4.2.9.
In datasets with an independent validation set (NSCLC, CRC, and PDAC), the
primary dataset underwent feature selection and training, with the independent
validation set serving as the test set. For the remaining datasets (GBM, ESCC,
and HCC), a random 70-30% split was used, with 70% for feature selection and
training and the remaining 30% as the test set.
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The Genetic Algorithm (GA) was employed across all datasets for feature selection,
utilising stratified 5-fold cross-validation and empirical parameters: n_population
= 130, n_generations = 130, scoring = "accuracy", and
max_features = 50. Each biofeature type utilised a distinct base estimator,
selected based on its suitability for the specific data type. For Gene Expression
data, the GA used the RandomForestClassifier as the base estimator, with the
parameter class_weight = ’balanced’. Isoform Expression employed the
GA with the SVC as the base estimator and parameters C = 10, kernel =

’linear’, class_weight = ’balanced’, and probability = True.

For the other biofeatures (FoCT, Gene Fusion, RNA editing, and SNVs), the GA
used the LogisticRegression base estimator, each with distinct parameters:

• FoCT: LogisticRegression with parameters
solver = ’liblinear’, C = 1, class_weight = ’balanced’.

• Gene Fusion: LogisticRegression with parameters
solver = ’liblinear’, class_weight = ’balanced’, C = 0.1.

• RNA Editing: LogisticRegression with parameters
solver = ’liblinear’, class_weight = ’balanced’, C = 1.

• SNVs: LogisticRegression with parameters
solver = ’liblinear’, class_weight = ’balanced’, C = 5.

Regarding classification models, different classifiers were employed for each biofea-
ture:

• Gene Expression and Isoform Expression: AdaBoost algorithm with
the ExtraTreesClassifier as the base estimator.

• Other Biofeatures: LogisticRegression classifier using the same base es-
timator and parameters employed in the GA for feature selection. For ex-
ample, in FoCT, LogisticRegression was used with parameters solver =

’liblinear’, C = 1, class_weight = ’balanced’.

Importantly, the specifics and individual parameters tuned for each biofeature are
embedded in the classification.py script available on our GitHub page. Addition-
ally, it’s noteworthy that, to account for skewed class balance in some datasets, the
parameter class_weight = ’balanced’ was utilised across all algorithms.
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A.1.2 Comprehensive elucidation of the Decision Output

module

To gain further insight into how each biofeature contributes to the ultimate deci-
sion output, consider the presented example in Figure 4.2, illustrating the calcula-
tion of the final decision output for an imaginary sample through Soft Voting. As
detailed in Materials and Methods Section 4.2.9 and Results Section 4.3.2 (Deci-
sion Output module), Soft Voting entails averaging all probabilities obtained from
individual biofeatures.

Taking the example in Figure 4.2, denoted as sample N, Gene Expression analysis
yields a probability of 0.21, classifying sample N as Non-Cancer based on the
standard classification threshold of 0.5. Gene Fusion output probability is 0.74,
classifying it as Cancer. RNA editing assigns a probability of 0.88, also classifying
it as Cancer. SNV profiling gives a probability of 0.48, indicating Non-Cancer.
Isoform Expression profiling assigns a probability of 0.9, classifying it as Cancer.
Fraction of Canonical Transcript (FoCT) profiling yields a probability of 0.15,
categorising it as Non-Cancer.

To determine the final decision for this imaginary sample N, the average probability
is computed by summing all individual probabilities and dividing by the total
number of biofeatures. In this example,

AverageProbability =
0.21 + 0.74 + 0.88 + 0.48 + 0.90 + 0.15

6
= 0.56 (1)

As 0.56 exceeds the standard classification threshold of 0.5, Soft Voting classifies
sample N as Cancer. It’s worth noting that, in this theoretical example, the true
label for sample N is indeed Cancer, demonstrating the correct classification by
the Soft Voting ensemble learning approach compared to the misclassification by
standard Gene Expression analysis.
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A.1.3 Normalisation and Benchmarking of Gene and Iso-

form Expression Matrices

Gene-level expression data were initially obtained using the STAR aligner, while
transcript-level expression data were obtained using STAR (with quantMode pa-
rameter set to TranscriptomeSAM) output in combination with the Salmon in
alignment-based mode. Count matrices need to undergo normalisation to account
for variations in read yield and technical artefacts. In this section, we meticulously
benchmarked diverse normalisation methods for both gene and isoform expression
matrices. The same methods were applied across all six datasets. Specifically,
eight widely recognised normalisation techniques were tested, including TMM and
TMMwsp from the edgeR (v3.28.1) package, RLE from the DESeq2 (v1.26.0)
package, RUV from the RUVseq (v1.20.0) package, Full Quantile (FQ) normalisa-
tion from the preprocessCore (v1.48.0) package, and edgeR’s Upper Quartile (UQ),
CPM, and RPKM. To maintain methodological robustness and minimise the influ-
ence of machine learning models, six diverse classifiers were employed: AdaBoost,
KNN, linearSV, LogisticRegression, NaiveBayes, and RandomForest. The evalu-
ation of performance involved a consistent stratified 5-fold cross-validation across
all datasets, with the average AUC serving as the metric (Figure 4.3 and Figure
2).

Preceding any normalisation or benchmarking of gene or isoform expression matri-
ces, Principal Component Analysis (PCA) was executed to detect potential batch
effects. Subsequent PCAs were conducted post-normalisation as well to ensure the
efficacy of the applied normalisation techniques.

For the utilisation of the RUVSeq package, the RUVg function was adopted.
Stable genes were identified using TMM and RLE normalisation, selecting non-
differentially expressed genes with an adjusted p-value greater than 0.1. The
common genes (intersection) from both TMM and RLE non-DE gene sets were
used as reference genes, with a K value of 2 in the RUVg function.
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A.1.4 Implementation of different ensemble learning tech-

niques

We explored four distinct ensemble classification techniques to optimise the com-
bination of the diverse biofeature types derived from each dataset. Soft voting,
a technique suitable for probabilistic classifiers, was implemented by averaging
the output probabilities generated by individual biofeature type models. In con-
trast, majority voting, also known as hard voting, made final decisions based on
the majority class prediction from the different biofeature types. Finally, stack-
ing, a more advanced approach, involved training a meta-learner, in our case, the
GaussianNB classifier, to intelligently integrate predictions from the base mod-
els during training, facilitating more sophisticated decision-making and improving
overall performance.

A.1.5 Calculation of Accuracy and Misclassification rate

For accuracy assessment, we employed the "accuracy_score" metric from the
sklearn Python toolkit. To elaborate on the calculation, accuracy is determined
as the ratio of correctly predicted instances to the total number of instances in the
dataset, expressed mathematically as follows:

Accuracy =
NumberofCorrectPredictions

TotalNumberofInstances
(2)

The misclassification rate, alternatively calculated as the percentage of misclas-
sified samples over the total number of instances, can be expressed using the
formula:

MisclassificationRate(%) = (
NumberofMisclassifiedSamples

TotalNumberofInstances
) ∗ 100 (3)

Figure 3 presents the confusion matrices depicting the prediction outcomes for the
test sets of the six datasets. These matrices provide a comprehensive summary
of the ensemble learning (soft voting) predictions in matrix form, detailing the
number of instances that were correctly and incorrectly classified.
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A.1.6 Interpretation of the Biological Significance of Se-

lected Features in the NSCLC Dataset

In the intricate landscape of the human cellular milieu, a consortium of genes
congregated, each with a distinct function and purpose. Among the notable in-
habitants were HLA-A and HLA-B, pivotal in antigen presentation, serving as
sentinels at the cellular threshold.

Deep within this molecular community, NT5C3AP1 emerged as a conductor of
gene orchestration, regulating the nuanced cadence of gene expression, harmonis-
ing their synchronised activities.

• B2M faithfully accompanied HLA-A and HLA-B, engaged in the meticulous
process of antigen presentation, thereby fortifying the cell’s defence mecha-
nisms.

• CALM3, serving as a calcium signalling modulator, acted as a cellular pace-
maker, orchestrating intracellular events with precision.

• CNST emerged as the architectural engineer, meticulously crafting intricate
cellular structures, which facilitated the orchestration of molecular transac-
tions.

• PLEK emerged as a versatile multitasker, adroitly coordinating multifaceted
cellular processes, adapting to the ever-shifting cellular demands.

• HLA-DRB1 assumed the role of a molecular diplomat, mediating interac-
tions between the immune system and the cell, ensuring judicious immune
responses.

• MTFR1L, functioning as an adenosine triphosphate (ATP) producer, served
as the cellular powerhouse, fuelling diverse cellular activities.

• FERMT3 stood as the molecular anchor, fortifying cellular interactions with
the extracellular matrix, ensuring cellular adhesion and tissue stability.

• RTN4, akin to a cellular architect, sculpted the endoplasmic reticulum into
intricate configurations, a testament to its artistic prowess.

• PIP4K2A functioned as the biochemical artisan, synthesising vital signalling
molecules, catalysing fundamental cellular responses.
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Together, this constellation of genes engendered a dynamic and symbiotic cellular
environment, a symphony of molecular interactions contributing to the cellular
homeostasis and, consequently, the overall well-being of the human organism.
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A.1.7 Supplementary Figures

Figure 1: ELBAMethodology Integration into Clinical Screening. This schematic illustrates
the integration of the ELBA methodology into the route clinical screening process. When an individual
undergoes regular screening at a healthcare facility, a blood sample is collected, and one of the blood-
based biosources is extracted. Subsequently, the content of this biosource can be sequenced, and the
resulting raw data serves as input for the ELBA methodology. The ELBA pipeline efficiently processes
the raw data and provides a final prediction regarding whether the individual may potentially develop

the disease or not, aiding in early disease detection during clinical screening.
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Figure 2: Overview of Different Normalisation Methods Applied to
Isoform Expression. A comprehensive evaluation of eight normalisation tech-
niques was conducted across all six datasets. Each column corresponds to a spe-
cific normalisation method, and each row pertains to a different dataset utilised.
The x-axis illustrates the diverse models employed within each normalisation
method, while the y-axis portrays the mean AUC score achieved through 5-fold
CV. Each model is denoted by dots representing the AUC for each CV fold.
Furthermore, a dashed line signifies the mean AUC across the 5 folds, while a

solid line represents the mean AUC across all models.
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Figure 3: Confusion Matrices for the Six Analysed Datasets. Each
confusion matrix illustrates the prediction outcomes for the respective test set
of each dataset. Dataset names are specified in the title of each matrix. The
x-axis denotes the predicted classes, and the y-axis represents the actual classes.
The colour intensity within each quadrant of the confusion matrix corresponds
to the percentage of instances for each class. Darker colours indicate a higher
percentage, while lighter colours denote a lower class percentage, offering a visual

representation of the soft voting classification performance.
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A.1.8 Supplementary Tables

Table 1: List of software and packages used in the ELLBA software.

Software/Package Version Usage Source

Python v3.8.18 - [324]

numpy v1.23.5 Data manipulation [325]

pandas v1.5.2 Data manipulation [326]

Bio v1.79 Reading fastq file containing adapter sequences [327]

scikit-learn v1.2.0 Machine learning workflow [213]

genetic_selection v0.5.1 Utilisation of the Genetic algorithm for feature selection [217]

fast_ml v3.68 Detecting quasi-constant features [328]

matplotlib v3.6.3 Data visualisation [329]

seaborn v0.12.2 Data visualisation [330]

FastQC v0.11.9 Quality control checks on the raw sequence data [161]

MultiQC v1.13 Summary QC report [331]

BBDuk v38.18 Performing adapter removal and quality trimming [332]

STAR v2.7.6a Aligning the RNA-Seq data against the reference genome [333]

Salmon v1.9.0 Quantifying the expression of transcripts using the RNA-seq data [334]

Arriba v2.1.0 Detection of gene fusions from the RNA-Seq data [335]

RSeQC v3.0.0 Quality control metrics on the aligned data [180]

Picard v2.23.3 Quality control metrics on the aligned data [336]

GATK v4.1.9.0 Preprocessing the aligned BAM files for variant calling [337]

BCFtools v1.7 Calling SNPs from the aligned BAM files [338]

REDItools v2.0 RNA editing profiling in the RNA-Seq data [339]

samtools v1.7 Indexing and deduplication on the aligned data [340]

R v3.6.3 - [341]

dplyr v1.0.7 expression filtering, alternative isoform expression, gene fusion filtering [342]

reshape v0.8.8 expression filtering, alternative isoform expression, gene fusion filtering [343]

data.table v1.14.0 expression filtering, alternative isoform expression, gene fusion filtering [344]

edgeR v3.28.1 expression filtering [345]

DESeq2 v1.26.0 expression filtering [346]

RUVSeq v1.20.0 expression filtering [347]

ggplot2 v3.3.5 expression filtering [348]

RColorBrewer v1.1.2 expression filtering [349]

BiocParallel v1.20.1 expression filtering [350]

tidyverse v1.3.1 gene fusion filtering [351]

gprofiler2 v0.2.1 gene enrichment ananlsysi [352]
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Table 2: Detailed machine learning configuration.

Biofeature Matrix Biofeature Pre-processing Feature Selection Classifier
Algorithm Base Estimator Algorithm Base Estimator

Gene expression MinMaxScaler Genetic Algorithm RandomForestClassifier AdaBoostClassifier ExtraTreesClassifier
Isoform expression MinMaxScaler Genetic Algorithm SVC AdaBoostClassifier ExtraTreesClassifier

FoCT StandardScaler Genetic Algorithm LogisticRegression LogisticRegression -
Gene fusion - Genetic Algorithm LogisticRegression LogisticRegression -
RNA editing - Genetic Algorithm LogisticRegression LogisticRegression -

SNV - Genetic Algorithm LogisticRegression LogisticRegression -

Table 3: Detailed overview of the publicly available datasets utilised in the
study

Liquid Biopsy Biosource TEPs TEPs TEPs TEPs EVs CECs
Dataset NSCLC GBM CRC ESCC PDAC HCC

Cancer Type Non-Small Cell Lung
Cancer

Glioblastoma Colorectal Cancer Esophageal Squamous-
Cell Carcinomas

Pancreatic Ductal Ade-
nocarcinoma

Hepatocellular Carci-
noma

Publication (DOI) http://dx.doi.org/
10.1016/j.ccell.
2017.07.004

https://doi.org/10.
1016/j.xcrm.2020.
100101

https://doi.
org/10.1186/
s13073-022-01033-x

https://doi.org/
10.3389/fonc.2022.
824354

http://dx.doi.
org/10.1136/
gutjnl-2019-318860

https://doi.org/10.
1053/j.gastro.2018.
09.020

BioProject Accession PRJNA353588 PRJNA659491 PRJNA737596 PRJNA810728 PRJNA552230 PRJNA483004
Data Accession GSE89843 GSE156902 NA GSE197514 GSE133684 GSE117623
Sequencing Type SE100 mRNA-Seq SE100 mRNA-Seq PE100 mRNA-Seq PE250 mRNA-Seq PE150 exLR-Seq PE100 scRNA-Seq

Comparison 402 NSCLC vs. 377 non-
Cancer

88 GBM vs. 212
nonGBM

132 CRC vs. 190 non-
Cancer

71 ESCC vs. 25 non-
Cancer

284 PDAC vs. 117 non-
Cancer

52 HCC vs. 64 non-
Cancer

Type of Samples with Abbreviations NSCLC vs. Healthy
Control (HC), MS, PH,
EP, NSA, CP, UAP,
SAP

GBM vs. BrM and MS CRC vs. HC, CD, UC,
Pl, Ad

ESCC vs. HC PDAC vs. HC HCC vs. CLD

Detailed Comparison 402 NSCLC vs. 234 HC,
58 MS, 34 PH, 21 EP,
13 NSA, 6 CP, 6 UAP,
5 SAP

88 GBM vs. 126 BrM
and 86 MS

132 CRC vs. 59 Ad, 48
Pl, 40 CD, 22 UC, 21 HC

71 ESCC vs. 25 HC 284 PDAC vs. 117 HC 52 HCC vs. 64 CLD

Total Number of Samples 779 300 322 96 401 116
External Validation Set YES NO YES NO YES NO

Publication (DOI) https://doi.org/10.
1016/j.ccell.2022.
08.006

NA http://dx.doi.org/
10.1016/j.ccell.
2015.09.018

NA https://doi.org/10.
1093/nar/gkx891 &
https://doi.org/10.
1038/cr.2015.82

NA

BioProject Accession PRJNA761450 NA PRJNA281708 NA PRJNA391134/PRJNA390988NA
Data Accession GSE183635 NA GSE68086 NA GSE100232/GSE100206 NA

Detailed Comparison 213 NSCLC vs. 75 HC,
20 EP, 13 PD, 1 MS

NA 42 CRC vs. 55 HC NA 14 PDAC vs. 32 HC NA

Total Number of Samples 322 NA 97 NA 46 NA

Table 4: Number of extracted features per dataset prior any filtering steps

NSCLC CRC PDAC HCC GBM ESCC
SE100

mRNA-Seq
PE100

mRNA-Seq
PE150

exLR-Seq
PE100

scRNA-Seq
SE100

mRNA-Seq
PE250

mRNA-Seq
TEPs TEPs EVs CECs TEPs TEPs

Gene expression 17818 13356 14081 11587 19820 11633
Isoform expression 23095 30493 33979 8147 30171 34735

FoCT 1410 2300 3088 2478 2994 6283
Gene fusion 1783 1407 3444 173 1011 218
RNA editing 486 1674 1129 403 531 1360

SNV 367 1230 383 92 350 338
External Validation Sets

SE100
mRNA-Seq

SE100
mRNA-Seq

PE150
exLR-Seq

Gene expression 23812 17270 14368
Isoform expression 33129 25521 33862

FoCT 2947 3820 9258
Gene fusion 711 855 1798
RNA editing 1353 359 2040

SNV 463 466 800



Appendix 205

Table 5: Summary of features selected for each dataset using the Genetic
Algorithm.

NSCLC DATASET GBM DATASET CRC DATASET ESCC DATASET PDAC DATASET HCC DATASET
Gene expression Gene expression Gene expression Gene expression Gene expression Gene expression
ENSG00000210196.2 ENSG00000185436.12 ENSG00000110090.13 ENSG00000162407.9 ENSG00000007341.19 ENSG00000049249.9
ENSG00000140022.13 ENSG00000189280.3 ENSG00000163154.6 ENSG00000162607.13 ENSG00000145375.9 ENSG00000197056.11
ENSG00000165879.9 ENSG00000235927.4 ENSG00000050393.11 ENSG00000163785.13 ENSG00000186132.15 ENSG00000162367.11
ENSG00000257027.1 ENSG00000265491.5 ENSG00000258422.5 ENSG00000236548.2 ENSG00000104972.15 ENSG00000143013.13
ENSG00000131504.17 ENSG00000114978.18 ENSG00000198185.11 ENSG00000133112.17 ENSG00000128626.11 ENSG00000265491.5
ENSG00000177272.9 ENSG00000152127.9 ENSG00000272799.1 ENSG00000136146.15 ENSG00000115271.11 ENSG00000117533.15
ENSG00000126267.11 ENSG00000171596.7 ENSG00000269335.5 ENSG00000100575.14 ENSG00000236875.3 ENSG00000003509.16
ENSG00000166716.10 ENSG00000144681.10 ENSG00000140931.20 ENSG00000182809.11 ENSG00000033100.16 ENSG00000115310.18
ENSG00000175727.14 ENSG00000164086.10 ENSG00000184319.16 ENSG00000083457.12 ENSG00000035664.11 ENSG00000153250.20
ENSG00000111644.8 ENSG00000181004.10 ENSG00000090530.10 ENSG00000102362.15 ENSG00000252316.1 ENSG00000115806.13
ENSG00000103254.10 ENSG00000064652.11 ENSG00000106443.17 Isoform expression ENSG00000114019.14 ENSG00000068745.15
ENSG00000168310.11 ENSG00000145990.11 ENSG00000184349.13 ENST00000491035.5 ENSG00000163554.15 ENSG00000145191.15
ENSG00000125971.16 ENSG00000130340.16 ENSG00000182195.9 ENST00000428056.6 ENSG00000131876.17 ENSG00000226435.10
ENSG00000155749.12 ENSG00000230487.8 ENSG00000228474.6 ENST00000430705.5 ENSG00000156738.18 ENSG00000053900.11
ENSG00000100889.12 ENSG00000106772.18 ENSG00000229117.9 ENST00000571428.5 ENSG00000177096.9 ENSG00000205302.7
ENSG00000257261.6 ENSG00000160446.19 ENSG00000136003.16 ENST00000564286.1 ENSG00000071626.17 ENSG00000119048.8
ENSG00000183878.15 ENSG00000197746.14 ENSG00000187951.11 ENST00000565777.1 ENSG00000204371.11 ENSG00000177683.14
ENSG00000092841.19 ENSG00000184743.13 ENSG00000186665.9 ENST00000457662.2 ENSG00000167037.18 ENSG00000121022.14
ENSG00000163374.19 ENSG00000214530.9 ENSG00000134222.16 ENST000$0450573.5 ENSG00000167664.8 ENSG00000187210.14
ENSG00000237984.3 ENSG00000254659.3 ENSG00000143079.15 ENST00000393263.7 ENSG00000066629.18 ENSG00000168209.5
ENSG00000068976.14 ENSG00000281026.1 Isoform expression ENST00000543258.1 ENSG00000161692.18 ENSG00000174456.15
ENSG00000285774.3 ENSG00000259330.3 ENST00000417615.1 ENST00000533239.1 ENSG00000105784.15 ENSG00000185787.15
ENSG00000150991.15 ENSG00000140400.17 ENST00000442956.1 ENST00000510824.5 ENSG00000167315.18 ENSG00000132507.18
ENSG00000198959.12 ENSG00000102981.9 ENST00000469375.1 ENST00000376582.7 ENSG00000024048.10 ENSG00000274180.1
ENSG00000235527.7 ENSG00000126653.18 ENST00000227348.9 ENST00000295984.7 ENSG00000154473.18 Isoform expression
ENSG00000100263.14 ENSG00000167664.8 ENST00000507146.5 ENST00000379907.9 ENSG00000144401.14 ENST00000347635.9
ENSG00000103316.12 ENSG00000073050.12 ENST00000371856.6 ENST00000$71059.7 ENSG00000198169.9 ENST00000263246.8
ENSG00000125354.23 ENSG00000183963.18 ENST00000467310.1 ENST00000298198.5 ENSG00000151702.17 ENST00000372409.8
ENSG00000114544.16 ENSG00000068366.20 ENST00000668018.1 ENST00000432042.5 ENSG00000165983.14 ENST00000356487.11
ENSG00000110628.16 ENSG00000198840.2 ENST00000372661.6 ENST00000538533.5 ENSG00000169221.14 ENST00000361574.10
ENSG00000105135.16 Isoform expression FoCT ENST00000496497.1 Isoform expression ENST00000329138.9
ENSG00000042753.12 ENST00000602252.5 ENSG00000171490.13 ENST00000539528.5 ENST00000514985.6 ENST00000375215.3
ENSG00000148842.18 ENST00000317991.9 ENSG00000161203.13 ENST00000396151.7 ENST00000392221.5 ENST00000560044.5
ENSG00000130714.17 ENST00000436233.9 ENSG00000198836.10 ENST00000554076.5 ENST00000257497.11 ENST00000249636.11
ENSG00000132879.14 ENST00000469257.2 ENSG00000159840.16 ENST0000058$895.5 ENST00000442394.5 ENST00000256383.10
ENSG00000261115.6 ENST00000556083.1 ENSG00000103512.15 ENST00000520339.5 ENST00000399702.5 ENST00000354586.5
ENSG00000225648.5 ENST00000437406.1 ENSG00000108846.16 ENST00000389858.4 ENST00000370331.5 ENST00000298125.7
ENSG00000177051.6 ENST00000513321.1 ENSG00000092199.17 ENST00000436908.5 ENST00000465399.5 ENST00000256015.5
ENSG00000224114.1 ENST00000606369.5 ENSG00000100380.14 ENST00000535933.5 ENST0000265769.9 ENST00000537653.5
Isoform expression ENST00000653163.1 ENSG00000061676.15 ENST00000521644.5 ENST00000306730.8 ENST00000540163.5
ENST00000394547.7 ENST00000378495.7 ENSG00000125037.12 ENST00000458549.7 ENST00000546010.6 ENST00000514325.1
ENST00000482727.1 ENST00000497464.5 ENSG00000166337.10 ENST00000418688.5 ENST00000444448.6 ENST00000637561.1
ENST00000335968.8 ENST00000396894.8 ENSG00000005020.13 ENST000003924$6.3 ENST00000376007.8 ENST00000295588.9
ENST00000261250.8 ENST00000614713.4 ENSG00000101079.21 ENST00000391865.7 ENST00000368309.4 ENST00000330953.6
ENST00000290776.13 ENST00000537020.5 ENSG00000073578.17 FoCT ENST00000372922.8 ENST00000308488.10
ENST00000323374.8 ENST00000563856.1 ENSG00000127483.19 ENSG00000068323.17 ENST00000512986.5 ENST00000447998.7
ENST00000676278.1 ENST00000288599.9 ENSG00000124795.17 ENSG00000077721.16 ENST0000370192.8 ENST00000372663.9
ENST00000542854.5 ENST00000661691.1 ENSG00000091157.13 ENSG00000101337.16 ENST00000288840.10 ENST00000292357.7
ENST00000559302.1 ENST00000489673.1 ENSG00000164985.15 ENSG00000103121.9 ENST00000438527.7 ENST00000443035.8
ENST00000442128.2 ENST00000460569.1 ENSG00000100836.10 ENSG00000106462.11 ENST00000357137.9 ENST00000337859.11
ENST00000460495.5 ENST00000665523.1 ENSG00000049323.16 ENSG00000106477.20 ENST00000314622.9 ENST00000311893.14
ENST00000409028.8 ENST00000338961.11 ENSG00000043462.13 ENSG00000106772.18 ENST00000510585.3 ENST00000504430.5
ENST00000543139.1 ENST00000372667.9 ENSG00000129473.10 ENSG00000107862.5 ENST00000622512.1 ENST00000368599.4
ENST00000221130.11 ENST00000669077.1 ENSG00000234456.8 ENSG00000112234.9 ENST00000577246.5 ENST00000313349.3
ENST00000568399.1 ENST00000585931.5 ENSG00000131389.17 ENSG00000115271.11 ENST0000030085.13 ENST00000552459.2
ENST00000273432.8 ENST00000532444.5 ENSG00000164305.19 ENSG00000119636.16 ENST00000622683.5 ENST00000526627.1
ENST00000442834.6 FoCT ENSG00000006125.18 ENSG00000121766.16 ENST00000606059.1 ENST00000356245.8
ENST00000591399.5 ENSG00000028116.18 ENSG00000094975.14 ENSG00000124635.9 ENST00000488782.1 ENST00000518219.5
ENST00000502665.1 ENSG00000066294.15 ENSG00000174695.10 ENSG00000126524.10 FoCT ENST00000602637.1
ENST00000399494.5 ENSG00000099624.8 ENSG00000257267.3 ENSG00000127526.15 ENSG00000150316.12 ENST00000568588.5
ENST00000366769.7 ENSG00000100934.15 ENSG00000126581.13 ENSG00000128513.16 ENSG00000083168.11 ENST00000644876.2
ENST00000370277.5 ENSG00000102362.15 ENSG00000172053.18 ENSG00000130830.15 ENSG00000108061.12 ENST00000322428.10
ENST00000458001.2 ENSG00000104824.17 ENSG00000122779.18 ENSG00000132823.11 ENSG00000153071.15 ENST00000446751.6
ENST00000507142.6 ENSG00000104964.15 ENSG00000110917.8 ENSG00000133703.13 ENSG00000113648.16 ENST00000536173.5
ENST00000343537.12 ENSG00000105372.8 ENSG00000223482.8 ENSG00000136279.21 ENSG00000179833.4 ENST00000265462.9
ENST00000496144.5 ENSG00000117523.16 ENSG00000136104.21 ENSG00000137275.14 ENSG00000144028.15 FoCT
ENST00000356674.7 ENSG00000128731.18 ENSG00000184009.12 ENSG00000139687.16 ESG00000085224.23 ENSG00000069329.18
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ENST00000400137.9 ENSG00000134548.11 Gene fusion ENSG00000158856.18 ENSG00000136536.15 ENSG00000082175.15
ENST00000379666.7 ENSG00000135018.14 ENSG00000143353.12 ENSG00000167258.15 ENSG00000140105.18 ENSG00000082515.18
ENST00000383463.9 ENSG00000136280.17 ENSG00000059377.18 ENSG00000167770.11 ENSG00000213741.11 ENSG00000100934.15
ENST00000361131.5 ENSG00000136754.17 ENSG00000225630.1 ENSG00000168894.10 ENSG00000156261.13 ENSG00000104529.17
ENST00000409939.8 ENSG00000136929.13 RNA editing ENSG00000169313.10 ENSG00000135999.12 ENSG00000125991.20
ENST00000651023.1 ENSG00000136938.9 chr7.102283807.AC ENSG00000176978.14 ENSG00000108671.11 ENSG00000134321.12
ENST00000557682.6 ENSG00000143409.15 chr4.73996373.CG ENSG00000178537.10 ENSG00000166710.20 ENSG00000140538.16
ENST00000336095.10 ENSG00000143418.20 chr1.246667186.TC ENSG00000180694.14 ENSG00000075785.14 ENSG00000143458.12

FoCT ENSG00000145495.16 chr17.55419885.CT ENSG00000181929.13 ENSG00000119392.15 ENSG00000145287.11
ENSG00000125037.12 ENSG00000147459.18 chr19.21572595.CA ENSG00000196405.13 ENSG00000152558.15 ENSG00000145495.16
ENSG00000120860.11 ENSG00000149932.17 chr9.110244140.AG ENSG00000197386.12 ENSG00000162734.13 ENSG00000179833.4
ENSG00000158796.17 ENSG00000160014.17 chr2.65270218.AG ENSG00000263001.6 ENSG00000137309.20 ENSG00000184009.12
ENSG00000158406.5 ENSG00000180964.17 chr20.32703359.CT Gene fusion ENSG00000162889.11 ENSG00000186687.16
ENSG00000172466.16 ENSG00000188612.12 chr9.75146941.AG ENSG00000113638.14 ENSG00000198563.14 ENSG00000196459.14
ENSG00000051382.9 Gene fusion chr3.69170657.TA RNA editing ENSG0000021150.10 ENSG00000196776.16
ENSG00000198160.14 ENSG00000146416.19 chr14.56393712.AG chr1.20650728.AT ENSG00000085733.16 ENSG00000197102.12
ENSG00000166710.20 RNA editing chr2.190203335.AT chr1.22091783.GT ENSG00000138107.13 ENSG00000250241.6
ENSG00000138434.17 chr1.246666314.TC chr11.104948600.TC chr1.86125458.AG ENSG00000135968.21 ENSG00000256269.10
ENSG00000142599.19 chr2.214780740.CG chr6.36741140.AT chr1.247864917.GA ENSG00000106211.10 ENSG00000267002.4
ENSG00000170802.16 chr3.93470433.AT chr1.40072268.AC chr3.56593570.AG ENSG00000142230.13 ENSG00000271503.6
ENSG00000133639.6 chr3.93470632.TC chr7.116917885.CT chr5.17353867.TC ENSG00000100106.22 Gene fusion
ENSG00000102054.18 chr4.117574884.TA chr7.134969179.TC chr6.170318526.TC ENSG00000014216.16 NA
ENSG00000184178.16 chr6.31270252.TC chr9.132991261.CG chr7.5641153.CA ENSG0000102316.17 RNA editing
ENSG00000198961.10 chr6.31356739.CA chr11.22821609.AT chr7.139047528.CG ENSG00000105723.12 chr4.49709486.TA
ENSG00000160014.17 chr6.31356751.GT chr10.22536667.CT chr11.44619242.TC ENSG00000104765.16 chr4.49710871.GT
ENSG00000166337.10 chr6.36741288.GC chr22.39018761.CT chr12.6019277.TC ENSG00000216490.4 chr4.49711528.AG
ENSG00000137486.17 chr6.109367528.CA chr17.77094744.AG chr16.66579622.GA ENSG00000151726.14 chr6.31270025.AG
ENSG00000151148.14 chr7.152465124.AC chrM.10413.AT chr22.16648623.AG ENSG00000165757.9 chr6.31726548.GA
ENSG00000189403.15 chr10.71816550.CT chr17.50795126.CA chrM.4769.AG ENSG00000048649.13 chr11.5227013.AG
ENSG00000116688.18 chr12.30543572.GT chr19.1106616.TC chr2.3498938.AG ENSG00000165168.8 chr19.1086353.CA
ENSG00000078596.11 chr16.89561665.GA chr15.40036464.GA chr8.106697739.TG ENS00000197894.11 KI270466.1.972.GA
ENSG00000188677.15 chr17.47313196.AG chr1.40067594.TG chr11.320606.GT ENSG00000099995.19 chr1.192812042.CG
ENSG00000100387.9 chr17.47316373.CA chr17.17264850.GA chr13.21374438.TC ENSG00000130985.17 chr6.29945489.GT
ENSG00000283633.1 chr19.1038223.CG chr6.2991116.CT chr14.50118530.CT ENSG00000085872.15 chr6.29945567.GT
ENSG00000108061.12 chr19.2732988.TC chr2.74156503.GA chr19.41305825.TC ENSG00000156136.10 chr13.18212090.GC
ENSG00000128294.16 chr19.3595034.CT chr6.31356827.TC chr21.8214749.TC Gene fusion chrM.8364.AG
ENSG00000160789.21 chr19.55013640.AC chr2.241352963.GT chr4.110112075.AT ENSG00000081189.16 chrM.8701.AG
ENSG00000143162.9 chr21.46664908.CG chr6.31356374.CT chr8.70227307.CG RNA editing KI270466.1.407.AG
ENSG00000163041.12 chr22.20639041.AG chr22.36281936.GA chr16.24092867.CT chr19.1038572.CT KI270467.1.1753.TC
ENSG00000108960.9 chrX.132074568.TA chr6.116495595.GT chr6.29942827.CA chr17.7014479.TC chr1.169690861.GT
ENSG00000162852.14 chr1.160998043.TC chrX.152972245.GT chr1.171587026.GC chr2.68396142.TC chr3.93470642.GA
ENSG00000248334.6 chr2.3498627.CT SNV chr5.180071595.CT chr17.77498664.AG chr11.319903.GA
ENSG00000100614.18 chr3.123706885.GA chr6.2991058.C.CC chr18.11851481.CA chr1.93346360.CT chr15.44711512.CG
ENSG00000105372.8 chr5.151663542.GC chr2.105894020.C.CACAC,CAC chr16.56362518.CA chr8.69690109.CT chrM.1610.AG
ENSG00000103512.15 chr6.27122863.TC chr8.51819594.TAAGATAACCTC.T chr19.23832768.CT chr16.400309.CT KI270467.1.2133.TC
ENSG00000132824.14 chr6.29942953.TA chr11.66276271.CCTT.C chr17.3660774.GA chr6.32660181.TC KI270467.1.3104.AT
ENSG00000112335.15 chr6.149811183.AT chr12.6885493.G.GG chr2.201477679.GT chr5.17354196.CG chr11.5248354.TG
ENSG00000101096.20 chr7.135164461.GA chr11.64223524.AC.A SNV chr8.26655797.GT chr5.49659878.CG
ENSG00000245532.9 chr10.22534868.CT chr17.75319194.CT.C chr1.13779904.T.TCCT,TTCT chr2.214780740.CG chr6.29943451.AT
ENSG00000204323.5 chr11.95069613.GC chr20.51390097.G.GTG chr1.150226707.CTCCTCT.C chr15.82152096.AG chr6.29943462.TC
ENSG00000113282.14 chr12.6537943.TC chr4.79587761.A.AA chr1.223804167.A.T chr22.37314798.CT chr6.29942940.AG
ENSG00000206172.8 chr14.91378946.AG chr14.51255393.GTTTTTT.GT,G chr1.247878164.AAAATAAAT.AAAAT,A chr2.44065442.GT chr6.31271180.AC
ENSG00000185418.16 chr17.68532637.CG chr2.74154536.AAG.A chr2.69514621.CTGT.C chr6.31271153.AC chr6.31356818.CG
ENSG00000180354.16 chr22.32479203.GA chr16.9111907.AT.A chr2.108771700.G.A chrM.16362.TC chr6.31357115.GC
ENSG00000088726.16 chr22.39961075.AG chr1.211314005.GT.G chr3.183379296.C.T chr7.135164528.TA chr6.31357118.GC

Gene fusion chrM.1610.AT chr3.157261131.T.TT chr4.117574910.A.G chr19.46601278.TA chr6.32578849.CG
ENSG00000167996.16 chr6.26055844.GC chr15.52121523.T.TTTCT chr4.117575770.G.T chr6.29942953.TA chr10.3779369.GA

RNA editing chr9.121455206.CT chr2.230543149.A.AA chr4.119628904.GC.G chr8.55880027.GA chr10.41859953.AG
chr11.48168831.AT chrX.152972245.GT chr11.118228725.AT.A chr4.139730430.TCTG.T chr9.21699386.TC chr16.87403158.AG
chr4.79585580.CT chr2.68396015.CT chr1.110672471.G.GGG chr5.56882021.TCAACAACAA.TCAACAA,T chr19.8574709.CT chr6.31271273.GA
chr21.10325858.GA chr19.56379264.AG chr17.66450796.T.TTT chr5.137942873.A.C chr12.48940979.GC chr1.161624436.CT
chr4.117574875.CT chr5.139330067.GA chr14.54685187.AC.A chr6.350941.A.AA chr10.110881295.AG chr22.32479203.GA
chr8.30069805.AG chr14.56303317.TG chr15.28755013.CATT.C chr6.29943338.G.C,A chr4.90838645.TC SNV
chr16.11677238.CG chrM.11467.AG chr7.6024377.A.AGAA chr6.31161865.A.C,G chr14.105855558.CT chr2.89836533.T.G,C
chr2.31267850.CG chr13.18212056.AT chr17.4934660.G.GG chr6.31271273.G.A,T chr1.205768322.TC chr2.105893741.A.AAGAA
chr6.29943451.AT chr1.150150179.AG chr18.9400306.A.AA chr6.31356423.G.C,A chrY.10198498.TC chr4.49153203.G.C,
chrM.11719.GA SNV chr19.48210101.A.AGAAAAA chr6.80069652.A.C chr3.101576449.AT chr4.73986201.A.G,T,

chr6.33086636.TG chr1.25832412.C.CTC chr12.11893361.A.AAGAA chr6.80070027.T.C chr1.15807671.TC chr5.49601888.A.G,C,T
chr1.151034063.CA chr1.51840391.ATCT.A chr14.102081436.A.ACA chr6.159680958.A.AA,AAA chr2.197400802.AG chr6.29887984.A.G,T
chr19.41353016.GA chr1.110659238.T.TTA chr9.122847654.A.ATA chr9.33294904.A.AA chr6.113860752.TC chr6.29888649.C.G,T
chr8.70574333.GC chr1.117627844.CTG.C chr10.22536965.CCAA.C chr9.97927168.TACACACAC.TACACAC,T chr11.128460091.CA chr6.29942940.A.G,T
chr12.108646093.TC chr1.150965488.AAGG.A chr5.160402012.T.TCT chr11.6390705.TGCTGGC.T chr9.35972118.CT chr6.29942982.T.C,A
chr19.56379298.AG chr3.121631459.A.ACA chr1.110659238.T.TTA chr11.27368542.T.C chr9.133020418.GT chr6.31271132.G.A,T
chr1.47180174.GT chr3.127736188.GT.G chr19.8438980.AC.A chr11.34970131.T.C chr16.2765236.AC chr6.31356825.T.G,A,C
chr7.66956001.TC chr4.73984853.AGT.A chr15.51911003.C.CC chr12.93083679.A.G chr6.31271165.GT chr6.31356889.A.T,C
chr19.55013640.AC chr4.150264912.CAACAAAA.CAA,C chr4.73984853.AGT.A chr14.54957029.A.T chr12.118246461.GA chr6.89080840.CTTCA.C
chr2.120293413.TA chr5.113020369.CTA.C chr22.38484092.GA.G chr15.92712026.T.C chr7.139565716.CT chr8.51818304.T.C,A
chr12.120764861.AC chr6.29945567.G.T,A,C chr1.247896838.ATTGTGGC.A chr16.21501823.TGCCGCCGCC.T,TGCC,TGCCGCC chr14.35292469.CG chr11.95068471.T.TT
chr6.31356739.CA chr6.30009730.A.G chr6.7289521.A.AA chr16.71922608.AATGCCC.A chr6.29943495.TG chr12.15902993.T.TT
chr4.117574799.AG chr6.30009746.C.T chr3.52255273.C.CC chr17.18805689.CTT.C SNV chr14.102081436.A.ACA
chr22.36295561.AC chr7.23311727.CATT.C chr12.96267832.TAAAAG.T chr17.49424742.A.G chr4.109714333.T.TT chr16.2771987.TC.T
chr17.3896624.GC chr7.134969636.TTTTA.T chr2.191834914.G.GG chr17.56856667.T.G chr12.7920898.GT.G chr17.21976479.G.A,T
chr21.39397364.AG chr8.109532238.CCA.C chr3.3130031.C.CTGACTCC chr19.5260868.GT.G chr4.152978558.TG.T KI270467.1.3305.A.AC
chr6.32443258.AC chr9.34252468.GCTAA.G chr17.41692548.GATT.G chr22.21805846.T.A chr3.50258896.AG.A
chr1.173488460.AG chr9.35729074.T.TCT chrX.39787945.A.G chr2.54972902.CAGAT.C
chr2.189565451.AG chr10.74119159.A.ATA chr5.139369499.C.CATT
chr11.64853046.GA chr11.10509421.T.C chr19.2426665.AAT.A
chr14.22551978.CG chr12.10699507.T.C,A chr9.34088024.G.GAAAGA
chr2.3617178.TA chr12.53041516.T.TTTT,TTT,TT chr14.104795689.C.CC
chr2.68396142.TC chr14.56298337.T.TT chr21.37367357.G.GG
chr16.84458.AG chr15.43988968.T.A,C chr16.11678744.T.TTCTGA

chr12.21532174.AC chr16.682287.GC.G chr15.64500167.G.C
chr11.48170123.AG chr17.47260339.TC.T chr2.59322186.A.G
chr2.64338218.TG chr18.5290626.TG.T chr9.134438842.CGCTG.C
chr6.31271324.GT chr18.35306564.T.TAGTC,TAGGC chr9.117180684.G.GG
chr6.31356323.GT chr22.18730667.C.G,A chr10.110286187.T.TT
chr14.56303317.TG chr14.35401929.TTTC.T
chr1.150997091.AG chr12.48938679.G.GAG
chr14.81278392.AG chr7.29923051.CTG.C
chr1.160996644.TC chr1.25832412.C.CTC
chr11.840319.CT chr2.101697932.G.GCCG

chr10.120763363.TC chr20.5610946.TC.T
chr1.160998043.TC chr7.150627451.C.CC
chr9.100451665.AG chr10.22535890.GA.G
chr11.134124381.GA chr2.27051250.A.T,G

SNV chr16.2771987.TC.T
chr2.86137583.TG.T chr11.64223524.AC.A
chr7.6024376.T.TAGA chr4.74250021.T.TG
chr6.32584180.G.T,C chr5.179786299.A.AAAG
chr15.20407417.C.CC chr19.50382934.G.GG
chr2.75063787.A.T chr15.64954933.T.TCTT

chr1.25832412.C.CTC chr14.73717935.C.CC
chr15.81158892.C.CC chr11.118751116.T.TT

chr11.33858620.T.TT,TTT chr6.32578849.C.G,A
chr6.2991058.C.CC chr16.61055694.A.AC

chr17.47623021.A.ACTA chr16.61055939.A.G
chr6.30009746.C.T chr11.102398666.AG.A
chr1.25567436.AT.A chr4.119628904.GC.G

chr8.109532238.CCA.C chr15.64951861.CTCT.C
chr18.69862728.TACTC.T chr12.122769311.T.TAT

chr22.19176064.C.CAT,CAC chr4.2515057.TG.T
chr10.26747982.T.TGCTTT chr6.31356754.C.T,G

chr3.121631459.A.ACA chr12.67664568.GT.G
chr6.29942940.A.G,T chr17.75319599.C.CCAC
chr17.4937515.G.GG chr17.4897982.C.CTCC
chr3.52255273.C.CC chr6.31271324.G.T,C,A
chr3.93470628.A.C,T chr6.26113766.T.G,C

chr13.30459178.A.AATTA chr6.31271165.G.T,A
chr12.53041838.TAAG.T
chr17.4934658.G.GG
chr1.247902768.G.GG
chr8.144104805.AC.A
chr12.15902993.T.TT
chr1.27886521.AG.A

chr15.75900574.A.AGAA
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chr2.190203041.T.TCT
chr19.40796645.GC.G
chr11.64223524.AC.A
chr11.58775233.A.ACA
chr6.31356751.G.T,A
chr18.9400306.A.AA
chr4.49153253.G.C

chr1.205769847.AC.A
chr3.88055009.ATC.A
chr6.31271273.G.A,T
chr17.16441919.CA.C
chr18.3248250.A.AA

chr14.104714369.A.G,C
chr2.54972426.G.GTTG

chr5.49659077.T.A
chr20.25297834.G.GTGGGG

chr11.102398666.AG.A
chr18.79903076.C.CTC
chr18.5290626.TG.T
chr7.152842573.T.TT
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Table 6: Machine learning output stats per dataset

DATASETS NSCLC GBM CRC ESCC PDAC HCC
Liquid Biopsy Biosource tumour educated platelets tumour educated platelets tumour educated platelets tumour educated platelets extracellular vesicles circulating epithelial cells
External Validation Set YES NO YES NO YES NO

Gene expression # of selected
features

39 30 20 10 30 24

Gene expression AUC 0.91 0.79 0.86 0.71 0.94 0.84
Gene expression Accuracy 0.84 0.79 0.76 0.79 0.74 0.77
Gene expression Balanced Accu-
racy

0.84 0.70 0.75 0.66 0.81 0.78

Gene expression F1 score 0.88 0.58 0.69 0.87 0.70 0.78
Gene expression Average Preci-
sion score

0.95 0.68 0.84 0.87 0.87 0.78

Gene expression misclassified
samples

50/322 (15.5%) 19/90 (21.1%) 23/97 (23.7%) 6/29 (20.7%) 12/46 (26.1%) 8/35 (22.9%)

Isoform expression # of selected
features

35 25 9 33 27 40

Isoform expression AUC 0.89 0.77 0.84 0.85 0.92 0.88
Isoform expression Accuracy 0.78 0.76 0.80 0.79 0.74 0.80
Isoform expression Balanced Ac-
curacy

0.78 0.62 0.80 0.62 0.81 0.81

Isoform expression F1 score 0.83 0.42 0.77 0.88 0.70 0.81
Isoform expression Average Pre-
cision score

0.94 0.57 0.76 0.92 0.85 0.83

Isoform expression misclassified
samples

70/322 (21.7%) 22/90 (24.4%) 19/97 (19.6%) 6/29 (20.7%) 12/46 (26.1%) 7/35 (20.0%)

FoCT # of selected features 46 24 36 34 43 21
FoCT AUC 0.85 0.69 0.82 0.75 0.65 0.84
FoCT Accuracy 0.74 0.73 0.81 0.76 0.63 0.80
FoCT Balanced Accuracy 0.78 0.71 0.80 0.72 0.61 0.80
FoCT F1 score 0.77 0.59 0.76 0.83 0.48 0.79
FoCT Average Precision score 0.92 0.47 0.78 0.88 0.49 0.81
FoCT misclassified samples 83/322 (25.8%) 24/90 (26.7%) 18/97 (18.6%) 7/29 (24.1%) 17/46 (37.0%) 7/35 (20.0%)
Gene fusion # of selected fea-
tures

1 1 3 1 1 NA

Gene fusion AUC 0.47 0.52 0.56 0.48 0.56 NA
Gene fusion Accuracy 0.34 0.69 0.63 0.69 0.41 NA
Gene fusion Balanced Accuracy 0.47 0.52 0.59 0.48 0.56 NA
Gene fusion F1 score 0.15 0.18 0.38 0.82 0.49 NA
Gene fusion Average Precision
score

0.65 0.30 0.51 0.71 0.33 NA

Gene fusion misclassified sam-
ples

211/322 (65.5%) 28/90 (31.1%) 36/97 (37.1%) 9/29 (31.0%) 27/46 (58.7%) NA

RNA editing # of selected fea-
tures

47 49 36 32 41 39

RNA editing AUC 0.83 0.77 0.76 0.73 0.82 0.94
RNA editing Accuracy 0.78 0.72 0.70 0.69 0.72 0.86
RNA editing Balanced Accuracy 0.75 0.70 0.69 0.63 0.76 0.86
RNA editing F1 score 0.83 0.58 0.64 0.78 0.65 0.86
RNA editing Average Precision
score

0.90 0.49 0.76 0.89 0.62 0.91

RNA editing misclassified sam-
ples

72/322 (22.4%) 25/90 (27.8%) 29/97 (29.9%) 9/29 (31.0%) 13/46 (28.3%) 5/35 (14.3%)

SNV # of selected features 49 29 42 37 48 20
SNV AUC 0.72 0.64 0.66 0.65 0.71 0.87
SNV Accuracy 0.70 0.62 0.71 0.72 0.70 0.83
SNV Balanced Accuracy 0.68 0.61 0.70 0.58 0.70 0.83
SNV F1 score 0.76 0.47 0.65 0.83 0.59 0.81
SNV Average Precision score 0.83 0.37 0.60 0.84 0.50 0.85
SNV misclassified samples 98/322 (30.4%) 34/90 (37.8%) 28/97 (28.9%) 8/29 (27.6%) 14/46 (30.4%) 6/35 (17.1%)
Ensemble Learning (Majori-
tyVoting) # of selected features

216* 157* 143* 146* 189* 144*

Ensemble Learning (Majori-
tyVoting) AUC

0.87 0.73 0.85 0.69 0.82 0.86

Ensemble Learning (Majori-
tyVoting) Accuracy

0.86 0.82 0.87 0.83 0.78 0.86

Ensemble Learning (Majori-
tyVoting) Balanced Accuracy

0.87 0.73 0.85 0.69 0.82 0.86

Ensemble Learning (Majori-
tyVoting) F1 score

0.89 0.62 0.83 0.89 0.72 0.86

Ensemble Learning (Majori-
tyVoting) Average Precision
score

NA NA NA NA NA NA

Ensemble Learning (Majori-
tyVoting) misclassified samples

44/322 (13.7%) 16/90 (17.8%) 13/97 (13.4%) 5/29 (17.2%) 10/46 (21.7%) 5/35 (14.3%)

Ensemble Learning (SoftVoting)
# of selected features

216* 157* 143* 146* 189* 144*

Ensemble Learning (SoftVoting)
AUC

0.95 0.87 0.94 0.85 0.92 0.95

Ensemble Learning (SoftVoting)
Accuracy

0.88 0.80 0.87 0.79 0.78 0.91

Ensemble Learning (SoftVoting)
Balanced Accuracy

0.89 0.71 0.85 0.66 0.84 0.92

Ensemble Learning (SoftVoting)
F1 score

0.90 0.59 0.82 0.87 0.74 0.91

Ensemble Learning (SoftVoting)
Average Precision score

0.98 0.74 0.94 0.93 0.84 0.94

Ensemble Learning (SoftVoting)
misclassified samples

39/322 (12.1%) 18/90 (20.0%) 13/97 (13.4%) 6/29 (20.7%) 10/46 (21.7%) 3/35 (8.6%)

Ensemble Learning (Stacking) #
of selected features

216* 157* 143* 146* 189* 144*

Ensemble Learning (Stacking)
AUC

0.93 0.88 0.91 0.81 0.98 0.99

Ensemble Learning (Stacking)
Accuracy

0.85 0.82 0.85 0.79 0.78 0.91

Ensemble Learning (Stacking)
Balanced Accuracy

0.84 0.70 0.85 0.74 0.84 0.92

Ensemble Learning (Stacking)
F1 score

0.89 0.80 0.83 0.86 0.74 0.91

Ensemble Learning (Stacking)
Average Precision score

0.97 0.76 0.91 0.94 0.95 0.99

Ensemble Learning (Stacking)
misclassified samples

48/322 (14.9%) 16/90 (17.8%) 15/97 (15.5%) 6/29 (20.7) 10/46 (21.7%) 3/35 (8.6%)
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Table 7: Table of genes exhibiting recurring appearances exceeding a threshold
of two occurrences across all datasets.

GeneID Gene Name Gene Type Occur. Description

ENSG00000234745.11 HLA-B protein
coding

6 major
histocom-
patibility
complex,
class I, B

ENSG00000206503.13 HLA-A protein
coding

5 major
histocom-
patibility
complex,
class I, A

ENSG00000213492.2 NT5C3AP1 transcribed
processed
pseudo-
gene

3 NT5C3A
pseudo-
gene 1

ENSG00000166710.20 B2M protein
coding

3 beta-2-
microglobulin

ENSG00000160014.17 CALM3 protein
coding

3 calmodulin
3

ENSG00000162852.14 CNST protein
coding

3 consortin,
connexin
sorting
protein

ENSG00000115956.10 PLEK protein
coding

3 pleckstrin

ENSG00000196126.11 HLA-DRB1 protein
coding

3 major
histocom-
patibility
complex,
class II,
DR beta 1
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GeneID Gene Name Gene Type Occur. Description

ENSG00000117640.18 MTFR1L protein
coding

3 mitochondrial
fission reg-
ulator 1
like

ENSG00000149781.12 FERMT3 protein
coding

3 FERM
domain
containing
kindlin 3

ENSG00000115310.18 RTN4 protein
coding

3 reticulon 4

ENSG00000150867.14 PIP4K2A protein
coding

3 phosphatidylinositol-
5-
phosphate
4-kinase
type 2
alpha

ENSG00000285774.3 AL133444.1 lncRNA 2 NA
ENSG00000240225.10 ZNF542P transcribed

unpro-
cessed
pseudo-
gene

2 zinc finger
protein
542, pseu-
dogene

ENSG00000158769.18 F11R protein
coding

2 F11 recep-
tor

ENSG00000177272.9 KCNA3 protein
coding

2 potassium
voltage-
gated
channel
subfamily
A member
3

ENSG00000125354.23 SEPTIN6 protein
coding

2 septin 6
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GeneID Gene Name Gene Type Occur. Description

ENSG00000143514.17 TP53BP2 protein
coding

2 tumor pro-
tein p53
binding
protein 2

ENSG00000169221.14 TBC1D10B protein
coding

2 TBC1 do-
main fam-
ily member
10B

ENSG00000272888.7 LINC01578 lncRNA 2 NA
ENSG00000125037.12 EMC3 protein

coding
2 ER mem-

brane
protein
complex
subunit 3

ENSG00000133639.6 BTG1 protein
coding

2 BTG anti-
proliferation
factor 1

ENSG00000166337.10 TAF10 protein
coding

2 TATA-box
binding
protein
associated
factor 10

ENSG00000108061.12 SHOC2 protein
coding

2 SHOC2
leucine
rich repeat
scaffold
protein

ENSG00000108960.9 MMD protein
coding

2 monocyte
to
macrophage
differen-
tiation
associated
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GeneID Gene Name Gene Type Occur. Description

ENSG00000248334.6 WHAMMP2 transcribed
unpro-
cessed
pseudo-
gene

2 WHAMM
pseudo-
gene 2

ENSG00000105372.8 RPS19 protein
coding

2 ribosomal
protein
S19

ENSG00000103512.15 NOMO1 protein
coding

2 NODAL
modulator
1

ENSG00000101096.20 NFATC2 protein
coding

2 nuclear
factor of
activated
T cells 2

ENSG00000204323.5 SMIM5 protein
coding

2 small inte-
gral mem-
brane pro-
tein 5

ENSG00000250334.6 LINC00989 lncRNA 2 long inter-
genic non-
protein
coding
RNA 989

ENSG00000184602.6 SNN protein
coding

2 stannin

ENSG00000198886.2 MT-ND4 protein
coding

2 mitochondrially
encoded
NADH
dehydro-
genase
4

ENSG00000267265.5 AC011476.3 lncRNA 2 NA
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GeneID Gene Name Gene Type Occur. Description

ENSG00000100345.22 MYH9 protein
coding

2 myosin
heavy
chain 9

ENSG00000134548.11 SPX protein
coding

2 spexin hor-
mone

ENSG00000143409.15 MINDY1 protein
coding

2 MINDY
lysine 48
deubiq-
uitinase
1

ENSG00000086232.13 EIF2AK1 protein
coding

2 eukaryotic
translation
initiation
factor 2 al-
pha kinase
1

ENSG00000244041.7 LINC01011 lncRNA 2 long inter-
genic non-
protein
coding
RNA 1011

ENSG00000204623.9 ZNRD1ASP transcribed
unitary
pseudo-
gene

2 NA

ENSG00000205038.12 PKHD1L1 protein
coding

2 PKHD1
like 1

ENSG00000136754.17 ABI1 protein
coding

2 abl in-
teractor
1
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GeneID Gene Name Gene Type Occur. Description

ENSG00000180353.11 HCLS1 protein
coding

2 hematopoietic
cell-
specific
Lyn sub-
strate
1

ENSG00000164091.12 WDR82 protein
coding

2 WD repeat
domain 82

ENSG00000063046.18 EIF4B protein
coding

2 eukaryotic
translation
initiation
factor 4B

ENSG00000185245.8 GP1BA protein
coding

2 glycoprotein
Ib platelet
subunit
alpha

ENSG00000179632.10 MAF1 protein
coding

2 NA

ENSG00000023734.11 STRAP protein
coding

2 serine/threonine
kinase re-
ceptor
associated
protein

ENSG00000187699.10 C2orf88 protein
coding

2 NA

ENSG00000128791.12 TWSG1 protein
coding

2 twisted
gastrula-
tion BMP
signaling
modulator
1
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GeneID Gene Name Gene Type Occur. Description

ENSG00000117280.13 RAB29 protein
coding

2 RAB29,
mem-
ber RAS
oncogene
family

ENSG00000152558.15 TMEM123 protein
coding

2 transmembrane
protein 123

ENSG00000198081.11 ZBTB14 protein
coding

2 zinc finger
and BTB
domain
containing
14

ENSG00000133627.18 ACTR3B protein
coding

2 actin
related
protein 3B

ENSG00000160446.19 ZDHHC12 protein
coding

2 zinc finger
DHHC-
type
palmitoyl-
transferase
12

ENSG00000265491.5 RNF115 protein
coding

2 ring finger
protein 115

ENSG00000114978.18 MOB1A protein
coding

2 MOB
kinase
activator
1A

ENSG00000106772.18 PRUNE2 protein
coding

2 prune ho-
molog 2
with BCH
domain
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GeneID Gene Name Gene Type Occur. Description

ENSG00000167664.8 TMIGD2 protein
coding

2 transmembrane
and im-
munoglob-
ulin do-
main
containing
2

ENSG00000129657.16 SEC14L1 protein
coding

2 SEC14 like
lipid bind-
ing 1

ENSG00000173812.11 EIF1 protein
coding

2 eukaryotic
translation
initiation
factor 1

ENSG00000182149.21 IST1 protein
coding

2 IST1
factor
associ-
ated with
ESCRT-III

ENSG00000100934.15 SEC23A protein
coding

2 SEC23
homolog
A, COPII
coat com-
plex com-
ponent

ENSG00000102362.15 SYTL4 protein
coding

2 synaptotagmin
like 4

ENSG00000117523.16 PRRC2C protein
coding

2 proline
rich coiled-
coil 2C

ENSG00000136929.13 HEMGN protein
coding

2 hemogen
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GeneID Gene Name Gene Type Occur. Description

ENSG00000145495.16 MARCHF6 protein
coding

2 membrane
associated
ring-CH-
type finger
6

ENSG00000138376.11 BARD1 protein
coding

2 BRCA1
associated
RING
domain 1

ENSG00000124772.12 CPNE5 protein
coding

2 copine 5

ENSG00000064666.15 CNN2 protein
coding

2 calponin 2

ENSG00000182551.14 ADI1 protein
coding

2 acireductone
dioxyge-
nase 1

ENSG00000146859.6 TMEM140 protein
coding

2 transmembrane
protein 140

ENSG00000263465.4 SRSF8 protein
coding

2 serine and
arginine
rich splic-
ing factor
8

ENSG00000100225.18 FBXO7 protein
coding

2 F-box pro-
tein 7

ENSG00000210077.1 MT-TV Mt tRNA 2 mitochondrially
encoded
tRNA
valine

ENSG00000147394.18 ZNF185 protein
coding

2 zinc finger
protein 185
with LIM
domain
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GeneID Gene Name Gene Type Occur. Description

ENSG00000279516.2 FAM230C lncRNA 2 family
with se-
quence
similar-
ity 230
member C

ENSG00000122786.20 CALD1 protein
coding

2 caldesmon
1

ENSG00000257267.3 ZNF271P transcribed
unitary
pseudo-
gene

2 zinc finger
protein
271, pseu-
dogene

ENSG00000136003.16 ISCU protein
coding

2 iron-sulfur
cluster
assembly
enzyme

ENSG00000011275.19 RNF216 protein
coding

2 ring finger
protein 216

ENSG00000223482.8 NUTM2A-AS1 lncRNA 2 NUTM2A
antisense
RNA 1

ENSG00000184009.12 ACTG1 protein
coding

2 actin
gamma 1

ENSG00000141030.13 COPS3 protein
coding

2 COP9 sig-
nalosome
subunit 3

ENSG00000071051.14 NCK2 protein
coding

2 NCK
adaptor
protein 2

ENSG00000168300.14 PCMTD1 protein
coding

2 protein-L-
isoaspartate

ENSG00000177885.15 GRB2 protein
coding

2 growth fac-
tor recep-
tor bound
protein 2
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GeneID Gene Name Gene Type Occur. Description

ENSG00000080824.19 HSP90AA1 protein
coding

2 heat shock
protein 90
alpha fam-
ily class A
member 1

ENSG00000110367.13 DDX6 protein
coding

2 DEAD-
box he-
licase
6

ENSG00000115271.11 GCA protein
coding

2 grancalcin

ENSG00000223361.5 FTH1P10 transcribed
processed
pseudo-
gene

2 ferritin
heavy
chain 1
pseudo-
gene 10

ENSG00000142089.16 IFITM3 protein
coding

2 interferon
induced
trans-
membrane
protein 3

ENSG00000179833.4 SERTAD2 protein
coding

2 SERTA
domain
containing
2

ENSG00000048649.13 RSF1 protein
coding

2 remodeling
and spac-
ing factor
1
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A.2 Expanding the landscape of cancer transcrip-

tome by native RNA sequencing of NSCLC

tissue samples (Supplementary Materials)

A.2.1 TALON transcript classification categories.

In our study, we utilised the TALON software for transcript categorisation, which
incorporates the classification system originally developed by the SQANTI soft-
ware [353]. This approach allowed us to accurately categorise transcripts based
on their alignment with established transcript models (Figure 4). Transcripts per-
fectly matching known models at splice junctions are classified as ’known’, with a
degree of flexibility allowed at their 5’ and 3’ ends to account for minor variations.

When a transcript partially matches a known model, particularly if it has novel
potential start or end points, it falls under the category of an ’incomplete splice
match’ (ISM). TALON further refines this category into prefix ISMs, which align
with the beginning (5’ end) of an existing transcript model, and suffix ISMs, which
align with the end (3’ end). This nuanced classification of ISMs is vital, as it helps
in evaluating the integrity and completeness of the transcripts.

The ’novel in catalog’ (NIC) category includes transcripts that form new connec-
tions between known splice donors and acceptors. This novel rearrangement of
existing exons expands our understanding of the plasticity and diversity of gene
expression. In contrast, ’novel not in catalog’ (NNC) transcripts are characterised
by having at least one novel splice site, signifying the presence of new exon bound-
aries and potentially undiscovered aspects of gene structure.

We also take into account ’genomic’ transcripts, which typically represent either
incomplete overlap with known genes or DNA contamination.

Another intriguing category is ’antisense’ transcripts, which are defined by their
overlap with known genes but in the opposite orientation. This phenomenon pro-
vides a unique window into the complexities of genomic regulation and expression
patterns. Lastly, transcripts that do not align with any known gene structure are
classified as ’intergenic’. This category is particularly interesting as it may point
to novel gene discovery or unexplored genomic regions, offering opportunities for
new insights into genomic function and organisation.
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A.2.2 Supplementary Figures

Figure 4: Classification of Transcripts Based on TALON Analysis.
The schematic illustrates various categories of transcripts identified: Known iso-
forms (blue) represent exact matches to established transcript models; Incom-
plete splice match (ISM) transcripts (green) are partially matching sequences,
further divided into prefix (aligning at the start), suffix (aligning at the end), or
both; Novel in catalog (NIC) transcripts (yellow) connect known splice sites in
new configurations; Novel not in catalog (NNC) transcripts (red) contain at least
one novel splice junction; Genomic transcripts (light blue) are typically excluded
due to partial overlap or potential DNA contamination; Antisense transcripts

(grey patterned) are transcribed in the opposite direction to known genes.
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Figure 5: Transcript Type Composition Across Samples. The bar plot
summarises the transcript composition for non-transformed and cancer samples
based on the reference genome annotation and TALON analysis. It displays the
proportion of reads categorised as protein-coding, non-coding RNAs (ncRNAs),
long non-coding RNAs (lncRNAs), pseudogenes, novel transcripts, artifacts, and
those requiring confirmation. Each bar represents a different sample, allowing for
a comparative view of transcript types between non-transformed and cancerous
tissues. Please note that the statistics are derived from the filtered expression

matrix.
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Figure 6: Distribution of Transcript Categories Across Samples. The
circular bar chart depicts the proportion of known and novel transcript cate-
gories for each sample, including cancerous and non-transformed tissues. Each
segment represents a category such as known transcripts, ISM Prefix, ISM Suf-
fix, ISM Both, NIC, NNC, Antisense, and Intergenic, with the length of the bar
corresponding to the percentage composition of that category within the sam-
ple. The chart provides an overview of the transcriptomic landscape between

the different sample types.
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Figure 7: Heatmap of Gene Expression Variability in NSCLC. This
heatmap showcases the top 100 most variable genes across non-transformed and
cancerous lung tissue samples. Each row represents a gene, and each column
corresponds to a sample. The colour gradient from blue to red indicates the
expression level from low to high, standardised across samples. Hierarchical
clustering on both genes and samples illustrates the relative similarity of expres-
sion patterns, with the dendrogram on the top and left reflecting the clustering

results.
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Figure 8: Heatplot Visualisation. The heatplot presents a visual mapping
between genes and biological concepts through a heatmap representation. In
instances where the network of gene-concept connections is exceedingly intricate,
particularly when numerous significant terms are involved, the heatplot provides
a streamlined perspective. This streamlining aids in the clearer identification of

expression trends.
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Figure 9: Gene Ontology and Pathway Enrichment Analysis for DE
Novel Transcripts. (A) The top panel shows the enrichment analysis of up-
regulated novel transcripts, identifying significant biological processes, molecular
functions, and cellular components, with the degree of enrichment indicated by
the negative log10 p-value. (B) The bottom panel presents a similar enrichment
analysis for down-regulated novel transcripts, highlighting differentially involved
pathways and biological terms. The color coding corresponds to various cate-
gories of gene ontology and pathways, while the size of the dots represents the

magnitude of enrichment.
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Figure 10: Detailed visualisation of all captured isoforms of the AGER
gene. The figure provides a comprehensive genomic landscape of the AGER
gene, outlining both novel and known isoforms. On the left, novel isoforms are
cataloged with their respective names, detailing the type of isoform (NNC or
ISM Suffix), and an indication of CAGE support for their 5’ ends (Yes or No).
The central part of the figure graphically maps out the structure of these novel
isoforms, juxtaposed with the lower-positioned known isoforms of AGER. Grey
circles adjacent to four of these isoforms signify those that were quantified and
met the quality and filtering standards of the study, indicating their presence
at detectable levels. Conversely, grey squares next to other isoforms represent
those that, despite being identified, did not pass the filtering step due to insuf-
ficient read counts. The absence of markers alongside the rest of the isoforms
suggests that they were not detected in the analysis. The figure, taken from En-
sembl Genome Browser, is colour-coded to distinguish between different genomic
elements: protein-coding sequences, RNA genes, and processed transcripts are

each depicted with a distinct colour as explained in the gene legend.
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A.2.3 Supplementary Tables

Table 8: Significantly Differentially Expressed Genes in Non-Transformed vs.
Cancer samples.

GeneID GeneName Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENSG00000123243.15 ITIH5 74.58 97.88 64.23 1.74 3.13 1.89 -4.97695 1.08028477978111e-06 0.00162
ENSG00000179776.19 CDH5 247.48 244.7 354.21 26.03 22.98 20.82 -3.60007 1.29250183333233e-06 0.00162
ENSG00000266964.6 FXYD1 142.39 139.09 79.79 5.21 2.09 2.84 -5.15928 1.49914890928915e-06 0.00162
ENSG00000131477.11 RAMP2 267.83 342.58 288.04 10.41 20.89 22.71 -4.00628 1.52880812007726e-06 0.00162
ENSG00000144655.15 CSRNP1 125.44 149.4 140.13 12.15 10.45 13.25 -3.51295 1.57074249682202e-06 0.00162
ENSG00000168477.19 TNXB 264.43 200.91 340.59 8.68 3.13 11.36 -5.09092 1.71422773163568e-06 0.00162
ENSG00000176435.7 CLEC14A 240.7 242.12 241.33 19.09 15.67 27.45 -3.51891 1.79741899545996e-06 0.00162
ENSG00000136160.17 EDNRB 67.8 87.58 108.99 5.21 5.22 4.73 -4.08962 1.88451811915116e-06 0.00162
ENSG00000127920.6 GNG11 461.07 329.7 326.96 32.97 41.79 36.91 -3.30921 2.25181018919064e-06 0.00162
ENSG00000118526.7 TCF21 176.29 182.88 229.65 6.94 7.31 16.09 -4.20997 2.30568312910799e-06 0.00162
ENSG00000022267.19 FHL1 132.22 180.31 338.64 10.41 8.36 7.57 -4.63146 2.84920388336413e-06 0.00168
ENSG00000133401.16 PDZD2 50.85 56.67 58.39 1.74 1.04 2.84 -4.71715 2.8640536752753e-06 0.00168
ENSG00000114854.8 TNNC1 240.7 139.09 99.26 5.21 1.04 3.79 -5.5672 3.7373565382948e-06 0.00194
ENSG00000110799.14 VWF 864.5 752.13 794.06 78.09 43.88 86.13 -3.53223 4.53310933330303e-06 0.00194
ENSG00000165072.10 MAMDC2 67.8 105.61 62.28 3.47 1.04 3.79 -4.75788 4.56563531003521e-06 0.00194
ENSG00000162545.6 CAMK2N1 155.95 236.97 210.19 22.56 21.94 13.25 -3.39215 4.66078695474228e-06 0.00194
ENSG00000152583.13 SPARCL1 779.74 837.13 1078.2 74.61 87.76 114.52 -3.27687 4.71714123516946e-06 0.00194
ENSG00000131634.14 TMEM204 179.68 193.18 159.59 27.76 18.81 19.88 -3.00931 4.9626833328531e-06 0.00194
ENSG00000137309.20 HMGA1 13.56 33.49 31.14 275.9 279.99 303.81 3.4145 6.3003136886366e-06 0.00213
ENSG00000189129.14 PLAC9 294.95 105.61 181 8.68 8.36 12.3 -4.25648 6.61823375365173e-06 0.00213
ENSG00000108622.11 ICAM2 132.22 146.82 147.91 10.41 19.85 17.04 -3.12983 6.85508585211539e-06 0.00213
ENSG00000261371.6 PECAM1 789.91 703.19 895.26 126.67 95.07 101.27 -2.88717 6.97655577341883e-06 0.00213
ENSG00000172005.11 MAL 47.46 64.39 44.76 3.47 3.13 3.79 -3.83473 6.97830627073732e-06 0.00213
ENSG00000094963.14 FMO2 206.8 399.25 216.03 13.88 11.49 25.55 -3.97597 7.88986433493924e-06 0.00222
ENSG00000177469.13 CAVIN1 833.99 852.59 739.56 72.88 112.83 117.36 -2.99335 8.05047199656218e-06 0.00222
ENSG00000072163.20 LIMS2 125.44 136.52 99.26 15.62 9.4 6.63 -3.54648 8.62914478689307e-06 0.00222
ENSG00000102760.13 RGCC 840.77 989.1 1354.57 85.03 34.48 82.34 -3.98179 8.79358610900897e-06 0.00222
ENSG00000112782.19 CLIC5 44.07 38.64 44.76 3.47 2.09 2.84 -3.87139 9.14554206139505e-06 0.00222
ENSG00000186994.12 KANK3 61.02 110.76 81.74 5.21 4.18 8.52 -3.75772 9.31580758019253e-06 0.00222
ENSG00000154133.15 ROBO4 115.27 79.85 204.35 5.21 5.22 9.46 -4.25965 9.71666630485621e-06 0.00222
ENSG00000139567.13 ACVRL1 108.49 175.15 145.97 15.62 9.4 17.98 -3.31107 9.8902184570104e-06 0.00222
ENSG00000197253.13 TPSB2 237.31 190.61 159.59 24.29 30.3 32.18 -2.73594 1.02344005589891e-05 0.00222
ENSG00000160867.15 FGFR4 71.19 175.15 122.61 5.21 4.18 9.46 -4.22111 1.04232755343995e-05 0.00222
ENSG00000071967.12 CYBRD1 400.04 401.82 247.17 50.32 55.37 45.43 -2.78837 1.19486254835826e-05 0.00245
ENSG00000141934.10 PLPP2 10.17 12.88 7.78 203.02 100.29 119.25 3.76424 1.25058047961542e-05 0.00245
ENSG00000266524.3 GDF10 64.41 77.27 38.92 1.74 0 1.89 -5.45941 1.26900938884472e-05 0.00245
ENSG00000103241.7 FOXF1 67.8 87.58 48.66 6.94 3.13 4.73 -3.78609 1.28960470266239e-05 0.00245
ENSG00000167434.10 CA4 105.1 193.18 173.21 0 0 4.73 -6.25889 1.34947781376951e-05 0.0025
ENSG00000249751.4 ECSCR 125.44 66.97 136.24 12.15 8.36 10.41 -3.40601 1.41397829174042e-05 0.00251
ENSG00000126218.12 F10 33.9 41.21 25.3 1.74 1.04 0.95 -4.61162 1.44147470621778e-05 0.00251
ENSG00000174059.17 CD34 271.22 133.94 272.47 26.03 28.21 18.93 -3.20741 1.48496940342111e-05 0.00251
ENSG00000136732.16 GYPC 183.07 167.43 229.65 36.44 26.12 35.02 -2.57302 1.55361581309665e-05 0.00251
ENSG00000010319.7 SEMA3G 23.73 46.36 42.82 1.74 1.04 1.89 -4.46418 1.55450113355675e-05 0.00251
ENSG00000095370.20 SH2D3C 61.02 85 77.85 10.41 9.4 11.36 -2.82594 1.57111616943636e-05 0.00251
ENSG00000122679.8 RAMP3 139 123.64 108.99 6.94 8.36 17.98 -3.40385 1.60246676975908e-05 0.00251
ENSG00000136826.15 KLF4 67.8 110.76 118.72 13.88 11.49 9.46 -3.10671 1.6650820471791e-05 0.00255
ENSG00000149564.12 ESAM 271.22 180.31 326.96 31.23 26.12 43.54 -2.93601 1.75177802392567e-05 0.00262
ENSG00000119147.10 ECRG4 47.46 54.09 29.19 1.74 0 0 -6.18806 1.88902274884368e-05 0.00267
ENSG00000135111.16 TBX3 23.73 28.33 36.98 1.74 1.04 0.95 -4.47626 1.88941194869137e-05 0.00267
ENSG00000175899.15 A2M 4458.1 4427.79 4595.02 402.57 306.11 654.95 -3.30428 1.89809592809626e-05 0.00267
ENSG00000115306.16 SPTBN1 718.72 631.07 770.7 93.7 126.41 141.02 -2.54854 2.04831035840247e-05 0.00278
ENSG00000140092.15 FBLN5 139 133.94 247.17 17.35 11.49 23.66 -3.29565 2.05277634515236e-05 0.00278
ENSG00000161835.11 TAMALIN 61.02 110.76 60.33 5.21 6.27 9.46 -3.39234 2.24152990185216e-05 0.00291
ENSG00000169583.13 CLIC3 372.92 216.37 188.78 15.62 19.85 35.97 -3.40009 2.25039510696925e-05 0.00291
ENSG00000101331.17 CCM2L 54.24 33.49 38.92 0 2.09 1.89 -4.61066 2.27488691828954e-05 0.00291
ENSG00000090006.18 LTBP4 250.87 479.1 593.6 46.85 61.64 47.32 -3.08257 2.35323485149012e-05 0.00296
ENSG00000172236.18 TPSAB1 410.21 499.7 537.16 90.23 80.44 108.84 -2.36967 2.61926294991684e-05 0.00317
ENSG00000143416.21 SELENBP1 386.48 522.89 266.63 48.59 47.01 70.04 -2.81683 2.73563542195187e-05 0.00317
ENSG00000135052.16 GOLM1 3.39 2.58 5.84 279.37 80.44 108.84 5.16495 2.74355958138746e-05 0.00317
ENSG00000163751.4 CPA3 115.27 115.91 122.61 20.82 14.63 24.61 -2.54786 2.78605502664497e-05 0.00317
ENSG00000161281.11 COX7A1 159.34 123.64 110.93 24.29 12.54 10.41 -3.09261 2.78862552173955e-05 0.00317
ENSG00000161940.11 BCL6B 57.63 46.36 91.47 3.47 7.31 2.84 -3.77863 2.81061843192507e-05 0.00317
ENSG00000131097.7 HIGD1B 118.66 100.46 66.17 6.94 2.09 9.46 -3.89406 2.85953088050129e-05 0.00317
ENSG00000170323.9 FABP4 145.78 247.28 231.6 5.21 0 9.46 -5.34252 2.97169173000021e-05 0.00317
ENSG00000066056.14 TIE1 88.14 151.97 101.2 10.41 16.72 17.98 -2.87585 3.04063137692989e-05 0.00317
ENSG00000117399.14 CDC20 3.39 5.15 3.89 59 77.31 40.7 3.75706 3.05125216832121e-05 0.00317
ENSG00000239672.8 NME1 50.85 25.76 35.03 216.9 197.45 258.38 2.60452 3.06253768864218e-05 0.00317
ENSG00000168309.18 FAM107A 33.9 74.7 105.1 1.74 1.04 4.73 -4.67377 3.06384698267443e-05 0.00317
ENSG00000135218.19 CD36 91.54 190.61 138.18 20.82 21.94 19.88 -2.74093 3.27553730951531e-05 0.00329
ENSG00000099953.10 MMP11 3.39 2.58 1.95 57.26 53.28 32.18 4.12347 3.32423282276861e-05 0.00329
ENSG00000163815.6 CLEC3B 623.8 762.43 463.2 15.62 6.27 43.54 -4.78117 3.41035345594833e-05 0.00329
ENSG00000151718.16 WWC2 128.83 90.15 101.2 10.41 16.72 19.88 -2.71432 3.48470920458422e-05 0.00329
ENSG00000165197.5 VEGFD 98.32 77.27 73.96 0 0 4.73 -5.32387 3.49201450820416e-05 0.00329
ENSG00000131055.5 COX4I2 108.49 123.64 79.79 5.21 3.13 13.25 -3.75673 3.63158732123318e-05 0.00329
ENSG00000049283.19 EPN3 0 0 1.95 46.85 42.83 32.18 5.30727 3.63241367222502e-05 0.00329
ENSG00000179820.16 MYADM 342.41 198.34 375.62 45.12 29.25 53.95 -2.83154 3.65919997812524e-05 0.00329
ENSG00000131471.7 AOC3 145.78 177.73 219.92 1.74 6.27 17.98 -4.25126 3.67198431865422e-05 0.00329
ENSG00000120833.14 SOCS2 44.07 72.12 60.33 6.94 4.18 8.52 -3.13965 3.6750479848823e-05 0.00329
ENSG00000248290.1 TNXA 54.24 25.76 31.14 1.74 0 0.95 -5.21921 3.74627483389712e-05 0.00329
ENSG00000174640.15 SLCO2A1 155.95 128.79 157.64 17.35 7.31 23.66 -3.17819 3.75334490211692e-05 0.00329
ENSG00000137033.12 IL33 54.24 66.97 93.42 8.68 12.54 9.46 -2.78343 3.78438290770046e-05 0.00329
ENSG00000166292.12 TMEM100 50.85 144.24 36.98 1.74 1.04 2.84 -5.19148 3.88581449520897e-05 0.00333
ENSG00000120913.24 PDLIM2 254.26 154.55 210.19 38.18 41.79 46.38 -2.27981 4.26652068226739e-05 0.00351
ENSG00000077152.12 UBE2T 0 2.58 3.89 48.59 45.97 44.48 4.12366 4.29825282035331e-05 0.00351
ENSG00000184113.10 CLDN5 915.35 780.46 1693.21 27.76 44.92 107.9 -4.21054 4.33066499987319e-05 0.00351
ENSG00000250722.6 SELENOP 423.77 646.52 581.92 79.82 81.49 126.83 -2.51435 4.42457016190716e-05 0.00351
ENSG00000092964.18 DPYSL2 657.7 476.52 340.59 83.29 43.88 76.66 -2.85407 4.43529488233233e-05 0.00351
ENSG00000154721.15 JAM2 67.8 97.88 68.12 1.74 8.36 9.46 -3.43552 4.43944697494615e-05 0.00351
ENSG00000156076.10 WIF1 37.29 149.4 140.13 1.74 0 3.79 -5.71296 4.44643092918415e-05 0.00351
ENSG00000127528.6 KLF2 369.53 463.64 321.13 67.67 30.3 67.2 -2.8063 4.54764381884657e-05 0.00354
ENSG00000142748.14 FCN3 183.07 484.25 95.36 1.74 2.09 9.46 -5.66407 4.57271552202308e-05 0.00354
ENSG00000175084.13 DES 220.36 131.37 130.4 17.35 2.09 5.68 -4.36996 4.66826441981772e-05 0.00357
ENSG00000167772.12 ANGPTL4 3.39 33.49 17.52 227.32 247.6 310.44 3.79021 4.80486459851565e-05 0.00363
ENSG00000141338.15 ABCA8 33.9 66.97 46.71 0 0 2.84 -5.22297 5.16837657980799e-05 0.00387
ENSG00000114654.8 EFCC1 50.85 64.39 50.6 0 0 3.79 -5.02621 5.57736822164413e-05 0.00413
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GeneID GeneName Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENSG00000165124.19 SVEP1 88.14 61.82 79.79 8.68 14.63 15.14 -2.52153 5.9138933181863e-05 0.00433
ENSG00000068001.14 HYAL2 403.43 383.79 463.2 71.14 89.85 114.52 -2.17531 6.11278932105998e-05 0.00443
ENSG00000079308.20 TNS1 552.6 543.49 544.94 112.79 45.97 39.75 -3.0632 6.27310440772698e-05 0.0045
ENSG00000152137.8 HSPB8 67.8 92.73 64.23 17.35 10.45 10.41 -2.57928 6.3314830610254e-05 0.0045
ENSG00000167588.13 GPD1 27.12 43.79 81.74 3.47 0 0.95 -5.24205 6.67999796625049e-05 0.0047
ENSG00000118689.15 FOXO3 118.66 157.12 181 32.97 34.48 37.86 -2.11289 6.83210105485297e-05 0.00476
ENSG00000137648.19 TMPRSS4 3.39 7.73 0 140.55 62.68 102.22 4.8116 7.0874237400107e-05 0.00487
ENSG00000108691.10 CCL2 216.97 149.4 165.43 29.5 44.92 22.71 -2.43952 7.12857163214947e-05 0.00487
ENSG00000011201.12 ANOS1 47.46 48.94 66.17 5.21 1.04 6.63 -3.62526 7.25778220125299e-05 0.00491
ENSG00000077942.19 FBLN1 620.41 880.92 628.63 111.05 113.88 183.61 -2.37777 7.76185308646109e-05 0.0052
ENSG00000182010.11 RTKN2 64.41 56.67 48.66 8.68 1.04 1.89 -4.02583 8.07903300856279e-05 0.00536
ENSG00000134057.15 CCNB1 0 2.58 7.78 100.64 130.59 53 4.48221 8.2057084571839e-05 0.0054
ENSG00000043591.6 ADRB1 57.63 33.49 48.66 6.94 1.04 1.89 -3.94688 8.5511975733188e-05 0.00557
ENSG00000163513.19 TGFBR2 515.31 486.82 422.33 91.97 71.04 134.4 -2.25461 8.8332432427986e-05 0.0057
ENSG00000101057.16 MYBL2 6.78 7.73 5.84 81.56 169.25 51.11 3.86911 9.07366003740505e-05 0.00572
ENSG00000134531.10 EMP1 491.58 345.16 628.63 78.09 100.29 117.36 -2.30332 9.09173924876446e-05 0.00572
ENSG00000050555.19 LAMC3 44.07 28.33 93.42 5.21 2.09 3.79 -3.9281 9.10903894013967e-05 0.00572
ENSG00000148671.14 ADIRF 772.96 1133.35 274.42 27.76 59.55 15.14 -4.398 9.23366189188803e-05 0.00575
ENSG00000169418.10 NPR1 81.36 46.36 79.79 6.94 3.13 11.36 -3.21949 9.3727646719748e-05 0.00578
ENSG00000066405.13 CLDN18 596.67 718.65 517.69 8.68 0 23.66 -5.76105 9.52673556689995e-05 0.00578
ENSG00000103811.18 CTSH 2166.33 1313.65 1298.13 242.93 267.45 366.28 -2.44386 9.5364332864277e-05 0.00578
ENSG00000121068.14 TBX2 50.85 87.58 134.29 12.15 7.31 14.2 -3.02081 9.80522483879181e-05 0.00581
ENSG00000064205.11 CCN5 115.27 167.43 138.18 26.03 5.22 8.52 -3.49359 9.95351985501858e-05 0.00581
ENSG00000090530.10 P3H2 33.9 61.82 44.76 8.68 6.27 6.63 -2.70999 9.95622746167827e-05 0.00581
ENSG00000109846.9 CRYAB 98.32 100.46 93.42 27.76 14.63 17.04 -2.31875 9.96174672312315e-05 0.00581
ENSG00000164855.16 TMEM184A 0 2.58 1.95 26.03 38.66 31.23 4.12508 0.000101993692317128 0.00581
ENSG00000025423.11 HSD17B6 67.8 175.15 50.6 8.68 3.13 7.57 -3.91949 0.000102563617769164 0.00581
ENSG00000168743.13 NPNT 132.22 234.4 188.78 22.56 13.58 39.75 -2.85284 0.000103109463388304 0.00581
ENSG00000019102.12 VSIG2 115.27 118.49 52.55 6.94 1.04 9.46 -3.98487 0.000103701721320499 0.00581
ENSG00000149557.14 FEZ1 30.51 33.49 50.6 5.21 6.27 4.73 -2.80032 0.000104115288125862 0.00581
ENSG00000103710.11 RASL12 33.9 33.49 31.14 3.47 4.18 5.68 -2.78641 0.000106172789529789 0.00588
ENSG00000130052.14 STARD8 71.19 41.21 62.28 5.21 8.36 11.36 -2.72107 0.000107426684069823 0.0059
ENSG00000182481.10 KPNA2 44.07 18.03 40.87 189.14 165.07 182.67 2.37994 0.000113647355546468 0.00611
ENSG00000137726.17 FXYD6 44.07 72.12 108.99 13.88 11.49 9.46 -2.72136 0.00011467773765634 0.00611
ENSG00000211445.13 GPX3 684.82 1437.29 1337.05 81.56 61.64 192.13 -3.36012 0.000114781689049544 0.00611
ENSG00000149435.12 GGTLC1 189.85 115.91 44.76 3.47 0 5.68 -5.13956 0.000115203127151703 0.00611
ENSG00000158764.7 ITLN2 37.29 61.82 27.25 0 0 2.84 -4.97878 0.000115451699934627 0.00611
ENSG00000116690.13 PRG4 37.29 23.18 48.66 1.74 0 2.84 -4.41118 0.000116505929114497 0.00612
ENSG00000197766.9 CFD 447.51 775.31 749.29 90.23 21.94 76.66 -3.39218 0.000117921788601278 0.00615
ENSG00000172889.16 EGFL7 233.92 198.34 235.49 50.32 67.91 34.07 -2.12961 0.000121814891106156 0.0063
ENSG00000080546.14 SESN1 84.75 74.7 107.04 19.09 18.81 23.66 -2.10188 0.000124496560245546 0.00639
ENSG00000147526.20 TACC1 33.9 56.67 97.31 10.41 5.22 5.68 -3.20598 0.000127546426307059 0.0065
ENSG00000154175.18 ABI3BP 50.85 36.06 83.69 1.74 6.27 7.57 -3.32055 0.000129060079906087 0.00653
ENSG00000037280.16 FLT4 54.24 48.94 64.23 6.94 12.54 4.73 -2.75873 0.000129872122197986 0.00653
ENSG00000267107.9 PCAT19 111.88 38.64 83.69 6.94 1.04 7.57 -3.88581 0.00013411636241015 0.00669
ENSG00000154783.12 FGD5 67.8 72.12 60.33 6.94 8.36 17.04 -2.55448 0.000136264866476324 0.00673
ENSG00000187479.9 C11orf96 555.99 589.86 568.3 64.2 153.58 62.47 -2.60547 0.000136699019223205 0.00673
ENSG00000162407.9 PLPP3 183.07 170 235.49 60.73 29.25 37.86 -2.2202 0.000141137168645647 0.0069
ENSG00000136244.12 IL6 88.14 59.24 344.48 5.21 9.4 7.57 -4.41806 0.000145852613306988 0.00708
ENSG00000185112.6 FAM43A 30.51 30.91 42.82 5.21 6.27 5.68 -2.56746 0.000148470113181642 0.00715
ENSG00000170890.14 PLA2G1B 30.51 43.79 27.25 0 0 2.84 -4.67062 0.000150345487617745 0.00715
ENSG00000143867.7 OSR1 40.68 38.64 35.03 6.94 2.09 5.68 -2.95996 0.000151185993528652 0.00715
ENSG00000169252.6 ADRB2 54.24 51.52 36.98 0 1.04 5.68 -4.07454 0.000151487872347923 0.00715
ENSG00000164736.6 SOX17 37.29 46.36 38.92 0 5.22 0.95 -4.05257 0.000155275032557775 0.00723
ENSG00000188783.6 PRELP 281.39 378.64 295.83 72.88 40.74 18.93 -2.87542 0.000156812930065163 0.00726
ENSG00000127329.16 PTPRB 64.41 56.67 101.2 5.21 14.63 13.25 -2.67997 0.000160165810705687 0.0073
ENSG00000258947.8 TUBB3 0 0 1.95 38.18 91.94 312.33 7.18715 0.000160921729214482 0.0073
ENSG00000114698.15 PLSCR4 30.51 33.49 52.55 3.47 7.31 2.84 -3.0455 0.00016367813623899 0.00738
ENSG00000101955.15 SRPX 33.9 28.33 52.55 5.21 3.13 6.63 -2.90897 0.000165247127650637 0.0074
ENSG00000113389.16 NPR3 44.07 51.52 97.31 1.74 9.4 7.57 -3.25242 0.000167027156674871 0.00744
ENSG00000071539.14 TRIP13 3.39 0 0 27.76 30.3 29.34 4.81269 0.000169149654573882 0.00748
ENSG00000157456.8 CCNB2 0 2.58 1.95 34.7 100.29 34.07 4.94057 0.000172594168701237 0.00759
ENSG00000120156.22 TEK 44.07 90.15 33.09 3.47 2.09 7.57 -3.55385 0.000179938111775761 0.00781
ENSG00000116016.14 EPAS1 223.75 427.58 576.08 95.44 67.91 62.47 -2.45067 0.000183388567842987 0.00784
ENSG00000155066.16 PROM2 3.39 5.15 1.95 24.29 55.37 41.64 3.52992 0.000183553168338735 0.00784
ENSG00000076604.16 TRAF4 13.56 18.03 29.19 126.67 81.49 114.52 2.34681 0.000185498588224899 0.00784
ENSG00000104951.16 IL4I1 3.39 5.15 1.95 34.7 49.1 26.5 3.37404 0.000186917900859362 0.00784
ENSG00000125798.15 FOXA2 74.58 56.67 29.19 1.74 2.09 7.57 -3.60437 0.000187149960752946 0.00784
ENSG00000173269.14 MMRN2 57.63 51.52 87.58 17.35 7.31 8.52 -2.63213 0.000187325960561824 0.00784
ENSG00000117394.24 SLC2A1 33.9 12.88 11.68 199.55 344.76 98.43 3.52123 0.000189420390023744 0.00789
ENSG00000107317.13 PTGDS 1271.32 589.86 737.62 83.29 77.31 190.24 -2.88021 0.000191909108208154 0.0079
ENSG00000154065.17 ANKRD29 40.68 25.76 38.92 6.94 4.18 5.68 -2.6385 0.000191954011404678 0.0079
ENSG00000121691.7 CAT 210.19 329.7 233.55 50.32 28.21 70.98 -2.36533 0.000193448287127396 0.00791
ENSG00000104413.18 ESRP1 33.9 33.49 19.46 124.94 128.5 105.06 2.06269 0.000195172866176738 0.00794
ENSG00000163072.16 NOSTRIN 57.63 64.39 31.14 6.94 4.18 9.46 -2.83156 0.00019848651280312 0.00798
ENSG00000130558.20 OLFM1 44.07 33.49 33.09 5.21 3.13 7.57 -2.72225 0.000202170963963547 0.00807
ENSG00000157778.9 PSMG3 20.34 12.88 11.68 57.26 71.04 79.5 2.2459 0.000204116679539269 0.00807
ENSG00000244734.4 HBB 13682.82 816.53 1605.63 32.97 11.49 54.89 -7.32763 0.000206768667328785 0.00813
ENSG00000143554.14 SLC27A3 111.88 131.37 108.99 24.29 20.89 38.8 -2.04843 0.000211291515360515 0.00824
ENSG00000046604.14 DSG2 40.68 20.61 25.3 97.17 165.07 220.52 2.50533 0.000211894284785966 0.00824
ENSG00000073712.15 FERMT2 98.32 118.49 151.81 39.91 25.07 27.45 -2.01418 0.000213871195166677 0.00827
ENSG00000166482.12 MFAP4 166.12 352.88 502.12 19.09 8.36 47.32 -3.74425 0.00022401297147271 0.00861
ENSG00000133392.18 MYH11 244.09 206.06 179.05 48.59 14.63 10.41 -3.15699 0.000226239553750525 0.00861
ENSG00000197471.12 SPN 57.63 64.39 48.66 3.47 10.45 12.3 -2.59119 0.000226542584703851 0.00861
ENSG00000122861.16 PLAU 13.56 12.88 27.25 83.29 122.23 243.24 3.00814 0.000228642908975983 0.00865
ENSG00000183010.17 PYCR1 13.56 10.3 15.57 190.88 52.24 262.17 3.64705 0.000231327742209573 0.00868
ENSG00000108342.13 CSF3 179.68 33.49 56.44 0 4.18 0 -5.66668 0.000232042184195197 0.00868
ENSG00000118785.15 SPP1 16.95 0 5.84 1369.1 134.77 349.24 6.43199 0.000241423760531279 0.00899
ENSG00000029993.15 HMGB3 13.56 18.03 7.78 1034.2 154.62 161.84 5.10549 0.000247050026954261 0.00915
ENSG00000166961.15 MS4A15 186.46 213.79 33.09 6.94 0 4.73 -5.24546 0.000249665973034632 0.0092
ENSG00000108387.16 SEPTIN4 50.85 77.27 40.87 13.88 5.22 4.73 -2.90112 0.000263437136860759 0.00965
ENSG00000138639.18 ARHGAP24 33.9 23.18 29.19 3.47 3.13 5.68 -2.70923 0.00026693430880165 0.00973
ENSG00000183807.8 FAM162B 37.29 43.79 35.03 0 1.04 5.68 -3.79006 0.000271226246359246 0.00984
ENSG00000118762.8 PKD2 54.24 59.24 83.69 13.88 19.85 12.3 -2.09289 0.000273807540340544 0.00985
ENSG00000147257.16 GPC3 115.27 188.03 309.45 13.88 0 13.25 -4.5304 0.000274525974942989 0.00985
ENSG00000257524.6 ENSG00000257524 44.07 54.09 38.92 6.94 10.45 11.36 -2.19007 0.000276050645124891 0.00986
ENSG00000170989.10 S1PR1 33.9 59.24 118.72 0 4.18 7.57 -3.97168 0.000281846137349814 0.01001
ENSG00000165810.17 BTNL9 23.73 56.67 23.35 0 0 2.84 -4.70622 0.000284362102060221 0.01005
ENSG00000188536.13 HBA2 17601.88 945.32 1985.14 41.65 11.49 71.93 -7.34844 0.00028884593898723 0.01013
TALONG000071542 TALONG000071542 122.05 110.76 60.33 12.15 16.72 25.55 -2.37157 0.000297615742686412 0.01031
ENSG00000137573.14 SULF1 20.34 2.58 27.25 218.64 217.3 104.11 3.38107 0.00029910989916304 0.01031
ENSG00000185585.20 OLFML2A 37.29 36.06 42.82 6.94 9.4 9.46 -2.12542 0.000305586978690104 0.01049
ENSG00000205364.4 MT1M 61.02 391.52 112.88 13.88 14.63 5.68 -4.06196 0.000307271995797996 0.01049
ENSG00000204305.16 AGER 2607.06 1967.9 1481.07 26.03 0 58.68 -6.13845 0.000320425123825514 0.01079
ENSG00000173457.11 PPP1R14B 128.83 64.39 124.56 404.31 638.33 376.69 2.15876 0.000330228234083815 0.01101
ENSG00000204381.12 LAYN 40.68 23.18 38.92 3.47 6.27 6.63 -2.54815 0.000330326514061193 0.01101
ENSG00000206172.8 HBA1 7621.15 430.16 1335.11 20.82 4.18 46.38 -7.01272 0.000336068852220042 0.01115
ENSG00000073910.23 FRY 64.41 61.82 77.85 17.35 5.22 15.14 -2.46024 0.000339805932959901 0.01122
ENSG00000124191.18 TOX2 27.12 48.94 27.25 1.74 6.27 4.73 -2.87394 0.000342336602264844 0.01125
ENSG00000184730.12 APOBR 44.07 46.36 42.82 8.68 7.31 13.25 -2.14366 0.000352381054083338 0.0114
ENSG00000134917.10 ADAMTS8 33.9 36.06 42.82 0 0 4.73 -4.20082 0.000355632764053822 0.0114
ENSG00000171848.16 RRM2 10.17 2.58 13.62 60.73 145.22 60.57 3.27768 0.000356075217436727 0.0114
ENSG00000130522.6 JUND 1200.13 901.53 996.46 301.93 160.89 308.54 -2.00564 0.000358190776137568 0.0114
ENSG00000198873.12 GRK5 91.54 46.36 116.77 20.82 6.27 9.46 -2.86947 0.000361552140263733 0.01146
ENSG00000198901.14 PRC1 3.39 2.58 3.89 36.44 86.71 25.55 3.82566 0.000363472602200145 0.01147
ENSG00000196616.14 ADH1B 444.12 728.95 725.94 10.41 0 36.91 -5.26898 0.000365473132836772 0.01148
ENSG00000171049.9 FPR2 23.73 46.36 60.33 10.41 4.18 3.79 -2.93872 0.00036862077835305 0.01153
ENSG00000114115.10 RBP1 57.63 56.67 36.98 13.88 11.49 9.46 -2.1093 0.000372880033345926 0.01161
ENSG00000187513.9 GJA4 132.22 85 46.71 6.94 18.81 12.3 -2.70689 0.000380177493429014 0.01178
ENSG00000184363.10 PKP3 33.9 33.49 25.3 102.38 258.05 119.25 2.38237 0.000387752844967012 0.01191



Appendix 230

GeneID GeneName Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENSG00000175063.17 UBE2C 3.39 0 19.46 109.32 146.26 106.95 3.77647 0.000391780516549564 0.01198
ENSG00000088325.16 TPX2 6.78 0 5.84 39.91 51.19 38.8 3.31992 0.000393585689395967 0.01199
ENSG00000168734.14 PKIG 216.97 164.85 184.89 65.94 44.92 25.55 -2.0697 0.000396675391374251 0.01199
ENSG00000171132.14 PRKCE 33.9 36.06 58.39 10.41 4.18 8.52 -2.51149 0.000398916389211107 0.01199
ENSG00000123358.20 NR4A1 467.85 244.7 412.6 111.05 86.71 48.27 -2.19883 0.000402144449303727 0.01199
ENSG00000160013.9 PTGIR 33.9 41.21 50.6 8.68 9.4 2.84 -2.62135 0.000428293710489134 0.01249
ENSG00000012822.16 CALCOCO1 47.46 82.43 83.69 22.56 12.54 17.04 -2.06437 0.000430428131650812 0.01249
ENSG00000114378.17 HYAL1 44.07 41.21 40.87 3.47 10.45 9.46 -2.32564 0.000433916831064276 0.01249
ENSG00000214274.10 ANG 30.51 46.36 21.41 5.21 6.27 3.79 -2.63808 0.000434708986935007 0.01249
ENSG00000167641.11 PPP1R14A 328.85 249.85 219.92 48.59 6.27 35.97 -3.1574 0.000435023137610683 0.01249
ENSG00000060718.22 COL11A1 0 0 0 83.29 118.05 22.71 8.55587 0.000437401998847496 0.01251
ENSG00000108846.16 ABCC3 23.73 7.73 31.14 85.03 133.73 180.77 2.64793 0.000443937800542024 0.01259
ENSG00000204301.6 NOTCH4 30.51 25.76 77.85 8.68 4.18 3.79 -3.10371 0.000454665678995647 0.01285
ENSG00000106511.6 MEOX2 33.9 28.33 25.3 3.47 1.04 5.68 -2.99365 0.000457367275385792 0.01287
ENSG00000142973.15 CYP4B1 257.65 370.91 527.43 5.21 2.09 41.64 -4.47763 0.000462761381640299 0.01297
ENSG00000096696.15 DSP 3.39 2.58 3.89 27.76 21.94 56.79 3.35566 0.000466947357697231 0.01304
ENSG00000105894.13 PTN 47.46 23.18 48.66 8.68 2.09 5.68 -2.9021 0.000476503789268776 0.0132
ENSG00000204839.9 MROH6 6.78 5.15 7.78 52.06 27.16 39.75 2.52485 0.000478518704147849 0.0132
ENSG00000169679.15 BUB1 6.78 2.58 3.89 26.03 34.48 25.55 2.71653 0.000489500430788811 0.01345
ENSG00000145247.12 OCIAD2 50.85 59.24 33.09 138.82 182.83 336.94 2.21459 0.000501095891115319 0.01369
ENSG00000152661.9 GJA1 271.22 154.55 107.04 39.91 42.83 46.38 -2.02423 0.000503593517830506 0.01369
ENSG00000154330.13 PGM5 81.36 23.18 54.49 10.41 2.09 2.84 -3.48475 0.000504118365472816 0.01369
ENSG00000185033.15 SEMA4B 27.12 23.18 21.41 71.14 188.05 96.54 2.32166 0.000512647931332454 0.01387
ENSG00000176788.9 BASP1 23.73 25.76 52.55 282.84 118.05 155.22 2.39514 0.00052343890308744 0.01411
ENSG00000135063.20 FAM189A2 111.88 59.24 52.55 15.62 2.09 9.46 -3.08144 0.000539063410524525 0.01447
ENSG00000165507.9 DEPP1 464.46 486.82 794.06 119.73 121.19 32.18 -2.68286 0.000545420183420848 0.01459
ENSG00000134020.8 PEBP4 352.58 406.98 62.28 1.74 1.04 19.88 -5.0133 0.000549910344216643 0.01465
ENSG00000196754.13 S100A2 6.78 18.03 5.84 46.85 846.23 2651.02 6.83577 0.000552207169711753 0.01466
ENSG00000113368.12 LMNB1 6.78 0 7.78 65.94 65.82 33.13 3.40806 0.000561568466139153 0.01485
ENSG00000184347.15 SLIT3 67.8 43.79 46.71 8.68 3.13 13.25 -2.60591 0.00056815178468187 0.01492
ENSG00000128050.9 PAICS 23.73 20.61 36.98 97.17 153.58 85.18 2.01508 0.000574445998868173 0.01498
ENSG00000110492.17 MDK 111.88 69.55 89.53 229.05 402.22 697.54 2.29916 0.000574905932381426 0.01498
ENSG00000046653.15 GPM6B 23.73 25.76 25.3 6.94 3.13 2.84 -2.59396 0.000580916590044097 0.01508
ENSG00000123500.10 COL10A1 6.78 0 0 93.7 47.01 27.45 4.84693 0.000601733252457035 0.01545
ENSG00000203883.7 SOX18 179.68 123.64 36.98 17.35 15.67 15.14 -2.78927 0.000610119595211234 0.01548
ENSG00000183048.12 SLC25A10 13.56 10.3 0 98.91 65.82 72.88 3.44941 0.000611718651327639 0.01548
ENSG00000168497.5 CAVIN2 494.97 461.07 648.09 12.15 108.65 34.07 -3.34658 0.000611879241400732 0.01548
ENSG00000145113.22 MUC4 6.78 7.73 1.95 38.18 125.37 38.8 3.68203 0.00061544798665669 0.01552
ENSG00000105974.13 CAV1 416.99 613.04 805.73 10.41 107.61 43.54 -3.48084 0.000622280734038799 0.0156
ENSG00000276409.5 CCL14 189.85 126.21 169.32 12.15 5.22 38.8 -3.05489 0.000633830107806667 0.01581
ENSG00000064989.13 CALCRL 23.73 74.7 35.03 8.68 5.22 7.57 -2.64165 0.000642802324644593 0.01589
ENSG00000106541.12 AGR2 128.83 131.37 52.55 1018.58 573.56 329.37 2.62647 0.000644112466369289 0.01589
ENSG00000156804.7 FBXO32 13.56 7.73 11.68 71.14 40.74 162.79 3.05692 0.00064467201000542 0.01589
ENSG00000213853.10 EMP2 84.75 72.12 73.96 24.29 5.22 14.2 -2.44864 0.000647442853575944 0.01589
ENSG00000099994.11 SUSD2 793.3 759.86 286.09 6.94 7.31 69.09 -4.40318 0.000652987261649602 0.0159
ENSG00000121075.11 TBX4 44.07 61.82 40.87 5.21 0 7.57 -3.46797 0.00066024180918025 0.01602
ENSG00000100311.17 PDGFB 44.07 28.33 48.66 6.94 11.49 9.46 -2.0686 0.000671591805965627 0.01623
ENSG00000109501.15 WFS1 206.8 177.73 163.48 45.12 16.72 57.73 -2.19067 0.000682350961240701 0.01632
ENSG00000162772.17 ATF3 115.27 95.3 38.92 15.62 14.63 19.88 -2.26978 0.000682836902058147 0.01632
ENSG00000263155.6 MYZAP 30.51 61.82 23.35 0 3.13 5.68 -3.44154 0.000684407378011321 0.01632
ENSG00000154734.16 ADAMTS1 33.9 77.27 237.44 10.41 10.45 14.2 -3.30796 0.000693533406741153 0.01645
ENSG00000156298.13 TSPAN7 162.73 133.94 114.83 12.15 45.97 17.04 -2.40876 0.000694622508818291 0.01645
ENSG00000007402.12 CACNA2D2 50.85 54.09 42.82 0 0 7.57 -3.96319 0.000726488125734637 0.01709
ENSG00000124785.9 NRN1 37.29 36.06 23.35 3.47 0 4.73 -3.46116 0.000731913867701464 0.01716
ENSG00000165495.16 PKNOX2 27.12 23.18 23.35 0 4.18 2.84 -3.11713 0.000737995899090012 0.01719
ENSG00000129235.11 TXNDC17 84.75 54.09 58.39 180.46 234.02 527.18 2.26654 0.000748758956440722 0.0173
ENSG00000076382.17 SPAG5 0 2.58 7.78 59 32.39 33.13 3.27139 0.000750862055554059 0.0173
ENSG00000104267.10 CA2 44.07 59.24 130.4 13.88 15.67 18.93 -2.26887 0.000754885484611115 0.0173
ENSG00000105339.11 DENND3 30.51 56.67 81.74 8.68 12.54 15.14 -2.19501 0.000780157984045838 0.01774
ENSG00000159713.11 TPPP3 105.1 231.82 206.3 46.85 10.45 8.52 -3.13585 0.000781248713692611 0.01774
ENSG00000131153.9 GINS2 6.78 2.58 1.95 22.56 22.98 43.54 3.07489 0.00078281816863825 0.01774
ENSG00000074527.13 NTN4 40.68 79.85 36.98 8.68 11.49 14.2 -2.14503 0.000818970054046801 0.01832
ENSG00000050165.19 DKK3 98.32 128.79 239.38 52.06 33.43 27.45 -2.0741 0.000819349422322209 0.01832
ENSG00000004776.13 HSPB6 30.51 46.36 81.74 6.94 0 6.63 -3.59269 0.000821223313510041 0.01832
ENSG00000206384.11 COL6A6 54.24 30.91 62.28 0 2.09 9.46 -3.42884 0.000823083727265075 0.01832
ENSG00000253159.3 PCDHGA12 189.85 162.27 130.4 19.09 58.5 39.75 -2.00557 0.000829258563240205 0.0184
ENSG00000145506.14 NKD2 33.9 41.21 64.23 5.21 5.22 14.2 -2.4366 0.000831732357561767 0.0184
ENSG00000213088.12 ACKR1 250.87 90.15 108.99 24.29 8.36 33.13 -2.75009 0.000845136961748023 0.01858
ENSG00000101460.13 MAP1LC3A 88.14 118.49 70.06 24.29 26.12 8.52 -2.24227 0.000849532494892884 0.01859
ENSG00000035664.11 DAPK2 37.29 38.64 19.46 0 4.18 4.73 -3.1386 0.000861195714942911 0.01875
ENSG00000289027.1 ENSG00000289027 23.73 25.76 21.41 6.94 2.09 2.84 -2.64799 0.000864922699892406 0.01875
ENSG00000260244.1 ENSG00000260244 54.24 41.21 29.19 6.94 5.22 12.3 -2.26263 0.000868800879045447 0.01875
ENSG00000110328.6 GALNT18 101.71 59.24 147.91 29.5 7.31 17.04 -2.57064 0.000887969143869395 0.0191
ENSG00000120279.7 MYCT1 37.29 41.21 33.09 0 6.27 6.63 -2.89517 0.000917934084811662 0.01957
ENSG00000143344.16 RGL1 101.71 54.09 66.17 8.68 15.67 24.61 -2.10386 0.000931862201121816 0.01979
ENSG00000135363.12 LMO2 94.93 30.91 56.44 12.15 12.54 14.2 -2.18087 0.00093417584090438 0.01979
ENSG00000181019.13 NQO1 91.54 23.18 33.09 489.33 412.67 152.38 2.8687 0.000943264166638715 0.01992
ENSG00000069535.14 MAOB 23.73 59.24 46.71 1.74 9.4 8.52 -2.60709 0.000959887067043369 0.02008
ENSG00000196154.12 S100A4 1400.15 1839.12 998.41 510.16 196.41 265.95 -2.12543 0.00096528432778087 0.02009
ENSG00000164078.14 MST1R 6.78 2.58 3.89 20.82 32.39 23.66 2.56214 0.000975281332026521 0.02024
ENSG00000115380.20 EFEMP1 291.56 218.94 435.95 83.29 36.57 102.22 -2.09309 0.00100070284726992 0.02064
ENSG00000182253.15 SYNM 44.07 41.21 58.39 5.21 13.58 1.89 -2.7604 0.00101754829942945 0.02078
ENSG00000243244.7 STON1 44.07 25.76 19.46 3.47 6.27 5.68 -2.3929 0.00101913418812375 0.02078
ENSG00000078596.11 ITM2A 88.14 69.55 134.29 3.47 27.16 8.52 -2.82718 0.00103887037027112 0.02101
ENSG00000235750.10 KIAA0040 64.41 97.88 95.36 8.68 22.98 28.39 -2.05191 0.00104105973196684 0.02101
ENSG00000140284.11 SLC27A2 0 5.15 0 24.29 27.16 23.66 3.74892 0.00104237405521901 0.02101
ENSG00000138821.14 SLC39A8 264.43 404.4 258.85 17.35 25.07 92.75 -2.74353 0.00106499803496221 0.02124
ENSG00000111341.10 MGP 1084.86 1099.86 2177.82 338.37 58.5 194.02 -2.88954 0.0010883210468734 0.02143
ENSG00000183607.10 GKN2 101.71 36.06 85.63 0 0 10.41 -4.13711 0.0010895457626645 0.02143
ENSG00000087586.18 AURKA 6.78 0 3.89 27.76 39.7 24.61 3.12124 0.00109227395388514 0.02143
ENSG00000066629.19 EML1 27.12 38.64 19.46 5.21 7.31 4.73 -2.24245 0.00109295979676561 0.02143
ENSG00000173272.16 MZT2A 27.12 41.21 9.73 100.64 125.37 117.36 2.16809 0.00110951974551478 0.02158
ENSG00000166803.14 PCLAF 0 0 5.84 34.7 161.93 33.13 4.87819 0.00111235084983528 0.02158
ENSG00000078081.8 LAMP3 81.36 203.49 188.78 26.03 8.36 41.64 -2.63438 0.00113992810328075 0.02189
ENSG00000181218.6 H2AW 3.39 10.3 1.95 52.06 29.25 30.29 2.80299 0.00114057435876308 0.02189
ENSG00000130635.16 COL5A1 20.34 18.03 52.55 98.91 155.66 141.97 2.07157 0.00114135847360892 0.02189
TALONG000068453 TALONG000068453 572.94 734.1 260.79 147.49 57.46 35.97 -2.71715 0.00115023506432737 0.02193
ENSG00000165795.25 NDRG2 64.41 92.73 103.15 3.47 8.36 26.5 -2.66843 0.00116194254300239 0.02209
ENSG00000235173.7 HGH1 16.95 15.45 7.78 76.35 60.59 36.91 2.13887 0.00116765116349202 0.02214
ENSG00000108106.14 UBE2S 20.34 15.45 40.87 237.73 343.72 59.63 3.00949 0.0012321210345851 0.02323
ENSG00000117114.21 ADGRL2 33.9 48.94 177.11 1.74 6.27 14.2 -3.44093 0.00124390375588102 0.02333
ENSG00000135929.9 CYP27A1 220.36 162.27 200.46 39.91 20.89 76.66 -2.06889 0.00127598217565101 0.02363
ENSG00000197930.13 ERO1A 20.34 25.76 7.78 60.73 67.91 103.16 2.14931 0.00127651432077791 0.02363
ENSG00000163993.7 S100P 37.29 20.61 5.84 945.7 2005.88 44.48 5.62148 0.00129330145555842 0.02382
ENSG00000135604.11 STX11 50.85 36.06 58.39 1.74 14.63 7.57 -2.48596 0.00134046903641928 0.02448
ENSG00000160801.14 PTH1R 30.51 25.76 23.35 0 0 4.73 -3.67512 0.00134340065463856 0.02448
ENSG00000197415.12 VEPH1 37.29 41.21 38.92 1.74 0 8.52 -3.32364 0.00136484102914831 0.02469
ENSG00000259171.1 ENSG00000259171 47.46 115.91 29.19 3.47 9.4 13.25 -2.76485 0.0013653192938586 0.02469
ENSG00000197859.11 ADAMTSL2 27.12 51.52 68.12 10.41 1.04 9.46 -2.86568 0.00139858562031725 0.02502
ENSG00000100985.7 MMP9 3.39 25.76 7.78 140.55 53.28 78.56 2.82482 0.00140128320403583 0.02502
ENSG00000017483.16 SLC38A5 61.02 43.79 48.66 6.94 19.85 8.52 -2.05455 0.00140961998553677 0.02511
ENSG00000263934.5 SNORD3A 47.46 36.06 15.57 95.44 189.1 603.84 3.20751 0.00142383282378857 0.02529
ENSG00000141448.11 GATA6 30.51 46.36 66.17 5.21 1.04 12.3 -2.8881 0.00144276337849936 0.02544
ENSG00000117724.14 CENPF 3.39 0 7.78 36.44 71.04 24.61 3.37247 0.00145171979336358 0.02547
ENSG00000244731.10 C4A 101.71 157.12 56.44 22.56 29.25 8.52 -2.38335 0.00146221322608961 0.02553
ENSG00000111077.18 TNS2 155.95 151.97 132.34 59 13.58 29.34 -2.14324 0.00147452466634271 0.02562
ENSG00000004799.8 PDK4 57.63 162.27 293.88 34.7 4.18 16.09 -3.30535 0.00147849748467806 0.02562
ENSG00000166851.15 PLK1 6.78 0 7.78 55.53 117.01 24.61 3.67706 0.00151695452970783 0.02616
ENSG00000047457.14 CP 13.56 15.45 11.68 78.09 337.45 45.43 3.49907 0.00152456982194195 0.02622
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GeneID GeneName Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENSG00000108773.11 KAT2A 16.95 5.15 5.84 45.12 44.92 33.13 2.21991 0.00154563749830781 0.02652
ENSG00000142235.13 LMTK3 0 5.15 3.89 31.23 73.13 18.93 3.56836 0.00155420949079188 0.0266
ENSG00000137804.14 NUSAP1 3.39 0 11.68 62.47 82.53 28.39 3.30525 0.00158961689867837 0.02688
ENSG00000125740.14 FOSB 98.32 30.91 95.36 3.47 1.04 16.09 -3.31012 0.00159570442457345 0.02689
ENSG00000137834.15 SMAD6 30.51 64.39 62.28 13.88 3.13 13.25 -2.41357 0.00160001961184412 0.02689
ENSG00000089685.15 BIRC5 13.56 0 19.46 86.76 88.8 70.98 2.82966 0.00160176344752592 0.02689
ENSG00000159166.15 LAD1 10.17 23.18 13.62 29.5 188.05 171.31 3.0323 0.00161227977644899 0.02701
ENSG00000154146.13 NRGN 176.29 170 97.31 8.68 8.36 45.43 -2.75346 0.00163999281368624 0.02737
ENSG00000189409.14 MMP23B 88.14 30.91 85.63 10.41 6.27 20.82 -2.39759 0.00166150098900585 0.02757
ENSG00000183615.6 FAM167B 23.73 28.33 21.41 8.68 4.18 4.73 -2.09683 0.00169829423594756 0.02809
ENSG00000166979.13 EVA1C 74.58 51.52 62.28 5.21 24.03 8.52 -2.24104 0.00170096490350427 0.02809
ENSG00000113070.8 HBEGF 33.9 28.33 97.31 3.47 7.31 13.25 -2.65963 0.00173856285465668 0.02846
ENSG00000108823.17 SGCA 47.46 30.91 29.19 8.68 0 3.79 -3.21023 0.00173932879347856 0.02846
ENSG00000176945.18 MUC20 16.95 5.15 1.95 64.2 48.06 33.13 2.73737 0.00174388578176778 0.02846
ENSG00000176971.4 FIBIN 54.24 177.73 101.2 10.41 31.34 5.68 -2.78643 0.00178402638832581 0.02892
ENSG00000113555.6 PCDH12 50.85 25.76 44.76 15.62 5.22 6.63 -2.21032 0.00180020240202981 0.02905
ENSG00000277196.4 ENSG00000277196 47.46 141.67 105.1 15.62 4.18 26.5 -2.65546 0.00185863939862631 0.02972
ENSG00000182575.8 NXPH3 23.73 33.49 35.03 8.68 1.04 0 -3.54773 0.00195610581113156 0.03051
ENSG00000124664.11 SPDEF 6.78 7.73 1.95 29.5 19.85 44.48 2.57443 0.00200704375667513 0.03103
ENSG00000164741.15 DLC1 33.9 48.94 95.36 10.41 3.13 17.04 -2.5416 0.00202939325992695 0.03124
ENSG00000163687.14 DNASE1L3 50.85 41.21 62.28 3.47 1.04 15.14 -2.84961 0.00204366367646121 0.03132
ENSG00000079462.8 PAFAH1B3 13.56 25.76 11.68 183.93 59.55 54.89 2.52271 0.0021339403409577 0.03244
ENSG00000143324.14 XPR1 10.17 46.36 15.57 67.67 136.86 173.2 2.3754 0.00213960483965614 0.03244
ENSG00000090776.6 EFNB1 61.02 136.52 85.63 12.15 37.61 16.09 -2.07298 0.00215016655260699 0.03253
ENSG00000171885.18 AQP4 193.24 92.73 118.72 0 0 20.82 -4.07213 0.00216471850014662 0.03268
ENSG00000164611.13 PTTG1 23.73 7.73 9.73 102.38 135.82 30.29 2.76018 0.0021759320000989 0.03271
ENSG00000170276.6 HSPB2 27.12 30.91 23.35 6.94 1.04 6.63 -2.47534 0.00218300386156849 0.03271
ENSG00000103175.11 WFDC1 105.1 33.49 48.66 19.09 4.18 2.84 -2.96389 0.0022581919963024 0.03334
ENSG00000134201.12 GSTM5 23.73 56.67 35.03 10.41 1.04 0 -3.6423 0.00233201653130657 0.03397
ENSG00000181104.7 F2R 88.14 54.09 192.68 36.44 24.03 22.71 -2.03985 0.00233706328148451 0.03397
ENSG00000107742.14 SPOCK2 71.19 72.12 142.07 1.74 18.81 24.61 -2.57571 0.00239006219024359 0.03424
ENSG00000183019.8 MCEMP1 91.54 159.7 175.16 10.41 1.04 34.07 -3.17378 0.00239240502941133 0.03424
ENSG00000276850.5 ENSG00000276850 23.73 28.33 19.46 0 6.27 1.89 -2.89035 0.00239614957397097 0.03424
ENSG00000179639.11 FCER1A 61.02 23.18 29.19 1.74 2.09 10.41 -2.77707 0.0024350817073987 0.03461
ENSG00000053918.18 KCNQ1 47.46 85 50.6 8.68 7.31 24.61 -2.10947 0.00245827740801852 0.0348
ENSG00000137857.18 DUOX1 47.46 97.88 23.35 1.74 2.09 13.25 -3.12009 0.00247746072840289 0.03489
ENSG00000077348.10 EXOSC5 6.78 18.03 7.78 29.5 56.42 45.43 2.00137 0.00258369794065159 0.03599
ENSG00000105538.10 RASIP1 101.71 146.82 124.56 45.12 6.27 6.63 -2.79965 0.00261298349535683 0.03633
ENSG00000105388.17 CEACAM5 13.56 25.76 3.89 4114.23 106.56 87.07 6.66014 0.00270216331263857 0.03713
ENSG00000104783.15 KCNN4 13.56 0 11.68 24.29 128.5 95.59 3.30209 0.00282752471788112 0.03818
ENSG00000114346.14 ECT2 0 2.58 7.78 24.29 38.66 20.82 2.7312 0.00293354051208189 0.03923
ENSG00000094804.12 CDC6 0 7.73 3.89 24.29 30.3 20.82 2.54656 0.00308055014603133 0.04036
ENSG00000132182.13 NUP210 6.78 23.18 19.46 76.35 102.38 37.86 2.06224 0.00311633292166927 0.04052
ENSG00000109805.10 NCAPG 0 0 7.78 26.03 47.01 21.77 3.22083 0.00319913271564115 0.04145
ENSG00000076706.17 MCAM 172.9 59.24 325.02 53.79 22.98 37.86 -2.304 0.00323293193796431 0.04173
ENSG00000137807.16 KIF23 3.39 0 5.84 19.09 50.15 18.93 3.10085 0.00333147291646722 0.04259
ENSG00000166123.14 GPT2 0 0 7.78 248.14 19.85 44.48 4.90141 0.00333562949945208 0.04259
ENSG00000173848.19 NET1 6.78 28.33 25.3 50.32 82.53 188.34 2.35643 0.00337166877090381 0.04283
ENSG00000156802.13 ATAD2 6.78 10.3 13.62 55.53 84.62 21.77 2.31561 0.00341048431713184 0.04307
ENSG00000170312.17 CDK1 3.39 0 17.52 50.32 152.53 40.7 3.33485 0.00341951462878665 0.04311
ENSG00000106992.19 AK1 244.09 226.67 126.5 31.23 21.94 88.02 -2.05076 0.00349241770913444 0.04379
ENSG00000133216.17 EPHB2 3.39 2.58 13.62 53.79 20.89 53.95 2.52376 0.00350510697702527 0.04379
ENSG00000049540.19 ELN 91.54 64.39 247.17 12.15 6.27 39.75 -2.75667 0.00350864891696886 0.04379
ENSG00000161642.18 ZNF385A 3.39 10.3 19.46 57.26 63.73 32.18 2.06616 0.00360410051144547 0.04464
ENSG00000140525.20 FANCI 3.39 5.15 9.73 31.23 71.04 18.93 2.59921 0.00362235639330198 0.04471
ENSG00000105971.15 CAV2 193.24 149.4 311.39 13.88 85.67 41.64 -2.18521 0.00365757594469946 0.04497
ENSG00000007933.13 FMO3 44.07 38.64 38.92 19.09 3.13 5.68 -2.24409 0.00381473140376998 0.04607
ENSG00000288825.1 H2AC18 27.12 20.61 11.68 93.7 34.48 121.15 2.10831 0.00381650050823728 0.04607
ENSG00000122952.17 ZWINT 13.56 0 5.84 38.18 34.48 33.13 2.52065 0.00381800936202196 0.04607
ENSG00000106483.12 SFRP4 47.46 20.61 29.19 147.49 268.5 53 2.29004 0.00382448159190042 0.04607
ENSG00000133026.14 MYH10 27.12 64.39 159.59 24.29 16.72 11.36 -2.32566 0.00384784586007348 0.04619
ENSG00000164466.13 SFXN1 10.17 0 13.62 46.85 42.83 43.54 2.40801 0.00385540430686522 0.04621
ENSG00000186340.17 THBS2 0 12.88 31.14 102.38 148.35 62.47 2.67269 0.00392068952556599 0.04636
ENSG00000131747.15 TOP2A 0 0 25.3 93.7 79.4 89.91 3.10967 0.00410934496829532 0.04794
ENSG00000117791.16 MTARC2 50.85 41.21 42.82 0 10.45 12.3 -2.39542 0.00420930097443666 0.04839
ENSG00000078401.7 EDN1 81.36 48.94 157.64 8.68 4.18 32.18 -2.62276 0.0042468878313613 0.04866
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Table 9: Significantly Differentially Expressed Transcripts in Non-Transformed
vs. Cancer.

TranscriptID TranscriptName GeneName TranscriptNovelty ISM_subtype Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENST00000351325.9 FXYD1-201 FXYD1 Known None 84.97 77.15 74.21 2.49 1.41 1.34 -5.37101 3.04495097107231e-06 0.00712
TALONT000370816 TALONT000370816 SPARCL1 ISM Both 131.7 160.73 105.61 7.48 4.22 5.37 -4.52643 5.06165228408178e-06 0.00712
TALONT000381758 TALONT000381758 ADH1B ISM Suffix 50.98 83.58 85.63 0 0 1.34 -6.52699 8.48520813447456e-06 0.00712
TALONT000405760 TALONT000405760 AGER ISM Suffix 280.39 122.15 105.61 2.49 0 1.34 -6.93911 9.15639760163787e-06 0.00712
ENST00000451122.5 CAV1-206 CAV1 Known None 84.97 96.44 154.13 2.49 5.63 5.37 -4.49156 1.07794344782734e-05 0.00712
ENST00000469940.5 AGER-209 AGER Known None 169.93 96.44 59.94 0 0 1.34 -7.06846 1.08735081850175e-05 0.00712
ENST00000232975.8 TNNC1-201 TNNC1 Known None 131.7 70.72 85.63 4.99 1.41 1.34 -5.25543 1.20711037446709e-05 0.00712
TALONT000279133 TALONT000279133 PDZD2 ISM Both 50.98 41.79 59.94 2.49 1.41 1.34 -4.74943 1.67829122926905e-05 0.00712
TALONT000342337 TALONT000342337 A2M ISM Suffix 437.58 443.61 462.4 32.42 29.54 53.7 -3.52166 1.74048029012799e-05 0.00712
ENST00000300900.9 CA4-201 CA4 Known None 67.97 135.01 171.26 0 0 2.68 -6.5671 1.74145318223665e-05 0.00712
ENST00000248564.6 GNG11-201 GNG11 Known None 577.77 411.47 479.52 47.38 56.27 52.36 -3.2248 1.79365247700305e-05 0.00712
ENST00000375055.6 AGER-201 AGER Known None 169.93 109.3 174.11 0 0 4.03 -6.35894 1.80340639596825e-05 0.00712
ENST00000367882.5 TCF21-202 TCF21 Known None 152.94 186.45 276.87 7.48 8.44 17.45 -4.13931 2.04868617749536e-05 0.00712
TALONT000370868 TALONT000370868 SPARCL1 ISM Suffix 80.72 70.72 79.92 2.49 4.22 6.71 -3.94986 2.05600020893226e-05 0.00712
TALONT000457959 TALONT000457959 CDH5 ISM Both 186.93 202.52 254.03 22.44 18.29 10.74 -3.65285 2.16821660206966e-05 0.00712
ENST00000342213.3 CLEC14A-201 CLEC14A Known None 301.63 302.17 353.93 27.43 21.1 38.93 -3.43697 2.16858087263953e-05 0.00712
ENST00000297904.4 VEGFD-201 VEGFD Known None 67.97 67.51 88.48 0 0 2.68 -5.82054 2.21730473255458e-05 0.00712
TALONT000481277 TALONT000481277 CAVIN1 ISM Both 896.4 893.65 719.29 79.8 109.72 116.79 -3.02687 2.22714632650175e-05 0.00712
ENST00000372263.4 PLAC9-201 PLAC9 Known None 305.88 112.51 245.47 9.97 11.25 14.77 -4.15294 2.42855985715012e-05 0.00712
TALONT000284485 TALONT000284485 RGCC ISM Suffix 33.99 61.08 68.5 0 0 1.34 -6.10639 2.4334205463492e-05 0.00712
ENST00000253796.10 RAMP2-201 RAMP2 Known None 212.42 273.24 322.54 9.97 18.29 26.85 -3.82065 2.50772113941763e-05 0.00712
TALONT000405804 TALONT000405804 AGER ISM Suffix 135.95 61.08 77.07 0 0 0 -8.38128 2.70377536059523e-05 0.00712
ENST00000183605.10 CLDN18-201 CLDN18 Known None 144.44 244.31 305.41 2.49 0 6.71 -6.07306 2.85131367517406e-05 0.00712
TALONT000342272 TALONT000342272 A2M ISM Suffix 152.94 163.94 154.13 9.97 15.47 20.14 -3.31281 2.9077018648721e-05 0.00712
ENST00000376075.4 COX4I2-201 COX4I2 Known None 80.72 61.08 51.38 2.49 4.22 5.37 -3.83154 3.0163043479054e-05 0.00712
TALONT000272771 TALONT000272771 VWF ISM Suffix 46.73 54.65 59.94 2.49 1.41 4.03 -4.20034 3.02837358667093e-05 0.00712
ENST00000646607.2 EDNRB-207 EDNRB Known None 50.98 61.08 88.48 2.49 5.63 2.68 -4.0785 3.09966433769643e-05 0.00712
TALONT000284326 TALONT000284326 RGCC ISM Suffix 76.47 41.79 85.63 4.99 1.41 1.34 -4.77161 3.12689028845103e-05 0.00712
TALONT000370809 TALONT000370809 SPARCL1 ISM Suffix 195.42 231.45 339.66 19.95 25.32 30.88 -3.30655 3.63527170540417e-05 0.00799
TALONT000342325 TALONT000342325 A2M ISM Suffix 271.89 398.61 356.79 32.42 26.73 48.33 -3.24297 3.89635437786804e-05 0.00802
ENST00000273153.10 CSRNP1-201 CSRNP1 Known None 89.21 112.51 128.44 9.97 9.85 14.77 -3.21191 3.98530183470674e-05 0.00802
TALONT000344267 TALONT000344267 CAMK2N1 ISM Both 93.46 173.59 77.07 9.97 8.44 6.71 -3.76161 4.02378836237713e-05 0.00802
ENST00000484849.5 AGER-211 AGER Known None 63.72 64.29 48.52 0 0 2.68 -5.46779 4.18895063292003e-05 0.00809
ENST00000379359.4 RGCC-201 RGCC Known None 815.68 1022.23 1675.48 112.22 37.98 92.63 -3.85867 4.38266158314143e-05 0.00822
ENST00000360997.7 FAM107A-201 FAM107A Known None 42.48 61.08 122.74 2.49 1.41 4.03 -4.69889 4.56422085677688e-05 0.00823
ENST00000372013.8 ADIRF-201 ADIRF Known None 926.13 1356.55 382.48 37.41 54.86 17.45 -4.59392 4.6453647513377e-05 0.00823
TALONT000405770 TALONT000405770 AGER NNC None 89.21 86.79 57.09 2.49 0 4.03 -4.99902 4.86847564625576e-05 0.00839
ENST00000238044.8 ECRG4-201 ECRG4 Known None 46.73 64.29 39.96 2.49 0 0 -5.92993 5.11866741769586e-05 0.00859
ENST00000373960.4 DES-201 DES Known None 97.71 77.15 108.46 9.97 1.41 4.03 -4.29428 5.35695614426265e-05 0.00868
ENST00000296130.5 CLEC3B-201 CLEC3B Known None 556.53 684.7 562.3 19.95 8.44 49.67 -4.50021 5.44343750676537e-05 0.00868
ENST00000566264.2 TMEM204-202 TMEM204 Known None 212.42 231.45 202.66 37.41 23.91 25.51 -2.90188 5.71392545881472e-05 0.00889
TALONT000541095 TALONT000541095 PECAM1 ISM Both 420.58 356.82 336.81 67.33 42.2 44.3 -2.85971 6.4249936084557e-05 0.00909
ENST00000473619.5 AGER-210 AGER Known None 169.93 144.66 62.79 2.49 0 5.37 -5.41081 6.4695620174717e-05 0.00909
TALONT000284459 TALONT000284459 RGCC ISM Suffix 106.21 61.08 108.46 4.99 1.41 8.05 -4.17342 6.5737887121307e-05 0.00909
ENST00000449662.6 ICAM2-203 ICAM2 Known None 76.47 57.86 125.59 2.49 8.44 5.37 -3.85642 6.76272897900589e-05 0.00909
ENST00000424486.3 TMEM100-201 TMEM100 Known None 59.48 154.3 37.11 2.49 1.41 2.68 -5.11005 6.83133531697459e-05 0.00909
TALONT000398208 TALONT000398208 TNNC1 ISM Suffix 46.73 41.79 39.96 2.49 0 1.34 -4.97057 6.86866047143318e-05 0.00909
ENST00000292907.8 COX7A1-201 COX7A1 Known None 161.44 138.23 125.59 24.94 16.88 13.42 -2.9558 7.06395740306731e-05 0.00909
TALONT000405794 TALONT000405794 AGER NNC None 76.47 45 45.67 0 0 2.68 -5.37887 7.11619264824813e-05 0.00909
TALONT000577197 TALONT000577197 ESAM ISM Both 118.95 48.22 105.61 7.48 7.03 8.05 -3.54096 7.15107215267446e-05 0.00909
TALONT000342292 TALONT000342292 A2M ISM Suffix 429.08 340.74 265.45 39.9 15.47 40.27 -3.43481 7.43044932863541e-05 0.00909
TALONT000592696 TALONT000592696 FMO2 NIC None 33.99 73.94 79.92 2.49 1.41 5.37 -4.19883 7.48540705223906e-05 0.00909
ENST00000514403.1 SELENOP-213 SELENOP Known None 72.22 99.65 77.07 9.97 9.85 12.08 -2.92608 7.58214226422851e-05 0.00909
TALONT000532451 TALONT000532451 LTBP4 ISM Suffix 106.21 173.59 137.01 7.48 18.29 5.37 -3.68389 7.69918329302634e-05 0.00909
TALONT000363255 TALONT000363255 SPTBN1 ISM Both 492.81 392.18 411.02 59.85 81.59 67.12 -2.62689 8.08138644378332e-05 0.00924
TALONT000370874 TALONT000370874 SPARCL1 ISM Suffix 72.22 61.08 77.07 2.49 5.63 9.4 -3.43462 8.1749005172572e-05 0.00924
TALONT000342299 TALONT000342299 A2M ISM Suffix 832.67 437.18 296.85 44.89 23.91 52.36 -3.68492 8.26247717372352e-05 0.00924
TALONT000342279 TALONT000342279 A2M ISM Suffix 637.25 511.12 488.09 64.84 26.73 76.52 -3.28028 8.43365538558541e-05 0.00927
ENST00000403084.1 CLDN5-201 CLDN5 Known None 1134.3 922.58 2369.07 39.9 60.49 149.01 -4.13455 8.80574765704648e-05 0.00952
TALONT000405798 TALONT000405798 AGER ISM Suffix 114.7 80.36 48.52 0 0 4.03 -5.44715 8.98251877675312e-05 0.00955
TALONT000342476 TALONT000342476 A2M ISM Suffix 89.21 99.65 88.48 9.97 5.63 14.77 -3.15119 9.50428041012721e-05 0.00991
ENST00000618155.3 ECSCR-201 ECSCR Known None 67.97 45 88.48 7.48 2.81 6.71 -3.55674 9.7703919239205e-05 0.00991
ENST00000495709.1 A2M-207 A2M Known None 692.48 472.54 174.11 37.41 16.88 28.19 -4.02405 9.79317912842498e-05 0.00991
TALONT000381824 TALONT000381824 ADH1B ISM Suffix 72.22 80.36 105.61 4.99 0 5.37 -4.60962 0.000101428897237634 0.01001
TALONT000484788 TALONT000484788 GPX3 ISM Suffix 50.98 73.94 85.63 4.99 9.85 8.05 -3.11885 0.000102475843617433 0.01001
TALONT000392670 TALONT000392670 NPNT ISM Both 148.69 215.38 162.7 19.95 16.88 32.22 -2.90712 0.000103608507129138 0.01001
ENST00000311487.9 HMGA1-201 HMGA1 Known None 8.5 19.29 22.83 129.67 146.3 202.71 3.18448 0.000106602410241963 0.01014
TALONT000487020 TALONT000487020 AOC3 ISM Suffix 46.73 28.93 28.54 0 0 1.34 -5.42418 0.00010881709847621 0.0102
TALONT000341021 TALONT000341021 CLEC3B ISM Both 165.68 170.37 77.07 2.49 0 8.05 -5.11584 0.000113075004863499 0.01045
TALONT000342439 TALONT000342439 A2M ISM Suffix 335.62 202.52 111.32 17.46 14.07 25.51 -3.47624 0.000117235141219515 0.01064
ENST00000286890.8 GGTLC1-202 GGTLC1 Known None 148.69 90.01 42.81 4.99 0 2.68 -5.21741 0.000118530510075552 0.01064
TALONT000550190 TALONT000550190 CYBRD1 ISM Both 403.59 376.11 239.76 64.84 42.2 45.64 -2.74044 0.000124739461115365 0.01105
TALONT000381658 TALONT000381658 ADH1B ISM Suffix 55.23 70.72 59.94 2.49 0 5.37 -4.40367 0.00012951782108189 0.01113
TALONT000381715 TALONT000381715 ADH1B ISM Suffix 59.48 51.43 54.23 0 0 4.03 -4.89905 0.000129945012436581 0.01113
ENST00000262426.6 FOXF1-201 FOXF1 Known None 38.23 45 48.52 2.49 4.22 5.37 -3.30199 0.000132970544021626 0.01113
TALONT000403629 TALONT000403629 FBLN1 ISM Both 297.38 196.09 137.01 34.91 19.69 22.82 -3.02996 0.000135037357283816 0.01113
TALONT000370896 TALONT000370896 SPARCL1 ISM Suffix 63.72 83.58 62.79 2.49 5.63 10.74 -3.32895 0.000135760279344298 0.01113
TALONT000272705 TALONT000272705 VWF ISM Suffix 33.99 51.43 54.23 4.99 4.22 1.34 -3.72584 0.000136115686757602 0.01113
ENST00000494426.2 CLIC3-203 CLIC3 Known None 237.91 186.45 208.36 12.47 19.69 38.93 -3.10495 0.000145368240530185 0.01173
ENST00000375076.9 AGER-206 AGER Known None 1232.01 1134.75 1038.97 14.96 0 32.22 -6.13984 0.000147218878241472 0.01173
ENST00000220166.10 CTSH-201 CTSH Known None 1087.57 835.79 1113.18 189.52 150.52 251.04 -2.35886 0.000153241496153284 0.01175
TALONT000287286 TALONT000287286 SFTPC ISM Suffix 50.98 83.58 117.03 0 0 5.37 -5.16947 0.000154100854449014 0.01175
TALONT000403437 TALONT000403437 FBLN1 ISM Suffix 50.98 48.22 42.81 4.99 1.41 5.37 -3.54135 0.000154744482913508 0.01175
ENST00000256104.5 FABP4-201 FABP4 Known None 127.45 247.52 296.85 4.99 0 12.08 -5.20788 0.00015839935269575 0.01175
ENST00000242249.8 RAMP3-201 RAMP3 Known None 144.44 122.15 117.03 7.48 7.03 22.82 -3.28207 0.000159183248829242 0.01175
TALONT000425323 TALONT000425323 HMGB3 ISM Suffix 4.25 9.64 2.85 179.55 70.34 69.81 4.17272 0.000161163752231715 0.01175
ENST00000301455.7 ANGPTL4-201 ANGPTL4 Known None 0 16.07 14.27 177.05 171.62 263.12 4.2154 0.000166474712026614 0.01175
ENST00000335295.4 HBB-201 HBB Known None 15039.07 880.79 2203.52 44.89 15.47 69.81 -7.11177 0.000166594013127354 0.01175
TALONT000596018 TALONT000596018 PRELP ISM Suffix 123.2 157.51 108.46 22.44 12.66 5.37 -3.31677 0.000167332357510414 0.01175
ENST00000229239.10 GAPDH-201 GAPDH Known None 734.96 710.42 1121.74 4428.82 4297.48 2918.49 2.18057 0.00016848569838756 0.01175
ENST00000270879.9 FCN3-201 FCN3 Known None 135.95 327.89 79.92 0 0 6.71 -5.99155 0.000168696790568834 0.01175
TALONT000405775 TALONT000405775 AGER ISM Suffix 55.23 32.15 28.54 2.49 0 1.34 -4.80378 0.000170019687002271 0.01175
TALONT000592730 TALONT000592730 FMO2 ISM Suffix 135.95 250.74 122.74 9.97 4.22 21.48 -3.78365 0.000173009216856997 0.01175
ENST00000293662.9 TAMALIN-201 TAMALIN Known None 42.48 90.01 57.09 2.49 7.03 8.05 -3.29075 0.000176700647661095 0.01175
ENST00000375078.4 CAMK2N1-201 CAMK2N1 Known None 101.96 122.15 228.34 22.44 21.1 12.08 -3.03226 0.000178126786430082 0.01175
TALONT000535690 TALONT000535690 PCAT19 ISM Prefix 84.97 32.15 68.5 2.49 1.41 6.71 -3.95243 0.000178775628350725 0.01175
TALONT000342331 TALONT000342331 A2M ISM Suffix 67.97 86.79 105.61 2.49 4.22 13.42 -3.55014 0.000181245423635623 0.01175
ENST00000296046.4 CPA3-201 CPA3 Known None 63.72 77.15 111.32 12.47 11.25 14.77 -2.69088 0.00018424082451464 0.01175
ENST00000651929.2 FHL1-234 FHL1 Known None 38.23 106.08 256.89 7.48 5.63 2.68 -4.68666 0.000185116939063905 0.01175
TALONT000470811 TALONT000470811 SLCO2A1 ISM Both 89.21 115.72 68.5 7.48 5.63 16.11 -3.15459 0.000185874487943366 0.01175
TALONT000272842 TALONT000272842 VWF ISM Both 110.46 109.3 39.96 9.97 4.22 8.05 -3.53442 0.000186090242794605 0.01175
TALONT000597051 TALONT000597051 CD34 ISM Both 182.68 77.15 111.32 4.99 18.29 8.05 -3.4662 0.000188851966574903 0.01181
TALONT000341387 TALONT000341387 SFTPC ISM Both 76.47 163.94 137.01 0 0 8.05 -5.23512 0.000192691014043587 0.01193
TALONT000364805 TALONT000364805 DPYSL2 ISM Both 785.94 517.55 396.75 104.74 54.86 93.97 -2.7445 0.000194965185508228 0.01195
TALONT000272810 TALONT000272810 VWF ISM Suffix 50.98 54.65 77.07 7.48 4.22 10.74 -2.98386 0.000204508993080263 0.01223
ENST00000563924.6 PECAM1-203 PECAM1 Known None 106.21 128.58 302.56 22.44 9.85 18.79 -3.40818 0.000205341495453626 0.01223
TALONT000473654 TALONT000473654 CLDN18 ISM Both 582.02 585.05 385.33 9.97 0 22.82 -5.51336 0.000205998452461407 0.01223
TALONT000265240 TALONT000265240 CFD ISM Suffix 93.46 122.15 99.9 14.96 4.22 16.11 -3.16095 0.00020744948571642 0.01223
ENST00000369295.4 ADRB1-201 ADRB1 Known None 72.22 41.79 71.36 9.97 1.41 2.68 -3.85755 0.000209076844060309 0.01223
ENST00000244766.7 NRN1-201 NRN1 Known None 29.74 38.57 28.54 2.49 0 1.34 -4.5715 0.00021352646453659 0.01233
ENST00000526014.6 FXYD6-204 FXYD6 Known None 33.99 48.22 71.36 2.49 5.63 6.71 -3.23895 0.000214612750569142 0.01233
ENST00000315491.12 TUBB3-201 TUBB3 Known None 0 0 2.85 47.38 101.28 392 7.04761 0.00021701680131921 0.01235
ENST00000393196.8 NME1-203 NME1 Known None 46.73 19.29 34.25 216.95 185.68 277.89 2.76896 0.000220187972718926 0.01242
TALONT000485032 TALONT000485032 GPX3 ISM Suffix 38.23 70.72 39.96 4.99 5.63 6.71 -3.02763 0.000223568433104344 0.01244
ENST00000237623.11 SPP1-201 SPP1 Known None 0 0 2.85 379.04 45.01 108.74 7.00191 0.000224542584630448 0.01244
ENST00000406555.7 EGFL7-204 EGFL7 Known None 33.99 38.57 51.38 4.99 4.22 5.37 -3.03305 0.000226740382319216 0.01244
ENST00000251595.11 HBA2-201 HBA2 Known None 18781.84 1028.66 2737.28 54.86 15.47 93.97 -7.0918 0.000228336910201767 0.01244
TALONT000405769 TALONT000405769 AGER ISM Suffix 199.67 128.58 79.92 9.97 0 6.71 -4.66063 0.00023512676247925 0.0127
TALONT000455745 TALONT000455745 WWC2 ISM Both 152.94 77.15 74.21 12.47 15.47 16.11 -2.73704 0.000250279665705199 0.01341
TALONT000342348 TALONT000342348 A2M ISM Suffix 67.97 125.37 182.68 7.48 7.03 20.14 -3.37523 0.000252960558438064 0.01344
TALONT000596019 TALONT000596019 PRELP ISM Both 182.68 192.87 145.57 37.41 18.29 10.74 -3.00915 0.000255671324045801 0.01347
ENST00000342280.5 GJA4-201 GJA4 Known None 59.48 51.43 37.11 4.99 8.44 4.03 -2.99608 0.000262300153166032 0.01371
ENST00000419304.7 AGR2-203 AGR2 Known None 33.99 73.94 42.81 862.82 369.96 273.86 3.30428 0.000269913849161651 0.01399
ENST00000361566.7 KRT19-201 KRT19 Known None 284.64 430.75 305.41 1321.66 1332.15 2417.76 2.31146 0.000275202463792287 0.01415
TALONT000342596 TALONT000342596 A2M ISM Suffix 237.91 212.16 245.47 17.46 15.47 49.67 -3.03761 0.000279546230913992 0.01426
TALONT000366146 TALONT000366146 CCN5 ISM Both 42.48 48.22 34.25 7.48 2.81 2.68 -3.31949 0.000284693231094279 0.01428
TALONT000541114 TALONT000541114 PECAM1 ISM Suffix 50.98 38.57 68.5 9.97 7.03 6.71 -2.74115 0.000284765410680663 0.01428
TALONT000288515 TALONT000288515 TPSAB1 ISM Suffix 114.7 70.72 34.25 7.48 7.03 8.05 -3.21288 0.000286669968607723 0.01428
ENST00000297316.5 SOX17-201 SOX17 Known None 46.73 57.86 57.09 0 7.03 1.34 -3.99321 0.00029430527108063 0.01455
TALONT000520767 TALONT000520767 COL1A1 ISM Suffix 4.25 0 2.85 32.42 49.23 45.64 4.09887 0.000300780183890908 0.01468
ENST00000308423.7 AOC3-201 AOC3 Known None 89.21 163.94 251.18 2.49 7.03 21.48 -3.90674 0.000304958847556964 0.01468
TALONT000506489 TALONT000506489 HIGD1B NIC None 46.73 28.93 34.25 2.49 0 2.68 -4.2647 0.000304977711801409 0.01468
ENST00000288207.7 CCNB2-201 CCNB2 Known None 0 0 2.85 32.42 54.86 30.88 4.85781 0.000308451963529368 0.01468
ENST00000355119.9 LIMS2-202 LIMS2 Known None 29.74 67.51 45.67 7.48 2.81 1.34 -3.72651 0.000310728182229312 0.01468
ENST00000320868.9 HBA1-201 HBA1 Known None 7889.14 478.97 1861.01 27.43 5.63 61.75 -6.73206 0.000310874969106216 0.01468
ENST00000617612.3 C11orf96-201 C11orf96 Known None 696.73 736.14 833.46 92.27 206.79 88.6 -2.54172 0.000313602448161749 0.0147
TALONT000577860 TALONT000577860 TNS1 ISM Both 628.75 591.48 653.64 137.15 53.45 34.9 -3.06949 0.000317290152553271 0.01474
TALONT000283919 TALONT000283919 SFTPC NIC None 67.97 125.37 85.63 0 0 8.05 -4.79641 0.000319676579973268 0.01474
ENST00000321348.9 CYBRD1-201 CYBRD1 Known None 63.72 99.65 82.77 4.99 15.47 13.42 -2.77264 0.000322580684197591 0.01474
TALONT000269337 TALONT000269337 JAM2 ISM Both 46.73 48.22 37.11 0 1.41 5.37 -3.93948 0.000323682393320581 0.01474
ENST00000372462.1 CDC20-202 CDC20 Known None 0 3.21 0 37.41 33.76 34.9 4.68038 0.000334439736787063 0.01512
ENST00000373818.8 GSN-204 GSN Known None 178.43 221.81 291.14 47.38 29.54 52.36 -2.41765 0.000343046605108204 0.0152
TALONT000585677 TALONT000585677 MYADM ISM Both 407.84 221.81 416.73 59.85 23.91 61.75 -2.84613 0.000343883301276936 0.0152
ENST00000434325.7 PLPP2-203 PLPP2 Known None 8.5 16.07 11.42 192.02 60.49 106.05 3.2555 0.000344641896337528 0.0152
TALONT000342372 TALONT000342372 A2M ISM Suffix 174.18 266.81 288.28 32.42 14.07 48.33 -2.93474 0.000345572243165854 0.0152



Appendix 233

TranscriptID TranscriptName GeneName TranscriptNovelty ISM_subtype Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENST00000259254.9 GYPC-201 GYPC Known None 208.17 176.8 282.58 49.87 29.54 48.33 -2.38622 0.000355727675622283 0.01554
ENST00000305988.6 ADRB2-201 ADRB2 Known None 67.97 64.29 54.23 0 0 6.71 -4.43521 0.000361435340065399 0.01568
ENST00000281938.7 HSPB8-201 HSPB8 Known None 84.97 106.08 85.63 24.94 14.07 14.77 -2.38469 0.00036607417285362 0.01577
ENST00000388825.9 GPX3-201 GPX3 Known None 675.48 1424.06 1655.5 92.27 54.86 226.87 -3.32149 0.000380286670097479 0.01627
ENST00000372764.4 PLAU-201 PLAU Known None 0 6.43 8.56 49.87 80.18 154.38 4.06936 0.000387474835879406 0.01645
TALONT000272688 TALONT000272688 VWF ISM Suffix 72.22 54.65 45.67 7.48 0 4.03 -3.9791 0.000389524820516822 0.01645
TALONT000442920 TALONT000442920 KLF2 ISM Suffix 263.4 292.53 174.11 42.39 9.85 33.56 -3.10223 0.000393218701976095 0.01648
ENST00000305046.13 ADH1B-201 ADH1B Known None 254.9 543.26 616.53 7.48 0 25.51 -5.35091 0.000399406095258777 0.01648
TALONT000368386 TALONT000368386 MGP ISM Suffix 63.72 41.79 62.79 12.47 2.81 5.37 -3.1097 0.000399639171774667 0.01648
TALONT000308833 TALONT000308833 SUSD2 ISM Suffix 101.96 106.08 79.92 0 1.41 12.08 -4.16503 0.000403876369417235 0.01648
ENST00000288607.3 PSMG3-202 PSMG3 Known None 16.99 16.07 14.27 69.82 78.78 91.29 2.33365 0.000404060404978901 0.01648
ENST00000395080.8 SPP1-203 SPP1 Known None 12.74 0 2.85 1009.95 84.4 242.98 6.49611 0.000405851760208503 0.01648
ENST00000579788.6 ICAM2-208 ICAM2 Known None 38.23 54.65 51.38 4.99 8.44 9.4 -2.57572 0.000419907717877996 0.01686
ENST00000248071.6 KLF2-201 KLF2 Known None 195.42 282.88 291.14 54.86 30.95 61.75 -2.38161 0.00042780025463702 0.01686
ENST00000326621.10 VSIG2-201 VSIG2 Known None 46.73 70.72 48.52 7.48 0 4.03 -3.93939 0.000430862053912231 0.01686
TALONT000342285 TALONT000342285 A2M ISM Suffix 38.23 32.15 57.09 2.49 1.41 6.71 -3.43596 0.000431162031417847 0.01686
ENST00000282470.11 SPARCL1-201 SPARCL1 Known None 271.89 228.23 676.47 44.89 43.61 69.81 -2.88467 0.000434158514945586 0.01686
TALONT000283163 TALONT000283163 NPR 3.00 ISM Both 50.98 64.29 97.05 2.49 12.66 9.4 -2.99137 0.000434235830078416 0.01686
ENST00000475226.1 HBB-203 HBB Known None 1584.62 99.65 111.32 2.49 0 5.37 -7.66498 0.000434817823841375 0.01686
ENST00000350690.10 SLC25A10-202 SLC25A10 Known None 4.25 0 0 44.89 26.73 48.33 4.83339 0.000436259916042331 0.01686
TALONT000305387 TALONT000305387 SELENOP ISM Suffix 38.23 38.57 34.25 7.48 2.81 2.68 -3.15079 0.000439809711127103 0.01688
TALONT000370826 TALONT000370826 SPARCL1 ISM Suffix 38.23 57.86 68.5 4.99 9.85 10.74 -2.60387 0.000442773172052845 0.01688
ENST00000309318.8 PPP1R14B-201 PPP1R14B Known None 114.7 70.72 154.13 526.17 745.55 475.23 2.35898 0.000444698843240605 0.01688
ENST00000612142.1 TPSB2-203 TPSB2 Known None 84.97 106.08 142.72 19.95 23.91 26.85 -2.22006 0.000449750093669375 0.01689
ENST00000356455.9 UBE2C-204 UBE2C Known None 0 0 14.27 99.75 135.04 118.14 4.38855 0.000450431265856589 0.01689
TALONT000566274 TALONT000566274 HSPD1 ISM Suffix 8.5 6.43 5.71 57.36 50.64 36.25 2.77581 0.000457062487565343 0.01704
TALONT000342344 TALONT000342344 A2M ISM Suffix 55.23 125.37 142.72 14.96 9.85 21.48 -2.78853 0.000460517408105779 0.01707
TALONT000378666 TALONT000378666 TACC1 ISM Both 29.74 28.93 34.25 2.49 0 2.68 -4.04198 0.000465409549756036 0.01715
TALONT000304214 TALONT000304214 TGFBR2 ISM Suffix 33.99 61.08 39.96 7.48 7.03 6.71 -2.64082 0.000468908523368997 0.01718
TALONT000260071 TALONT000260071 IL33 ISM Both 42.48 57.86 65.65 2.49 11.25 8.05 -2.80072 0.00048196585371779 0.01756
ENST00000371625.8 PTGDS-202 PTGDS Known None 955.87 504.69 842.02 72.32 80.18 196 -2.71459 0.000485255335897691 0.01758
ENST00000327726.11 CFD-201 CFD Known None 259.15 652.56 867.71 62.34 12.66 64.44 -3.67881 0.000497140064885584 0.01791
TALONT000541111 TALONT000541111 PECAM1 ISM Suffix 42.48 41.79 34.25 7.48 5.63 2.68 -2.91552 0.000504217523880978 0.01806
ENST00000368708.9 S100A2-202 S100A2 Known None 0 6.43 0 32.42 694.91 2390.91 8.70477 0.000507668353278433 0.01808
ENST00000190983.5 CCN5-201 CCN5 Known None 55.23 99.65 119.88 19.95 4.22 5.37 -3.33922 0.00051339010336013 0.01816
TALONT000338344 TALONT000338344 SFTPC ISM Suffix 42.48 67.51 59.94 0 0 6.71 -4.31682 0.000515758134552978 0.01816
TALONT000401055 TALONT000401055 ENSG00000285043 ISM Suffix 16.99 16.07 25.69 97.25 84.4 103.37 2.24607 0.000519662895468326 0.01816
TALONT000342494 TALONT000342494 A2M ISM Suffix 38.23 61.08 137.01 12.47 8.44 5.37 -3.21237 0.00052121090328411 0.01816
TALONT000543063 TALONT000543063 FOXO3 ISM Both 140.19 186.45 219.78 37.41 42.2 46.99 -2.10077 0.000524699881485708 0.01816
TALONT000272673 TALONT000272673 VWF ISM Suffix 76.47 38.57 68.5 4.99 5.63 13.42 -2.82414 0.000528974110451242 0.01816
TALONT000428747 TALONT000428747 NR4A1 ISM Suffix 140.19 67.51 111.32 24.94 11.25 6.71 -2.95016 0.000534139215233667 0.01816
ENST00000650687.2 CRYAB-217 CRYAB Known None 97.71 86.79 91.34 17.46 4.22 17.45 -2.82531 0.000534964389714671 0.01816
ENST00000329759.6 FAM43A-201 FAM43A Known None 38.23 38.57 62.79 7.48 8.44 8.05 -2.50551 0.000535346376640084 0.01816
ENST00000225831.4 CCL2-201 CCL2 Known None 195.42 131.8 185.53 27.43 47.83 21.48 -2.38819 0.000547317151679909 0.01834
TALONT000342419 TALONT000342419 A2M ISM Suffix 59.48 99.65 162.7 4.99 5.63 20.14 -3.29804 0.00054817916109903 0.01834
TALONT000272826 TALONT000272826 VWF ISM Suffix 55.23 48.22 28.54 4.99 4.22 8.05 -2.83463 0.000549444240991849 0.01834
TALONT000343369 TALONT000343369 PRKCE ISM Both 29.74 45 51.38 7.48 2.81 6.71 -2.8967 0.000558536755898593 0.01848
ENST00000278927.10 ESAM-201 ESAM Known None 106.21 99.65 185.53 19.95 11.25 30.88 -2.64034 0.00056198743381166 0.01848
ENST00000466465.5 EPAS1-206 EPAS1 Known None 59.48 93.22 117.03 19.95 7.03 16.11 -2.67397 0.000562367081312827 0.01848
ENST00000378482.7 TSPAN7-202 TSPAN7 Known None 63.72 73.94 99.9 12.47 21.1 13.42 -2.30652 0.000570327720289721 0.01865
ENST00000320623.10 NQO1-201 NQO1 Known None 63.72 16.07 25.69 466.32 355.9 161.09 3.2427 0.000592503778711409 0.01918
TALONT000300064 TALONT000300064 GAPDH ISM Suffix 42.48 19.29 28.54 231.91 589.41 123.51 3.39465 0.000603021114858635 0.01942
TALONT000365688 TALONT000365688 EMP1 ISM Both 475.81 276.45 596.55 79.8 88.62 115.45 -2.24225 0.000612789535291948 0.01958
TALONT000342265 TALONT000342265 A2M ISM Suffix 89.21 93.22 154.13 7.48 8.44 26.85 -2.90595 0.000619142596773729 0.01958
ENST00000395566.9 MDK-203 MDK Known None 55.23 41.79 77.07 216.95 306.66 675.25 2.77616 0.000619449318118362 0.01958
ENST00000514985.6 SELENOP-214 SELENOP Known None 288.89 572.19 622.24 82.29 63.3 128.88 -2.43004 0.000621862373073805 0.01958
ENST00000355426.8 EFEMP1-201 EFEMP1 Known None 42.48 57.86 125.59 14.96 5.63 8.05 -3.0405 0.000623496985894098 0.01958
TALONT000446389 TALONT000446389 CTSH ISM Suffix 118.95 83.58 74.21 19.95 23.91 13.42 -2.25363 0.000641022379240551 0.02
ENST00000256404.8 PEBP4-201 PEBP4 Known None 225.16 305.38 68.5 2.49 0 14.77 -4.95618 0.000645313886680579 0.02
ENST00000482565.1 HBA2-203 HBA2 Known None 3198.99 144.66 145.57 4.99 0 8.05 -7.98386 0.000646215694058078 0.02
TALONT000284944 TALONT000284944 SFTPC NIC None 29.74 295.74 159.84 0 0 8.05 -5.60331 0.000661284629003164 0.02031
TALONT000595680 TALONT000595680 UBE2T ISM Suffix 0 0 2.85 29.92 26.73 28.19 4.37135 0.000665493768121041 0.02031
ENST00000388922.9 ACVRL1-201 ACVRL1 Known None 29.74 48.22 51.38 2.49 5.63 0 -3.88302 0.000665719775545269 0.02031
ENST00000331563.7 PKP3-201 PKP3 Known None 8.5 16.07 11.42 49.87 91.44 68.47 2.50571 0.000678550884663516 0.0205
ENST00000401473.7 HMGA1-204 HMGA1 Known None 0 3.21 14.27 82.29 90.03 63.1 3.54636 0.000692507622785636 0.02083
TALONT000387890 TALONT000387890 OLFML2A ISM Both 46.73 45 59.94 7.48 11.25 12.08 -2.23858 0.00069601661147523 0.02083
ENST00000379818.4 MT1M-201 MT1M Known None 72.22 456.47 137.01 9.97 19.69 2.68 -4.33142 0.000700648107473332 0.02085
ENST00000467371.1 SPTBN1-204 SPTBN1 Known None 50.98 32.15 74.21 7.48 11.25 5.37 -2.66737 0.000705702704741055 0.02085
ENST00000578532.5 RPL17-202 RPL17 Known None 12.74 9.64 11.42 72.32 52.05 51.01 2.34714 0.00070671769071612 0.02085
TALONT000368289 TALONT000368289 MGP ISM Suffix 165.68 115.72 148.42 29.92 4.22 18.79 -3.06279 0.000709590325230734 0.02085
TALONT000374041 TALONT000374041 MFAP4 ISM Suffix 29.74 38.57 82.77 0 0 5.37 -4.44623 0.000719109511558054 0.02103
ENST00000217026.5 MYBL2-201 MYBL2 Known None 0 0 5.71 44.89 66.12 29.53 4.25666 0.000727901644349948 0.02113
TALONT000279232 TALONT000279232 TUBB6 NNC None 42.48 35.36 48.52 9.97 5.63 2.68 -2.8483 0.000729123240257279 0.02113
TALONT000272696 TALONT000272696 VWF ISM Both 29.74 51.43 94.19 2.49 5.63 10.74 -3.09117 0.000736463343614187 0.02125
TALONT000336489 TALONT000336489 FERMT2 ISM Both 76.47 70.72 51.38 12.47 5.63 16.11 -2.50905 0.000742533234352406 0.02133
ENST00000339162.11 PDLIM2-203 PDLIM2 Known None 59.48 61.08 122.74 12.47 4.22 16.11 -2.88431 0.000758053860936173 0.02167
ENST00000349959.3 PKIG-201 PKIG Known None 46.73 28.93 37.11 7.48 5.63 5.37 -2.5808 0.000767849706519878 0.02183
TALONT000274180 TALONT000274180 WFS1 ISM Both 220.91 160.73 128.44 42.39 16.88 37.59 -2.39895 0.000770227658492941 0.02183
ENST00000258743.10 IL6-201 IL6 Known None 55.23 35.36 311.12 2.49 8.44 5.37 -4.49467 0.000777017161262591 0.02186
TALONT000341335 TALONT000341335 SFTPC ISM Suffix 101.96 77.15 79.92 0 0 10.74 -4.30512 0.000778136401220556 0.02186
ENST00000435307.2 ACKR1-203 ACKR1 Known None 123.2 35.36 39.96 9.97 5.63 6.71 -3.12601 0.000794160881132038 0.02207
ENST00000308366.9 PLA2G1B-201 PLA2G1B Known None 29.74 38.57 31.4 0 0 4.03 -4.18557 0.000795879780946115 0.02207
ENST00000566198.1 SLC9A3R2-208 SLC9A3R2 Known None 59.48 83.58 34.25 9.97 9.85 12.08 -2.42936 0.000796008205164371 0.02207
TALONT000304343 TALONT000304343 TGFBR2 ISM Both 526.79 405.04 305.41 89.77 57.67 120.82 -2.20006 0.000809479335872448 0.0223
ENST00000370818.8 GPC3-201 GPC3 Known None 33.99 67.51 234.05 2.49 0 8.05 -4.84197 0.000811579547622085 0.0223
TALONT000446401 TALONT000446401 CTSH ISM Suffix 123.2 64.29 65.65 12.47 9.85 21.48 -2.47723 0.000815858858300623 0.02233
TALONT000564811 TALONT000564811 CAVIN2 ISM Both 463.07 417.89 436.71 14.96 97.06 25.51 -3.23031 0.000824879907488345 0.02248
TALONT000380721 TALONT000380721 ANGPTL4 ISM Suffix 0 9.64 2.85 47.38 46.42 46.99 3.33082 0.000836643989461257 0.02264
TALONT000341342 TALONT000341342 SFTPC ISM Suffix 603.26 552.91 242.62 4.99 0 32.22 -5.13878 0.000838132147070593 0.02264
TALONT000338362 TALONT000338362 SFTPC ISM Suffix 369.6 253.95 188.38 0 0 20.14 -5.13762 0.000847751568651238 0.02281
ENST00000341049.7 CAV1-201 CAV1 Known None 140.19 160.73 525.19 9.97 43.61 20.14 -3.44266 0.000866124339284737 0.02311
TALONT000291963 TALONT000291963 DSG2 ISM Both 46.73 16.07 22.83 102.24 198.35 216.13 2.62049 0.000870328732119958 0.02312
ENST00000388712.7 GOLM1-203 GOLM1 Known None 0 0 0 104.74 30.95 30.88 7.63461 0.000876737939283496 0.02315
TALONT000425729 TALONT000425729 HMGB3 ISM Suffix 0 3.21 0 149.62 33.76 29.53 5.64213 0.000880815182005635 0.02315
ENST00000357037.6 CAVIN1-201 CAVIN1 Known None 123.2 141.44 308.27 22.44 36.57 42.96 -2.46863 0.000885568851317249 0.02315
ENST00000472694.1 HBA1-203 HBA1 Known None 1253.26 41.79 71.36 2.49 0 4.03 -7.54483 0.000885993454091037 0.02315
ENST00000340356.9 SOX18-201 SOX18 Known None 144.44 99.65 45.67 19.95 14.07 16.11 -2.51557 0.000902785774597176 0.02349
ENST00000256442.10 CCNB1-201 CCNB1 Known None 0 0 11.42 87.28 74.56 53.7 3.96267 0.000911001084836949 0.02361
TALONT000584979 TALONT000584979 FPR2 ISM Both 29.74 38.57 48.52 9.97 2.81 4.03 -2.8872 0.000920403188679055 0.02376
TALONT000301686 TALONT000301686 BCL6B ISM Both 50.98 35.36 65.65 4.99 7.03 0 -3.63605 0.000955628336569602 0.02457
ENST00000481009.1 S100A4-206 S100A4 Known None 781.69 1044.74 682.18 279.3 102.69 163.78 -2.20403 0.00096078652927328 0.02459
ENST00000250101.10 TXNDC17-201 TXNDC17 Known None 67.97 32.15 59.94 201.99 232.11 571.89 2.65438 0.000964023864584307 0.02459
TALONT000342484 TALONT000342484 A2M ISM Suffix 42.48 45 99.9 14.96 9.85 6.71 -2.6184 0.000968746271162628 0.02461
TALONT000378693 TALONT000378693 HYAL2 ISM Both 148.69 99.65 77.07 12.47 22.51 29.53 -2.27639 0.000980890365656458 0.02482
ENST00000299610.5 MFAP4-201 MFAP4 Known None 89.21 247.52 402.46 19.95 5.63 36.25 -3.56301 0.000995237871558022 0.02489
TALONT000454080 TALONT000454080 TNS2 ISM Suffix 46.73 38.57 31.4 2.49 1.41 8.05 -3.11482 0.000995614672313993 0.02489
TALONT000484784 TALONT000484784 GPX3 ISM Suffix 55.23 138.23 117.03 4.99 7.03 24.16 -3.0125 0.00100064008341361 0.02491
ENST00000368868.10 SELENBP1-201 SELENBP1 Known None 106.21 311.81 162.7 22.44 15.47 45.64 -2.77505 0.00100389984545987 0.02491
ENST00000700015.1 TNFSF12-207 TNFSF12 Known None 50.98 32.15 62.79 7.48 8.44 12.08 -2.32121 0.00102136886806507 0.02524
ENST00000357750.9 HYAL2-201 HYAL2 Known None 106.21 157.51 325.39 14.96 19.69 45.64 -2.84042 0.00104107381035248 0.02553
ENST00000296370.4 S100P-201 S100P Known None 46.73 25.72 8.56 1356.58 2691.02 63.1 5.69312 0.00106160832307063 0.02584
TALONT000446409 TALONT000446409 CTSH ISM Suffix 424.83 147.87 151.28 32.42 32.35 53.7 -2.58754 0.0010716083806322 0.02597
TALONT000342582 TALONT000342582 A2M ISM Suffix 29.74 38.57 42.81 9.97 2.81 4.03 -2.81201 0.00107549030322294 0.02597
TALONT000309109 TALONT000309109 SUSD2 ISM Both 378.1 221.81 51.38 0 0 13.42 -5.34762 0.00108306045998638 0.02606
TALONT000374055 TALONT000374055 SPP1 ISM Suffix 8.5 0 2.85 329.17 32.35 83.23 5.31143 0.00109773580170332 0.02631
TALONT000468752 TALONT000468752 SLC2A1 ISM Both 16.99 9.64 0 107.23 219.45 63.1 3.95146 0.0011164620103402 0.02666
ENST00000492068.2 PTGDS-209 PTGDS Known None 84.97 38.57 34.25 9.97 4.22 9.4 -2.70729 0.0011266715232468 0.0268
TALONT000545899 TALONT000545899 COL10A1 ISM Both 8.5 0 0 97.25 43.61 33.56 4.47868 0.00115634787334501 0.02731
TALONT000421927 TALONT000421927 SULF1 ISM Both 8.5 0 14.27 152.12 101.28 49.67 3.65064 0.00116329792441186 0.02737
TALONT000452045 TALONT000452045 MMRN2 ISM Suffix 42.48 38.57 65.65 14.96 7.03 5.37 -2.49655 0.0011862431246475 0.02781
ENST00000305352.7 S1PR1-201 S1PR1 Known None 33.99 45 151.28 0 4.22 9.4 -3.86356 0.00119981770054343 0.02802
ENST00000582743.6 SLC16A3-213 SLC16A3 Known None 16.99 38.57 31.4 169.57 156.14 89.94 2.22148 0.00120636738047106 0.02807
TALONT000490580 TALONT000490580 PGC ISM Suffix 89.21 28.93 65.65 0 0 8.05 -4.1701 0.00121631833539471 0.0282
ENST00000309451.7 MZT2A-201 MZT2A Known None 21.24 38.57 8.56 109.72 129.42 142.3 2.47885 0.00122292152542865 0.02825
ENST00000298295.4 DEPP1-201 DEPP1 Known None 582.02 607.55 1158.85 172.07 163.18 45.64 -2.62793 0.00123747240020761 0.02829
ENST00000683431.1 DKK3-217 DKK 3.00 Known None 42.48 57.86 162.7 12.47 15.47 12.08 -2.70488 0.0012489696854333 0.02835
ENST00000256951.10 EMP1-201 EMP1 Known None 101.96 99.65 228.34 22.44 29.54 37.59 -2.24414 0.00124985339886798 0.02835
ENST00000372886.6 PKIG-202 PKIG Known None 72.22 61.08 111.32 14.96 25.32 13.42 -2.16344 0.00126153111056047 0.02835
ENST00000425368.7 CFB-271 CFB Known None 4.25 9.64 11.42 52.37 45.01 40.27 2.34191 0.00126287312195554 0.02835
ENST00000352433.10 PTTG1-201 PTTG1 Known None 8.5 9.64 5.71 67.33 81.59 26.85 2.84955 0.00127365248838785 0.02847
TALONT000590603 TALONT000590603 HDGF ISM Suffix 12.74 12.86 14.27 59.85 67.52 45.64 2.08723 0.00127716934972222 0.02847
TALONT000499828 TALONT000499828 CYP4B1 ISM Suffix 33.99 48.22 42.81 0 1.41 8.05 -3.44172 0.00128913755157303 0.02864
ENST00000262395.10 TRAF4-201 TRAF4 Known None 8.5 19.29 22.83 114.71 56.27 103.37 2.37147 0.00130051158768088 0.02879
ENST00000325307.12 HMGB3-201 HMGB3 Known None 4.25 6.43 8.56 915.19 53.45 75.18 5.65405 0.0013065565842907 0.02883
ENST00000672981.2 AQP4-209 AQP4 Known None 148.69 90.01 137.01 0 0 16.11 -4.31186 0.00131644760088656 0.02894
TALONT000549004 TALONT000549004 CCN2 ISM Both 1100.32 430.75 950.48 157.1 244.77 189.29 -2.06578 0.00132611953503111 0.02906
ENST00000508632.6 OCIAD2-205 OCIAD2 Known None 38.23 38.57 25.69 109.72 135.04 332.93 2.49911 0.00133097073069932 0.02906
TALONT000514248 TALONT000514248 PLPP3 ISM Both 135.95 106.08 119.88 44.89 19.69 24.16 -2.04952 0.00133557311799131 0.02906
TALONT000446395 TALONT000446395 CTSH ISM Suffix 101.96 61.08 59.94 12.47 11.25 22.82 -2.20525 0.00134769358369781 0.02913
ENST00000461509.6 TPSAB1-202 TPSAB1 Known None 208.17 401.82 565.15 94.76 81.59 99.34 -2.09168 0.00139702662967644 0.02999
TALONT000334162 TALONT000334162 SFTPC ISM Suffix 310.13 324.67 276.87 0 0 26.85 -4.92431 0.00140926995292642 0.03015
ENST00000447654.5 HMGA1-205 HMGA1 Known None 0 6.43 0 47.38 26.73 38.93 3.91041 0.00146263684771616 0.03119
ENST00000584923.1 SNORD3A-201 SNORD3A Known None 59.48 45 22.83 137.15 254.61 856.49 3.30673 0.00147214310561362 0.03129
ENST00000330459.8 KPNA2-201 KPNA2 Known None 12.74 6.43 34.25 127.18 85.81 122.16 2.58645 0.00147966740025678 0.03134
TALONT000593352 TALONT000593352 KIAA0040 ISM Both 67.97 99.65 85.63 7.48 21.1 24.16 -2.19755 0.00148828083590457 0.03142
TALONT000460941 TALONT000460941 EGFL7 ISM Suffix 55.23 28.93 62.79 9.97 12.66 8.05 -2.22794 0.00151567415186244 0.03166
TALONT000379104 TALONT000379104 EFEMP1 ISM Both 114.7 45 71.36 9.97 11.25 21.48 -2.36502 0.0015190337394429 0.03166
ENST00000522109.5 SFTPC-206 SFTPC Known None 50.98 163.94 54.23 0 0 10.74 -4.37251 0.00152472827916541 0.03166
TALONT000568358 TALONT000568358 BIRC5 ISM Both 8.5 0 2.85 37.41 50.64 29.53 3.425 0.00152674806439921 0.03166
ENST00000300035.9 PCLAF-201 PCLAF Known None 0 0 5.71 27.43 137.86 34.9 4.78505 0.00152675179078426 0.03166
ENST00000426263.10 SLC2A1-203 SLC2A1 Known None 12.74 0 11.42 112.22 118.16 41.62 3.47566 0.00154776514962715 0.03183
TALONT000435636 TALONT000435636 PCDHGA12 ISM Both 225.16 189.66 168.4 24.94 66.12 48.33 -2.03885 0.00158442650304026 0.03248
TALONT000326420 TALONT000326420 AGR2 NIC None 12.74 9.64 2.85 84.79 53.45 34.9 2.79108 0.00160389920629422 0.03278
TALONT000402811 TALONT000402811 FBLN1 ISM Suffix 46.73 45 28.54 0 5.63 6.71 -3.02951 0.00161511350030343 0.03287
ENST00000263734.5 EPAS1-201 EPAS1 Known None 67.97 192.87 296.85 42.39 29.54 25.51 -2.5327 0.00161887727381951 0.03287
TALONT000341351 TALONT000341351 SFTPC ISM Suffix 1546.39 1002.95 779.23 4.99 0 69.81 -5.4116 0.00164093338332115 0.03321
ENST00000393957.7 TPPP3-202 TPPP3 Known None 67.97 215.38 211.22 39.9 8.44 8.05 -3.22427 0.00164711399508405 0.03323
ENST00000356142.4 RAC1-202 RAC1 Known None 4.25 12.86 22.83 92.27 50.64 157.07 2.81764 0.00167823151874831 0.03376
TALONT000288342 TALONT000288342 TPSAB1 ISM Suffix 131.7 61.08 71.36 14.96 8.44 25.51 -2.38825 0.00169819916991562 0.03405
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TranscriptID TranscriptName GeneName TranscriptNovelty ISM_subtype Non-transformed1 Non-transformed2 Non-transformed3 Cancer1 Cancer2 Cancer3 log2FC pvalue padj
ENST00000569449.1 ENST00000569449 ENSG00000260244 Known None 67.97 51.43 42.81 9.97 7.03 17.45 -2.17414 0.0017168818998286 0.0341
ENST00000358321.4 SUSD2-201 SUSD2 Known None 118.95 228.23 122.74 0 4.22 26.85 -3.76747 0.00173646684460906 0.0341
ENST00000512576.3 PAICS-207 PAICS Known None 4.25 9.64 11.42 49.87 40.79 38.93 2.25466 0.00174033078805423 0.0341
ENST00000394825.6 NR4A1-204 NR4A1 Known None 106.21 96.44 205.51 32.42 37.98 14.77 -2.26694 0.00174339340706192 0.0341
ENST00000301242.9 PPP1R14A-201 PPP1R14A Known None 305.88 260.38 285.43 57.36 5.63 44.3 -3.00628 0.00176876874978768 0.03434
ENST00000569669.6 BOP1-205 BOP 1.00 Known None 12.74 6.43 14.27 62.34 45.01 45.64 2.15664 0.00177084450361991 0.03434
ENST00000369550.10 DKC1-201 DKC1 Known None 4.25 12.86 5.71 42.39 35.17 49.67 2.40993 0.00177195138282208 0.03434
TALONT000354811 TALONT000354811 VSIR ISM Suffix 29.74 38.57 34.25 7.48 7.03 8.05 -2.14885 0.00179649933705204 0.03447
TALONT000403503 TALONT000403503 FBLN1 ISM Suffix 42.48 54.65 57.09 14.96 2.81 10.74 -2.49047 0.00179652113046049 0.03447
TALONT000301880 TALONT000301880 GAPDH ISM Suffix 101.96 48.22 85.63 403.98 530.33 189.29 2.25307 0.00179739473965571 0.03447
TALONT000412156 TALONT000412156 ENG ISM Both 327.12 225.02 91.34 42.39 45.01 46.99 -2.24384 0.0018055381689484 0.03447
ENST00000689584.1 H2AW-202 H2AW Known None 4.25 12.86 2.85 74.81 35.17 40.27 2.82775 0.0018058875130479 0.03447
TALONT000468842 TALONT000468842 PTGDS ISM Suffix 186.93 54.65 74.21 7.48 2.81 21.48 -3.21869 0.00181825582892636 0.03461
ENST00000327858.11 FBLN1-202 FBLN1 Known None 67.97 215.38 199.8 34.91 32.35 38.93 -2.1841 0.00187316940573538 0.03544
ENST00000342058.9 FBLN5-202 FBLN5 Known None 46.73 54.65 185.53 14.96 4.22 16.11 -3.04113 0.001897443189092 0.03571
TALONT000334128 TALONT000334128 SFTPC ISM Suffix 858.16 668.63 516.63 4.99 0 57.73 -4.95395 0.00189868691754406 0.03571
TALONT000277204 TALONT000277204 BASP1 ISM Both 29.74 28.93 71.36 339.14 136.45 201.37 2.35005 0.00194420571905841 0.03629
ENST00000360000.8 TCEAL8-201 TCEAL8 Known None 33.99 32.15 28.54 7.48 7.03 5.37 -2.22131 0.00196306915289152 0.03649
TALONT000338367 TALONT000338367 SFTPC ISM Suffix 271.89 498.26 259.74 0 0 30.88 -4.91439 0.00201867057181672 0.03731
TALONT000520690 TALONT000520690 COL1A1 ISM Suffix 12.74 3.21 5.71 47.38 45.01 30.88 2.53519 0.00204286548629531 0.03765
TALONT000320183 TALONT000320183 ABCA3 ISM Suffix 29.74 28.93 42.81 4.99 1.41 8.05 -2.75133 0.00205029759485663 0.03767
TALONT000559875 TALONT000559875 COL3A1 ISM Suffix 4.25 0 14.27 39.9 88.62 61.75 3.23782 0.00210562031347862 0.03858
TALONT000338335 TALONT000338335 SFTPC ISM Suffix 543.79 1086.53 570.86 2.49 0 56.38 -5.14298 0.0021267235988467 0.03885
TALONT000560154 TALONT000560154 SASH1 ISM Both 118.95 51.43 117.03 27.43 15.47 25.51 -2.06953 0.00214350586531863 0.03905
TALONT000446397 TALONT000446397 CTSH ISM Both 280.39 109.3 45.67 9.97 25.32 20.14 -2.89982 0.00216096142709299 0.03925
ENST00000473336.5 RAB25-203 RAB25 Known None 8.5 3.21 8.56 32.42 50.64 30.88 2.46365 0.00220042189672203 0.03986
TALONT000446415 TALONT000446415 CTSH ISM Suffix 135.95 64.29 42.81 14.96 14.07 20.14 -2.25451 0.00221312873176476 0.03997
TALONT000288666 TALONT000288666 SFTPC ISM Suffix 586.27 1375.84 804.91 4.99 0 69.81 -5.14617 0.00224542618514519 0.04025
ENST00000494979.1 MARCO-203 MARCO Known None 72.22 51.43 37.11 7.48 0 9.4 -3.21663 0.00225769364819217 0.04025
ENST00000652332.1 PDIA4-204 PDIA4 Known None 25.49 16.07 59.94 182.04 112.54 265.81 2.43412 0.00226209643412058 0.04025
ENST00000622226.1 PDLIM2-220 PDLIM2 Known None 106.21 48.22 34.25 9.97 15.47 10.74 -2.30796 0.00226296859367487 0.04025
ENST00000645674.2 RPS7-210 RPS7 Known None 12.74 19.29 19.98 42.39 150.52 84.57 2.38958 0.00229385854922995 0.04055
TALONT000344786 TALONT000344786 F2R ISM Both 106.21 61.08 196.95 34.91 25.32 17.45 -2.24915 0.00229827771563654 0.04055
TALONT000553671 TALONT000553671 OLFML3 ISM Both 123.2 106.08 74.21 19.95 37.98 14.77 -2.03202 0.00230506231993586 0.04055
ENST00000318602.12 A2M-201 A2M Known None 212.42 469.33 1233.06 49.87 46.42 139.62 -3.01048 0.00231275016123684 0.04055
TALONT000300689 TALONT000300689 GAPDH ISM Suffix 106.21 77.15 77.07 311.71 682.25 202.71 2.20209 0.00231511459945107 0.04055
ENST00000677950.1 NDUFB9-214 NDUFB9 Known None 8.5 6.43 14.27 94.76 36.57 44.3 2.50069 0.00233465177918506 0.04073
ENST00000393931.8 JUP-203 JUP Known None 12.74 3.21 14.27 59.85 43.61 48.33 2.2943 0.0023385078364359 0.04073
TALONT000357780 TALONT000357780 EPCAM ISM Suffix 12.74 16.07 2.85 57.36 43.61 71.15 2.45755 0.00234467572306648 0.04073
ENST00000539261.6 MGP-203 MGP Known None 1091.82 1170.11 2874.29 426.42 68.93 241.64 -2.8053 0.00237236664452191 0.04094
TALONT000520842 TALONT000520842 COL1A1 ISM Suffix 8.5 3.21 14.27 32.42 80.18 48.33 2.58412 0.00237505315633654 0.04094
TALONT000429047 TALONT000429047 NR4A1 ISM Suffix 93.46 35.36 42.81 14.96 12.66 6.71 -2.3109 0.0024069560271897 0.04125
ENST00000407067.1 MDK-206 MDK Known None 16.99 3.21 8.56 29.92 66.12 123.51 2.98663 0.00243132112587266 0.0415
TALONT000520693 TALONT000520693 COL1A1 ISM Suffix 0 0 14.27 47.38 98.47 56.38 3.59127 0.00245567872768204 0.04175
TALONT000305366 TALONT000305366 SELENOP ISM Suffix 50.98 48.22 48.52 4.99 2.81 16.11 -2.52195 0.00248274482877026 0.04205
TALONT000285220 TALONT000285220 SFTPC ISM Suffix 50.98 138.23 117.03 0 0 16.11 -4.02967 0.00249036127508964 0.04205
TALONT000477908 TALONT000477908 SYNM ISM Both 50.98 48.22 74.21 7.48 18.29 2.68 -2.56142 0.00252542292088117 0.04205
ENST00000236957.9 EEF1B2-201 EEF1B2 Known None 16.99 6.43 14.27 47.38 67.52 45.64 2.09462 0.0025260932259754 0.04205
ENST00000366615.10 COA6-203 COA6 Known None 8.5 6.43 22.83 64.84 99.88 46.99 2.41404 0.00253574651672733 0.04205
ENST00000264552.14 UBE2S-201 UBE2S Known None 16.99 19.29 54.23 271.81 381.22 69.81 2.9537 0.00255686630014067 0.04213
TALONT000594340 TALONT000594340 RGL1 ISM Both 106.21 48.22 48.52 4.99 15.47 17.45 -2.30561 0.00262262472977537 0.04299
TALONT000256176 TALONT000256176 ENSG00000259171 ISM Both 59.48 131.8 34.25 4.99 9.85 18.79 -2.64746 0.00262270495507987 0.04299
ENST00000004982.6 HSPB6-201 HSPB6 Known None 38.23 45 114.17 9.97 0 9.4 -3.39734 0.00263068152784391 0.04301
TALONT000560257 TALONT000560257 COL3A1 ISM Suffix 21.24 6.43 34.25 104.74 133.64 76.52 2.31635 0.00269968877051479 0.04402
ENST00000373298.7 ITM2A-201 ITM2A Known None 59.48 48.22 142.72 4.99 22.51 4.03 -2.91565 0.00275981123635645 0.04461
TALONT000571132 TALONT000571132 RAN ISM Suffix 0 9.64 11.42 37.41 59.08 49.67 2.64884 0.00277069076600321 0.04461
ENST00000304141.5 CAVIN2-201 CAVIN2 Known None 148.69 138.23 488.09 2.49 46.42 22.82 -3.37025 0.00280767756821442 0.04509
ENST00000318627.4 FIBIN-201 FIBIN Known None 67.97 221.81 148.42 14.96 42.2 8.05 -2.72074 0.00284180935653992 0.04553
TALONT000329262 TALONT000329262 AGR3 ISM Suffix 67.97 38.57 31.4 2.49 1.41 12.08 -2.92484 0.00287281291608854 0.04579
ENST00000372838.9 CERCAM-201 CERCAM Known None 8.5 6.43 11.42 37.41 36.57 37.59 2.03417 0.00289820308999388 0.04608
TALONT000402367 TALONT000402367 CD52 ISM Both 144.44 93.22 68.5 37.41 12.66 22.82 -2.08864 0.00299938755477287 0.04747
ENST00000678361.1 SFTPD-203 SFTPD Known None 131.7 196.09 48.52 0 1.41 21.48 -3.84609 0.00305841835123745 0.0479
ENST00000436072.7 SFRP4-201 SFRP4 Known None 21.24 12.86 28.54 104.74 222.26 48.33 2.56187 0.00311619690661364 0.04834
ENST00000328895.9 GKN2-201 GKN2 Known None 72.22 28.93 99.9 0 0 12.08 -3.79014 0.00316804725980276 0.04903
TALONT000490585 TALONT000490585 PGC ISM Suffix 93.46 28.93 28.54 0 0 8.05 -3.8643 0.00326072861799318 0.04998
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Table 10: Significantly Differentially Used Transcripts in Non-Transformed vs.
Cancer samples.
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Appendix 236

Table 11: Significantly Alternative Polyadenylated Genes in Non-Transformed
vs. Cancer samples.

Region GeneID GeneName DeltaUsage OddsRatio pvalue padj log10FDR Significance
chr10:103882537:- ENSG00000107960.12 STN1 -0.396190476190476 0 3.04925021939776e-13 4.70883288510331e-11 10.327086722249 Down
chr10:11334357:+ ENSG00000048740.19 CELF2 -0.473366600663657 0.141935483870968 9.73756238539081e-10 9.55312149785576e-08 7.01985469880478 Down
chr10:48435875:+ ENSG00000107643.17 MAPK8 -0.375727513227513 0.188888888888889 0.00153888607329007 0.0170421925168205 1.76847453300225 Down
chr10:62193195:- ENSG00000182010.11 RTKN2 -0.603362227475703 0 0.000120801032553038 0.00252471130441049 2.59778827539467 Down
chr10:76058784:+ ENSG00000148655.15 LRMDA -0.302910052910053 0 0.00100039095738565 0.0126243312451738 1.89879161869234 Down
chr11:6483057:+ ENSG00000132286.12 TIMM10B -0.451159762150474 0.109903381642512 7.64186942717331e-07 4.20613643515764e-05 4.37611664413779 Down
chr11:65322092:+ ENSG00000149798.5 CDC42EP2 -0.493055555555555 0 2.70840880072203e-06 0.000122746853202288 3.91098963284572 Down
chr11:7510905:+ ENSG00000183801.8 OLFML1 -0.522222222222222 0 0.00562568034595777 0.0424702079332334 1.37191561270758 Down
chr11:94419865:- ENSG00000020922.13 MRE11 -0.46031746031746 0 4.49647091283939e-05 0.00115728614019036 2.93655924801314 Down
chr12:104103450:+ ENSG00000111727.12 HCFC2 -0.681481481481482 0 0.000253141214239613 0.0045009479435909 2.34669600993243 Down
chr12:104350283:+ ENSG00000198431.18 TXNRD1 -0.315525582543658 0.224477205657881 5.09809069770954e-47 4.72366425868887e-44 43.3257209780739 Down
chr12:106510104:+ ENSG00000013503.10 POLR3B -0.513888888888889 0 0.0068406309892378 0.0489936582855335 1.30986013119271 Down
chr12:110347318:+ ENSG00000174437.18 ATP2A2 -0.342322175320163 0.197570352145164 1.26233432969979e-17 3.39567934689243e-15 14.4690733268056 Down
chr12:12829980:+ ENSG00000178878.13 APOLD1 -0.572426417027356 0.0616149355528582 3.09704878454395e-40 1.84473498673657e-37 36.7340660154478 Down
chr12:56591797:+ ENSG00000076067.13 RBMS2 -0.424832451499118 0.170940170940171 0.000189009293653783 0.00359851255657282 2.44387697755596 Down
chr12:69579182:+ ENSG00000166225.9 FRS2 -0.327777777777778 0 0.00123259901946366 0.0144735057386333 1.83942626234761 Down
chr13:77895486:- ENSG00000136160.17 EDNRB -0.325293917399181 0 0.00378591032294561 0.0318253086522615 1.49722737572383 Down
chr14:21089542:+ ENSG00000165801.10 ARHGEF40 -0.324786324786325 0 0.00207171945647192 0.0211457387362538 1.67477713797159 Down
chr14:63293218:+ ENSG00000126785.13 RHOJ -0.498274672187716 0 0.000597829344454064 0.00867008504939554 2.06197664228134 Down
chr14:73885463:+ ENSG00000140043.12 PTGR2 -0.483333333333333 0 0.00271907057224076 0.0257370368920723 1.58944145492572 Down
chr14:91969516:- ENSG00000100815.12 TRIP11 -0.448244348244348 0.1125 0.000180587243180794 0.00346187820893022 2.46068821494703 Down
chr15:42141201:- ENSG00000168907.13 PLA2G4F -0.427868427868428 0 0.00227080205463458 0.0226035092617216 1.64582413011418 Down
chr15:44526179:+ ENSG00000137770.14 CTDSPL2 -0.386640211640212 0.192307692307692 0.00485586595136135 0.0381650011012275 1.41833472075109 Down
chr15:62163535:- ENSG00000205502.4 C2CD4B -0.453846153846154 0 0.00682016384888857 0.0489443600136676 1.31029734586417 Down
chr15:65150453:- ENSG00000166855.9 CLPX -0.315600675194598 0.241935483870968 0.00220809897148944 0.0221644744045057 1.65434256285007 Down
chr15:81309088:+ ENSG00000172349.18 IL16 -0.379292929292929 0.200716845878136 0.00100068149095334 0.0126243312451738 1.89879161869234 Down
chr16:84662309:+ ENSG00000135686.13 KLHL36 -0.346089885109849 0.217901687454145 0.000357251877250563 0.00588033023651995 2.2305982834696 Down
chr17:37518463:- ENSG00000275066.5 SYNRG -0.439974223307557 0.135802469135802 0.000209105430729711 0.00385781014790942 2.41365914883939 Down
chr17:40092625:+ ENSG00000126351.13 THRA -0.33296066252588 0.240740740740741 0.00105162474786889 0.0130649916962925 1.8838908619608 Down
chr17:4271432:- ENSG00000132388.13 UBE2G1 -0.341941913498585 0.298759305210918 0.00132947873939765 0.0152706931237425 1.81614125023991 Down
chr17:45150649:+ ENSG00000186834.4 HEXIM1 -0.332152667021088 0.228310502283105 6.36463339985261e-05 0.0015428685442259 2.81167107520021 Down
chr17:5383719:+ ENSG00000029725.17 RABEP1 -0.300798480311665 0.282258064516129 0.00550622161039333 0.0418250469656947 1.37856356269239 Down
chr17:54961942:- ENSG00000166260.13 COX11 -0.401008820919833 0.110478741211918 1.70500180198444e-08 1.36711634872579e-06 5.86419452313564 Down
chr17:57972576:- ENSG00000136451.9 VEZF1 -0.373940603184563 0.196663740122915 5.69598309498453e-07 3.23121109041334e-05 4.4906346692163 Down
chr17:60043200:- ENSG00000068097.16 HEATR6 -0.464285714285714 0 0.00271692254614455 0.0257370368920723 1.58944145492572 Down
chr17:65635540:- ENSG00000154240.17 CEP112 -0.485185185185185 0 0.002711977344661 0.0257283038420115 1.58958884403978 Down
chr17:76679570:- ENSG00000182534.14 MXRA7 -0.317085690767243 0.175384615384615 6.38181345021643e-17 1.4782761767043e-14 13.8302444219534 Down
chr17:82244365:- ENSG00000141551.15 CSNK1D -0.397591958531335 0.1475038925652 4.72793414282241e-23 1.71418447030418e-20 19.7659424437172 Down
chr18:42081396:+ ENSG00000078142.14 PIK3C3 -0.306397306397306 0 0.00022722923842327 0.00411927091132968 2.38517964493929 Down
chr18:45850646:- ENSG00000152223.16 EPG5 -0.333333333333333 0 0.000820969042003765 0.0109712513481881 1.95974383526763 Down
chr19:46758478:+ ENSG00000181027.11 FKRP -0.398412698412698 0 0.00115501519756839 0.0139078921007394 1.85673868728956 Down
chr19:51642578:- ENSG00000254415.4 SIGLEC14 -0.483333333333333 0 0.00191184649610678 0.0199535518536101 1.6999797860362 Down
chr19:57623353:+ ENSG00000213762.12 ZNF134 -0.533333333333333 0 0.00457665903890159 0.036486385970746 1.43786915200102 Down
chr1:10381596:+ ENSG00000054523.20 KIF1B -0.364171122994653 0.240196078431373 0.00220480933781949 0.0221644744045057 1.65434256285007 Down
chr1:109736975:- ENSG00000134202.12 GSTM3 -0.362851326503809 0 2.61447631579145e-08 2.00019431168669e-06 5.69892781213895 Down
chr1:153806109:- ENSG00000143614.10 GATAD2B -0.380532212885154 0.233766233766234 0.00471645745816524 0.0372448283557196 1.42893402284862 Down
chr1:243501764:- ENSG00000117020.19 AKT3 -0.317568542568543 0.283766233766234 0.00132859719264444 0.0152706931237425 1.81614125023991 Down
chr1:26798294:+ ENSG00000060642.12 PIGV -0.366666666666667 0 0.00532350532350534 0.0409812612194601 1.38741468009238 Down
chr1:28500362:+ ENSG00000204138.13 PHACTR4 -0.462301587301587 0 5.39262071015353e-05 0.00135448988258947 2.86822423459684 Down
chr1:44654503:- ENSG00000126106.14 TMEM53 -0.509357309357309 0.0777777777777778 6.20138686345674e-06 0.000229837178019403 3.63857971932609 Down
chr1:52417020:+ ENSG00000134748.13 PRPF38A -0.304248837582171 0.157894736842105 0.000148893984746739 0.00297039937512693 2.52718515514298 Down
chr1:89596572:+ ENSG00000197147.15 LRRC8B -0.5 0 7.56286632633766e-05 0.00174217520152845 2.75890817238751 Down
chr20:20389559:- ENSG00000188559.16 RALGAPA2 -0.362433862433862 0 1.69874111466074e-05 0.000534558571892677 3.27200470194981 Down
chr20:33707559:- ENSG00000101417.12 PXMP4 -0.309868421052632 0.279411764705882 0.00224504572269151 0.0224208817742808 1.64934731135862 Down
chr20:6040777:- ENSG00000125872.9 LRRN4 -0.477777777777778 0 6.60763843002512e-05 0.00156537207011305 2.805382419273 Down
chr20:62294884:+ ENSG00000130703.17 OSBPL2 -0.392145593869732 0.183270676691729 0.000560642909258046 0.00827481476290212 2.08224171940721 Down
chr20:62945640:+ ENSG00000101193.8 GID8 -0.307617333933124 0.309853160246861 0.000137982630998563 0.00280643209730979 2.55184546123708 Down
chr21:25714739:+ ENSG00000154721.15 JAM2 -0.554858934169279 0 0.00114543073856756 0.0138632030898619 1.85813641449082 Down
chr22:17729221:+ ENSG00000099968.18 BCL2L13 -0.310612535612536 0.3 0.00112868367359156 0.0137002811558661 1.86327052020211 Down
chr22:28757500:+ ENSG00000100209.11 HSCB -0.331649831649832 0 9.77437497314947e-05 0.00215062039316869 2.66743624033366 Down
chr22:30027851:+ ENSG00000100330.16 MTMR3 -0.388888888888889 0 0.00010179738779051 0.00222922985285871 2.65184514969757 Down
chr2:102715842:- ENSG00000135953.11 MFSD9 -0.472222222222222 0 0.00166034155597723 0.0179812834224599 1.74517931352603 Down
chr2:131483974:- ENSG00000173272.16 MZT2A -0.306878306878307 0 3.57037898712289e-06 0.000155881624992763 3.80720507553965 Down
chr2:16552631:- ENSG00000197872.11 CYRIA -0.33847687400319 0.148809523809524 0.00352278635158831 0.0306964633081452 1.51291165886276 Down
chr2:187345104:- ENSG00000064989.13 CALCRL -0.325269416573764 0.209660842754368 0.000322380393780579 0.00542002037043598 2.26599908121967 Down
chr2:201623802:- ENSG00000155755.20 TMEM237 -0.409722222222222 0.138888888888889 0.00116801262735775 0.0139943352004832 1.85404772782443 Down
chr2:201700553:- ENSG00000003393.16 ALS2 -0.477777777777778 0 0.000236920259608859 0.00424876998898553 2.37173677919954 Down
chr2:236125247:+ ENSG00000157985.20 AGAP1 -0.462962962962963 0 0.0011333914559721 0.0137374292897549 1.86209452999326 Down
chr2:25232976:- ENSG00000119772.19 DNMT3A -0.45 0 3.07583040430393e-05 0.000840962286606244 3.07522347992867 Down
chr2:53669980:- ENSG00000115239.24 ASB3 -0.416666666666667 0 0.000109813317360488 0.00234803398325412 2.62929562180563 Down
chr2:61049256:+ ENSG00000162928.9 PEX13 -0.316382361025218 0.20889748549323 0.00188367135682237 0.0197335872418866 1.70479395997102 Down
chr2:7044093:+ ENSG00000151692.15 RNF144A -0.564814814814815 0 0.000628516386967805 0.00903179655900824 2.04422585344527 Down
chr2:85608288:- ENSG00000168887.11 C2orf68 -0.405952380952381 0.157248157248157 0.00243726822259918 0.0237990394710241 1.62344057071038 Down
chr3:101822937:+ ENSG00000144815.17 NXPE3 -0.619047619047619 0 0.000964891885607994 0.0123408488252838 1.90865496773724 Down
chr3:138494346:- ENSG00000114107.9 CEP70 -0.355555555555556 0 0.00203003254022748 0.0207710936846098 1.68254063544921 Down
chr3:141952496:- ENSG00000114126.18 TFDP2 -0.387761069340017 0.126315789473684 0.000300525147176618 0.00515654156853048 2.28764147691349 Down
chr3:149321032:- ENSG00000163762.7 TM4SF18 -0.430895158481365 0.296238244514107 0.00364406775154003 0.0311668780776911 1.50630669793282 Down
chr3:14933438:+ ENSG00000154783.12 FGD5 -0.647222222222222 0 1.23531737685694e-06 6.20560940096991e-05 4.20721556364421 Down
chr3:158605395:+ ENSG00000178053.21 MLF1 -0.414814814814815 0 0.00375816280524164 0.0317423778214038 1.49836054336457 Down
chr3:161083884:- ENSG00000169255.15 B3GALNT1 -0.447420634920635 0 0.00375197669599803 0.0317319814076345 1.4985028088471 Down
chr3:183919937:- ENSG00000114770.17 ABCC5 -0.388888888888889 0 0.00579369581071227 0.0432917825856001 1.36359453127738 Down
chr3:186546340:- ENSG00000113838.13 TBCCD1 -0.410714285714286 0 0.00324196875921014 0.0291323033222558 1.53562517686907 Down
chr3:196734899:+ ENSG00000163964.18 PIGX -0.337962962962963 0.231334149326805 0.00306560459865563 0.0280923920309773 1.55141127960851 Down
chr3:42666151:+ ENSG00000114853.15 ZBTB47 -0.590196078431373 0 7.0646315067227e-06 0.000255030139110652 3.59340849220926 Down
chr3:50325994:- ENSG00000114383.10 TUSC2 -0.315053206883501 0.23728813559322 3.50553617863575e-06 0.000153892632334359 3.81278217167681 Down
chr3:56622859:- ENSG00000163946.14 TASOR -0.350963873805394 0.260504201680672 0.000350546364888853 0.00581154301552315 2.23570854331405 Down
chr3:64515656:- ENSG00000163638.13 ADAMTS9 -0.305405405405405 0 0.000743760717706189 0.0100849115852877 1.99632790490684 Down
chr3:70956125:- ENSG00000114861.24 FOXP1 -0.466374269005848 0 2.80114127717525e-08 2.12351973730586e-06 5.67294369805301 Down
chr3:73382430:- ENSG00000121440.15 PDZRN3 -0.817693744164332 0 3.82328764504598e-06 0.000162665284041012 3.78870512412624 Down
chr3:86940638:- ENSG00000206538.9 VGLL3 -0.463203463203463 0 1.65959442156714e-05 0.000524218101570016 3.28048798667778 Down
chr3:9757403:+ ENSG00000114026.22 OGG1 -0.355555555555556 0 0.00105284499579189 0.0130649916962925 1.8838908619608 Down
chr3:98793961:+ ENSG00000064225.13 ST3GAL6 -0.622222222222222 0 0.00164759725400458 0.0178897311212815 1.74739618673398 Down
chr4:112188897:+ ENSG00000174749.6 FAM241A -0.374786324786325 0 0.0034131834524124 0.0300554770957413 1.52207637372088 Down
chr4:119298490:- ENSG00000164096.13 C4orf3 -0.300089879907476 0.293115408693298 5.04841482535648e-16 1.00235074353923e-13 12.9989802831299 Down
chr4:143473297:+ ENSG00000109458.9 GAB1 -0.423713967192228 0 0.00172912740119497 0.0185098759930229 1.73259649079471 Down
chr4:144745270:+ ENSG00000164161.10 HHIP -0.57495737425405 0 2.07087338716219e-05 0.000614338864251668 3.21159200951171 Down
chr4:186085096:+ ENSG00000164342.14 TLR3 -0.416666666666667 0 0.00296442687747035 0.0273758092261631 1.56263303426094 Down
chr4:3240657:+ ENSG00000197386.14 HTT -0.326208026336745 0.258823529411765 6.52913484295732e-05 0.00155818898184181 2.80737987092931 Down
chr4:83460944:- ENSG00000163322.14 ABRAXAS1 -0.472222222222222 0 0.00393374741200828 0.0326403180783453 1.48624561771851 Down
chr5:132756004:- ENSG00000164402.14 SEPTIN8 -0.349398662492116 0.183098591549296 9.38370232369463e-06 0.000330171703279702 3.48126014983783 Down
chr5:9550295:+ ENSG00000250786.4 SNHG18 -0.67948717948718 0 0.000141588192079076 0.0028610688927214 2.5434716845336 Down
chr6:117346580:- ENSG00000282218.1 ENSG00000282218 -0.35 0 0.00309106760719664 0.0281410818396584 1.55065921081162 Down
chr6:144188367:+ ENSG00000135604.11 STX11 -0.343147294760198 0 0.00029930304608496 0.00514616103361336 2.28851662797498 Down
chr6:150843663:+ ENSG00000120278.17 PLEKHG1 -0.388888888888889 0 0.000927850014861326 0.0119773084735737 1.92164076511896 Down
chr6:163573795:+ ENSG00000112531.17 QKI -0.340283059180518 0.207271965943192 4.84913545075617e-12 6.22106777290087e-10 9.20613506738639 Down
chr6:41099961:+ ENSG00000001167.15 NFYA -0.444444444444445 0 2.07751000982096e-05 0.000614338864251668 3.21159200951171 Down
chr6:57184935:+ ENSG00000112208.11 BAG2 -0.361904761904762 0 0.00532350532350534 0.0409812612194601 1.38741468009238 Down
chr6:63581455:+ ENSG00000112245.13 PTP4A1 -0.300267403990808 0.298404525807272 2.89345273291801e-14 4.73107889015751e-12 11.3250398100841 Down
chr7:110663215:- ENSG00000184903.10 IMMP2L -0.533333333333333 0 0.00408703836667274 0.0335781408272748 1.47394335378487 Down
chr7:117230101:+ ENSG00000004866.22 ST7 -0.335759556347792 0.231481481481481 0.00234663841704479 0.0231855660660385 1.63478229651798 Down
chr7:139060341:- ENSG00000105939.14 ZC3HAV1 -0.302915204018769 0.263448784082535 0.000171920153265354 0.00332830757995834 2.47777654593114 Down
chr7:44834229:- ENSG00000105968.19 H2AZ2 -0.336572400478898 0.239684466019417 2.15806347108496e-17 5.62377852668047e-15 14.2499717908571 Down
chr7:79462988:+ ENSG00000234456.10 MAGI2-AS3 -0.391737891737892 0 0.00563281568223482 0.0424702079332334 1.37191561270758 Down
chr8:144843220:+ ENSG00000147789.16 ZNF7 -0.5 0 0.000164989275697079 0.00323133409914 2.49061813640774 Down
chr8:22201483:+ ENSG00000168487.20 BMP1 -0.414631204469352 0.234146341463415 4.54808840086545e-05 0.00116696951307129 2.93294048969401 Down



Appendix 237

Region GeneID GeneName DeltaUsage OddsRatio pvalue padj log10FDR Significance
chr8:23841929:- ENSG00000159167.12 STC1 -0.458333333333333 0 0.00458818374149134 0.0365433278130815 1.43719190621582 Down
chr8:56217465:+ ENSG00000170791.18 CHCHD7 -0.35808166296341 0.159628378378378 5.91878113733145e-06 0.000224348708655486 3.64907642590987 Down
chr8:56301300:- ENSG00000170786.13 SDR16C5 -0.329471189463742 0.308510638297872 2.05848665067434e-05 0.000613061434999047 3.212496002571 Down
chr8:90623545:- ENSG00000180694.14 TMEM64 -0.555258467023173 0 7.66677944770309e-07 4.20613643515764e-05 4.37611664413779 Down
chr9:120869579:- ENSG00000119403.15 PHF19 -0.350584898971996 0.204776422764228 0.000277284105446032 0.00483738944626456 2.31538894722903 Down
chr9:131093049:+ ENSG00000050555.19 LAMC3 -0.835714285714286 0 4.81635868242146e-06 0.000193887952668017 3.71244917520365 Down
chr9:136724035:+ ENSG00000165716.11 DIPK1B -0.341736694677871 0 1.55646843756139e-07 1.02199923628539e-05 4.99054942873865 Down
chr9:27329130:- ENSG00000120162.10 MOB3B -0.397222222222222 0.20066889632107 0.00200440655250167 0.0206550244746769 1.68497428608024 Down
chr9:35847234:+ ENSG00000137103.20 TMEM8B -0.452380952380952 0 0.00152949170425933 0.0169832640769887 1.76997883739054 Down
chr9:5776554:+ ENSG00000107036.12 RIC1 -0.333333333333333 0 0.0028966076957396 0.02695849506113 1.56930435564152 Down
chrX:129645809:- ENSG00000171388.12 APLN -0.572567783094099 0 0.000434942672308382 0.00683385101707461 2.16533449336981 Down
chrX:136218249:- ENSG00000129680.16 MAP7D3 -0.5 0 0.00329835082458771 0.0293856276989711 1.53186502799577 Down
chrX:45148373:- ENSG00000147113.17 DIPK2B -0.307777777777778 0 0.00485573213320732 0.0381650011012275 1.41833472075109 Down
chrX:48903613:- ENSG00000102100.16 SLC35A2 -0.408208020050125 0 9.83298500637906e-12 1.20584208776757e-09 8.91870956193175 Down
chrX:73820659:- ENSG00000229807.13 XIST -0.581087258994236 0.0368421052631579 2.59350253849879e-17 6.3609463731004e-15 14.1964782657919 Down
chr10:128096662:- ENSG00000148773.14 MKI67 0.687275469628411 Inf 0.000567045433857053 0.0083103547854727 2.08038043493021 Up
chr10:70112273:- ENSG00000042286.15 AIFM2 0.344821824676634 4.40322580645161 0.00189578213520708 0.0198355423155481 1.70255592115755 Up
chr10:76884877:- ENSG00000156113.24 KCNMA1 0.575084175084175 Inf 0.00215404131126744 0.0217727884783748 1.66208594655748 Up
chr10:90900761:+ ENSG00000148688.14 RPP30 0.324186133783657 Inf 0.000461495199372243 0.00713990439251416 2.14630760364141 Up
chr10:99711222:+ ENSG00000198018.7 ENTPD7 0.658260233918129 Inf 0.00163083541184905 0.0178013457080637 1.74954716558462 Up
chr11:124146901:+ ENSG00000110002.16 VWA5A 0.390579710144928 6.03529411764706 5.55517892907725e-06 0.000216470266773716 3.66460174763807 Up
chr11:128965060:- ENSG00000134909.19 ARHGAP32 0.554292929292929 Inf 0.00275363527270991 0.025975751741095 1.58543187505913 Up
chr11:129859509:+ ENSG00000151715.8 TMEM45B 0.578703703703704 Inf 0.0025309267801823 0.024501045473431 1.61081538364956 Up
chr11:6484680:+ ENSG00000132286.12 TIMM10B 0.451159762150474 9.0989010989011 7.64186942717331e-07 4.20613643515764e-05 4.37611664413779 Up
chr12:104265892:+ ENSG00000198431.18 TXNRD1 0.315525582543658 4.45479529678425 5.09809069770954e-47 4.72366425868887e-44 43.3257209780739 Up
chr12:108522688:- ENSG00000075856.12 SART3 0.415032679738562 Inf 1.08525152606995e-06 5.6561952974358e-05 4.24747560360748 Up
chr12:109088016:+ ENSG00000135093.13 USP30 0.4 Inf 0.00546678800850816 0.0416324613725567 1.38056791222349 Up
chr12:110351090:+ ENSG00000174437.18 ATP2A2 0.36161971373239 6.04545454545455 1.28494466401415e-20 4.28606142128559e-18 17.3679416096044 Up
chr12:12791463:+ ENSG00000178878.13 APOLD1 0.526354587622193 12.2131332082552 6.36368460103367e-34 3.53778439253465e-31 30.4512686383527 Up
chr12:27325092:+ ENSG00000211455.8 STK38L 0.396828792849332 Inf 0.000238095953560561 0.00426069132347965 2.37051992821809 Up
chr12:42081847:- ENSG00000151233.11 GXYLT1 0.645833333333333 Inf 0.000150228406842159 0.00298986798247439 2.52434798751125 Up
chr12:42159034:- ENSG00000015153.15 YAF2 0.646428571428571 Inf 0.00568990042674255 0.042746017710456 1.36910433864184 Up
chr12:63809107:+ ENSG00000118600.13 RXYLT1 0.484848484848485 Inf 0.000473702720054314 0.00730167649266714 2.136577412767 Up
chr12:6439167:- ENSG00000215039.9 CD27-AS1 0.785873440285205 Inf 0.00050394255759658 0.00765460289216372 2.11607733484364 Up
chr12:67662663:+ ENSG00000127334.11 DYRK2 0.513428600385122 Inf 0.00115007936309247 0.0138801803376053 1.85760489129341 Up
chr13:110720771:+ ENSG00000153487.13 ING1 0.312665112665113 3.69886363636364 0.00675513577608903 0.048687188622996 1.31258530248779 Up
chr13:79311833:- ENSG00000139746.16 RBM26 0.643035343035343 Inf 6.47826254548304e-06 0.000237296967317336 3.62470781208086 Up
chr14:103701543:+ ENSG00000126214.22 KLC1 0.401481481481481 Inf 7.57631706235504e-13 1.08929151694791e-10 9.96285587850006 Up
chr14:45203190:- ENSG00000129534.14 MIS18BP1 0.341099785035712 Inf 0.00689857344654995 0.049237577107337 1.30770332606572 Up
chr14:61795467:+ ENSG00000023608.5 SNAPC1 0.535612535612536 Inf 0.00600577590232419 0.0445174802217612 1.3514694255762 Up
chr14:91965995:- ENSG00000100815.12 TRIP11 0.567291967291967 12.6984126984127 3.6962097255011e-06 0.000158879860314194 3.7989311506765 Up
chr15:42569990:+ ENSG00000137814.12 HAUS2 0.6 Inf 0.002711977344661 0.0257283038420115 1.58958884403978 Up
chr15:52307285:- ENSG00000197535.16 MYO5A 0.49702380952381 Inf 0.000452744668747545 0.00705689307044071 2.15138646316235 Up
chr15:65148221:- ENSG00000166855.9 CLPX 0.315600675194598 4.13333333333333 0.00220809897148944 0.0221644744045057 1.65434256285007 Up
chr15:68301711:- ENSG00000137809.17 ITGA11 0.538766788766789 Inf 0.00551797120349809 0.0418693010609378 1.37810428887976 Up
chr15:84873475:+ ENSG00000136383.7 ALPK3 0.366666666666667 Inf 0.00634844719173024 0.0462759625278308 1.33464453927029 Up
chr16:16149565:- ENSG00000091262.17 ABCC6 0.533333333333333 Inf 0.0014197874181189 0.0160864229343661 1.7935405172792 Up
chr16:84464179:+ ENSG00000064270.13 ATP2C2 0.472222222222222 Inf 0.000896638967043992 0.0116103607859936 1.93515428457395 Up
chr17:39533549:+ ENSG00000167258.15 CDK12 0.413215488215488 7.41818181818182 0.0025696510030446 0.0247228130288576 1.60690211556524 Up
chr17:45152096:+ ENSG00000186834.4 HEXIM1 0.332152667021088 4.38 6.3646333998526e-05 0.0015428685442259 2.81167107520021 Up
chr17:54961206:- ENSG00000166260.13 COX11 0.309417974490277 6.42077922077922 4.57674649504787e-06 0.000188428602057375 3.72485317387393 Up
chr17:57971554:- ENSG00000136451.9 VEZF1 0.373940603184564 5.08482142857143 5.69598309498454e-07 3.23121109041334e-05 4.4906346692163 Up
chr17:62615478:+ ENSG00000146872.19 TLK2 0.423313492063492 10.125 0.0003768551537095 0.0060903006333014 2.21536126891699 Up
chr17:64039152:- ENSG00000178607.17 ERN1.00 0.350869157451635 Inf 0.00065855976152731 0.00929226709200716 2.03187831556167 Up
chr17:82242666:- ENSG00000141551.15 CSNK1D 0.397591958531335 6.7794821045687 4.72793414282241e-23 1.71418447030418e-20 19.7659424437172 Up
chr19:18670497:+ ENSG00000167487.12 KLHL26 0.322222222222222 Inf 0.00447548484960417 0.0359894582071834 1.44382469125767 Up
chr1:100026887:+ ENSG00000117620.15 SLC35A3 0.308030661222151 4.01993355481728 0.00294361792659778 0.0272137803657416 1.56521112459502 Up
chr1:151806072:- ENSG00000143365.20 RORC 0.41 Inf 0.00364005221903507 0.0311668780776911 1.50630669793282 Up
chr1:155614933:+ ENSG00000125459.18 MSTO1 0.501798941798942 Inf 1.52529750754275e-05 0.000489997205756554 3.30980639655918 Up
chr1:185119056:- ENSG00000121486.12 TRMT1L 0.535817805383023 Inf 0.000894828836172977 0.0116049419359976 1.9353570281455 Up
chr1:200644046:- ENSG00000118197.14 DDX59 0.312091503267974 Inf 0.00166655655714825 0.0180251817510496 1.74412034751949 Up
chr1:212737758:- ENSG00000117697.15 NSL1 0.301709401709402 Inf 0.0020846952671216 0.021174511367268 1.67418660286019 Up
chr1:243499724:- ENSG00000117020.19 AKT3 0.317568542568543 3.52402745995423 0.00132859719264444 0.0152706931237425 1.81614125023991 Up
chr1:3812088:- ENSG00000116198.14 CEP104 0.634032634032634 Inf 0.000561318768919449 0.00827481476290212 2.08224171940721 Up
chr1:44850840:- ENSG00000070785.17 EIF2B3 0.401171963038089 Inf 3.85548320233942e-05 0.00101103378692794 2.99523433082722 Up
chr1:51354263:- ENSG00000085832.17 EPS15 0.309513783707332 4.07908163265306 4.60233468419951e-05 0.00117726591814539 2.92912542862704 Up
chr20:33704113:- ENSG00000101417.12 PXMP4 0.309868421052632 3.57894736842105 0.0022450457226915 0.0224208817742808 1.64934731135862 Up
chr20:41402546:- ENSG00000124177.16 CHD6 0.564089635854342 Inf 0.00227146429563769 0.0226035092617216 1.64582413011418 Up
chr20:43463602:+ ENSG00000124193.16 SRSF6 0.308662811451417 4.59421312632322 1.19904498584546e-06 6.08314156690869e-05 4.21587207651557 Up
chr20:435481:- ENSG00000125875.15 TBC1D20 0.444492039694438 7 5.65978112938571e-07 3.23121109041334e-05 4.4906346692163 Up

chr20:62296181:+ ENSG00000130703.17 OSBPL2 0.392145593869732 5.45641025641026 0.000560642909258047 0.00827481476290212 2.08224171940721 Up
chr20:62948473:+ ENSG00000101193.8 GID8 0.307617333933123 3.22733516483516 0.000137982630998562 0.00280643209730979 2.55184546123708 Up
chr21:36294120:+ ENSG00000142197.13 DOP1B 0.711111111111111 Inf 0.00540268356979947 0.0412645604575389 1.38442277655444 Up
chr22:17729136:+ ENSG00000099968.18 BCL2L13 0.310612535612536 3.33333333333333 0.00112868367359156 0.0137002811558661 1.86327052020211 Up
chr22:36190088:- ENSG00000100336.18 APOL4 0.620169082125604 Inf 6.34929053292304e-06 0.000234277582982501 3.63026926519204 Up
chr2:111207780:- ENSG00000172965.17 MIR4435-2HG 0.503311098753928 8.86363636363636 2.5675804640353e-06 0.000117000292292844 3.93181305328794 Up
chr2:112119312:+ ENSG00000153214.11 TMEM87B 0.315762967936881 Inf 3.20686124430092e-05 0.000873922088765534 3.05852728352972 Up
chr2:127843552:- ENSG00000144231.11 POLR2D 0.378483483483484 5.8 0.00473056749521422 0.0372998739798342 1.42829263548233 Up
chr2:152116801:- ENSG00000115145.10 STAM2 0.326764607269516 4.33333333333333 0.0023115335162236 0.0229035192573212 1.64009778069043 Up
chr2:176173202:- ENSG00000224189.8 HAGLR 0.444444444444445 Inf 0.00362880362880364 0.0311668780776911 1.50630669793282 Up
chr2:207075100:- ENSG00000118263.15 KLF7 0.376336996336996 6.12152777777778 1.52775241032143e-05 0.000489997205756554 3.30980639655918 Up
chr2:210021568:+ ENSG00000197713.15 RPE 0.32 Inf 0.000258784788017215 0.00458886948787767 2.33829429390712 Up
chr2:238452249:+ ENSG00000065802.12 ASB1 0.39042809042809 6.93333333333333 0.00162420678255947 0.0177746198947027 1.75019967776547 Up
chr2:37099211:- ENSG00000055332.19 EIF2AK2 0.309649122807018 Inf 2.68812197682905e-07 1.6689722781998e-05 4.7775508769366 Up
chr2:40112253:- ENSG00000183023.18 SLC8A1 0.515909090909091 Inf 0.00663899577811494 0.047891510202163 1.31974146777834 Up
chr2:42756945:+ ENSG00000057935.14 MTA3 0.795579268292683 Inf 5.76928935326169e-06 0.000222731962578006 3.65221745618008 Up
chr2:69881366:+ ENSG00000087338.5 GMCL1 0.327834799608993 Inf 0.00491734284864686 0.0385754675586699 1.41368880131356 Up
chr2:89543464:- ENSG00000283196.2 ENSG00000283196 0.502777777777778 Inf 0.00163606162179456 0.0178108588304763 1.74931513857471 Up
chr2:96274126:+ ENSG00000144021.3 CIAO1 0.30944068972238 3.34230769230769 0.000139664554078543 0.00283372923713131 2.54764164895006 Up
chr3:149318499:- ENSG00000163762.7 TM4SF18 0.326489028213166 3.2989417989418 0.0036515217510378 0.0311668780776911 1.50630669793282 Up
chr3:179789395:+ ENSG00000058056.10 USP13 0.542328042328042 Inf 0.000549786099089246 0.00817231066008061 2.08765513256892 Up
chr3:196736003:+ ENSG00000163964.18 PIGX 0.472643097643098 7.28571428571429 0.000106365240059546 0.00229193730453889 2.63979726657603 Up
chr3:39412522:+ ENSG00000168028.15 RPSA 0.536296296296296 Inf 0.0012175699016988 0.0143814665867794 1.84219682340598 Up
chr3:50324909:- ENSG00000114383.10 TUSC2 0.315053206883502 4.21428571428571 3.50553617863574e-06 0.000153892632334359 3.81278217167681 Up
chr3:56620132:- ENSG00000163946.14 TASOR 0.410184263610492 5.578125 5.55332492957885e-06 0.000216470266773716 3.66460174763807 Up
chr4:119297054:- ENSG00000164096.13 C4orf3 0.300089879907476 3.41162549064881 5.04841482535648e-16 1.00235074353923e-13 12.9989802831299 Up
chr4:142023161:- ENSG00000109452.13 INPP4B 0.635493827160494 Inf 1.6120571106162e-05 0.000513089475016353 3.28980689391839 Up
chr4:147635220:+ ENSG00000164168.8 TMEM184C 0.373656898656899 4.91925465838509 0.00190731293186494 0.019931181126343 1.70046696414678 Up
chr4:15853230:+ ENSG00000004468.13 CD38 0.661616161616162 Inf 1.21058832268753e-05 0.000413733443561118 3.38327937210182 Up
chr4:3243956:+ ENSG00000197386.14 HTT 0.326208026336745 3.86363636363636 6.52913484295732e-05 0.00155818898184181 2.80737987092931 Up
chr4:41960558:+ ENSG00000109133.13 TMEM33 0.349906629318394 4.60975609756098 8.74057089822243e-06 0.000312822406524793 3.50470214729516 Up
chr5:132646336:+ ENSG00000113522.14 RAD50 0.457085020242915 7.71428571428571 0.00196193656659992 0.0203489913294486 1.69145711326487 Up
chr5:137937961:- ENSG00000031003.11 FAM13B 0.401515151515152 Inf 0.000312069782562832 0.00531091819753359 2.27483038783588 Up
chr5:179113849:- ENSG00000087116.17 ADAMTS2 0.558815179188206 11.1428571428571 3.60450816832263e-06 0.000156552050081471 3.80534124083378 Up
chr5:181264573:+ ENSG00000248275.3 TRIM52-AS1 0.383760683760684 Inf 0.00373484194808994 0.0317157301477821 1.49872528598486 Up
chr5:36192885:- ENSG00000152620.13 NADK2 0.545833333333333 Inf 0.000231252718989303 0.00417406152305584 2.37944115399439 Up
chr5:72914387:+ ENSG00000083312.19 TNPO1 0.353077107279693 5.33015267175573 7.16012811395855e-08 5.14726796054313e-06 5.28842322231597 Up
chr6:26138955:+ ENSG00000180573.10 H2AC6 0.346109629749336 3.5752688172043 0.00686089061412261 0.049067724555033 1.30920408133244 Up
chr6:32846494:+ ENSG00000204261.9 PSMB8-AS1 0.329744816586922 Inf 0.000127905283446932 0.00265323920065663 2.57622359478121 Up
chr6:42964010:- ENSG00000124587.14 PEX6 0.363888888888889 Inf 0.00376081895761446 0.0317423778214038 1.49836054336457 Up
chr6:46997709:- ENSG00000153292.16 ADGRF1 0.720720720720721 Inf 0.00200993920988059 0.0206550244746769 1.68497428608024 Up
chr6:63583377:+ ENSG00000112245.13 PTP4A1 0.33023377588595 3.92331478045764 3.49343111481371e-17 8.32334916183759e-15 14.0797018864702 Up
chr6:87263485:+ ENSG00000188994.14 ZNF292 0.552910052910053 Inf 0.00182538456359326 0.0192682049060813 1.71515874386543 Up
chr7:12237263:+ ENSG00000106460.19 TMEM106B 0.332743846330803 6.66666666666667 7.3660636975715e-09 6.08174308653948e-07 6.21597192987667 Up
chr7:124823260:- ENSG00000128513.16 POT1 0.574804905239688 Inf 0.00448873960574908 0.0360612712642983 1.44295896720491 Up
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Region GeneID GeneName DeltaUsage OddsRatio pvalue padj log10FDR Significance
chr7:139043521:- ENSG00000105939.14 ZC3HAV1 0.302915204018769 3.7958041958042 0.000171920153265355 0.00332830757995834 2.47777654593114 Up
chr7:23175417:+ ENSG00000122550.18 KLHL7 0.350271155095717 6.30172413793104 0.00118887338016077 0.0141510535276042 1.84921122627446 Up
chr7:44826795:- ENSG00000105968.19 H2AZ2 0.380381568445851 6.615 1.291850060611e-25 6.33690450319712e-23 22.1981228376194 Up
chr7:4771436:+ ENSG00000164916.11 FOXK1 0.396491228070175 Inf 0.00192600288879416 0.0200331965639888 1.69824974769401 Up
chr7:55956500:+ ENSG00000239789.6 MRPS17 0.313506659368728 5.41369047619048 0.000113717744958315 0.00241713024276084 2.61669994777671 Up
chr7:99576451:+ ENSG00000197343.11 ZNF655 0.320672797420855 5.34146341463415 1.39854233666402e-05 0.000453791616554134 3.3431435316285 Up
chr8:140520158:- ENSG00000123908.12 AGO2 0.408068783068783 Inf 0.00266624626656575 0.0254975087349676 1.59350225076256 Up
chr8:38262766:+ ENSG00000085788.14 DDHD2 0.305555555555556 Inf 0.000314826632002528 0.00534692318588407 2.27189605494703 Up
chr8:56218615:+ ENSG00000170791.18 CHCHD7 0.35808166296341 6.26455026455026 5.91878113733142e-06 0.000224348708655486 3.64907642590987 Up
chr8:93729249:+ ENSG00000188343.14 CIBAR1 0.458333333333333 Inf 0.00181572994590491 0.0191905855752865 1.71691177314178 Up
chr9:120855698:- ENSG00000119403.15 PHF19 0.350584898971996 4.8833746898263 0.000277284105446032 0.00483738944626456 2.31538894722903 Up
chr9:134159964:+ ENSG00000196363.10 WDR5 0.301888162672476 Inf 0.000261772050281448 0.0046248244222394 2.33490475025468 Up
chr9:14615533:- ENSG00000175893.12 ZDHHC21 0.769919590643275 Inf 0.000528820729772608 0.00789759978116473 2.10250487835279 Up
chr9:91213826:- ENSG00000148090.12 AUH 0.314814814814815 Inf 0.00595172222057272 0.0441953798729794 1.35462312885329 Up
chr9:98732009:- ENSG00000165138.18 ANKS6 0.316666666666667 Inf 0.00465815406392657 0.0368542189175367 1.43351278873498 Up
chrX:40626922:- ENSG00000185753.13 CXorf38 0.301851851851852 Inf 0.0036053252224613 0.0310908035471611 1.50736805339623 Up
chrX:73821670:- ENSG00000229807.13 XIST 0.581087258994236 27.1428571428571 2.59350253849879e-17 6.3609463731004e-15 14.1964782657919 Up



Appendix 239

A.3 NanoInsights: A Web Platform for Advanced

NanoString nCounter Data Analysis (Supple-

mentary Materials)

A.3.1 NanoString nCounter Technology: AMultiplexed Ap-

proach for RNA Target Analysis

The NanoString nCounter technology is a powerful and versatile platform used for
the analysis of RNA targets. This technology relies on the parallel hybridisation
of complementary probes to RNA molecules of interest. Specifically, for each RNA
target, two distinct probes are meticulously designed: the reporter probe and the
capture probe.

The reporter probe plays a pivotal role in this technology, as it contains a unique
and distinctive fluorescent molecular barcode that is specific to the RNA target
under investigation. This molecular barcode serves as a molecular signature, allow-
ing for the precise identification of the target of interest. On the other hand, the
capture probes are biotinylated, enabling the immobilisation of the hybridisation
complexes formed between the target RNA and the specific probes.

The process of hybridisation takes place in a controlled environment, typically
overnight, within a thermocycler equipped with a programmable heated lid. Fol-
lowing hybridisation, excess unbound probes are removed, and the resulting hy-
bridisation complexes are immobilised and aligned on a streptavidin-coated sur-
face.

A unique feature of this technology is the structure of the fluorescent molecular
barcodes, which consist of seven individual light signals. This innovative design
allows for the multiplexing of up to 800 different RNA targets within a single
experiment. The resulting data are presented in the form of a matrix of digital
numbers, representing the count of each barcode in each sample investigated [354].
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A.3.2 Supplementary Figures

Figure 11: NanoInsights Web Service Interface and How to Use
Guide. Screenshot of the NanoInsights web service interface showcasing the
’How to use?’ tab. This tab provides comprehensive guidance on navigating
and utilising the website efficiently. It includes detailed explanations of each ac-
cessible variable that users can adjust to tailor their experience. The guide offers
insights into the functionality of the website, enabling users to make informed

decisions and optimise their interactions with the platform.
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Figure 12: Standard NanoString QC Metrics for Gene Expression
Analysis (Training Set). This multi-panel figure showcases the standard QC
metrics for a NanoString gene expression analysis. (A) The Imaging QC box-
plot displays the field of view uniformity across different cartridges. The red line
in 0.75 represents the minimum limit. Sample below this limit will be potential
outliers. (B) The Binding Density QC boxplot shows the level of image satura-
tion. Samples outside the red lines (indicating the low and upper limit) would
be potential outliers. (C) The Positive Control Linearity QC boxplot shows the
linearity of the assay across a range of positive control concentrations. These
positive controls are typically used to measure the efficiency of the hybridization
reaction. Sample with a linearity below 0.95 (red line), would be indicated as
potential outliers. (D) The Limit of Detection QC boxplot indicates the sensi-
tivity of the assay in detecting low-abundance targets. Each panel delineates the
QC metrics across various cartridge IDs, providing a comprehensive overview of

the assay’s performance and reliability.
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Figure 13: PCA Plot Highlighting Batch Variation in the Training
Set. This Principal Component Analysis plot visualises the variance in gene
expression data across different batches, represented by CartridgeIDs. Each
point corresponds to a sample, with its position reflecting the sample’s score on
the first two principal components that together explain 45% of the variance
(PC1: 37%, PC2: 8%). The colour coding indicates the batch each sample
belongs to, providing a clear illustration of batch effects within the dataset.
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A.3.3 Supplementary Tables

Table 12: Comprehensive Inventory of Packages Employed in NanoInsights.

Package Version Usage

Python v3.11.4 -

fast_ml v3.68 Removing quasi-constant features
matplotlib v3.8.2 Machine Learning visualisations
numpy v1.26.0 Data manipulation
pandas v2.1.1 Data manipulation
plotly v5.18.0 Interactive visualisations

scipy.stats v1.12.0 Linear Regression analysis
seaborn v0.13.0 Machine Learning visualisations
sklearn v1.3.2 Machine Learning

R v4.3.1 -

ctrlGene v1.0.1 Assessing the Stability of Candidate Housekeeping Genes
DESeq2 v1.42.0 Exploratory Analysis
edgeR v4.0.7 Exploratory Analysis and filtering

ggdendro v0.1.23 Visualisations
ggplot2 v3.4.4 Visualisations

heatmaply v1.5.0 Visualisations
htmltools v0.5.7 Interactive visualisations
limma v3.58.1 Differential Expression

NanoStringClustR v0.1.1 Normalisation
NanoTube v1.8.0 Normalisation
optparse v1.7.3 Input arguments
pheatmap v1.0.12 Visualisations

RColorBrewer v1.1-3 Visualisations
reshape2 v1.4.4 Data manipulation
reticulate v1.34.0 Interoperability between R and Python
RUVSeq v1.36.0 Normalisation
tidyverse v2.0.0 Data manipulation
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Table 13: Gene Features Selected for Predictive Modelling in Chemoradiother-
apy Response.

Selected Genes

CACNA1D GAS1 NKD1
CACNA2D1 ID1 PIK3CA
CAMK2B IL2RB SFN
CD40 IRS1 SMAD9
ETV7 MAPK8IP1 STAT1
FAS MAPK8IP2 TNFSF10

FGFR3 MDM2 TSPAN7
FGFR4 MLLT4 WNT11
FUT8 MYD88
FZD7 NGFR

Table 14: Comparative Performance Metrics of the Utilised Classifier Models.

Metric Abbrev. Random Forest Extra Trees Logistic Regression

True Positive TP 25.0 0.0 20.0
False Positive FP 22.0 1.0 15.0
True Negative TN 40.0 61.0 47.0
False Negative FN 9.0 34.0 14.0
Population Population 96.0 96.0 96.0
Accuracy Accuracy 0.68 0.64 0.7
Balanced Accuracy BA 0.69 0.49 0.67
False Positive Rate FPR 0.35 0.02 0.24
False Negative Rate FNR 0.26 1.0 0.41
True Negative Rate TNR 0.65 0.98 0.76
Negative Predictive Value NPV 0.82 0.64 0.77
False Discovery Rate FDR 0.47 1.0 0.43
True Positive Rate TPR 0.74 0.0 0.59
Positive Predictive Value PPV 0.53 0.0 0.57
F1 score F1 0.62 0.0 0.58
F2 score F2 0.68 0.0 0.58
Cohen Kappa Metric Cohen Kappa 0.35 -0.02 0.34
Matthews Correlation Coefficient MCC 0.36 -0.08 0.34
ROC AUC score ROC AUC 0.7 0.69 0.7
Average precision Avg. Precision 0.54 0.52 0.55
Log loss Log Loss 0.65 0.62 0.83
Brier score BS 0.23 0.22 0.24
Negative Likelihood Ratios LR- 0.41 1.02 0.54
Positive Likelihood Ratios LR+ 2.07 0.0 2.43
Diagnostic Odds Ratio DOR 5.05 0.0 4.48


